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Abstract
Languages with polymorphic type systems are made convenient to use by employing type inference
to avoid redundant type information. Unfortunately, features such as impredicative types and
subtyping make complete type inference very challenging or impossible to realize.

This paper presents a form of partial type inference called elementary type inference. Elementary
type inference adopts the idea of inferring only monotypes from past work on predicative higher-
ranked polymorphism. This idea is extended with the addition of explicit type applications that
work for any polytypes. Thus easy (predicative) instantiations can be inferred, while all other (impre-
dicative) instantiations are always possible with explicit type applications without any compromise
in expressiveness. Our target is a System F extension with top and bottom types, similar to the
language employed by Pierce and Turner in their seminal work on local type inference. We show a
sound, complete and decidable type system for a calculus called F e

<:, that targets that extension
of System F. A key design choice in F e

<: is to consider top and bottom types as polytypes only.
An important technical challenge is that the combination of predicative implicit instantiation and
impredicative explicit type applications, in the presence of standard subtyping rules, is non-trivial.
Without some restrictions, key properties, such as subsumption and stability of type substitution
lemmas, break. To address this problem we introduce a variant of polymorphic subtyping called
stable subtyping with some mild restrictions on implicit instantiation. All the results are mechanically
formalized in the Abella theorem prover.
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1 Introduction

Many programming languages, such as Java, C#, Scala or TypeScript (among others)
have type systems with parametric polymorphism, subtyping and first-class functions. For
convenience, some form of type inference is desirable in those languages. Type inference avoids
code being cluttered with redundant type annotations, as well as explicit type instantiations
of polymorphic functions. For instance, in Java, we can write code such as:
List<String> numbers = Arrays.asList("1", "2", "3", "4", "5", "6");
List<Integer> even = numbers.stream()

.map(s -> Integer.valueOf(s))

.filter(number -> number % 2 == 0)

.collect(Collectors.toList());

This code processes a list of strings representing numbers, converts the strings into numbers,
and filters the even numbers. Thus the list even is [2,4,6]. The code is made practical by a
form of local type inference [28, 22, 4, 29], which helps in two ways. Firstly, local type inference
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2:2 Elementary Type Inference

enables synthesis of type arguments in many cases. That is, applications of generic methods
(i.e. methods parametrized by some types) will automatically infer the type arguments.
An example of type argument synthesis is the method call map(s -> Integer.valueOf(s)).
The polymorphic map function allows taking a function that converts values in the list with
some type A into values of some other type B, thus producing a list with type List<B>. In
the code above, B is Integer, and such instantiation is implicitly done by the compiler.
Secondly, local type inference employs bidirectional type-checking [28, 10] to propagate known
type-information. For example, in the snippet above the type of numbers is List<String>,
therefore in map(s -> Integer.valueOf(s)) we can deduce that s is of type String.

Without local type inference, the code above would need to explicitly provide the types for
instantiation and the types of arguments for the lambda functions, making the code cluttered
with type annotations. Nonetheless, some instantiations cannot be automatically inferred.
For such cases, languages like Java support explicit type applications as well. For instance,
we can write an alternative invocation of the map function with explicit type application as:

.<Integer>map(s -> Integer.valueOf(s))

In their original work on local type inference, Pierce and Turner [28] considered a System
F language extended with subtyping and a top and a bottom type. Such a language captures
most of the essential features of interest to write code such as the above. In particular, their
System F variant captures essential forms of subtyping by including top and bottom types,
supports both implicit instantiation and explicit type application, and employs bidirectional
type-checking for inferring types in simple cases with lambdas as arguments.

Local type inference is a pragmatic approach. It is not aimed to provide the same degree
of type inference that is possible in languages with Hindley-Milner type inference [16, 20, 5].
Instead, as Pierce and Turner state, the goal is to “exchange complete type inference for
simpler methods that work well in the presence of more powerful type-theoretic features such
as subtyping and impredicative polymorphism”. In local type inference, the main design
decision that is made to simplify type inference is to avoid forms of global type inference
that employ long-distance constraints such as unification variables.

The issues caused by both subtyping and impredicative polymorphism for more ambitious
global type inference methods are well-known. There are several important undecidability
results that are relevant. For instance, for System F, full type inference is undecidable [39] and
an impredicative polymorphic subtyping relation for System F is undecidable as well [36, 3].
For a type system with top and bottom types and type variables, subtyping can also easily
run into undecidable problems [35]. Despite those problems, several different approaches
and restrictions have been developed for allowing type inference for: predicative versions
of System F [26, 8, 9, 21, 40]; impredicative versions of System F [17, 18, 37, 34, 33, 14]; as
well as several Hindley-Milner extensions with subtyping [11, 31, 6, 24].

Perhaps surprisingly, follow-up research on local type inference and type inference for
type systems that include higher-ranked polymorphism, impredicativity and subtyping (with
top and bottom types) has been relatively limited. In contrast, closely related global type
inference approaches with higher-ranked polymorphism (HRP) for System-F-like languages
have seen quite a bit of development. Such HRP approaches [8, 17, 18, 37, 26, 34, 21]
extend the classic Hindley-Milner type system, removing the restriction of top-level (let)
polymorphism only. Both local type inference and HRP type inference techniques allow
synthesis of type arguments and use type annotations to aid inference. The main difference
is that HRP type inference targets a System-F-like language without subtyping, whereas the
local type inference targets a System-F-like language with subtyping. Another difference is
that most HRP techniques support implicit instantiation only, although there is some work
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on supporting visible (or explicit) type applications as well in HRP approaches [13, 33].
In this paper, we propose a form of partial type inference called elementary type inference.

Like local type inference, we aim at having a pragmatic approach. We are willing to sacrifice
some power in terms of what can be inferred, in exchange for an approach that can deal
with both subtyping in the presence of top and bottom types, as well as impredicative
polymorphism. Like local type inference we support synthesis of type arguments and bi-
directional type-checking, but do not support Hindley-Milner style generalization. Unlike
local type inference, our type inference is global and employs long-distance constraints. We
build on recent developments in predicative type inference with HRP for System-F-like
languages. The philosophy in elementary type inference is to infer only monotypes, but also
include an explicit type application construct that can be used to instantiate any types (or
polytypes). In other words, many programs where instantiations are monotypes can still
benefit from type inference, while no expressive power is sacrificed. We can always resort to
explicit type application for dealing with general polytypes.

We present a calculus with elementary type inference, called F e
<:, that can encode all

terms in a variant of System F with subtyping. The type system of F e
<: is a variant of the

Dunfield and Krishnaswami [8] (DK) type system, extended with top and bottom types and
impredicative explicit type application. The algorithmic formulation of F e

<: is based on the
worklist algorithm by Zhao et al. [40]. We have a prototype implementation, as well as a full
mechanical formalization (including results such as soundness, completeness and decidability)
in the Abella theorem prover [15]. A key design choice in F e

<: is to consider top and bottom
types as polytypes only. In other words, we avoid guessing types for implicit instantiation
that use top and bottom types. This design choice avoids many of the technical challenges
that would otherwise occur in the inference of terms with top and bottom types.

A key technical challenge is that the combination of predicative implicit instantiation and
impredicative explicit type applications is problematic. Without some restrictions, important
properties, such as subsumption and type substitution lemmas, break. To address this
problem we introduce a novel polymorphic subtyping relation called stable subtyping. Stable
subtyping has some mild restrictions, compared to the well-known Odersky and Läufer [21]
formulation, but accounts for top and bottom types and impredicative instantiations. In
essence, due to the presence of explicit impredicative type applications, out-of-order implicit
instantiation and unused type variables are forbidden.

In summary, the contributions of this work are:

Elementary type inference: A form of partial type inference that combines predicative
implicit instantiation with impredicative explicit type application, in the presence of
conventional subtyping rules and top and bottom types.
The F e

<: calculus: We present a syntax-directed specification and an algorithmic version
of the F e

<: calculus. We show that the algorithmic version is sound and complete to the
specification, and its type system is also decidable. Furthermore, F e

<: is type-safe and
complete with respect to a variant of System F with subtyping and top and bottom types.
Stable subtyping: A new form of polymorphic subtyping, based on the well-known
polymorphic subtyping relation by Odersky and Läufer [21], but with some restrictions.
The restrictions are needed to ensure important properties such as subsumption and
stability of type substitutions in the presence of impredicative type applications.
Implementation and mechanical formalization. All the calculi and proofs presented
in this paper are mechanically formalized in the Abella theorem prover. The formalization,
an implementation and the extended version of the paper can be found in:
https://github.com/JimmyZJX/ElementaryTypeInference
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2 Overview

We start with a background on higher-ranked polymorphic (HRP) type inference and the
declarative type system by Dunfield and Krishnaswami [8]. Then we discuss the challenges
of extending such HRP systems with explicit type applications and top and bottom types.
Finally, we illustrate the key ideas in our work to address those challenges.

2.1 Background: Higher-Ranked Type Inference and Type Applications
Our work builds on prior work on HRP type inference. In HRP type systems, universal
quantification can appear in arbitrary positions in types. This lifts a restriction of Hindley-
Milner type inference [16, 20, 5], where universal quantification can only appear at the top
level. To introduce HRP type inference we will use examples in GHC 8, whose type inference
algorithm is closely based on the work by Eisenberg et al. [13] on visible type application.
The use of GHC 8 will later be helpful to illustrate some challenges of combining HRP type
inference with explicit type applications and standard subtyping rules.1

A canonical example of an expression with an arbitrary higher-ranked type is:
hpoly = \(f :: forall a. a -> a) -> (f 1, f ’c’)

The type of this function is (forall a. a -> a) -> (Int, Char). A type annotation helps
the type system to infer a type. In general, HRP type systems require some type annotations.
In many such systems, it is enough to provide type annotations for polymorphic arguments
(such as above). The use of some type annotations means that type inference is partial.
Predicativity, Polymorphic Subtyping and Explicit Type Applications In predicative type
systems, universally quantified types can only be instantiated with monotypes, which are
types that do not contain universal quantifiers. For instance, the following definition of f:

f :: (forall a. Int -> a -> Int) -> Bool -> Int
f k = k 3

illustrates a higher-ranked function, where the argument k is polymorphic. In the body,
implicit instantiation is used when applying k to an argument. In that application, the type
argument of k is left implicit and is instantiated automatically with the monotype Bool.

The polymorphic subtyping relation used in GHC 8 (based on Peyton Jones et al.’s
work [26]) and also by DK’s type system allows implicit instantiation of type arguments in
polymorphic types, which follows Hindley-Milner. This allows us, for instance, to define a
function h, with a different but compatible type with f:

h :: (forall b a. b -> a -> b) -> Bool -> Int
h k = f k

Notice that in h, one more universal variable is added, generalizing the argument type
compared to f. However, since subtyping of functions is contravariant on the input types,
the type of h is less general (or a supertype) of the type of f.

Another alternative to support instantiation is to employ an explicit type application.
For example, function g illustrates explicit type applications in GHC Haskell:

g :: (forall a. Int -> a -> Int) -> Bool -> Int
g k = k @Bool 3

The function g has the same type as f but explicitly instantiates the type arguments of the
argument k. The notation e @τ (for instance k @Bool in the definition of g above) denotes
explicit type applications in Haskell. We will also adopt a similar notation in this paper.

1 Type-checked with the GHC extensions: RankNTypes, TypeApplications and ScopedTypeVariables.
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Syntax

Type variables a, b

Types A, B, C ::= 1 | a | ∀a. A | A → B

Monotypes τ, σ ::= 1 | a | τ → σ

Expressions e ::= x | () | λx. e | e1 e2 | (e : A)
Contexts Ψ ::= · | Ψ, a | Ψ, x : A

Ψ ⊢ A ≤ B Declarative subtyping

a ∈ Ψ
Ψ ⊢ a ≤ a

≤Var
Ψ ⊢ 1 ≤ 1

≤Unit
Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2
≤→

Ψ ⊢ τ Ψ ⊢ [τ/a]A ≤ B

Ψ ⊢ ∀a. A ≤ B
≤∀L

Ψ, b ⊢ A ≤ B

Ψ ⊢ A ≤ ∀b. B
≤∀R

Ψ ⊢ e ⇐ A e checks against input type A.
Ψ ⊢ e ⇒ A e synthesizes output type A.
Ψ ⊢ A • e ⇒⇒ C Applying a function of type A to e synthesizes type C.

(x : A) ∈ Ψ
Ψ ⊢ x ⇒ A

DVar
Ψ ⊢ e ⇒ A Ψ ⊢ A ≤ B

Ψ ⊢ e ⇐ B
DSub

Ψ ⊢ A Ψ ⊢ e ⇐ A

Ψ ⊢ (e : A) ⇒ A
DAnno

Ψ ⊢ () ⇒ 1
D1I⇒

Ψ ⊢ τ Ψ ⊢ [τ/a]A • e ⇒⇒ C

Ψ ⊢ ∀a. A • e ⇒⇒ C
D∀App

Ψ, a ⊢ e ⇐ A

Ψ ⊢ e ⇐ ∀a. A
D∀I

Ψ, x : A ⊢ e ⇐ B

Ψ ⊢ λx. e ⇐ A → B
D→I

Ψ ⊢ e ⇐ A

Ψ ⊢ A → C • e ⇒⇒ C
D→App

Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ

Ψ ⊢ λx. e ⇒ σ → τ
D→I⇒

Ψ ⊢ e1 ⇒ A Ψ ⊢ A • e2 ⇒⇒ C

Ψ ⊢ e1 e2 ⇒ C
D→E

Figure 1 The Dunfield and Krishnaswami Type System.

2.2 Background: The Dunfield and Krishnaswami Type System
Our declarative type system can be viewed as a variant of the DK type system. The DK
type system is predicative and supports implicit instantiation only. We review the original
type system first, before proceeding with the presentation of our work.

Syntax The syntax of DK’s declarative system is shown at the top of Figure 1. A declarative
type A is either the unit type 1, a type variable a, a universal quantification ∀a. A or a
function type A → B. Nested universal quantifiers are allowed for types, but monotypes τ do
not have any universal quantifier. Terms include a unit term (), variables x, lambda-functions
λx. e, applications e1 e2 and annotations (e : A). Contexts Ψ are sequences of type variable
declarations and term variables with their types declared x : A.

Declarative Subtyping The middle of Figure 1 shows DK’s declarative subtyping judgment
Ψ ⊢ A ≤ B, which was adopted from Odersky and Läufer [21]. This judgment compares
the degree of polymorphism between types A and B in DK’s implicitly polymorphic type
system. If A can always be instantiated to match any instantiation of B, then A is “at least

ECOOP 2022



2:6 Elementary Type Inference

as polymorphic as” B. We also say that A is “more polymorphic than” B and write A ≤ B.
Subtyping rules ≤Var, ≤Unit and ≤→ handle simple cases that do not involve universal
quantifiers. The subtyping rule for function types ≤→ is standard, being covariant on the
return type and contravariant on the argument type. Rule ≤∀R states that if A is more
general than ∀b. B, then A must instantiate to [τ/b]B for every τ . The type variable b we
introduced in the premise is implicitly fresh. We use this convention throughout the whole
paper. The most interesting rule is ≤∀L, which is where implicit instantiation can happen.
If some instantiation of ∀a. A, [τ/a]A, is a subtype of B, then ∀a. A ≤ B. Only monotypes
τ can be used to instantiate a, which is guessed in this declarative rule.

Declarative Typing The bidirectional type system, shown at the bottom of Figure 1, has
three judgments. The checking judgment Ψ ⊢ e ⇐ A checks expression e against the type A

in the context Ψ. The synthesis judgment Ψ ⊢ e ⇒ A synthesizes the type A of expression e

in the context Ψ. The application judgment Ψ ⊢ A • e ⇒⇒ C synthesizes the type C of the
application of a function of type A (which could be polymorphic) to the argument e.

Many rules are standard bidirectional type-checking rules [10], so we focus only on the
more interesting and non-standard rules. Checking an expression e against a polymorphic
type ∀a. A in the context Ψ (rule D∀I) succeeds if e checks against A in the extended context
(Ψ, a). The subsumption rule DSub calls the subtyping relation, and changes the mode from
checking to synthesis: if e synthesizes type A and A ≤ B, then e checks against B. Besides a
standard checking rule (D→I) for lambda abstractions, rule D→I⇒ synthesizes monotypes
σ → τ . Application e1 e2 is handled by rule D→E, which first synthesizes the type A of the
function e1. If A is a function type B → C, then rule D→App is applied. The synthesized
type of function e1 can also be polymorphic, of the form ∀a. A. In that case, we instantiate A

to [τ/a]A with a monotype τ using the rule D∀App. If [τ/a]A is a function type, rule D→App
is used; if [τ/a]A is another universal quantified type, rule D→I⇒ is recursively applied.

2.3 The Challenges of Explicit Type Applications

While explicit type applications seem like a natural extension to type systems with implicit
instantiation, the combination can break some important properties and make programs less
robust to refactoring or inlining. In particular, in many existing type systems with implicit
instantiation, the order of type arguments being instantiated does not matter, whereas
with explicit instantiation the order does matter (at least if arguments are positional). The
design proposed by Eisenberg et al. [13] notices this difference, and distinguishes between
specified and generalized type quantification. All the GHC examples that we show in this
paper employ specified type quantification, where the programmer explicitly writes the type
signature, and the order of type arguments is relevant. However, there are other subtler
points in the design of a subtyping relation for specified type quantification that make it
hard to get certain expected properties in a language. We illustrate some concrete issues
next with GHC 8 and Eisenberg et al.’s design. We remark, however, that some other issues
with GHC 8’s approach have already been identified and GHC 9 adopts a different approach
that avoids the issues described here. A detailed discussion follows in Section 7.

Explicit Type Applications, Subsumption and Equational Reasoning The design by
Eisenberg et al. is based on bidirectional type-checking and supports a standard subsumption
rule, similar to the rule DSub in DK’s type system. Moreover, the subtyping relation employed
in that design is essentially an extension of that in DK’s type system. The examples that we
show next involve subtyping relations that are valid in both DK’s type system, as well as the
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subtyping relation employed by Eisenberg et al. [13]. An important lemma that holds for
the DK type system is the checking subsumption lemma:

▶ Lemma 1 (Checking Subsumption). If Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ B then Ψ ⊢ e ⇐ B

This lemma is quite similar to the subsumption rule. The difference is that the premise
(Ψ ⊢ e ⇐ A) is in checking mode, instead of synthesis mode. The lemma states that we
can always change the type of an expression being checked to a supertype. A practical
consequence of this lemma is that changing type annotations of an expression to a supertype
is always possible, which is something that programmers would expect. For example, we
could change the type annotation of f in Section 2.1 to that of h and f would still type-check.

In contrast to DK’s type system, the work by Eisenberg et al. [13] and GHC 8 does
not have the checking subsumption property. We believe that the lack of this property is
undesirable, especially for a language that promotes equational reasoning like Haskell. To
illustrate why the property is important, consider the Haskell functions:
h2 :: (forall b a. b -> a -> b) -> Bool -> Int
h2 k = g k -- type checks!

h3 :: (forall b a. b -> a -> b) -> Bool -> Int
h3 k = k @Bool 3 -- rejected!

Recall the examples from Section 2.1. Function h is defined with a simple call to f, although
it has a different type. Here the new function h2 has the same type as h, which is a supertype
of the type of f and g. However, if we try to replace the call g k by its definition in h2, we
get the definition h3, which no longer type-checks. There are two important issues to notice
here. Firstly, replacing equals by equals (or inlining) results in a program that does not
type-check! The problem is that now the type argument of k in h3 instantiates the wrong
type variable. Now k has two type arguments, and the second type argument corresponds
to the first type argument of the type of the argument k in g. Because of this, the type of
k in h3 is not compatible with the use of k in the body. Secondly, the example shows that
higher-ranked type arguments that use explicit type applications can break the checking
subsumption property. There are some valid supertypes of functions that, if used instead
of the original type, will result in an ill-typed program. Even though the type of h2 is a
supertype of the type of g, we cannot use that supertype to type-check g.
Explicit Type Applications in DK’s Type System A naive extension of the DK type system
with explicit type applications would be to add the rule:

Ψ ⊢ e ⇒ ∀a. A

Ψ ⊢ e @B ⇒ [B/a]A
DTypeApp∀

This rule first synthesizes a polymorphic type ∀a. A from e, and then outputs its instantiation
[B/a]A for the explicit type application e @B. Unfortunately, this rule breaks checking
subsumption as well, for very similar reasons to those in the GHC examples. It is easy to
port the previous GHC counter-examples to this extension of DK’s type system, and get
similar issues to those that we have just described.
Example 1 Now we look at a different example that illustrates the general problem of
having order-irrelevance of universally quantified type variables. Suppose that we have
e = λx. x @Int 3 True, A = (∀a. ∀b. a → b → a) → Int, and B = (∀b. ∀a. a → b → a) → Int.
Both conditions of the checking subsumption lemma

λx. x @Int 3 True ⇐ (∀a. ∀b. a → b → a) → Int
(∀a. ∀b. a → b → a) → Int ≤ (∀b. ∀a. a → b → a) → Int

ECOOP 2022
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hold, yet the conclusion
(
λx. x @Int 3 True ⇐ (∀b. ∀a. a → b → a) → Int

)
does not hold:

the type application instantiates the wrong type variable, causing the type system to reject
it. The types A and B here differ only in the order of polymorphic type variables. The
order-sensitive explicit type application is not compatible with order-irrelevant subtyping
relations, such as the one in DK’s type system, breaking the checking subsumption lemma.

Impredicative Type Applications and Stability of Subtyping So far, we have illustrated
problems that involve only monotypes (and predicative instantiation). If impredicative type
applications are supported as well, then this brings another class of problems.

Example 2 Consider e = λx. x @C, A = (∀a. a → a) → (C → C), and B =
(∀a. ∀b. b → a) → (C → C). Here we assume C = (∀a. a → a) → Int, but other poly-
morphic types could be used as well. Both conditions of the checking subsumption lemma:

λx. x @C ⇐ (∀a. a → a) → (C → C)
(∀a. a → a) → (C → C) ≤ (∀a. ∀b. b → a) → (C → C)

hold, but not the conclusion λx. x @C ⇐ (∀a. ∀b. b → a) → (C → C). When type checking
the condition λx. x @C ⇐ (∀a. a → a) → (C → C), the type application @C is properly
applied, instantiating the universal variable a on the type of x (∀a. a → a) to C. However,
when we have the conclusion λx. x @C ⇐ (∀a. ∀b. b → a) → (C → C), the type application
x @C only instantiates the type argument a, but not the type argument b. Thus the type
inferred for the application x @C is ∀b. b → C. Unfortunately, the predicative subtyping
relation rejects ∀b. b → C ≤ C → C when C is a polymorphic type like (∀a. a → a) → Int.
Thus, the conclusion λx. x @C ⇐ (∀a. ∀b. b → a) → (C → C) fails to type check.

While this problem is also an instance of checking subsumption not holding, the reason
why this example fails is different from the previous examples. The crux of the problem here
is that some instantiations with polytypes break the polymorphic subtyping relation after
instantiation. More concretely, we would like the following property to hold:

▶ Corollary 2 (Stability of Subtyping). If Ψ ⊢ ∀a. A ≤ ∀a. B then Ψ ⊢ [C/a]A ≤ [C/a]B
holds for any well-formed C (Ψ ⊢ C).

but this property does not hold in general for polytypes in DK’s type system. DK’s type
system has a similar property, but only for monotypes. When impredicative type applications
are present, we would like to have a more general property that holds for polytypes as well.

Problem with Unused Variables Furthermore, unused type variables in universal quantifiers
are problematic, since they can also break stability of subtyping. ∀a. ∀b. a ≤ ∀a. a is accepted
by most subtyping relations that support implicit instantiation, including DK and HM. If
we instantiate both sides of the subtyping judgment with the polytype C := ∀c. c → c, the
judgment becomes ∀b. ∀c. c → c ≤ ∀c. c → c, which is then problematic, because a second
instantiation with C ′ := ∀d. d → d would give ∀c. c → c ≤ (∀d. d → d) → (∀d. d → d), which
is rejected by predicative systems. Here the problem is not caused by a permutation or extra
type variables in polytypes. Instead, an unused variable leads to such problem.

2.4 The Problems with Subtyping with Top and Bottom Types

Besides the problems with explicit type applications, the presence of top and bottom types
raises its own class of issues.



J. Zhao and B. C. d. S. Oliveira 2:9

Polymorphic Subtyping with Top and Bottom Types To support top and bottom types in
DK’s type system, a first idea is to introduce those types, with their standard subtyping
rules and consider them to be monotypes, leading to the following syntax for monotypes:

τ ::= 1 | ⊥ | ⊤ | τ → τ | a

Unfortunately, it is known that the subtyping for a language with type variables, such as the
above, can quickly become undecidable [35]. To illustrate some of the issues, consider the
subtyping judgment ∀a. (a → a → 1) → 1 ≤ (∀b. b → b) → 1, which reduces to the following
problem: find (predicative) instantiations for α̂ and β̂, satisfying α̂ ≤ β̂ and β̂ ≤ α̂ → 1.
Such a problem has infinitely many solutions, where there is no best one. If we assume that
existential variables α̂ and β̂ are instantiated to the same type, there are infinite solutions:

α̂ = β̂ = ⊥ | ⊤ → 1 | ⊤ → ⊥ | (⊥ → 1) → 1 | · · ·

Additionally, α̂ = β̂ is not the most general unification for the judgment α̂ ≤ β̂. Assignments
like α̂ = β̂, β̂ = β̂ → 1 also validate the subtyping judgments.

Inference of ⊤ and ⊥ Types can Mask Type Errors A different issue is that sometimes
inferring ⊤ and ⊥ types can mask type errors. Consider the following expression:

λf. f + f 1

Such expression can be typed with the type ⊥ → Int. Since the input parameter f , having
type ⊥, can be converted to either an integer or to a function of type Int → Int. However,
inferring such a type is hardly useful in practice. Instead, the programmer might have
immediately realised the bug (perhaps the argument for the first call to f is missing) if the
type inference algorithm rejects the lambda expression, rather than after it has inferred a
type with ⊥. By constraining the type inference algorithm to infer types free from ⊤ and ⊥,
such type is no longer be inferred, and thus the bug is reported when defining the function.

It is mentioning that, in languages like Scala, there are several reports of issues arising
because ⊤ and ⊥ (respectively Any and Nothing in Scala) can be inferred2. The Scala
compiler even has a flag -Xlint:infer-any that is used to warn whenever Any is inferred.

2.5 Our Solution
The form of type-inference available in F e

<: is inspired by current approaches employed in
predicative higher-ranked type inference [26, 8, 9, 21, 40]. In terms of restrictions, F e

<: does
not have generalization (similarly to the DK type system), and there are some restrictions
that weaken the expressive power of the polymorphic subtyping relation. However, those
restrictions mostly affect higher-ranked programs, and for many other Hindley-Milner style
programs (with polymorphic annotations) there should be no impact from those restrictions.
In terms of innovations the type system of F e

<: supports top and bottom types and explicit
impredicative type applications. Moreover, implicit instantiation and explicit instantiation
interoperate well and have important properties, such as checking subsumption and stability
of subtyping. Next we show some examples that run in our implementation and illustrate
the capabilities of the F e

<: type system. We note that our implementation contains some
extra features that enable us to present more interesting examples. These features include
recursive let expressions, (polymorphic) lists and case expressions on lists.

2 See for instance: https://riptutorial.com/scala/example/21134/preventing-inferring-nothing.
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Rank-1 Polymorphism. We start with first-order polymorphism, which is the kind of
polymorphism supported in Hindley-Milner. We can define the map function in F e

<: as follows:
1 let map :: forall a b. (a -> b) -> [a] -> [b]
2 = \f -> \xs -> case xs of [] -> []; (x:xs) -> f x : map f xs

This definition is similar to a definition in a language with Hindley-Milner, except that we
must explicitly provide the type of the map function. An explicit type is optional in languages
like Haskell or ML, but must be provided in F e

<: for polymorphic functions like map. Like in
Hindley-Milner, when writing the body of the function we do not need to use type binders
and the recursive call implicitly instantiates the types a and b. We can use map conventionally,
as in an HM language like Haskell or ML:

1 map (\x -> x + 1) [1,2,3]

or use explicit type applications if necessary or desired. For example:
1 map @Int @Top (\x -> x :: Top) [1,2,3]

which uses explicit type applications to instantiate b with the Top type. Since the body
of the function argument uses a type annotation (x :: Top) to return a Top type, writing
map (\x -> x :: Top) [1,2,3] would fail to type-check. The problem is that Top is not a
monotype in our system and cannot be inferred during implicit instantiation.

While there is no generalization, we can still infer monotypes for lambdas. Therefore, the
following is allowed:

1 let succ = \x -> x + 1

The type inferred for succ is the monotype Int -> Int. However writing let id = \x -> x,
without an explicit annotation for id would fail, since generalization would be necessary to
infer a polymorphic type for the identity function.

Higher-Ranked Polymorphism. With explicit type applications, it becomes possible to
perform impredicative instantiations. A simple example of this is applying the identity
function to itself. In F e

<: we can write:
1 let id :: forall a. a -> a = \x -> x in id @(forall a. a -> a) id

In this case the type used to explicitly instantiate the identity function is a polymorphic
type. Implicit instantiation is not possible here, since the type argument is not a monotype.
Another example of impredicative instantiation is:

1 let plist :: [forall a. a -> a] = [\z -> z, \z -> z]
2 in map @(forall a. a -> a) (\f -> f 1) plist

where the map function takes a list with polymorphic functions of type forall a. a -> a. The
function argument (\f -> f 1) of map applies a polymorphic function to 1.

Restrictions for Higher-Ranked Polymorphism. The GHC 8 definitions in Section 2.1 for f
and g also type-check in F e

<::
1 let f :: (forall a. Int -> a -> Int) -> Bool -> Int = \k -> k 3
2 let g :: (forall a. Int -> a -> Int) -> Bool -> Int = \k -> k @Bool 3

However, the definition of h fails to type-check:
1 let h :: (forall b. forall a. b -> a -> b) -> Bool -> Int = \k -> f k -- fails!

This definition is rejected because ∀b. ∀a. b → a → b ≤ ∀a. Int → a → Int does not hold in
F e

<:. Our polymorphic subtyping relation does not consider the type of k to be a subtype of
the expected argument for f. By preventing examples such as this one we avoid the issues
discussed in Section 2.3 and we retain the checking subsumption property.

We can also type-check the expression used in our Example 2:
1 \x -> x @((forall a. a -> a) -> Int)
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with a type annotation:
1 (forall a. a -> a) -> ((forall a. a -> a) -> Int) -> ((forall a. a -> a) -> Int)

However, using the type annotation
1 (forall a. forall b. b -> a) ->
2 ((forall a. a -> a) -> Int) -> ((forall a. a -> a) -> Int)

will fail because the type in the first annotation is not a subtype of the type in the second
annotation in our polymorphic subtyping relation: the subtyping statement ∀a. ∀b. b → a ≤
∀a. a → a does not hold. In the Odersky and Läufer relation, such subtyping statement
holds. As discussed in Section 2.3, accepting such subtyping statements is problematic when
impredicative instantiation is allowed, since we lose the stability of subtyping property.
No Inference of Top and Bottom. Finally the type system of F e

<: rejects:
1 let strange = \f -> f + f 1 -- fails!

As discussed in Section 2.4, this definition could be type-checked if we could infer the bottom
type for f. Since bottom is not a monotype, it cannot be infered and this definition is rejected.
However, the following definition, with an explicit type annotation is allowed:

1 let strange : Bot -> Int = \f -> f + f 1

In other words, we avoid inferring top and bottom, which can type-check programs that are
likely to have type errors. However, we can always provide annotations for definitions that
can type-check with polytypes, thus allowing such definitions to type-check if desired.

2.6 Key Technical Ideas
Stable Polymorphic Subtyping We address the problems with explicit type applications
via a novel notion of polymorphic subtyping, which preserves both subsumption and stability
of subtyping. Stable subtyping, shown in Figure 2, is a variant from DK’s subtyping with
some changes. Note that we use color to highlight new rules or changes, with respect to
DK’s type system, here and throughout the paper. The new rule ≤srefl replaces base cases
in the previous system, and rule ≤s∀ directly expresses the expected stability property. We
also forbid polymorphic types that contain unused type variables. This restriction is enforced
by the well-formedness relation (see details in Section 3.1). Rule ≤s∀L has a side condition
to prevent overlapping with rule ≤s∀ and has a less priority. In addition, we also have two
new (but standard) rules for top and bottom types (rules ≤s⊤ and ≤s⊥).

There are 3 main differences with respect to DK’s subtyping relation. Firstly, stable
subtyping does not allow instantiations out-of-order. Note that, unlike DK’s type system,
there is no rule that corresponds to ≤∀R, which removes the ability to perform such instanti-
ations. Thus, the order of type variables becomes relevant. Secondly, types with unused type
variables, such as ∀a.1, are not allowed. Finally, top and bottom types are supported.
A Syntax-Directed System with Subtype Variables While rule ≤s∀ directly captures
the stability property that we want, such a rule is highly declarative. Thus, an important
challenge is to find an alternative equivalent set of rules that is closer to an implementation.
Our solution to the problem relies on a new sort of variables, ã, called subtype variables,
and the following subtyping rule, which is proven to have equal effect to ≤s∀:

Ψ, ã ⊢ [ã/a]A ≤ [ã/a]B
Ψ ⊢ ∀a. A ≤ ∀a. B

≤∀

The difference between a subtype variable ã and a conventional type variable a is that a
subtype variable is not a monotype, therefore it cannot be instantiated with rule ≤∀L. Thus,
a subtyping statement such as ∀a. ∀b. b → a ≤ ∀a. a → a does not hold, since it would
require instantiation with a subtype variable, which is not allowed.
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Ψ ⊢s A ≤ B Stable subtyping

Ψ ⊢s A

Ψ ⊢s A ≤ A
≤srefl

Ψ ⊢s A ≤ ⊤
≤s⊤

Ψ ⊢s ⊥ ≤ A
≤s⊥

∀C, Ψ ⊢s C =⇒ Ψ ⊢s [C/a]A ≤ [C/a]B
Ψ ⊢s ∀a. A ≤ ∀a. B

≤s∀
Ψ ⊢s B1 ≤ A1 Ψ ⊢s A2 ≤ B2

Ψ ⊢s A1 → A2 ≤ B1 → B2
≤s→

Ψ ⊢ τ Ψ ⊢s [τ/a]A ≤ B B ̸= ∀b.B′

Ψ ⊢s ∀a. A ≤ B
≤s∀L

Figure 2 Stable Subtyping

Explicit Type Applications for Polytype Instantiations To avoid being overly restrictive,
we still support polytype instantiations via explicit type applications. Thus, while some
convenience afforded by more expressive formulations of type inference is lost, no expressive
power is lost. We can encode a variant of System F<: (without bounded quantification)
trivially using explicit type applications. We formally verify the soundness and completeness
theorems in our Abella formalization and present the results in the Appendix.

Summary With stable subtyping, Corollary 2 and the subsumption lemma hold, and the
system works smoothly with the explicit type application rules in the type system. Moreover,
we address the problems with top and bottom types by not considering top and bottom types
as monotypes. This extends a similar idea in predicative HRP, which excludes universal
types from monotypes, thus avoiding decidability issues that arise from including such types.

3 Syntax-Directed System

This section introduces a syntax-directed type system for F e
<:, which serves as a specification

for the algorithmic version that will be presented in Section 4. The type system can be
viewed as a variant of the Dunfield and Krishnaswami [8] type system, adding explicit type
applications and abstractions, as well as ⊤ and ⊥ types. Furthermore, the type system
supports impredicativity via explicit instantiations. The subtyping relation employed in this
type system is equivalent to the stable subtyping relation introduced in Section 2.6, but it
is syntax-directed and employs a special kind of type variables in the subtyping relation.
Several important properties, such as the subsumption lemma, a generalized stability lemma
for impredicative types, and transitivity of subtyping are proved.

3.1 Syntax and Well-Formedness

Compared to the syntax of the DK system presented in Figure 1, the syntax of F e
<::

Type variables a, b Subtype variables ã, b̃

Types A, B, C ::= 1 | a | ∀a. A | A → B | ã | ⊤ | ⊥
Monotypes τ, σ ::= 1 | a | τ → σ

Expressions e, t ::= x | () | λx. e | e1 e2 | (e : A) | e @A | Λa. e : A

Contexts Ψ ::= · | Ψ, a | Ψ, x : A | Ψ, ã
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is extended in the four directions. First, types now include ⊤ and ⊥. Second, expressions
are extended with type applications (e @A). Third, type abstractions (Λa. e : A), studied
by Zhao et al. [40], are adopted as well, since they are useful to express programs with
scoped type variables [25]. Note that programmers do not have to write Λ’s directly. Instead,
an explicit annotation e : ∀a. A can serve as the syntactic sugar e : ∀a. A ≡ Λa.e : ∀a. A.
Finally, there is a new syntactic sort: subtype variables, ã, representing type variables that
are only used in subtyping and are not monotypes. It is worth mentioning that the definition
for monotypes is not changed. We do not treat ⊤, ⊥, or subtype variables as monotypes.
Well-Formedness The well-formedness relation is mainly used to ensure the well-scopedness
of binders. Additionally, we add special free variable checks to ensure that the polymorphic
type ∀a. A is indeed polymorphic in the following two rules:

Ψ, a ⊢ A a ∈ FV(A)
Ψ ⊢ ∀a. A

wfd∀
Ψ, a ⊢ A Ψ, a ⊢ e a ∈ FV(A)

Ψ ⊢ Λa. e : A
wfdtLam

The motivation for the a ∈ FV(A) restriction is discussed in Section 2.3 with examples. This
has an impact on the compatibility with other systems, since we can no longer express types
like ∀a. 1. Yet we argue that such types are not very useful in practice; when a /∈ FV(A),
∀a. A is isomorphic to A in systems without explicit instantiation.

3.2 Subtyping and Typing Rules
The top of Figure 3 shows the subtyping relation. Grayed parts are F<: [2] expressions,
which are used to prove our soundness result with respect to F<:, can be ignored for the
moment. We refer the reader to the our Appendix for the details of the F<: soundness result.
Most rules are inherited from Odersky and Läufer (OL) [21], yet there are several differences.
Rule ≤SVar is a new rule for subtype variables. This rule is just like the standard rule for
type variables (rule ≤Var). Rules ≤⊤ and ≤⊥ are new (but standard) rules for ⊤ and ⊥.
Rule ≤∀ is also new. In this rule, two forall types are subtypes if their bodies are subtypes.
Importantly, the type variables in the bodies become subtype variables and are marked
as such when added to the context. Rule ≤∀L has an two additional premises to prevent
overlapping with rules ≤∀ and ≤⊤, respectively. The first condition B ̸= ∀b. B′ ensures that
≤∀ always has priority. The second condition B ̸= ⊤ can be safely omitted without changing
the expressive power, but is presented here to ensure that the system is syntax-directed.

The polymorphic subtyping relation behaves slightly differently from OL’s subtyping. If
we ignore ⊤ and ⊥ types, this relation is weaker than OL. In F e

<:, the order of polymorphic
variables is important. For example, in the OL’s system, the subtyping statement · ⊢
∀a. ∀b. a → b → a ≤ ∀b. ∀a. a → b → a holds, but F e

<: will reduce that to ã, b̃ ⊢ ã → b̃ →
ã ≤ b̃ → ã → b̃ , which does not hold. Apart from the ordering of variables, instantiation
works differently for subtyping between polymorphic types. OL’s subtyping relation accepts
the following judgment · ⊢ ∀a. (a → a) → (a → a) ≤ ∀a. a → a but F e

<: does not, since
ã ⊢ (ã → ã) → (ã → ã) ≤ ã → ã does not hold either.
Typing The bottom of Figure 3 shows the type system. Compared to DK’s type system,
there are 4 groups of changes:
1. Rules D⊤ and D⊥App are introduced for the ⊤ and ⊥ types. Note that in rule D⊤ we

employ a relation Ψ ⊢ e that checks for the well-formedness of expressions. We omit
the definition of Ψ ⊢ e, but it is standard, checking whether all the free variables in
e are bound in Ψ. Both rules are essential for the subsumption lemma to hold. For
example, rule D⊥App is required to type-check the expression (λx. x ()) : ⊥ → 1, where
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Ψ ⊢ A ≤ B ↪→ E Syntax-directed subtyping

Ψ ⊢ 1 ≤ 1 ↪→ λ(x : 1). x
≤Unit

Ψ ⊢ A ≤ ⊤ ↪→ λ(x : |A|). top
≤⊤

Ψ ⊢ ⊥ ≤ A ↪→ λ(x : ∀a. a). x @|A|
≤⊥

a ∈ Ψ
Ψ ⊢ a ≤ a ↪→ λ(x : a). x

≤Var

ã ∈ Ψ
Ψ ⊢ ã ≤ ã ↪→ λ(x : a). x

≤SVar

Ψ ⊢ τ Ψ ⊢ [τ/a]A ≤ B ↪→ E B ̸= ∀b.B′ B ̸= ⊤
Ψ ⊢ ∀a. A ≤ B ↪→ λ(x : |∀a. A|). E (x @τ)

≤∀L

Ψ, ã ⊢ [ã/a]A ≤ [ã/a]B ↪→ E

Ψ ⊢ ∀a. A ≤ ∀a. B ↪→ λ(x : |∀a. A|). Λa. E (x @a)
≤∀

Ψ ⊢ B1 ≤ A1 ↪→ E1 Ψ ⊢ A2 ≤ B2 ↪→ E2

Ψ ⊢ A1 → A2 ≤ B1 → B2 ↪→ λ(f : |A1 → A2|). λ(x : |B1|). E2 (f (E1 x))
≤→

Ψ ⊢ e ⇐ A ↪→ E e checks against input type A.

Ψ ⊢ e ⇒ A ↪→ E e synthesizes output type A.

Ψ ⊢ A • e ⇒⇒ C ↪→ Ec | E Applying a function of type A to e synthesizes type C.

(x : A) ∈ Ψ
Ψ ⊢ x ⇒ A ↪→ x

DVar
Ψ ⊢ e ⇒ A ↪→ E Ψ ⊢ A ≤ B ↪→ co A ̸= ∀a. A′

Ψ ⊢ e ⇐ B ↪→ co E
DSub

Ψ ⊢ A Ψ ⊢ e ⇐ A ↪→ E

Ψ ⊢ (e : A) ⇒ A ↪→ E
DAnno

Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ ↪→ E

Ψ ⊢ λx. e ⇒ σ → τ ↪→ λ(x : σ). E
D→I⇒

Ψ, a ⊢ e ⇐ A ↪→ E

Ψ ⊢ e ⇐ ∀a. A ↪→ Λa. E
D∀I

Ψ, x : A ⊢ e ⇐ B ↪→ E

Ψ ⊢ λx. e ⇐ A → B ↪→ λ(x : A). E
D→I

Ψ ⊢ () ⇒ 1 ↪→ ()
D1I⇒

Ψ ⊢ e1 ⇒ A ↪→ E1 Ψ ⊢ A • e2 ⇒⇒ C ↪→ Ec | E2

Ψ ⊢ e1 e2 ⇒ C ↪→ (Ec E1) E2
D→E

Ψ ⊢ e

Ψ ⊢ e ⇐ ⊤ ↪→ top
D⊤

Ψ ⊢ e ⇐ A ↪→ E

Ψ ⊢ A → C • e ⇒⇒ C ↪→ λ(x : |A → C|). x | E
D→App

Ψ ⊢ e ⇒ ⊥ ↪→ E

Ψ ⊢ e @B ⇒ ⊥ ↪→ E
DTA⊥

Ψ ⊢ τ Ψ ⊢ [τ/a]A • e ⇒⇒ C ↪→ Ec | E

Ψ ⊢ ∀a. A • e ⇒⇒ C ↪→ λ(x : |∀a. A|). Ec (x @τ) | E
D∀App

Ψ, a ⊢ e ⇐ A ↪→ E

Ψ ⊢ Λa. e : A ⇒ ∀a. A ↪→ Λa. E
DSTV

Ψ ⊢ e ⇒ ∀a. A ↪→ E

Ψ ⊢ e @B ⇒ [B/a]A ↪→ E @|B|
DTA∀

Ψ ⊢ e

Ψ ⊢ ⊥ • e ⇒⇒ ⊥ ↪→ λ(x : ∀a. a). x @(⊤ → ∀a. a) | top
D⊥App

Figure 3 Syntax-directed System.
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the argument x has type ⊥ and the application x () synthesizes ⊥ according to the rule,
which can then check against the 1 type by rule DSub.

2. Rule DSub now requires one side-condition to prevent overlapping with Rule D∀I. In
presence of explicit type applications, this condition cannot be eliminated.

3. Rules DTA⊥ and DTA∀ infer type application expressions. If the type of e synthesizes a
polymorphic type ∀a. A, then e @B has type [B/a]A. Any expression of type ⊥ will
synthesize ⊥ for any type applied.

4. Rule DSTV enables the scoped type variables [25]. This allows flexible control of type
variables by the programmer.

Note that the D⊤ is peculiar in that it allows some ill-typed terms to type-check. Such
rules are often needed in bi-directional type systems with top types to enable properties such
as checking subsumption. For instance a similar rule is employed by Dunfield [7]. Since the
top type is the supertype of all types, all well-typed expressions should be able to type-check
under the top type as well. For example, we should be able to change the type annotation
in function λx.x : Int → Int to λx.x : ⊤. However, there is not enough type information to
type-check the body of the later lambda. Nevertheless, we do not need to evaluate expressions
with a top type, since no information can be extracted from such type, and the elaboration
to F<: results directly in the top value for such expression, preserving type-safety.

3.3 Metatheory
The type system has several desirable properties, including subsumption and a stability of
type substitutions lemma in subtyping.

Reflexivity and Transitivity Firstly, our subtyping relation is reflexive and transitive.

▶ Lemma 3 (Subtyping Reflexivity). If Ψ ⊢ A then Ψ ⊢ A ≤ A.

▶ Lemma 4 (Subtyping Transitivity). If Ψ ⊢ A ≤ B and Ψ ⊢ B ≤ C then Ψ ⊢ A ≤ C.

Equivalence to Stable Subtyping and Stability Secondly, the syntax-directed formulation
of subtyping is sound and complete with respect to the stable subtyping relation in Section 2.6.
Subtype variables are used to provide an alternative formulation of the ≤∀ rule, bringing
subtyping closer to an algorithm. Nonetheless, syntax-directed subtyping still guesses
monotypes, thus it is not algorithmic.

▶ Theorem 5 (Soundness w.r.t stable subtyping). If Ψ ⊢ A ≤ B then Ψ ⊢s A ≤ B.

▶ Theorem 6 (Completeness w.r.t stable subtyping). Given Ψ ⊢ A and Ψ ⊢ B, if Ψ ⊢s A ≤ B

then Ψ ⊢ A ≤ B.

The proof works by generalizing instantiations for subtype variables and existential
variables (which represents monotypes to be guessed). We refer to the Appendix for details.
A related property of the subtyping relation is stability. The following lemma generalizes
Corollary 2 by allowing the subtype variable to appear anywhere in the context.

▶ Lemma 7 (Stability of Subtyping, Generalized). If Ψ ⊢ A ≤ B and Ψ ⊢ C then Ψ ⊢
[C/ã]A ≤ [C/ã]B.

This property ensures that any subtype variable can be replaced by a polytype C in two
types A and B while preserving the subtyping relation between those two types.
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The Subsumption Lemma To prove the checking subsumption lemma, we first need
to generalize the statement for inference and application inference judgments, as well as
introduce a context subtyping relation, Ψ ≤ Ψ′ , to state the most general form.

▶ Definition 8. Ψ′ ≤ Ψ Context Subtyping

· ≤ ·
CS_Empty

Ψ′ ≤ Ψ
Ψ′, a ≤ Ψ, a

CS_TV
Ψ′ ≤ Ψ

Ψ′, ã ≤ Ψ, ã
CS_STV

Ψ′ ≤ Ψ Ψ ⊢ A′ ≤ A

Ψ′, x : A′ ≤ Ψ, x : A
CS_V

Context Ψ subsumes context Ψ′ if they bind the same variables in the same order, but the
types of variables in Ψ′ must be subtypes of those in Ψ. The generalized lemma is:

▶ Lemma 9 (Subsumption). Given Ψ′ ≤ Ψ:
1. If Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ A′ then Ψ′ ⊢ e ⇐ A′;
2. If Ψ ⊢ e ⇒ B then there exists B′ s.t. Ψ ⊢ B′ ≤ B and Ψ′ ⊢ e ⇒ B′;
3. If Ψ ⊢ A • e ⇒⇒ C and Ψ ⊢ A′ ≤ A, then ∃C ′ s.t. Ψ ⊢ C ′ ≤ C and Ψ′ ⊢ A′ • e ⇒⇒ C ′.
This lemma expresses that any derivation in a context Ψ has a corresponding derivation in
any context Ψ′ that it subsumes.

Relating Subtype and Type Variables The following lemma shows that we can substitute
a subtype variable with a normal type variable, while preserving the subtyping relation.

▶ Lemma 10. If Ψ[ã] ⊢ A ≤ B then Ψ[a] ⊢ [a/ã]A ≤ [a/ã]B.

The reason is relatively straightforward. First, the substitution does not affect the ã ≤ ã

sub-judgments. Second, substituting ã to a increases the range of implicit instantiation,
which means that the monotypes picked in the old context are still well-formed under the new
context. Note that the reverse statement does not hold. For example, b ⊢ ∀a. a → a ≤ b → b

holds with the predicative instantiation a := b, but b̃ ⊢ ∀a. a → a ≤ b̃ → b̃ does not; one
cannot instantiate a with a non-monotype, or b̃ in this case.

4 Algorithmic System

This section introduces an algorithmic system that implements the syntax-directed specifica-
tion of F e

<:. The new algorithm is based on Zhao et al.’s [40] worklist algorithm but extended
with explicit type applications and top and bottom types. In Section 5, we show that this
algorithm is sound, complete and decidable with respect to the specification presented in
Section 3. We also use color throughout this section to highlight differences to the original
formulation by Zhao et al. [40].

4.1 Syntax and Well-Formedness

Figure 4 shows the syntax for the algorithmic version of F e
<:. Similarly to the syntax-directed

system, the well-formedness rules are unsurprising, ensuring well-scopedness for binders as
well as the free variable constraint on polymorphic types. We refer to the Appendix for
well-formedness relations of algorithmic types, expressions, judgments, and worklists.



J. Zhao and B. C. d. S. Oliveira 2:17

Type variables a, b Subtype variables ã, b̃ Existential variables α̂, β̂

Algorithmic types A, B, C ::= . . . | α̂

Judgment chain ω ::= A ≤ B | e ⇐ A | e ⇒a ω | A • e ⇒⇒a ω | A ◦ B ⇒⇒a ω

Algorithmic worklist Γ ::= · | Γ, a | Γ, ã | Γ, α̂ | Γ, x : A | Γ ⊩ ω

Declarative worklist Ω ::= · | Ω, a | Ω, ã | Ω, x : A | Ω ⊩ ω

Figure 4 Extended Syntax for the Algorithmic System (Extended from Figure 1)

Existential Variables The algorithmic system inherits the syntax of terms from the syntax-
directed system and extends types with a new sort of variables—existential variables. Ex-
istential variables (α̂, β̂) are introduced to help find unknown monotypes τ that appear in
multiple rules of the syntax-directed system. In the algorithmic worklist, the position where
existential variables are declared indicates the possible monotypes they can be solved to.
Formally speaking, if α̂ is introduced right after Γ, then α̂ can only be solved to a monotype
τ where Γ ⊢ τ . This behavior is derived from the well-formedness restriction of the rule ≤∀L.
An important remark is that subtype variables are not considered to be monotypes, therefore
no existential variable can be solved to a subtype variable.

Judgment Chains Judgment chains ω, or judgments for short, are the core components
of our algorithmic type-checking. There are five kinds of judgments in our system. Four of
them are inherited from [40]: subtyping (A ≤ B), checking (e ⇐ A), inference (e ⇒a ω) and
application inference (A•e ⇒⇒a ω). Type application inference A◦B ⇒⇒a ω is new, and it is
used to help with the inference in type application expressions (e @B). This judgment plays
a role similar to application inference for regular applications. In type application inference
judgments, the first type A is the type inferred from the expression e. The judgment is then
reduced differently depending on whether A is a polymorphic type ∀a. A′ or ⊥.

Subtyping and checking are relatively simple, since their results are only success or failure.
However, inference, application inference, and type application inference judgments return a
type that is used in subsequent judgments. We use a continuation-passing-style encoding to
accomplish this, following the approach by Zhao et al. [40]. For example, the judgment chain
e ⇒a (a ≤ B) contains two judgments: first we infer the type of the expression e, and then
check if the inferred type is a subtype of B. The unknown type of e is represented by a type
variable a, which is used as a placeholder in the second judgment to denote the type of e.

Worklist Judgments Our algorithmic context Γ, or worklist, combines traditional contexts
and judgment(s) into a single sort. The worklist is an ordered collection of both variable
bindings and judgments. The order captures the scope: only the objects that come after
a variable’s binding in the worklist can refer to it. For example, [·, a, x : a ⊩ x ⇐ a] is a
valid worklist, but [· ⊩ x ⇐ a, x : a, a] is not (the underlined symbols refer to out-of-scope
variables). This property also affects how the algorithm behaves regarding solving existential
variables. By solving an existential variable α̂ with any monotype that does not escape the
scope of α̂ preserves well-formedness of the whole worklist.

Notation and Form of the Algorithmic Rules The algorithmic subtyping and typing
reduction rules, defined in Figures 5 and 6, have the form Γ −→ Γ′. Since the worklist is
a stack of variable definitions and judgment chains, the algorithm pops the first element,
processes according to the rules, and possibly pushes simplified judgments back. The syntax
Γ −→∗ Γ′ denotes multiple reduction steps. A worklist Γ is accepted by the algorithm iff
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Γ −→ Γ′ Γ reduces to Γ′.

Γ, a −→1 Γ Γ, α̂ −→2 Γ Γ, ã −→3 Γ Γ, x : A −→4 Γ

Γ ⊩ 1 ≤ 1 −→5 Γ Γ ⊩ a ≤ a −→6 Γ Γ ⊩ ã ≤ ã −→7 Γ
Γ ⊩ A ≤ ⊤ −→8 Γ Γ ⊩ ⊥ ≤ A −→9 Γ

Γ ⊩ A1 → A2 ≤ B1 → B2 −→10 Γ ⊩ A2 ≤ B2 ⊩ B1 ≤ A1

Γ ⊩ ∀a. A ≤ B −→11 Γ, α̂ ⊩ [α̂/a]A ≤ B

when B ̸= ∀a. B′ and B ̸= ⊤
Γ ⊩ ∀a. A ≤ ∀a. B −→12 Γ, ã ⊩ [ã/a]A ≤ [ã/a]B

Γ ⊩ α̂ ≤ α̂ −→13 Γ
Γ[α̂] ⊩ α̂ ≤ A → B −→14 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2] ⊩ α̂1 → α̂2 ≤ A → B)

when α̂ /∈ FV (A) ∪ FV (B)
Γ[α̂] ⊩ A → B ≤ α̂ −→15 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2] ⊩ A → B ≤ α̂1 → α̂2)

when α̂ /∈ FV (A) ∪ FV (B)

Γ[α̂][β̂] ⊩ α̂ ≤ β̂ −→16 [α̂/β̂](Γ[α̂][]) Γ[α̂][β̂] ⊩ β̂ ≤ α̂ −→17 [α̂/β̂](Γ[α̂][])

Γ[a][β̂] ⊩ a ≤ β̂ −→18 [a/β̂](Γ[a][]) Γ[a][β̂] ⊩ β̂ ≤ a −→19 [a/β̂](Γ[a][])

Γ[β̂] ⊩ 1 ≤ β̂ −→20 [1/β̂](Γ[]) Γ[β̂] ⊩ β̂ ≤ 1 −→21 [1/β̂](Γ[])

Figure 5 Algorithmic Variable and Subtyping Rules.

Γ −→∗ ·. In other words a program successfully type-checks if all the work has been processed.
Any new variable introduced to the r.h.s of the worklist Γ′ is fresh implicitly, similarly to
how we treat them in the conditions of other rules. We also adopt the notation Γ[ΓM ] from
the DK type system to denote the worklist ΓL, ΓM , ΓR, where Γ[•] is the worklist ΓL, •, ΓR

with a hole (•). Hole notations with the same name implicitly share the same structure ΓL

and ΓR. A multi-hole notation splits the worklist into more parts. For example, Γ[α̂][β̂]
means Γ1, α̂, Γ2, β̂, Γ3.

4.2 Garbage Collection and Algorithmic Subtyping Rules
Figure 5 defines algorithmic rules on variables (garbage collection) and subtyping. Rules
1-4 pop variable declarations that are essentially garbage. Thanks to the nature of ordered
context, those variables are no longer referred to by the remaining judgments, therefore
removing them does not break the well-formedness of the worklist.

Subtyping rules We can discern 3 groups of rules for algorithmic subtyping. The first
group consists of rules 5-12, where all the rules are similar to their syntax-directed system
counterparts. The most interesting one is rule 12, which reflects the changes in our syntax-
directed system. A subtype variable ã is used to replace the bound variable in the polymorphic
types ∀a. A and ∀a. B for further reduction. Rule 11 differs from rule ≤∀L by introducing
an existential variable α̂ instead of guessing the monotype τ instantiation.

The second group is about solving existential variables (rule 13) and existential variable
decomposition (rules 14 and 15). Rule 13 is one of the base cases involving existential variables.
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Rules 14 and 15 are algorithmic versions of Rule ≤→; they both partially instantiate α̂ to
function types. The domain α̂1 and range α̂2 of the new function type are not determined
immediately: they are fresh existential variables with the same scope as α̂. The occurs-check
condition prevents divergence as usual. For example, without it α̂ ≤ 1 → α̂ would diverge.

The final group consists of rules 16-21, where each rule solves an existential variable
against a basic type. Each rule removes an existential variable and substitutes it with its
solution in the remaining worklist, which preserves well-formedness in the meantime. For
example, Rule 16 solves variable α̂ with β̂ only if β̂ occurs after α̂. It is worth noting that
none of these rules solves α̂ to a subtype variable b̃. As we have discussed, ⊤, ⊥ and subtype
variables are not monotypes, therefore existential variables do not unify with them.

4.3 Algorithmic Typing Rules
Figure 6 shows the algorithmic rules for typing.

Checking Judgments Rules 22-26 deal with checking judgments. Rule 22 is DSub written in
a continuation-passing-style. The side conditions e ̸= λx. e′ and B ̸= ⊤ prevent overlap with
all other rules. Rules 23, 24 and 26 adapt their counterparts in the syntax-directed system,
where rules 23 and 26 correspond to the new/changed rules introduced in the syntax-directed
system compared to DK’s work. Rule 25 is a special case of D→I, dealing with the case
when the input type is an existential variable, representing a monotype function as in the
syntax-directed system. The same instantiation technique as in rules 14 and 15 applies.

Inference judgments Inference judgments accept an expression and return a type. Rules
27-33 deal with type inference judgments. The algorithm uses a continuation-passing-style
encoding, where the output type is passed to the next judgment. When an inference judgment
succeeds with type A, the algorithm continues to work on the inner-chain ω by substituting
a by A in ω. Rule 27 and 30 are base cases (variable and unit), where the inferred type
is passed to its child judgment chain. Rules 28 and 29 infer an annotated expression by
changing into checking mode, therefore another judgment chain is created. Rule 29 deals
with scoped type variables; the type variable a is in scope in e, and corresponds to the rule
DTA∀. Rule 31 infers the type of a lambda expression by introducing α̂, β̂ as the input and
output types of the function, respectively. Rule 32 infers the type of an application by firstly
inferring the type of the function e1. Then the remaining work is delegated to an application
inference judgment, which passes a, representing the return type of the application, to the
remainder of the judgment chain ω. Rule 33 is new: it first infers the type of e, then calls
the type application inference judgment to compute the return type.

Type Application and Application Inference Judgments Rules 34 and 35 deal with the
new type application inference judgments. Rule 34 accepts a polymorphic input ∀b. B

and produces its instantiation [C/b]B. Rule 35 returns ⊥ as it can be used as any type.
For example, if we choose to treat ⊥ as the polymorphic type ∀b. ⊥, the result after type
application is ⊥ according to rule 34. Finally, Rules 36-39 deal with application inference
judgments. Rules 36, 37 and 38 behave like rules D∀App, D→App and D⊥App, respectively.
Rule 39 instantiates α̂ to the function type α̂1 → α̂2, just like Rules 14, 15 and 25.

5 Algorithmic Metatheory

This section presents the metatheory of the algorithmic system in Section 4. We show three
main results: soundness, completeness and decidability. Our proofs employ similar techniques
to the ones by Zhao et al. [40], so we only highlight the main results and differences.
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Γ −→ Γ′ (cont.) Γ reduces to Γ′.

Γ ⊩ e ⇐ B −→22 Γ ⊩ e ⇒a a ≤ B

when e ̸= λx. e′ and B ̸= ∀a. B′ and B ̸= ⊤
Γ ⊩ e ⇐ ∀a. A −→23 Γ, a ⊩ e ⇐ A

Γ ⊩ λx. e ⇐ A → B −→24 Γ, x : A ⊩ e ⇐ B

Γ[α̂] ⊩ λx. e ⇐ α̂ −→25 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2], x : α̂1 ⊩ e ⇐ α̂2)
Γ ⊩ e ⇐ ⊤ −→26 Γ

Γ ⊩ x ⇒a ω −→27 Γ ⊩ [A/a]ω when (x : A) ∈ Γ
Γ ⊩ (e : A) ⇒a ω −→28 Γ ⊩ ([A/a]ω) ⊩ e ⇐ A

Γ ⊩ (Λa. e : A) ⇒b ω −→29 Γ ⊩ ([∀a. A/b]ω), a ⊩ e ⇐ A

Γ ⊩ () ⇒a ω −→30 Γ ⊩ [1/a]ω

Γ ⊩ λx. e ⇒a ω −→31 Γ, α̂, β̂ ⊩ ([α̂ → β̂/a]ω), x : α̂ ⊩ e ⇐ β̂

Γ ⊩ e1 e2 ⇒a ω −→32 Γ ⊩ e1 ⇒b (b • e2 ⇒⇒a ω)
Γ ⊩ e @C ⇒a ω −→33 Γ ⊩ e ⇒b (b ◦ C ⇒⇒a ω)

Γ ⊩ ∀b. B ◦ C ⇒⇒a ω −→34 Γ ⊩ [([C/b]B)/a]ω
Γ ⊩ ⊥ ◦ C ⇒⇒a ω −→35 Γ ⊩ [⊥/a]ω

Γ ⊩ A → C • e ⇒⇒a ω −→36 Γ ⊩ ([C/a]ω) ⊩ e ⇐ A

Γ ⊩ ∀a. A • e ⇒⇒a ω −→37 Γ, α̂ ⊩ [α̂/a]A • e ⇒⇒a ω

Γ ⊩ ⊥ • e ⇒⇒a ω −→38 Γ ⊩ [⊥/a]ω
Γ[α̂] ⊩ α̂ • e ⇒⇒a ω −→39 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2] ⊩ α̂1 → α̂2 • e ⇒⇒a ω)

Figure 6 Algorithmic Typing Rules

5.1 Declarative Worklist and Transfer
To aid in formalizing the correspondence between the declarative and algorithmic systems,
we use a declarative worklist Ω, defined in Figure 4. A declarative worklist Ω has the same
structure as an algorithmic worklist Γ, but does not contain any existential variables α̂.
Worklist Instantiation We instantiate an algorithmic worklist Γ to the declarative worklist
Ω by instantiating all existential variables α̂ in Γ with well-scoped monotypes τ .

▶ Definition 11. Γ⇝ Ω Γ instantiates to Ω.

Ω⇝ Ω
⇝Ω

Ω ⊢ τ Ω, [τ/α̂]Γ⇝ Ω
Ω, α̂, Γ⇝ Ω

⇝α̂

Rule ⇝α̂ replaces the first (left-most) existential variable with a well-scoped monotype and
repeats the process on the resulting worklist until no existential variable remains and thus
the algorithmic worklist has become a declarative one. In order to maintain well-scopedness,
the substitution is applied to all the judgments and term variable bindings in the scope of α̂.
Declarative Worklist Reduction A relation Ω −→ Ω′ is defined to reduce all judgments
in the declarative worklists with declarative typing rules. This relation checks that every
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judgment entry in the worklist holds using a corresponding conventional declarative judgment.
The typing contexts of declarative judgments are recovered using an auxiliary erasure function
∥Ω∥. The erasure function simply drops all judgment entries from the worklist, keeping only
variable and type variable declarations. Both definitions are available in the Appendix.

5.2 Soundness
Our algorithm is sound with respect to the declarative system. For any worklist Γ that
reduces successfully, there is a valid instantiation Ω that transfers all judgments to the
declarative system.

▶ Theorem 12 (Soundness). If wf Γ and Γ −→∗ ·, then ∃Ω s.t. Γ⇝ Ω and Ω −→∗ ·.

The proof proceeds by induction on the derivation of Γ −→∗ ·. Most of the proof
follows Zhao et al. [40]. Algorithmic type application rules are the most interesting change,
because they have a different shape compared to the declarative rules. With the help of
declarative worklist reduction, we can reduce the additional form of type application syntax
and therefore indirectly build a relationship with the declarative system.

5.3 Completeness
Any derivation in the declarative system has an algorithmic counterpart:

▶ Theorem 13 (Completeness). If wf Γ and Γ⇝ Ω and Ω −→∗ ·, then Γ −→∗ ·.

We prove completeness by induction on the derivation of Ω −→∗ · with a similar technique
to the one used by Zhao et al. [40]. New rules, including the ones involve subtype variables
and type applications, do not increase the difficulty of our proof significantly. It is worth
noting that our system forbids the ⊤ and ⊥ types to be instantiated by monotypes. If we
did not pose such restriction, then the following lemma would not hold anymore:

▶ Lemma 14 (Prune Transfer for Instantiation). If (Γ ⊩ α̂ ≤ A → B)⇝ (Ω ⊩ C ≤ A1 → B1)
and ∥Ω∥ ⊢ C ≤ A1 → B1, then α̂ /∈ FV (A) ∪ FV (B).

For example, allowing instantiations like α̂ := ⊤ would make the algorithmic judgment
α̂ → α̂ ≤ α̂ derivable. This lemma is essential to follow the original proof to prove
completeness for the occurs-check condition in rules 14 and 15.

5.4 Decidability
Finally, we show that our algorithm is decidable:

▶ Theorem 15 (Decidability). Given wf Γ, it is decidable whether Γ −→∗ · or not.

Our decidability proof is based on a lexicographic group of induction measures:〈
|Γ|e, |Γ|⇔, |Γ|⊤⊥, |Γ|∀, |Γ|

α̂
, |Γ|→ + |Γ|

〉
on the worklist Γ. Compared with the measures used by Zhao et al. [40], we introduce a new
measure | · |⊤⊥, which counts the total number of ⊤ and ⊥ occurrences. This is required
because judgments like α̂ ≤ ⊤ now do not solve α̂, which breaks the original proof technique.
This type of judgment now reduces the new measure by at least one. The rest of the proof
follows the approach closely. The Appendix has detailed explanations of the measures and
proofs. Combining all three main results (soundness, completeness and decidability), we
conclude that the declarative system is decidable by means of our algorithm.
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▶ Corollary 16 (Decidability of Declarative Typing). Given wf Ω, it is decidable whether
Ω −→∗ · or not.

6 Discussion
Inferring Top and Bottom Types F e

<: does not treat the ⊤ and ⊥ types as monotypes,
therefore these types cannot be implicitly instantiated by the type inference algorithm.
However, in certain programming languages, especially OOP languages with downcasts, the
⊤ type can be useful in certain cases and implicit instantiation would be convenient to have.
For example, the following Java program

var ns = List.of(1, 2, "3");

should instantiate the generic variable A of the List<A> class to Object (note that Object
plays a similar role to ⊤ in Java) to type-check the program. Thus, the inferred type for ns
is List<Object>. In this program, because downcasts are possible in Java, it is plausible that
the programmer intended to have a heterogeneous list of values, that could later be accessed
by doing some type analysis for the elements and downcasting from Object to Integer or
String. We consider such use cases to be a practical example where instantiation with the
top type would be useful in languages like Java. In contrast, in F e

<:, we would need to
explicitly instantiate the type argument. Nonetheless, in a language without downcasts
(such as F e

<:), the declaration of ns above would very likely be a programmer error, since
there would not be much that could be done with a value of type List<Object>. As we have
argued in Section 2.4, there is a tension between inferring types with top and bottom types
and hiding programmer errors: sometimes type errors that would be caught in many type
systems, are instead type-checked by inferring some types with top and bottom types. Our
design decision in F e

<: is not to infer top and bottom types, which avoids hiding such errors
as well as avoiding the technical complexities that arise from inferring such types.

It is possible to have alternative designs for F e
<: that infer top and bottom types as

well. For instance, if we would be aiming at covering common cases that arise in practice
in languages like Java, such as the inference of the type of ns above, we could extend our
syntax-directed system and algorithmic system with the rules:

Ψ ⊢ [⊤/a]A ≤ B B ̸= ⊤
Ψ ⊢ ∀a. A ≤ B

DInst⊤

Γ ⊩ ∀a. A ≤ B −→ Γ ⊩ [⊤/a]A ≤ B when B ̸= ⊤

The two rules above support simple forms of instantiation where the type variable is
directly instantiated with the ⊤ type (a similar approach could be used for ⊥ types). Note
that these rules overlap with the current predicative instantiation rules, and thus introduce
nondeterminism. Implementing the algorithmic rule directly would require some backtracking.
From the theoretical point of view the rules are quite ad-hoc, since they cover only very
specific cases of instantiation with top types. A more theoretically appealing approach would
be to borrow ideas from approaches such as MLSub [6], which can infer types with top and
bottom. However, this would be much more technically challenging. Another direction would
be to complement the global type inference approach of F e

<: with some more local approach
to attempt to infer top and bottom types. We will discuss this approach more next.
Local Impredicative Inference Implicit impredicative instantiation is an advanced feature
in modern type systems, and it is also supported by the local type inference approach [28].
Unlike top types, which can have some practical use cases in languages like Java, no existing
mainstream OOP languages support higher-ranked systems with first-class polymorphic
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functions/values. Thus, there is no need for impredicative instantiations in those languages
today. Nonetheless, future languages may support such feature and it is worthwhile consider-
ing impredicative type inference. Local type inference algorithms are designed to support
impredicative instantiations through information in the neighbor nodes of the syntax tree.
The recent work on Quick Look by [33] instantiates polymorphic types through a similar local
approach and falls back to a global Hindley-Milner-style unification afterwards. Currently,
our system only employs global unification and ignores any local information. We believe that
a promising direction would be to follow the Quick Look approach, preserve the core global
inference system of F e

<:, and try to employ a more local approach to infer impredicative
types as well as top and bottom types before introducing unification variables. The main
challenge in this direction is that Serrano et al.’s [33] approach relies on invariant subtyping
for function types. In contrast, we have to deal with contravariance for input types and
covariance for output types.

7 Related Work

This section discusses related work, focusing on the most closely related research on higher-
ranked type inference and local type inference.

Hindley-Milner The Hindley-Milner (HM) type system [5, 20, 16] was a landmark achieve-
ment in type inference. The constraint-based presentation by Pottier and Rémy [30] for HM
and ML type inference has similarities with the worklist approach and it also keeps precise
scoping of variables. In HM the order of universally quantified variables is irrelevant and
no annotations are required. In contrast, in our work, the order of universally quantified
variables matters, and annotations are necessary for polymorphic functions. Thus, we do
not support Hindley-Milner style generalization. Nevertheless if we assume annotations
of polymorphic expressions, the order-relevance of universally quantified variables is not
problematic. Because of its support for visible type applications [13], GHC Haskell already
distinguishes between specified and generalized type quantification. Specified type quantifica-
tion refers to polymorphic expressions that have explicit type annotations. Like F e

<:, in GHC
type variables in specified quantification are order relevant to be compatible with explicit
type applications. In contrast to Hindley-Milner, F e

<: supports higher-ranked polymorphism,
explicit impredicative type applications and top and bottom types.

Higher-Ranked Polymorphic Type Inference There has been much work extending HM
while preserving all of its expressive power. In particular, there are several extensions of
HM to System F, which support higher-ranked polymorphism. Since full type inference for
System F is undecidable [39], such extensions need some type annotations or restrictions to
remain decidable. The work on type inference for higher-ranked polymorphism (HRP) can be
divided into two main lines: predicative and impredicative type systems. In predicative type
systems, only monotypes can be inferred. An advantage of predicative type systems is that
the predicative polymorphic subtyping relation is decidable [21], which facilitates the design
of such type systems and type inference algorithms. There are several predicative HRP
type systems [26, 8, 9, 21, 40]. The work in this paper is based on DK’s [8] declarative type
system and the algorithmic formulation by Zhao et al. [40]. However, we support explicit
impredicative type applications and top and bottom types. Such features create various
challenges and, to address some of those challenges, we introduce a novel stable polymorphic
subtyping relation. In contrast, DK adopt the polymorphic subtyping relation by Odersky
and Läufer [21]. In essence, with stable subtyping, the order of type variables becomes
relevant in universal quantification. As a consequence, some forms of subtyping that are
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accepted by Odersky and Läufer’s relation are rejected in our type system. Nonetheless, with
those restrictions we retain important properties, such as checking subsumption and stability
of type substitutions, in the presence of new features that are not supported by DK.

Impredicative System F allows instantiation with polymorphic types. Unfortunately, a
subtyping relation with impredicative implicit instantiation is undecidable [3, 36]. Work on
partial impredicative type inference algorithms [17, 18, 37, 34, 33, 14] navigate a variety of
design tradeoffs for a decidable algorithm. Ideas from Guarded Impredicative Polymorph-
ism [34] and the Quick Look approach [33], are being adopted in GHC 9 for enabling
impredicative instantiation. They make use of local information in n-ary applications to infer
polymorphic instantiations with a relatively simple specification and unification algorithm.
Although not all impredicative instantiations can be handled well, these approaches are useful
in practice. In contrast to this line of work, we do not attempt to infer impredicative types.
Instead, all impredicative instantiations must be explicit. While explicit instantiation is less
convenient, an advantage is flexibility. Approaches that only allow implicit impredicative
instantiation may reject some instantiations that would be possible with explicit instantiation.
Stability Besides the motivation of supporting a form of impredicative polymorphism,
another motivation for the changes in type inference in GHC 9 has been to simplify the
algorithms and address various issues surrounding subsumption. While we are not aware that
the issues that we have described in Section 2 have been previously identified, there have
been several discussions documenting other issues related to subsumption in GHC 8 [27].
Recently, motivated to understand what would be the best design for instantiation in GHC,
Bottu and Eisenberg [1] have compared four different approaches to instantiation. They
have identified stability properties as an important factor for language designers to take into
consideration when designing languages with implicit instantiation. Stability also plays an
important role in the Cochis calculus [32], where it ensures that the behavior of resolution
(which is a mechanism employed by type classes [38] or Scala implicits [23]) is preserved after
instantiation. Stable subtyping in F e

<: provides a high-level specification of polymorphic
subtyping, which essentially embeds a stability property into the subtyping relation.
Type Inference with Explicit Type Applications The work on visible type application
(VTA) [13] adds a predicative form of explicit type application to HM and HRP type systems.
This approach has been adopted in GHC 8. As discussed in detail in Section 2, a property
that is not enforced in VTA is checking subsumption. We believe that checking subsumption
is an important property, as it ensures that a program can always be annotated with a
supertype and it can prevent situations where simply inlinings of function definitions can
make a well-typed program ill-typed. The Quick Look approach [33] supports impredicative
visible type application. An important difference is that in Quick Look subtyping of functions
is invariant, whereas in the original VTA approach the standard subtyping rule is used. The
invariant subtyping rule prevents the counter-examples to checking subsumption that we
found in GHC 8, and described in Section 2. Our work shows a different way to prevent such
examples, by employing stable subtyping with a standard subtyping rule for functions. We
believe that there are merits in both approaches. The restrictions adopted by Quick Look do
not affect backward compatibility with the HM type system. In contrast, elementary type
inference does not aim at backwards compatibility with the HM type system. Instead, we
are interested in backward compatibility with extensions of System F with subtyping (such
as F<: [2]). Quick Look would not preserve backward compatibility to such type systems,
which employ a standard subtyping rule for function types.
Local Type Inference While technically speaking we are closest to predicative HRP, we
are closer in spirit and in goals to local type inference [28, 22]. Like our work, local type
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inference does not aim to subsume the HM type system. Local type inference sacrifices
some of the expressive power of type inference, in exchange for the ability to smoothly deal
with features such as top and bottom types and impredicative types. Pierce and Turner
considered a language similar to the language that we consider in our work (with top and
bottom types, but no bounded quantification). Like our approach, both implicit and explicit
type applications are supported. Technically speaking, our approach is still a global inference
approach, and thus it is quite different from local type inference. In local type inference,
missing annotations are recovered using only information from adjacent nodes in the syntax
tree, and there are no long-distance constraints such as unification variables. We believe that
an advantage of F e

<: is that it has simple and clear syntax-directed specifications, whereas the
specification of local type inference is more involved, and it is not obvious to programmers
when instantiation works or not. Furthermore, F e

<: allows the inference of lambda expressions
without any contextual type information, as long as the inferred type is a monotype.

Type Inference with Subtyping Another line of work is extensions of HM with subtyping.
Type systems in presence of subtyping encounter constraints that are not simply equalities
as in HM. Therefore constraint solvers used in HM, where unifications are based on equality,
cannot be easily extended to support subtyping. Instead, constraints are usually collected as
subtyping relations and may delay resolution as the constraints accumulate. Some systems
that are based on constraint types [12, 11], i.e. types expressed together with a set of
constraints τ | {τ1 ≤ τ2}. Unfortunately, such constraints can be quite large and hard to
interpret by programmers. Pottier [31] proposed three methods to simplify constraints,
aiming at improving the efficiency of type inference algorithms and improving the readability
of the resulting types. Inspired by the simplification strategies of Pottier, MLsub [6] suggests
that the data flow on the constraint graph can be reflected directly on types in a richer type
system. Simple-sub [24] further simplifies the algorithm of MLsub and is implemented in
500 lines of code. While being equivalent to MLsub, it is a more efficient variant. In our
work, we avoid subtyping constraints and do not infer types with top and bottom types. If
instantiations with such types are needed, then an explicit type application must be used.
On the other hand, we support higher-ranked polymorphism, and explicit type applications,
which (as far as we know) are not supported by any extensions of HM with subtyping.

8 Conclusion

In this paper, we proposed elementary type inference: a partial form of type inference that
can be used in languages with subtyping that combine implicit instantiation with explicit type
applications. As type systems become more powerful, the inference problem becomes harder,
quickly leading to various undecidable problems. It is clear that some form of type-inference
is needed in most languages to make their use practical. However, it is not necessarily true
that being able to infer more types is always better, especially if there is the possibility to
resort to explicit instantiation. Attempting to infer more types may have the side-effect of
hiding programmer errors, as very general types can be inferred in the presence of advanced
type system features. Moreover, predicatibility of what can be inferred and what cannot is
also an important factor for users of the programming language. Elementary type inference
strikes a compromise. It chooses to infer only monotypes, which are always inferrable, and
makes it easy to understand when the instantiation succeeds or fails. For polytypes (which
include top and bottom), explicit type applications must be used, but no expressive power is
sacrificed. More work is needed to understand what is the right balance between inference,
predicatibility and usability of languages in the future.
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A Appendix

A.1 Well-Formedness Definitions
The well-formedness definitions of the declarative system can be found in Figure 7. The
free-variable condition ensures that any polymorphic type includes its polymorphic type
variable. This restriction is posed on rules wfd∀ and wfdtLam. In the latter case, programmers
may write the syntactic sugar e : ∀a. A, thus the condition also applies.

Ψ ⊢ A Well-formed declarative type

Ψ ⊢ 1
wfdunit

a ∈ Ψ
Ψ ⊢ a

wfdvar
ã ∈ Ψ
Ψ ⊢ ã

wfdsvar
Ψ ⊢ A Ψ ⊢ B

Ψ ⊢ A → B
wfd→

Ψ, a ⊢ A a ∈ FV(A)
Ψ ⊢ ∀a. A

wfd∀

Ψ ⊢ e Well-formed declarative expression

x : A ∈ Ψ
Ψ ⊢ x

wfdtmvar
Ψ ⊢ ()

wfdtmunit
Ψ, x : A ⊢ e

Ψ ⊢ λx. e
wfdabs

Ψ ⊢ e1 Ψ ⊢ e2

Ψ ⊢ e1 e2
wfdapp

Ψ ⊢ A Ψ ⊢ e

Ψ ⊢ (e : A)
wfdanno

Ψ ⊢ A Ψ ⊢ e

Ψ ⊢ e @A
wfdtApp

Ψ, a ⊢ A Ψ, a ⊢ e a ∈ FV(A)
Ψ ⊢ Λa. e : A

wfdtLam

Figure 7 Well-Formedness for the Declarative System

Figure 8 shows the well-formedness definitions of the algorithmic system. This restrictions
posed on rules wf_∀ and wf_tLam are similar to those in the declarative well-formedness
rules.

A.2 Proof of Equivalence of Stable Subtyping and Declarative Subtyping
The stable subtyping relation describes a more “declarative” version of subtyping, by encoding
the expected property directly into the ≤∀ rule. This section shows the proof sketch and
necessary definitions for the completeness and soundness theorems.

Completeness Our declarative subtyping relation is complete w.r.t the stable subtyping
relation.

▶ Theorem 17 (Completeness w.r.t stable subtyping). If Ψ ⊢s A ≤ B then Ψ ⊢ A ≤ B.

The most important lemma to prove is the following one

▶ Lemma 18 (Subtyping any inst implies forall).
Given Ψ ⊢ ∀a. A and Ψ ⊢ ∀a. B, if ∀C, Ψ ⊢ C =⇒ Ψ ⊢ [C/a]A ≤ [C/a]B, then Ψ ⊢ ∀a. A ≤
∀a. B.

To prove this lemma, we need to generalize/transform in four directions
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Γ ⊢ A Well-formed algorithmic type

Γ ⊢ 1
wf_unit

a ∈ Γ
Γ ⊢ a

wf_var
ã ∈ Γ
Γ ⊢ ã

wf_svar
α̂ ∈ Γ
Γ ⊢ α̂

wf_exvar

Γ ⊢ A Γ ⊢ B

Γ ⊢ A → B
wf_→

Γ, a ⊢ A a ∈ FV(A)
Γ ⊢ ∀a.A

wf_∀

Γ ⊢ e Well-formed algorithmic expression

x : A ∈ Γ
Γ ⊢ x

wf_tmvar
Γ ⊢ ()

wf_tmunit
Γ, x : A ⊢ e

Γ ⊢ λx. e
wf_abs

Γ ⊢ e1 Γ ⊢ e2

Γ ⊢ e1 e2
wf_app

Γ ⊢ A Γ ⊢ e

Γ ⊢ (e : A)
wf_anno

Γ ⊢ A Γ ⊢ e

Γ ⊢ e @A
wf_tApp

Γ, a ⊢ A a ∈ FV(A) Γ, a ⊢ e

Γ ⊢ Λa. e : A
wf_tLam

Γ ⊢ ω Well-formed algorithmic judgment

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ≤ B
wf≤

Γ ⊢ e Γ ⊢ A

Γ ⊢ e ⇐ A
wf⇐

Γ ⊢ e Γ, a ⊢ ω

Γ ⊢ e ⇒a ω
wf⇒

Γ ⊢ A Γ ⊢ e Γ, a ⊢ ω

Γ ⊢ A • e ⇒⇒a ω
wf•

Γ ⊢ A Γ ⊢ B Γ, a ⊢ ω

Γ ⊢ A ◦ B ⇒⇒a ω
wf◦

wf Γ Well-formed algorithmic worklist

wf ·
wf·

wf Γ
wf Γ, a

wfa
wf Γ

wf Γ, α̂
wf

α̂

wf Γ
wf Γ, ã

wfã
wf Γ Γ ⊢ A

wf Γ, x : A
wfof

wf Γ Γ ⊢ ω

wf Γ ⊩ ω
wfω

Figure 8 Well-Formedness for the Algorithmic System

1. Generalize the direction of the subtyping relation. Since we can only do induction on the
types, rule ≤ → requires a contravariant induction hypothesis, and thus generalizing the
lemma on both directions is useful. An alternative approach is to define a non-standard
induction scheme for the pair of types A and B. We choose the latter to reduce the size
of proof script, via the schm relation.
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▶ Definition 19 (Induction Scheme for a Pair of Types).

basic 1 basic ⊤ basic ⊥ basic a basic ã

schm A B

schm (∀a. A) (∀a. B)
schm A B B ̸= ∀a. B′

schm (∀a. A) B

schm A B A ̸= ∀a. A′

schm A (∀a. B)
schm B1 A1 schm A2 B2

schm (A1 → A2) (B1 → B2)
basic A basic B

schm A B

schm B A1 schm A2 B basic B

schm (A1 → A2) B

schm B1 A schm A B2 basic A

schm A (B1 → B2)

2. Generalize the number of variables that need to substitute with any type C. Instead of a
single variable a in the lemma, we need to collect a list of variables a, and generalize the
substitution as a list of mappings M := b 7→ C, where C is well-formed in Ψ.

3. Generalize a list of monotype instantiations for rule ≤∀L. Similar to (2), a list of
instantiations I := c 7→ τ is used, where τ is a well-formed monotype in Ψ.

4. Finally, a somewhat surprising fact reveals that any monotype instantiation that satisfies
a mapping to the unit type satisfies any mapping. This helps to merge the instantiation
list from two sub-branches.

After these generalizations, the lemma now becomes

▶ Lemma 20 (Generalized subtyping any inst implies forall).
Given Ψ, b, c ⊢ A and Ψ, b, d ⊢ B, and the following conditions:
1. For any mapping M := b 7→ C, there exists two lists of instantiations IA := c 7→ τ and

IB := d 7→ τ , s.t. Ψ ⊢ [I][M ]A ≤ [I][M ]B;
2. A mapping consist of unit types M1 := b 7→ 1
3. Any two lists of instantiations I ′

A := c 7→ τ and I ′
B := d 7→ τ satisfying Ψ ⊢ [I ′

A][M1]A ≤
[I ′

B ][M1]B
we can conclude that Ψ, b ⊢ [I ′

A]A ≤ [I ′
B ]B.

The proof utilizes the schm relation and performs induction on it. Overall speaking, the
proof is mostly about analyzing the shape of the types before and after the substitutions.
We refer to the Abella source code for the formal statement and proof details.

With this lemma proven, the completeness theorem is easily shown with a routine
induction on its premise Ψ ⊢s A ≤ B.

Soundness The soundness theorem is stated as follows

▶ Theorem 21 (Soundness w.r.t stable subtyping). If Ψ ⊢ A ≤ B then Ψ ⊢s A ≤ B.

The proof takes a similar generalization technique by using a mapping on all the subtype
variables occurred in the condition.

▶ Theorem 22 (Generalized soundness w.r.t stable subtyping).
If Ψ, ã ⊢ A ≤ B and M := ã 7→ C (well-formed under Ψ) then Ψ ⊢s [M ]A ≤ [M ]B.

With the generalization, a routine induction on the subtyping judgment would finish the
proof without major challenges.
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Expressions E ::= x | () | λx : A. E | E1 E2 | E @A | Λa. E | top

Ψ ⊢<: A ≤ B A is a subtype of B.

Ψ ⊢<: A ≤ A
F<:Refl

Ψ ⊢<: A ≤ ⊤
F<:Top

Ψ ⊢<: A ≤ B Ψ ⊢<: B ≤ C

Ψ ⊢<: A ≤ C
F<:Trans

Ψ ⊢<: B1 ≤ A1 Ψ ⊢<: A2 ≤ B2

Ψ ⊢<: A1 → A2 ≤ B1 → B2
F<:Fun

Ψ, a ⊢<: A ≤ B a ∈ FV(A) a ∈ FV(B)
Ψ ⊢<: ∀a. A ≤ ∀a. B

F<:All

Ψ ⊢<: E : A E has type A.

Ψ ⊢<: E : A Ψ ⊢<: A ≤ B

Ψ ⊢<: E : B
F<:Sub

Ψ, x : A ⊢<: E : B

Ψ ⊢<: λ(x : A). E : A → B
F<:Lam

Ψ ⊢<: () : 1
F<:()

Ψ ⊢<: top : ⊤
F<:⊤

(x : A) ∈ Ψ
Ψ ⊢<: x : A

F<:Var

Ψ ⊢<: e1 : A → B Ψ ⊢<: e2 : A

Ψ ⊢<: e1 e2 : B
F<:App

Ψ, a ⊢<: E : A a ∈ FV(A)
Ψ ⊢<: Λa. E : ∀a. A

F<:TLam

Ψ ⊢<: E : ∀a. A

Ψ ⊢<: E @B : [B/a]A
F<:TApp

Figure 9 System F<: (Without Bounded Quantification)

A.3 Type Safety and Completeness to a Subset of F<:

We derive type safety of our type system via an elaboration to a strict subset of System
F<: [2], shown in Figure 9. This system has no bounded quantification, and it is similar
to the internal language used by Pierce and Turner [28] in their formulation. The choice
to use a subset of F<: is for obtaining a completeness theorem. For type-safety only, we
could directly use F<:, and our elaboration and type-safety results would remain the same
(modulo some minor syntactic differences due to the presence of bounded quantification).
Rules F<:All and F<:TLam are slightly changed to adopt our well-formedness restriction
on polymorphic types. Types of F<: does not have subtype variables (ã) and the ⊥ type.
Expressions in F<: include a top term following the original design [2], and they also have
annotated lambdas and type lambdas. The elaboration rules are shown together with our
syntax-directed system in Figure 3. The gray parts correspond to the additional F<: term
that results from the elaboration.

Type and Context Translation Since F e
<: has subtype variables ã and the ⊥ type, which

are not defined in System F<:, we define translation functions | · | to convert types and
contexts of F e

<: into valid System F<: counterparts. Notably, the ⊥ type is elaborated to the
uninhabited type ∀a.a, and all subtyping variables ã are elaborated into System F<:’s type
variables. Other types and components in the context are not affected.
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▶ Definition 23 (Translation to F<:).

|a| = |ã| = a |1| = 1 |⊤| = ⊤ | · | = | · |
|⊥| = ∀a. a |Ψ, x : A| = |Ψ|, x : |A|

|A1 → A2| = |A1| → |A2| |Ψ, a| = |Ψ|, a

|∀a. A| = ∀a. |A| |Ψ, ã| = |Ψ|, a

Elaboration of Subtyping A subtyping judgment A ≤ B elaborates to a System F <:
expression E, which has the function type |A| → |B|. The elaboration rules may call the
translation function to obtain the correct type to use for annotations. For example, rule ≤⊤
uses |A| to denote the type of the term to be coerced. Rules ≤∀L and ≤∀ use explicit type
applications to properly instantiate the argument type, and then produce a term of expected
type in combination with the coercion from their premises. The following lemma states the
soundness property for subtyping:

▶ Lemma 24 (Subtyping Soundness). If Ψ ⊢ A ≤ B ↪→ E then |Ψ| ⊢<: E : |A| → |B|.

Elaboration of Typing Elaboration for inference (Ψ ⊢ e ⇒ A) and checking (Ψ ⊢ e ⇐ A)
judgments simply concludes that the elaborated term E has type |A|. Application inference
judgments elaborate to two terms, Ec and E, where Ec is a coercion on the function term,
and E is the elaborated term of the argument E. Therefore, suppose that the argument type
is B, Ec has type |A → B → C| and E has type |B|.

▶ Theorem 25 (Type Soundness w.r.t F<:). The following statements hold:
1. If Ψ ⊢ e ⇒ A ↪→ E then |Ψ| ⊢<: E : |A|.
2. If Ψ ⊢ e ⇐ A ↪→ E then |Ψ| ⊢<: E : |A|.
3. If Ψ ⊢ A • e ⇒⇒ C ↪→ Ec | E then ∃B s.t. |Ψ| ⊢<: Ec : |A → B → C| and |Ψ| ⊢<: E :

|B|.

By proving the type soundness theorem, we may conclude that F e
<: is type-safe, given

the fact that System F<: is type-safe.

Completeness We first prove the completeness lemma for subtyping with a minor general-
ization.

▶ Lemma 26 (Subtyping completeness). If Ψ, |Ψ′| ⊢<: A ≤ B then Ψ, Ψ′ ⊢ A ≤ B.

Then, we prove the completeness theorem with the help of a decoration relation. Note
that, because of bidirectional type checking there is a discrepancy between the annotations
in F e

<: and System F<:. Thus we need the decoration relation (E ▷ e) to overcome such
discrepancy, which only adds necessary type annotations mainly for lambdas and type
lambdas.

▶ Definition 27. E ▷ e Decoration

E ▷ e

E ▷ (e : A) 1 ▷ 1 a ▷ a top ▷ (1 : ⊤)
E ▷ e

(Λa. E) ▷ (Λa. e : A)
E ▷ e

(λa : A. E) ▷ ((λx. e) : A → B)
E1 ▷ e1 E2 ▷ e2

(E1 E2) ▷ (e1 e2)
E ▷ e

(E @A) ▷ (e @A)
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∥Ω∥ Judgment erasure.
∥ · ∥ = ·

∥Ω, a∥ = ∥Ω∥, a

∥Ω, ã∥ = ∥Ω∥, ã

∥Ω, x : A∥ = ∥Ω∥, x : A

∥Ω ⊩ ω∥ = ∥Ω∥

Ω −→ Ω′ Declarative worklist reduction.

Ω, a −→ Ω
Ω, ã −→ Ω

Ω, x : A −→ Ω
Ω ⊩ A ≤ B −→ Ω when ∥Ω∥ ⊢ A ≤ B

Ω ⊩ e ⇐ A −→ Ω when ∥Ω∥ ⊢ e ⇐ A

Ω ⊩ e ⇒a ω −→ Ω ⊩ [A/a]ω when ∥Ω∥ ⊢ e ⇒ A

Ω ⊩ ∀b. A ◦ B ⇒⇒a ω −→ Ω ⊩ [([B/b]A)/a]ω
Ω ⊩ ⊥ ◦ B ⇒⇒a ω −→ Ω ⊩ [⊥/a]ω
Ω ⊩ A • e ⇒⇒a ω −→ Ω ⊩ [C/a]ω when ∥Ω∥ ⊢ A • e ⇒⇒ C

Figure 10 Declarative Worklist Reduction

For example, we can easily infer the type of the expression λx. (x : 1), without an
annotation for x, in our type system. However, System F<: would require an annotated
lambda λ(x : 1).(x : 1).

▶ Theorem 28 (Type completeness w.r.t F<:). If Ψ ⊢<: E : A then ∃e s.t. E ▷ e and
Ψ ⊢ e ⇒ A.

A.4 Detailed Proofs for Decidability
Figure 10 shows how the judgment erasure and declarative worklist reduction relations are
defined.
Formal Definitions for Worklist Measures We use six groups of measures on expressions,
types, and/or worklists. The first two measures, | · |e and | · |⇔, measure the total size of
terms and the total difficulty of judgments, respectively. In the latter, check judgments
count 2, inference judgments count 1, application inference judgments count 3, and type
application judgments count 1. The next three measures, | · |⊤⊥, | · |∀, | · |

α̂
, and | · |→, count

the total number of ⊤/⊥ types, universal quantifiers, existential variables, and function
types, respectively. Finally, | · | is simply the length of the worklist.

Figure 11 shows the formal definition for these measures.
Proof of Decidability Recall that the proof is based on a lexicographic group of induction
measures:

⟨|Γ|e, |Γ|⇔, |Γ|⊤⊥, |Γ|∀, |Γ|
α̂

, |Γ|→ + |Γ|⟩

Most of the rules decreases the measure, however, there are exceptions. Rules 14 and 15 may
increase the number of existential variables without decreasing any other measures. They
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|Γ|e, |ω|e, |e|e Size measure.

|Γ|e =
∑
ω∈Γ

|ω|e

|A ≤ B|e = 0
|e ⇐ A|e = |e|e
|e ⇒ ω|e = |e|e + |ω|e

|A • e ⇒⇒a ω|e = |e|e + |ω|e

|x|e = |()|e = 1
|λx. e|e = |e|e + 1
|e1 e2|e = |e1|e + |e2|e + 1
|e : A|e = |e|e + 1

|Γ|⇔, |ω|⇔ Judgment measure.

|Γ|⇔ =
∑
ω∈Γ

|ω|e

|A ≤ B|⇔ = 0
|e ⇐ A|⇔ = 2
|e ⇒ ω|⇔ = |ω|⇔ + 1

|A • e ⇒⇒a ω|⇔ = |ω|⇔ + 3

|Γ|
α̂

Existential measure.

|Γ|
α̂

= #
α̂∈Γ

types(ω) Type extraction from judgments.

types(A ≤ B) = [A, B]
types(e ⇐ A) = [A]
types(e ⇒ ω) = types(ω)

types(A • e ⇒⇒a ω) = [A] ++ types(ω)

|Γ|∀, |ω|∀, |A|∀ Polymorphism measure.

|Γ|∀ =
∑
ω∈Γ

|ω|∀

|ω|∀ =
∑

A∈types(ω)

|A|∀

|1|∀ = |a|∀ = |ã|∀ = |α̂|∀ = 1
|⊤|∀ = |⊥|∀ = 1

|A → B|∀ = |A|∀ + |B|∀
|∀a. A|∀ = |A|∀ + 1

|Γ|⊤⊥, |ω|⊤⊥, |A|⊤⊥ ⊤/⊥ measure.

|Γ|⊤⊥ =
∑
ω∈Γ

|ω|⊤⊥

|ω|⊤⊥ =
∑

A∈types(ω)

|A|⊤⊥

|1|⊤⊥ = |a|⊤⊥ = |ã|⊤⊥ = |α̂|⊤⊥ = 0
|⊤|⊤⊥ = |⊥|⊤⊥ = 1

|A → B|⊤⊥ = |A|⊤⊥ + |B|⊤⊥

|∀a. A|⊤⊥ = |A|⊤⊥

|Γ|→, |ω|→, |A|→ Function measure.

|Γ|→ =
∑
ω∈Γ

|ω|→

|ω|→ =
∑

A∈types(ω)

|A|→

|1|→ = |a|→ = |ã|→ = |α̂|→ = 1
|A → B|→ = |A|→ + |B|→ + 1

|∀a. A|→ = |A|→

Figure 11 Worklist measures

are both immediately followed by Rule 10, which breaks the subtyping problem into two
smaller problems of the form α̂ ≤ A and A ≤ α̂ which we call instantiation judgments.

With instantiation judgments, these smaller problems are reduced in multiple steps,
resulting in a smaller worklist after fully processed. We now show that entirely reducing
these smaller problems leaves the worklist in a state with an overall smaller measure. Our
starting point is a worklist Γ, Γi where Γi are instantiation judgments.

Γi := · | Γi, α̂ ≤ A | Γi, A ≤ α̂ where α̂ /∈ FV (A) ∪ FV (Γi)

ECOOP 2022
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Γ ⇀ Γ′ Γ updates to Γ′.

Γ ⇀ Γ
⇀ id

|A|∀ = 0 ΓL, [A/α̂]ΓR ⇀ Γ′

ΓL, α̂, ΓR ⇀ Γ′ ⇀ solve
ΓL, α̂, ΓR ⇀ Γ′

ΓL, ΓR ⇀ Γ′ ⇀ α̂

Figure 12 Worklist Update

Reducing instantiation judgments normally solves one existential variable per judgment.
Rules 16-21 solves one existential variable for one judgment; rules 14 and 15 introduce one
more existential variable, but also introduces a new instantiation judgment. Exceptions
including rules involving ∀ quantifiers and ⊤/⊥ types, which decrease other measures and
therefore result in a smaller judgment. We capture the judgment list created by these rules
with the following definition Γ≤:

Γ≤ := · | Γ≤, a | Γ≤, α̂ | Γ≤, ã | Γ≤, A ≤ B

Reducing the instantiation judgments may also affect the remainder of the worklist Γ,
by solving existing existential variables and introducing new ones. This worklist update is
captured in the update judgment Γ ⇀ Γ′ defined in Figure 12. Worklist updates do not
affect these four worklist measures:

▶ Lemma 29 (Measure Invariants of Worklist Extension). If Γ ⇀ Γ′ then |Γ|e = |Γ′|e,
|Γ|⇔ = |Γ′|⇔, |Γ|⊤⊥ = |Γ′|⊤⊥, and |Γ|∀ = |Γ′|∀.

Moreover, we can characterize the reduction of the instantiation judgments as follows.

▶ Lemma 30 (Instantiation Decidability). For any well-formed algorithmic worklist (Γ, Γi):
1) If |Γi|∀ = 0, then there exists Γ′

s.t. (Γ, Γi) −→∗ Γ′ and |Γ′|
α̂

= |Γ|
α̂

− |Γi| and Γ ⇀ Γ′.
2) If |Γi|∀ > 0, then there exist Γ′, Γ≤

s.t. (Γ, Γi) −→∗ (Γ′, Γ≤) and ⟨|Γ≤|⊤⊥, |Γ≤|∀⟩ < ⟨|Γi|⊤⊥, |Γi|∀⟩ and Γ ⇀ Γ′.
Hence, reducing the instantiation judgment prefix Γi either decreases the number of ⊤/⊥
types or ∀ quantifiers, or eliminates one existential variable per instantiation judgment. The
proof of this lemma proceeds by induction on the measure 2 ∗ |Γi|→ + |Γi| of the instantiation
judgment list Γi.

Summary Let us go back to the whole algorithm and summarize our findings. The
decidability theorem is shown through a lexicographic group of induction measures

⟨|Γ|e, |Γ|⇔, |Γ|⊤⊥, |Γ|∀, |Γ|
α̂

, |Γ|→ + |Γ|⟩

which is decreased by nearly all rules. In the exceptional case that the measure does not
decrease immediately, we encounter an instantiation judgment at the top of the worklist.
We can then make use of Lemma 30 to show that |Γ|

α̂
, |Γ|⊤⊥ or |Γ|∀ decreases when that

instantiation judgment is reduced. Moreover, Lemma 29 ensures that no higher-priority
measure component increases. Hence, in the exceptional case we have an overall measure
decrease after several steps of reduction.
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Table 1 Statistics for the proof scripts

File (*.thm) SLOC #Thms Description

olist, nat 310 58 Basic data structures
rules 315 7 Declarative & algorithmic system, debug examples
declarative 440 57 Basic declarative properties; Lemmas 3, 4
order 363 34 The | · |∀ measure; decl. subtyping strengthening
alg 902 94 Basic algorithmic properties
trans 649 58 Worklist instantiation
nonOverlap 1,383 96 Non-overlapping declarative system; Lemmas 7,9
soundness 1,455 94 Soundness theorem; aux. lemmas on transfer
depth 229 16 The | · |→ measure; Lemma 14
dcl 554 12 Non-overlapping declarative worklist
completeness 1,536 73 Completeness theorem; aux. lemmas and relations
instDecidability 1,037 58 Other worklist measures and lemmas for decidability
decidability 1,509 73 Decidability theorem and corollary
stableSub 1,453 98 Stable subtyping; Theorems 17, 21
safety 531 25 Type safety; sound and complete w.r.t F<:

Total 12,665 853 (86 definitions in total)

A.5 Formalization in Abella
Finally, we give an overview of our Abella formalization. We used a modified version of
Abella for better tactic support, since Abella, unlike theorem provers like Coq, does not allow
user-defined tactics. Our modified version of Abella reduces the size of the proof and speeds
up the development. Nevertheless, we also provide a translated version of our formalization,
which can be verified in the official 2.0.8-dev version of Abella. In the supplementary materials
of this submission, the reader can find both a version of our formalization in the modified
Abella, as well as a (longer) version that can be directly checked in the official 2.0.8-dev
version of Abella. Overall speaking, the λ-tree syntax [19] of Abella eases the formalization
and reasoning for our substitution-intensive relations and statements.

The proof script consists of 12,665 lines of Abella code with a total of 86 definitions and
853 theorems. Table 1 briefly summarizes the contents of each file.
Translation Table for the Proof Scripts In the proof scripts, we use textual relational
definitions rather than the symbolic ones used in the paper. The mapping, shown in Table 2,
should be helpful for anyone who reads the script.
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