Disjoint Intersection Types

Bruno C. d. S. Oliveira

Zhiyuan Shi

Jodo Alpuim

The University of Hong Kong
{bruno,zyshi,alpuim}@cs.hku.hk

Abstract

Dunfield showed that a simply typed core calculus with intersection
types and a merge operator is able to capture various programming
language features. While his calculus is type-safe, it is not coher-
ent: different derivations for the same expression can elaborate to
expressions that evaluate to different values. The lack of coherence
is an important disadvantage for adoption of his core calculus in
implementations of programming languages, as the semantics of
the programming language becomes implementation-dependent.

This paper presents A;: a coherent and type-safe calculus with
a form of intersection types and a merge operator. Coherence
is achieved by ensuring that intersection types are disjoint and
programs are sufficiently annotated to avoid type ambiguity. We
propose a definition of disjointness where two types A and B are
disjoint only if certain set of types are common supertypes of A
and B. We investigate three different variants of A;, with three
variants of disjointness. In the simplest variant, which does not
allow T types, two types are disjoint if they do not share any
common supertypes at all. The other two variants introduce T
types and refine the notion of disjointness to allow two types to
be disjoint when the only the set of common supertypes are fop-
like. The difference between the two variants with T types is on the
definition of top-like types, which has an impact on which types are
allowed on intersections. We present a type system that prevents
intersection types that are not disjoint, as well as an algorithmic
specifications to determine whether two types are disjoint for all
three variants.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; F.3.3 [Studies of Pro-
gram Constructs]: Functional constructs

General Terms Design, Languages, Theory

Keywords Intersection Types, Type System

1. Introduction

Intersection types date back to Coppo et al. [9] and Pottinger [26]
work. Early work was motivated by the applications of intersec-
tion types to characterize exactly all strongly normalizing lambda
terms. Since then various researchers [6, 12, 15, 17, 22, 24] have
started looking at the application of intersection types for designing

new and more powerful type systems for programming languages.
Since Reynolds’ work on the Forsythe [28] programming language,
various other languages, including CDuce [4], Scala [20] and Star-
dust [13] have incorporated some notion of intersection types.

Recently Dunfield [14] showed the usefulness of type systems
with intersection types and a merge operator. The presence of a
merge operator in a core calculus provides significant expressive-
ness, allowing encodings for many other language constructs as
syntactic sugar. For example single-field records are encoded as
types with a label, and multi-field records are encoded as the con-
catenation of single-field records. Concatenation of records is ex-
pressed using intersection types at the type-level and the merge op-
erator at the term level. Dunfield formalized a simply typed lambda
calculus with intersection types and a merge operator. He showed
how to give a semantics to the calculus by a type-directed trans-
lation to a simply typed lambda calculus extended with pairs. The
type-directed translation is elegant and type-safe.

While Dunfield’s calculus is type-safe, it lacks the property of
coherence: different derivations for the same source expression can
lead to target expressions that evaluate to different values. Dunfield
left coherence as an open problem. The lack of coherence is an
important disadvantage for adoption of his core calculus in imple-
mentations of programming languages, as the semantics of the pro-
gramming language becomes implementation dependent. Although
Dunfield mentioned the possibility of extending the type system to
allow only disjoint intersection types, he did not formalize or fur-
ther pursue this approach.

This paper presents A;: a type-safe and coherent core calcu-
lus with intersection types and a merge operator. Coherence is
achieved by ensuring that intersection types are disjoint and pro-
grams are sufficiently annotated to avoid type ambiguity. We pro-
pose a definition of disjointness where two types A and B are dis-
joint when only a certain set of types are common supertypes of
A and B. We investigate three different variants of A;, with three
variants of disjointness. The difference between the variants of dis-
jointness is on what is the set of allowed common supertypes. To
avoid type ambiguity, which arises from the undecidability of type
assignment of intersection types [30], we use a variant of the cal-
culus that allows type annotations. Without additional type anno-
tations the same term can have multiple types, and consequently
different semantics depending on the type. The additional anno-
tations enable a type system based on bidirectional type-checking
techniques [16, 25], that ensures that every term has a unique type,
eliminating an additional source of ambiguity in the semantics.

In the simplest variant of A;, which does not allow T types, two
types A and B are disjoint (A * B)! if there is no type C such that
both A and B are subtypes of C. With this definition of disjointness
we present a formal specification of a type system that prevents in-
tersection types that are not disjoint. However, the formal definition

! The notation A * B is inspired by the separating conjunction construct in
Reynolds’ separation logic [29].



of disjointness does not lend itself directly to an algorithmic imple-
mentation. Therefore, we also present an algorithmic specification
to determine whether two types are disjoint. Moreover, this specifi-
cation is shown to be sound and complete with respect to the formal
definition of disjointness.

The other two variants of A; introduce T types and refine the
notion of disjointness. The main problem of adding T types into A;
is that now every two types have at least one common supertype.
Therefore, defining disjointness between two types as the non-
existence of a common supertype does not work. To account for T
types we propose a notion of T-disjointness, where only common
supertypes that are top-like are allowed for two types A and B.
The difference between the two variants with T types is on the
particular definition of top-like types, which has an impact on
which types are allowed on intersections. In a simple version, top-
like types are the set of types: T, T&T, T&T&T, .... All such
types are proper top types: that is, they are supertypes of every
other type. Unfortunately the simple notion of top-like types has
limited expressiveness because it forbids any two function types
to be disjoint. The second definition of top-like types is more
liberal, and it allows for functional top types (such as Int — T)
to be in the set of top-like types. With this variant of top-like
types, the limitations in expressiveness are removed. Both variants
with T types are type-safe and coherent, and both notions of T-
disjointness have sound and complete algorithmic versions.

We have mechanized all three variants of A; and their meta-
theoretical results in the Coq proof assistant. The definitions and
proofs use the locally nameless representation with co-finite quan-
tification [3] to represent variables and binders. Except for two aux-
iliary lemmas used in the lambda cases for the proofs of soundness
and completeness of bidirectional type-checking, all proofs are “ad-
mit” free. In particular, the main proofs of this paper (coherence
and type-preservation) are complete. The two auxiliary theorems
that we did not manage to prove are trivially true, but they proved
surprisingly tricky to prove using the locally nameless representa-
tion with co-finite quantification.

In summary, the contributions of this paper are:

¢ Disjoint Intersection Types: A new form of intersection type
where only disjoint types are allowed. A sound and complete
algorithmic specification of disjointness (with respect to the
corresponding formal definition) is presented for three different
variants of disjointness.

Formalization of A\; and Proof of Coherence: An elaboration
semantics of all three variants of A; into a simply typed A-
calculus is given. Type-safety and coherence are proved and
formalized. All definitions and metatheory are mechanically
formalized using the Coq theorem prover.

Implementation: An implementation of A, encodings of sev-
eral examples presented in the paper, and also the Coq proofs
are available at:

https://github.com/jalpuim/disjoint-intersection-types

2. Overview

This section introduces A; and its support for intersection types
and the merge operator. We also discuss how the notion of disjoint
intersection types achieves a coherent semantics.

Note that this section uses some syntactic sugar, as well as stan-
dard programming language features, to illustrate the various con-
cepts in A;. Although the minimal core language that we formalize
in Section 3 does not present all such features, our implementation
supports them.

2.1 Intersection Types and the Merge Operator

Intersection Types. The intersection of type A and B (denoted
as A & Bin A;) contains exactly those values which can be used as
values of type A and of type B. For instance, consider the following
program in A;:

let x : Int & Bool = ... in -- definition omitted

let succ (y : Int) : Int = y+1 in

let not (y : Bool) : Bool = if y then False else True in
(succ x, not x)

If a value x has type Int & Bool then x can be used as an integer
and as a boolean. Therefore, x can be used as an argument to any
function that takes an integer as an argument, and any function that
take a boolean as an argument. In the program above the functions
succ and not are simple functions on integers and characters, re-
spectively. Passing x as an argument to either one (or both) of the
functions is valid.

Merge Operator. In the previous program we deliberately did not
show how to introduce values of an intersection type. There are
many variants of intersection types in the literature. Our work fol-
lows a particular formulation, where intersection types are intro-
duced by a merge operator [6, 14, 27]. As Dunfield [14] has argued
a merge operator adds considerable expressiveness to a calculus.
The merge operator allows two values to be merged in a single in-
tersection type. In A; (following Dunfield’s notation), the merge of
two values vy and v, is denoted as vy, ,Vv,. For example, an imple-
mentation of x is constructed in A; as follows:

let x : Int & Boolean = 1,,True in ...

Merge Operator and Pairs. The merge operator is similar to the
introduction construct on pairs. An analogous implementation of x
with pairs would be:

let xPair : (Int, Bool) = (1, True) in ...

The significant difference between intersection types with a merge
operator and pairs is in the elimination construct. With pairs there
are explicit eliminators (£st and snd). These eliminators must be
used to extract the components of the right type. For example, in
order to use succ and not with pairs, we would need to write a
program such as:

(succ (fst xPair), not (snd xPair))

In contrast the elimination of intersection types is done implicitly,
by following a type-directed process. For example, when a value
of type Int is needed, but an intersection of type Int & Bool is
found, the compiler generates code that uses fst to extract the
corresponding value at runtime.

2.2 (In)Coherence

Coherence is a desirable property for the semantics of a program-
ming language. A semantics is said to be coherent if any valid pro-
gram has exactly one meaning [27] (that is, the semantics is not
ambiguous). In contrast a semantics is said to be incoherent if there
are multiple possible meanings for the same valid program.

Incoherence in Dunfield’s Calculus A problem with Dunfield’s
calculus [14] is that it is incoherent. Unfortunately the implicit
nature of elimination for intersection types built with a merge
operator can lead to incoherence. The merge operator combines
two terms, of type A and B respectively, to form a term of type
A&B. For example, 1,, True is of type Int&Bool. In this case,
no matter whether 1,, True is used as Int or Bool, the result of
evaluation is always clear. However, with overlapping types, it is
not clear anymore to see the intended result. For example, what
should be the result of the following program, which asks for an
integer (using a type annotation) out of a merge of two integers:


https://github.com/jalpuim/disjoint-intersection-types

(1,,2) : Int

Should the result be 1 or 27

Dunfield’s calculus [14] accepts the program above, and it al-
lows that program to result in 1 or 2. In other words the results of
the program are incoherent.

Getting Around Incoherence In a real implementation of Dun-
field’s calculus a choice has to be made on which value to com-
pute. For example, one potential option is to always take the left-
most value matching the type in the merge. Similarly, one could
always take the right-most value matching the type in the merge.
Either way, the meaning of a program will depend on a biased im-
plementation choice, which is clearly unsatisfying from the theoret-
ical point of view. Dunfield suggests some other possibilities, such
as the possibility of restricting typing of merges so that a merge
has type A only if exactly one branch has type A. He also suggested
another possibility, which is to allow only for disjoint types in an
intersection. This is the starting point for us and the approach that
we investigate in this paper.

2.3 Disjoint Intersection Types and their Challenges

A; requires that the two types in an intersection to be disjoint. Infor-
mally saying that two types are disjoint means that the set of values
of both types are disjoint. Disjoint intersection types are potentially
useful for coherence, since they can rule out ambiguity when look-
ing up a value of a certain type in an intersection. However there
are several issues that need to be addressed first in order to design
a calculus with disjoint intersection types and that ensures coher-
ence. The key issues and the solutions provided by our work are
discussed next. We emphasize that even though Dunfield has men-
tioned disjointness as an option to restore coherence, he has not
studied the approach further or addressed the issues discussed next.

Simple disjoint intersection types Looking back at the expres-
sion 1,, 2 in Section 2.2, we can see that the reason for incoherence
is that there are multiple, overlapping, integers in the merge. Gen-
erally speaking, if both terms can be assigned some type C, both
of them can be chosen as the meaning of the merge, which leads to
multiple meanings of a term. A natural option is to try to forbid such
overlapping values of the same type in a merge. Thus, for simple
types such as Int and Bool, it is easy to see that disjointness holds
when the two types are different. Intersections such as Int & Bool
and String & Bool are clearly disjoint. While an informal, intu-
itive notion of disjointness is sufficient to see what happens with
simple types, it is less clear what disjointness means in general.

Formalizing disjointness Clearly a formal notion of disjointness
is needed to design a calculus with disjoint intersection types,
and to clarify what disjointness means in general. As we shall
see the particular notion of disjointness is quite sensitive to the
features that are allowed in a language. Nevertheless, the different
notions of disjointness follow the same principle: they are defined
in terms of the subtyping relation; and they describe which common
supertypes are allowed in order for two types to be considered
disjoint.

A first attempt at a definition for disjointness is to require that,
given two types A and B, both types are not subtypes of each other.
Thus, denoting disjointness as A * B, we would have:

AxB=A < BandB £ A

At first sight this seems a reasonable definition and it does pre-
vent merges such as 1, ,2. However some moments of thought are
enough to realize that such definition does not ensure disjointness.
For example, consider the following merge:

(1,,’¢c’) ,, (2,,True)

This merge has two components which are also merges. The first
component (1,,’c’) has type Int&Char, whereas the second
component (2 ,, True) has type Int&Bool. Clearly,

Int&Char £: Int&Bool and Int&Bool £: Int&Char

Nevertheless the following program still leads to incoherence:
succ ((1,,’c?),,(2,,True))

as both 2 or 3 are possible outcomes of the program. Although this
attempt to define disjointness failed, it did bring us some additional
insight: although the types of the two components of the merge are
not subtypes of each other, they share some types in common.

In order for two types to be truly disjoint, they must not have any
sub-components sharing the same type. In a simply typed calculus
with intersection types (and without a T type) this can be ensured
by requiring the two types not to share a common supertype:

Definition 1 (Simple disjointness). Two types A and B are disjoint
(written A x B) if there is no type C such that both A and B are
subtypes of C:

Ax*B=AC.A<:CandB <: C

This definition of disjointness prevents the problematic merge
1,,’c?),,(2,,True). Since Int is a common supertype of both
Int&Char and Int&Bool, those two types are not disjoint, ac-
cording to this simple notion of disjointness.

The simple definition of disjointness is the basis for the first
calculus presented in this paper: a simply typed lambda calculus
with intersection (but without a T type). This variant of A; is useful
to study many important issues arising from disjoint intersections,
without the additional complications of T. As shown in Section 4,
this definition of disjointness is sufficient to ensure coherence in A;.

Disjointness of other types Equipped with a formal notion of
disjointness, we are now ready to see how disjointness works for
other types. For example, consider the following intersection types
of functions:

I. (Int — Int) & (String — String)

2. (String — Int) & (String — String)

3. (Int — String) & (String — String)
Which of those intersection types are disjoint? It seems reasonable
to expect that the first intersection type is disjoint: both the domain
and co-domain of the two functions in the intersection are different.
However, it s less clear whether the two other intersection types are
disjoint or not. Looking at the definition of simple disjointness for

further guidance, and the subtyping rule for functions in A; (which
is standard [5]):

By < Ay A, <: By
Aq —>A2<IB1 —)Bz

we can see that the types in the second intersection do not share
any common supertypes. Since the target types of the two function
types (Int and String) do not share a common supertype, it is
not possible to find a type C that is both a common supertype of
(String — Int) and (String — String). In contrast, for the
third intersection type, it is possible to find a common supertype:
String & Int — String. The contravariance of argument types
in S— is important here. All that we need in order to find a common
supertype between (Int — String) and (String — String)
is to find a common subtype between Int and String. One such
common subtype is String & Int. Preventing the third intersec-
tion type ensures that type-based look-ups are not ambiguous (and
cannot lead to incoherence). If the third intersection type was al-
lowed then the following program:



f,,g : (String & Int) — String

where £ has type Int — Stringand ghas type String — String,

would be problematic. In this case either £ or g could be selected,
potentially leading to very different (and incoherent) results when
applied to some argument.

Is disjointness sufficient to ensure coherence? Another question
is whether disjoint intersection types are sufficient to ensure coher-
ence. Consider the following example:

(succ, ,not) (3,,True)

Here there are two merges, with the first merge being applied to
the second. The first merge contains two functions (succ and not).
The second merge contains two values that can serve as input to
the functions. The two merges are disjoint. However what should
be the result of this program? Should it be 4 or False?

There is semantic ambiguity in this program, even though it only
uses disjoint merges. However a close look reveals a subtly differ-
ent problem from the previous programs. There are two possible
types for this program: Int or Bool. Once the type of the program
is fixed, there is only one possible result: if the type is Int the re-
sult of the program is 4; if the type is Bool then the result of the
program is False. Like other programming language features (for
example type classes [31]), types play a fundamental role in de-
termining the result of a program, and the semantics of the lan-
guage is not completely independent from types. In essence there
is some type ambiguity, which happens when some expressions can
be typed in multiple ways. Depending on which type is chosen for
the sub-expressions the program may lead to different results. This
phenomenon is common in type-directed mechanisms, and it also
affects type-directed mechanisms such as type classes or, more gen-
erally, qualified types [18].

The typical solution to remove type ambiguity is to add type an-
notations that choose a particular type for a sub-expression when
multiple options exist. Our approach to address this problem is to
use bidirectional type-checking techniques [16, 25]. We show that
with a fairly simple and unremarkable bidirectional type system,
we can guarantee that every sub-expression (possibly with annota-
tions) has a unique type. For example:

((succ, ,not) : Int — Int) (3,,True)

is a valid A; program, which has a unique determined type, and
results in 4. In this case the bidirectional type-system forces users to
provide an annotation of the expression being applied. Without the
annotation the program would be rejected. With the bidirectional
type system, disjointness is indeed sufficient to ensure coherence.

2.4 Disjoint Intersection Types with T

In the presence of a T type the simple definition of disjointness is
useless: T is always a common supertype of any two types. There-
fore, with the previous definition of disjointness no disjoint inter-
sections can ever be well-formed in the presence of T! Moreover,
since T is not disjoint to any type, it does not make sense to al-
low its presence in a disjoint intersection type. Adding a T type
requires some adaptations to the notion of disjointness. This paper
studies two additional variants of A; with T types. In both variants
the definition of disjointness is revised as follows:

Definition 2 (T-disjointness). Two types A and B are disjoint
(written A « B) if the following two conditions are satisfied:

1. (not JA[) and (not |B[)
2. VC.if A <: Cand B <: C then |C|
In the presence of T, instead of requiring that two types do

not share any common supertype, we require that the only allowed
common supertypes are fop-like (condition #2). Additionally, it is

also required that the two types A and B are not themselves top-like
(condition #1). The unary relation | - [ denotes such top-like types.
Top-like types obviously include the T type. However top-like
types also include other types which are syntactically different from
T, but behave like a T type. For example, T & T is syntactically
different from T, but it is still a supertype of every other type
(including T itself). A standard subtyping relation for intersection
types includes a rule:

A1 < Az A] < A3
Aq <:Z/\zék/\3

The presence of S&R means that not only T& T<:T but also T<:
T&T are derivable. In other words, in a calculus like Dunfield’s
there are infinitely many syntactically different types that behave
likea T type: T, T&T, T&T&T, ...

The notion of T-disjointness has two benefits. Firstly, and more
importantly, T-disjointness is sufficient to ensure coherence. For
example, the following program is valid, and coherent:

3,,True : T

S&R

Even though the types of both components of the merge are a
subtype of the type of the program (T), the result of the program is
always the unique T value. Secondly, T-disjointness has the side-
effect of excluding other top-like types from the system: the type
T&T is not a well-formed disjoint intersection type. In contrast to
Dunfield’s calculus, A; has a unique syntactic T type.

Functional intersections and top-like types The two variants of
Ai with T differ slightly on the definition of top-like types. The
concrete definition of top-like types is important because it affects
what types are allowed in intersections. In the simpler version of
Ai with T, multiple functions cannot coexist in intersections. This
is obviously a drawback and reduces the expressiveness of the sys-
tem. The essential problem is that a simple notion of top-like types
is too restrictive. For example consider again the intersection type:

(String — Int) & (String — String)

According to the simple definition of disjointness, this disjoint
intersection type is valid. However according to T-disjointness
and a simple definition of top-like types, which accounts only for
proper top types, this disjoint intersection type is not valid. The
two types have a common supertype which is not a supertype of
every type: String — T. In this case (String — T)<: T,
but T &£: (String — T). Therefore the two types do not meet
the second condition of T-disjointness as there exists a common
supertype, which is not top-like.

Generalizing top-like types In the second variant of A; top-like
types are defined more liberally and they allow function types
whose co-domain is a top type to be considered as a top-like
type. For example, the type String — T is considered a top-like
type. The benefit of allowing this more liberal notion of top-like
types is that, similarly to the first variant of A; without T, disjoint
intersections can have multiple function types.

3. The A; Calculus and its Type System

This section presents the syntax, subtyping and type assignment of
Ai: a calculus with intersection types and a merge operator. This
calculus is inspired by Dunfield’s calculus [14], without consider-
ing union types. Moreover, since we are only interested in disjoint
intersections, A; also has different typing rules for intersections
from those in Dunfield’s calculus. Sections 4 and 5 will present
the more fundamental contributions of this paper by showing other
required changes for supporting disjoint intersection types and en-
suring coherence. The calculus in this section does not include the
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Figure 1. A; syntax.

T type, since it brings additional complications. Section 6 presents
two variants of A; with a T type, while preserving coherence.

3.1 Syntax

Figure 1 shows the syntax of A;. The difference from the A-calculus
(with pairs), highlighted in gray, are intersection types (A&B) at the
type-level, and merges (eq, , €2) at the term level.

Types. Meta-variables A, B range over types. Types include func-
tion types A — B and product types A x B. A&B denotes the inter-
section of types A and B. We also include integer types Int. Note
that & has higher precedence than —, meaning that A&B — C is
equivalent to (A&B) — C.

Terms. Meta-variables e range over terms. Terms include stan-
dard constructs: variables x; abstraction of terms over variables
Ax. e; application of terms e; to terms ey, written e; e;; pairing
of two terms (denoted as (e7, e, )); and both projections of a pair
e, written proj, e (with k € {1,2}). The expression eq,, e; is the
merge of two terms e; and e,. Merges of terms correspond to inter-
sections of types A&B. In addition, we also include integer literals
i.

Contexts. Typing contexts are standard: I tracks bound variables
x with their type A.

In order to focus on the key features that make this language in-
teresting, we do not include other forms such as type constants and
fixpoints here. However they can be included in the formalization
in standard ways.

3.2 Subtyping

The subtyping rules of the form A <: B are shown in the top part of
Figure 2. At the moment, the reader is advised to ignore the gray-
shaded part in the rules, which will be explained later. The rule
S— says that a function is contravariant in its parameter type and
covariant in its return type. The three rules dealing with intersection
types are just what one would expect when interpreting types as
sets. Under this interpretation, for example, the rule S&R says that
if A7 is both the subset of A, and the subset of Az, then A is also
the subset of the intersection of A, and A3.

Note that the notion of ordinary types, which is used in rules
S&L; and S&L;, was introduced by Davies and Pfenning [12]
to provide an algorithmic version of subtyping. In our system
ordinary types are used for a different purpose as well: they play
a fundamental role in ensuring that subtyping produces unique
coercions. Section 5 will present a detailed discussion on this. The
subtyping relation, is known to be reflexive and transitive [12].

A — B ordinary A x B ordinary Int ordinary

A<:B < E

SZ
Int <:Int <> Ax.Xx

A; <:By — E, A, <:B; — E,
Sx
A1 X Ay <:By x Bz <= Ap. (E; (proj;p), E2 (proj,p))
B <:A; — E, A, <:B, — E;
S—
A7 = A, <:By =2 B, <= Af.Ax.E» (f (E] X))
Al <A, = & A <Az — E;
S&R
A< Az&A3 — AX. (E] X, E, X)
A; <:A; — E A3 ordinary
.
A1&A; <t A3z — Ax.E (proj;x)
Ay <:A; — E A ordinary
e,
A1 &A; <: A3 — Ax.E (pI‘OjZX)
'=A
WEZ A kB WE
TF Int TFA B -
A FFBWF 'EA B A xB WE&
TFAxB x M- A&B
x:AEFTV '=A F,x:AFe:BTL
TEx:A % TFAxc:A B

et A Fey;:B
T-INT T-PrROD

-1i:1Int 't (e1,ez) : AxB
l-e; : A :
e 1 = Ay ]"I—ez Aq T-APP
I"I—e1 eziAz

ke : A e, :B AxB
Fl—e1,,eZ:A&B

T-MERGE

Tp 'Fe: A /-\<:BTS
“HROJ 'He:B UB

FI—e:A1 XAZ
I'Fproj.e: Ag

Figure 2. Declarative type system of A;.



3.3 Declarative Type System

The well-formedness of types and the typing relation are shown in
the middle and bottom of Figure 2, respectively. Importantly, the
disjointness judgment, which is highlighted using a box, appears
in the well-formedness rule for intersection types (WF&) and the
typing rule for merges (T-MERGE). The presence of the disjoint-
ness judgment, as well as the use of ordinary types in the subtyping
relation, are the most essential differences between our type system
and the original type system by Dunfield.

Apart from WF&, the remaining rules for well-formedness are
standard. The typing judgment is of the form:

l'Fe:A

It reads: “in the typing context I', the term e is of type A”. The
standard rules are those for variables T-VAR; lambda abstractions
T-LAM; application T-APP; integer literals T-INT; products T-
PROD; and projections T-PROJ. T-MERGE means that a merge
e1,, e, is assigned an intersection type composed of the resulting
types of e; and e, as long as the types of the two expressions are
disjoint. Finally, T-SUB states that for any types A and B, if A <: B
then any expression e with assigned type A can also be assigned the
type B.

Typing disjoint intersections Dunfield’s calculus has different
typing rules for intersections. However, his rules make less sense
in a system with disjoint intersections. For example, they include
the following typing rule, for introducing intersection types:

'Fe: A 'Fe:B
'-e:A&B

A first reason why such rule would not work in A; is that it does not
restrict A&B to be disjoint. Therefore, in the presence of such an
unrestricted rule it would be possible to create non-disjoint inter-
sections types. It is easy enough to have an additional disjointness
restriction, which would ensure the disjointness between A and B.
However, even if that issue is fixed, the rule would be counter-
intuitive. If A and B are disjoint then, by definition, no expressions
should ever have types A and B at the same time. In contrast, in
Ai, the rule T-MERGE captures the fact that two disjoint pieces of
evidence are needed to create a (disjoint) intersection type.

4. Semantics, Disjointness and Coherence

This section discusses the elaboration semantics of A;, and shows a
bidirectional type system that guarantees coherence and type safety.
Moreover the bidirectional type system is shown to be sound and
complete with respect to the type system presented in Section 3
(provided that terms have some additional type annotations). The
coherence theorem presented in this section, relies on two key
aspects of the calculus:

¢ Uniqueness of subtyping coercions: the notion of ordinary
types and well-formed disjoint intersection types ensures that
coercions produced by subtyping relation are unique.

¢ No type ambiguity: the bidirectional type system does not have
type-ambiguity, and it infers a unique type for every well-typed
expression.

4.1 Target of Elaboration

The dynamic semantics of the call-by-value A; is defined via a type-
directed translation into the simply typed A-calculus with pair and
unit types. The syntax and typing of our target language is unsur-
prising. The syntax of the target language is shown in Figure 3.
The highlighted part shows its difference with the A-calculus. We
included a unit type () and its only inhabitant (), but they will only

Int

0
T] — Tz

T] ><T2
X

Types T =
|
|
|
| 1
|
|
|
|
|

Terms E

0
Ax. E

E; E»

(E1, E2)
proj, E
| Gyx: T

ke{1,2}
Contexts G

Figure 3. Target language syntax.
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Figure 4. Type and context translation.

used in Section 6. The typing rules can be found in our Coq devel-
opment.

Type and Context Translation. Figure 4 defines the type trans-
lation function |-| from A; types A to target language types T. The
notation || is also overloaded for context translation from A; con-
texts I to target language contexts G.

4.2 Coercive Subtyping and Coherence

The A; calculus uses coercive subtyping, where subtyping deriva-
tions produce a coercion that is used to transform values of one
type to another type. Our calculus ensures that the coercions pro-
duced by subtyping are unique. Unique coercions are fundamental
for proving our coherence result of the semantics of A;.

Coercive subtyping. The judgment
A <A, = E

extends the subtyping judgment in Figure 2 with a coercion on the
right hand side of < . A coercion E is just a term in the target
language and is ensured to have type |A;| — |A;| (by Lemma 1).
For example,

Int&Bool <:Bool < AX.proj,x

generates a coercion function with type: Int&Bool — Bool.
Note that, in contrast to Dunfield’s elaboration approach, where
subtyping produces coercions that are source language terms, in
Ai, coercions are produced directly on the target language.



The rule SZ generates the identity function as the coercion in
the target language. Rule Sx says that one pair is a subtype of
another, as long as the first and second component of the former
are a subtype of the first and second component of the latter,
respectively. The generated coercion extracts both components of
the pair, applies the respective coercion, and creates a new pair
using both results. In S—, we elaborate the subtyping of parameter
and return types by m-expanding f to Ax.f x, applying E; to
the argument and E; to the result. Rules S&L;, S&L,, and S&R
elaborate intersection types. S&R uses both coercions to form a
pair. Rules S&L; and S&L, reuse the coercion from the premises
and create new ones that cater to the changes of the argument type
in the conclusions. Note that the two rules are overlapping and
hence a program can be elaborated differently, depending on which
rule is used. Finally, all rules produce type-correct coercions:

Lemma 1 (Subtyping rules produce type-correct coercions). If
A <A, —E,then-FE: |A]| *)lAz‘

Proof. By a straightforward induction on the derivation. O

Overlapping subtyping rules The key problem with the subtyp-
ing rules in Figure 2 is that all three rules dealing with intersec-
tion types (S&L; and S&L, and S&R) overlap. Unfortunately, this
means that different coercions may be given when checking the
subtyping between two types, depending on which derivation is
chosen. This is the ultimate reason for incoherence. There are two
important types of overlap:

1. The left decomposition rules for intersections (S&L; and
S&L,) overlap with each other.

2. The left decomposition rules for intersections (S&L; and
S&L,) overlap with the right decomposition rules for inter-
sections S&R.

Well-formedness and disjointness The fact that in A; all intersec-
tion types are disjoint is useful to deal with problem 1). Recall the
definition of disjointness:

Definition 3 (Simple disjointness). Two types A and B are disjoint
(written A x B) if there is no type C such that both A and B are
subtypes of C:

Ax*B=AC.A<:CandB <: C

Disjoint intersections are enforced by well-formedness of types.
Since the two types in an intersection are disjoint, it is impossible
that both of the preconditions of the left decompositions are satis-
fied at the same time. Therefore, only one of the two left decom-
position rules can be chosen for a disjoint intersection type. More
formally, with disjoint intersections, we have the following theo-
rem:

Lemma 2 (Unique subtype contributor). If A1&A;, <: B, where
A1&A; and B are well-formed types, then it is not possible that
both of the following hold at the same time:

1. A; <:B
2. A, <:B

Unfortunately, disjoint intersections alone are insufficient to
deal with problem 2). In order to deal with problem 2), we introduce
a distinction between types, and ordinary types.

Ordinary types. Ordinary types are just those which are not inter-
section types, and are asserted by the judgment

A ordinary

Since types in A; are simple, the only ordinary types are function
type, integers and pairs. But in richer systems, ordinary types can

also include, for example, record types. In the left decomposition
rules for intersections we introduce a requirement that A3 is ordi-
nary. The consequence of this requirement is that when A3 is an
intersection type, then the only rule that can be applied is S&R.

Unique coercions. Well-formedness and ordinary types guaran-
tee that at any moment during the derivation of a subtyping relation,
at most one rule can be used. Consequently, the coercion of a sub-
typing relation A <: B is uniquely determined. This fact is captured
by the following lemma:

Lemma 3 (Unique coercion). If A <: B — E; and A <:
B — E, , where A and B are well-formed types, then E1 = E,.

4.3 Bidirectional Type System with Elaboration

In order to prove the coherence result we first introduce a bidi-
rectional type system, which is closely related to the type system
presented in Section 3. The bidirectional type system is elaborat-
ing, producing a term in the target language while performing the
typing derivation.

The bidirectional type system is useful for two different reasons.
Firstly, the presence of the subsumption rule (T-SUB) makes the
type system not syntax directed, which presents a challenge for an
implementation. Bidirectional type-checking makes the rules syn-
tax directed again. Secondly, and more importantly, the subsump-
tion rule also creates type ambiguity: the same term can have mul-
tiple types. This is problematic because there can be different se-
mantics for a term, depending on the type of the term. Bidirectional
type-checking comes to the rescue again, by ensuring that with the
additional type annotations only one type is inferred for a term.

Key Idea of the elaboration. The key idea in the elaboration is
to turn merges into usual pairs, similar to Dunfield’s elaboration
approach [14]. For example,

]H "one"

becomes (1, "one"). In usage, the pair will be coerced according to
type information. For example, consider the function application:

(Ax.x : String — String) (1,, "one")
This expression will be translated to
(Ax.x) ((Ax.proj, x) (1,"one"))

The coercion in this case is (Ax.proj, x). It extracts the second
item from the pair, since the function expects a String but the
translated argument is of type (Int,String).

The elaboration judgments and rules. Figure 5 presents the elab-
orating bidirectional type system, which is closely related to the
declarative type-system, presented in Figure 2. The key differences
between them are that all :’s are replaced with = or <. There are
two check-mode rules: T-LAM and T-SUB. The remaining rules are
all in the synthesis mode. Moreover there is one additional rule for
annotation expressions (T-ANN). The syntax of source terms also
needs to be extended with annotation expressions e : A. The reader
might notice that the choice for this type-system does not follow
the convention of making introduction forms as checked and elim-
ination forms as synthesized [12, 16]. We use this design because:

1. We aim at maximizing type-inference: annotations becomes
less of a burden as there are only two checked premises in our
rules (excluding T-ANN);

2. Most of the language is simple enough to rely on type inference
(i.e. it is decidable);

3. The simplicity of this design allows us to concentrate on its key
property, which is the coherence of the type-system.



l'~e=A < E e synthesizes type A

x:Aerl
l'Ex=A —x

T-VAR - — T-INT
'Fi= Int —1

ey = A = A, — E e, <Ay —E;

T-APP

TFejes= A, —-E E,

F}—e1 = A ‘—>E1
I (e;,e2) = AxB — (Eq,Ez)

'tey; =B — E;

T-PROD

N'Fe= A; xA; —E
I'Fproje = Ax — proj, E

T-ProJ

'bers = A < E,

l-ey,,es = A&B — (Eq,E3)

'ey; =B — E,

T-MERGE

l'Fe< A < E
'Fe:A= A < E

T-ANN

N'-e<=A < E e checks against given type A

N'=A Nx:AkFe<«< B —E
N -Ax.e <<= A—B <= A.E

T-LAM

'Fe= A —E A<:B <= Esup
'e< B <> Esqup E

T-SuB

Figure 5. Bidirectional type system of A;.

Having this in mind, we do not claim this bidirectional type-
system is the optimal choice for the system, and other design
choices could be equally justified had our intentions been different.

We may now explain in more detail this elaborating bidirec-
tional type-system. The two elaboration judgments ' - e =
A —<E andT e <« A — E extend the usual typing judg-
ments with an elaborated term on the right hand side of the arrows.
The elaboration ensures that E has type |A|. Noteworthy are the T-
MERGE and T-SUB rules. The T-MERGE straightforwardly trans-
lates merges into pairs. The T-SUB accounts for the type coercions
arising from subtyping. The additional coercions are necessary to
ensure that the target terms are correctly typed, since the target lan-
guage lacks subtyping. Note that the elaboration judgments can be
modeled as a single relation, where the mode is an additional pa-
rameter of the relation. Thus for theorems that need both judgments
simple induction is sufficient (mutual induction is not needed).

Type-safety The type-directed elaboration is type-safe. This
property is captured by the following two theorems.

Theorem 1 (Type preservation). We have that:
e/fTFe=A < E, then|l|FE:|A]
e JfTFe< A < E,then|l'|FE:|A]l

i =1
[x] =x
[Ax.e| = Ax. |e]
ler e2] = |er][ez]
L(er,e2)] = ([er], [e2])
|proj.e] =proj,le] (kel,2)
ler,,e2] = [er],, [e2]

le:A] = |e]

Figure 6. Type annotation erasure.

Proof. (Sketch) By structural induction on the term and the corre-
sponding inference rule. O

Theorem 2 (Type safety). If e is a well-typed A term, then e
evaluates to some A-calculus value v.

Proof. Since we define the dynamic semantics of A; in terms of
the composition of the type-directed translation and the dynamic
semantics of A-calculus, type safety follows immediately. O

Soundness and Completeness The declarative type system pre-
sented in Figure 2 is closely related to the bidirectional type sys-
tem in Figure 5. We can prove that the bidirectional type system
is sound and complete with respect to the declarative specification,
modulo some additional type-annotations. To relate terms which
are typeable in both systems, we use the definition of erasure shown
in Figure 6.

Theorem 3 (Soundness of bidirectional type-checking). We have
that:

e [fTFe= A < E, thenTF |e|:A.

e [fTFe< A < E, thenTF |e|:A.

Proof. (Sketch) By structural induction on the term and the corre-
sponding inference rule. O

Theorem 4 (Completeness of bidirectional type-checking). IfT
e: A thenT e = A — E, where |[e'] =e.

Proof. (Sketch) By structural induction on the term and the corre-
sponding inference rule. O

Uniqueness of type-inference An important property of the bidi-
rectional type-checking in Figure 5 is that, given an expression e,
if it is possible to infer a type for e, then e has a unique type.

Theorem 5 (Uniqueness of type-inference). IfI'-e = A; — E;
andThFe = A, — E; then Ay = A,.

Proof. (Sketch) By structural induction on the term and the corre-
sponding inference rule. O

In contrast, as illustrated in Section 2.3, in the declarative type
system some terms may have multiple, incompatible types. There-
fore there is no uniqueness of types for the declarative type system,
and the same term can have different semantics depending on its

type.



4.4 Coherency of Elaboration
Combining the previous results, we show the central theorem:

Theorem 6 (Unique elaboration). We have that:

elfTFe = Ay —<E andT Fe = A, — E,, then
E]EEz.
Olfl“}—e < Ay < Ey andT - e <« A, — E,, then
E]EEz.

(“=" means syntactical equality, up to x-equality.)

Proof. By induction on the first derivation. Note that two cases
need special attention: T-SUB and T-APP. In the T-SUB rule:

'Fe=A —E A <:B < Esup
'Fe<=B < Esuw E

T-SuB

we need to show not only that Eg,,1, is unique (by Lemma 3), but
also that A is unique (by Theorem 5). Uniqueness of A is needed
to apply the induction hypothesis. For T-APp:

FF€1:>A1—>A2 — E; FF€2<:A1%E2

T-App
F}—e1 e; = A %E] Ez

we need to show the uniqueness of A; using Theorem 5, in order
to apply the induction hypothesis. O

5. Algorithmic Disjointness

Section 4 presented a type system with disjoint intersection types
that is both type-safe and coherent. Unfortunately the type system
is not yet algorithmic because the specification of disjointness does
not lend itself to an implementation directly. This is a problem,
because we need an algorithm for checking whether two types are
disjoint or not in order to implement the type-system.

This section presents the set of rules for determining whether
two types are disjoint. The set of rules is algorithmic and an imple-
mentation is easily derived from them. The derived set of rules for
disjointness is proved to be sound and complete with respect to the
definition of disjointness in Section 4.

5.1 Algorithmic Rules

The rules for the disjointness judgment are shown in Figure 7,
which consists of two judgments.

Main Judgment. The judgment A %; B says two types A and B
are disjoint. The rules dealing with intersection types (x&L and
+&R) are quite intuitive. The intuition is that if two types A and B
are disjoint to some type C, then their intersection (A&B) is also
clearly disjoint to C. The rules capture this intuition by inductively
distributing the relation itself over the intersection constructor (&).
Although those two rules overlap, the order of applying them in
an implementation does not matter as applying either of them will
eventually leads to the same conclusion, that is, if two types are
disjoint or not.

The rule for functions (+—) is more interesting. It says that
two function types are disjoint if and only if their return types are
disjoint (regardless of their parameter types!). At first this rule may
look surprising because the parameter types play no role in the
definition of disjointness. To see the reason for this consider the
two function types:

Int — String Bool — String

Even though their parameter types are disjoint, we are still able
to think of a type which is a supertype for both of them. For
example, Int&Bool — String. Therefore, two function types

A*i B
A] *iB Az*iB A*iB] A*iBZ
*&R
A]&Az *iB A*iB1&Bz
A1 % By Az % B>

7t 72

A1><A2*iB]><B2* A]XAz*iB]XBZ*

AZ*iBZ A*aXB
Al 5 A,xB; =B, AB

Int *,; A X B xAX(ZXx)

*AX

Int %, A — B xAX(Z—)

B s A

AXSYM
A x, B *

A X By C— D xAX(x =)

Figure 7. Algorithmic Disjointness.

with the same return type are not disjoint. Essentially, due to the
contravariance of function types, functions of the form A — C and
B — C always have a common supertype (for example A&B —
C). The lesson from this example is that the parameter types of two
function types do not have any influence in determining whether
those two function types are disjoint or not: only the return types
matter.

Finally, the rules for pairs (717 and *7t,) say that either the first
components or the second components must be disjoint. This is due
to product subtyping being covariant: disjointness of either compo-
nent is enough to make it impossible to construct a supertype. For
instance, take the following two product types:

(Int,String) (Bool, String)

We can never come up with a common supertype for these because
it does not exist a type C which is both a supertype of Int and
Bool.

Axioms. Up till now, the rules of A x; B have only taken care of
two types with the same language constructs. But how can the fact
that Int and Int — Int are disjoint be decided? That is exactly
the place where the judgment A *,, B comes in handy. It provides
the axioms for disjointness. What is captured by the set of rules is
that A #,, B holds for all two types of different constructs unless
any of them is an intersection type.

5.2 Meta-theory

The following two theorems together say that the algorithmic judg-
ment and the definition of disjointness are equivalent.

Theorem 7 (Soundness of algorithmic disjointness). For any two
types A and B, A x; B implies A * B.

Proof. By induction on the derivation of A #; B. O

Theorem 8 (Completeness of algorithmic disjointness). For any
two well-formed types A and B, A = B implies A ; B.

Proof. By a case analysis on the shape of A and B. O
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6. Disjoint Intersection Types with T

This section shows how to add a T type to A;. Introducing T
poses some important challenges. Most prominently, the simple
definition of disjointness is useless in the presence of T. Since
all types now have a common supertype, it is impossible for any
two types to satisfy a simple notion of disjointness. To address this
problem a notion of T-disjointness is proposed. The definition of
T-disjointness depends on a notion of a top-like type. We formalize
two different variants of A, based on two different definitions of a
top-like type, while discussing their expressiveness. Both variants
retain coherence, and all other key properties of A;. Since the
properties are essentially the same as those stated in Sections 4 and
5, we do not restate them here. Also we omit pairs from the two
variants of A; presented in this section, as they do not impose any
important challenge and their introduction is quite straightforward.
Mechanized Coq proofs for both variants are available online.

6.1 Introducing T

Introducing the T type in the A; calculus is not difficult. We ex-
tended our system following Dunfield’s calculus [14], as shown in
Figure 8. Existing types are extended with T and, correspondingly,
we add the canonical inhabitant of type T: the term T. The sub-
typing relation is extended with STOP, declaring that any type is a
subtype of T. The coercion in the target language, is a function that
always returns the term (), regardless of its argument. We also add
T to the set of well-formed types by extending the well-formedness
relation with WFTOP. Finally, the typing rule T-TOP states that,
under type inference, the term T has type T and generates the term
() in the target language.

6.2 Disjointness

As discussed in Section 2, the definition of simple disjointness is
useless when A; is extended with T. For these reasons, we differ-
entiate top-like types from the rest of the types, so that restrictions
may be imposed based on the former. For now, the formal definition
of a top-like type is omitted, and we informally define it as a type
that resembles T in some way. Having this in mind, T-disjointness
is defined as follows:

Definition 4 (T-Disjointness). Given two types A and B we have
that:

A x1 B =(not JA[) and (not |B[) and
(VC.if A <: Cand B <: C then |C])
where ]C[ means that C is a top-like type.
Informally, given two types A and B:

e A and B cannot be top-like types (i.e. preventing types such as
T&T to be well-formed).

e If there is any common supertype of A and B, that is not top-
like, then intersection of these types is forbidden, as there might
be an overlap between them.

Another problem arising from the introduction of T is that
Lemma 2 no longer holds. For example, given A1 &A;, <: T (for
any type A and A;), both Ay or A, can be coerced to T (because
any type is a subtype of T). Thus, in this case, the type A;&A;
has two subtype contributors violating Lemma 2. Nevertheless, it
is still possible to prove a weaker result. Namely:

Lemma 4 (Unique subtype contributor (with T)). If A;&A;, <: B,
where A1 &A, and B are well-formed types, and B is not top-like,
then it is not possible that the following holds at the same time:

1. A; <:B
2. A, <:B

This suggests that we will need to take special care to preserve
coherence in the presence of top-like types.

6.3 A Simple Calculus with T

In the first variant of A; with T the basic idea is to have a definition
of top-like types, which captures all syntactically distinct top types:
T, T&T, T&T&T. The resulting system has only one syntactic T,
namely T itself. Moreover, coherence is preserved.

Top-Like Types A top-like type can be formalized as a unary
relation on a type A, denoted as |A[, as shown in Figure 9. The rule
TOPLIKE-TOP states that T is a top-like type; the rule TOPLIKE-
INTER indicates that any intersection composed of just top-like
types is also a top-like type.

Algorithmic disjointness rules Similarly to the original system,
the definition of T-disjointness does not lead to an implementation.
Fortunately, the algorithmic disjointness rules, shown in Figure 9,
remain the almost same as described in Section 5. The only signif-
icant difference is the absence of the x— rule. The reason for this
is that, in this variant of A;, two functions always have non-top-like
common supertypes. For example, consider the function types:

Bool — Int String — String

Although both the domains and co-domains of the functions seem
to be unrelated, there are still non-top-like common supertypes in
the presence of T. For example, Bool&String — T is a common
supertype of the previous function types. In general, in this variant
of A;, any two function types are never disjoint.
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Figure 9. Top-like types and Algorithmic Disjointness.

Finally, note that this variant of A; excludes all types of the form
A&B, where A and B are top-like. Thus, the system is left with only
one well-formed syntactic T type.

6.4 An Improved Calculus with T

The definition of top-like types in Section 6.3 is, unfortunately,
quite restrictive: multiple function types are not allowed within in-
tersection types. This is in contrast with the original A; calculus,
where multiple function types can co-exist in an intersection. To ad-
dress this limitation, we generalize the definition of top-like types.
The generalization introduces a new ambiguity in our subtyping
rules, which requires some changes on the generation of target lan-
guage coercions.

Top-Like Types The extended top-like definitions and result-
ing system are formalized in Figure 10. Note how we just added
TOPLIKE-FUN to the top-like relation, by stating that a function is
top-like whenever its return type is also top-like. Although function
types that return a top-like type are not strictly speaking top-types,
they can be viewed as pre-top-types: applying a value of this type
results in a value of type T, regardless of the application’s argu-
ment(s). In general, any type of the form Ay — T (with k € N),
is considered a top-like type in the new variant of A;. The conse-
quence of allowing this more liberal notion of top-like types is that
now disjoint intersections such as

(Bool — Int)&(String — String)

are well-formed: both functions types are not top-like types accord-
ing to the new definition; and the only common supertypes that they
share are top-like types (for example: Bool&String — T).

Note that the notion of a pre-top-type is not novel amongst inter-
section type-systems. For example, Coppo et al. [9] refer to func-
tion types where the codomain is not T as tail-proper types. How-
ever we have not investigated whether the definitions are deeply
connected and doing so is left as future work.

Coercive Subtyping The new definition of top-like types intro-
duces a new problem when generating coercions. Introducing func-
tions within intersection types leads to ambiguity between subtype
contributors under intersection types. Let us demonstrate this using
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Figure 10. Top-like types, Subtyping (changed rules only) and
Algorithmic Disjointness for the improved calculus.
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Figure 11. Coercion generation considering Top-like types.

an example. Suppose that we want to build a derivation for:
(Int — Int)&(Char — Char) <: (Int&Char) — T
There are two possible derivations:

e one using Int — Int <: (Int&Char) — T (via S&Ly);

e another using Char — Char <: (Int&Char) — T (via
S&L,).



Unfortunately the two derivations generate different coercions.
Thus, without further changes in A;, this would be a source of
incoherence.

To address this new source of incoherence, we change the way
coercions are generated in S&L; and S&L,. The changes are
shown in Figure 10. The basic idea is to look at the form of A3
in both rules:

e when Aj; is top-like (]A3[), the coercion is a function with the
same arity of A3, returning ();

e when Aj is not top-like: the same coercion (as in the previous
systems) is generated.

This behavior is formalized with a meta-function, denoted as [A] ¢,
and described in Figure 11.

Finally, the reader may notice how the modified rules still over-
lap when ]Aj;[. However, in this case, both rules can be used in-
terchangeably as they both lead to the same coercion. With this
change in the subtyping rules we are able to retain coherence.

Algorithmic disjointness rules The algorithmic disjointness rules
are, again, similar to the ones presented in the original system. In
relation to the simple system with T we placed back *—, since we
lifted the restriction of intersections with function types. We also
had to modify *AX(Z —) to include the premise —|B[. This is due
to the specification of T-disjointness, which requires two types not
to be top-like in order for them to be disjoint.

7. Related Work

Merge Operator. Reynolds invented Forsythe [28] in the 1980s.
Forsythe has a merge operator operator p1,p2 and a coherent se-
mantics. The result was proved formally by Reynolds [27] in a
lambda calculus with intersection types and a merge operator. He
has four different typing rules for the merge operator, each account-
ing for various possibilities of what the types of the first and sec-
ond components are. With those four rules, a merge can only be
constructed when the second component of the merge is either a
function or a (one-field) record. The set of rules is restrictive and
it forbids, for instance, the merge of two functions. In A; a merge
can contain, for example two primitive values (which is disallowed
in Forsythe). Moreover, except for the variant presented in Sec-
tion 6.3, multiple functions can co-exist in a merge as long as
they are provably disjoint. The treatment of disjointness of func-
tions is particularly challenging, specially in combination with a T
type, and supporting multiple functions (as well as other types) in
a merge is a significant innovation over Reynolds’ approach.

Castagna et al. [6] proposed A& to study the overloading prob-
lem for functions. Their calculus contains a special merge operator
that works only for functions. The calculus is coherent. Similarly
to us they impose well-formedness conditions on the formation of
a (functional) merge. However, their well-formedness conditions
cannot be ported to a system with arbitrary intersections like A;,
since those conditions assume function types only. They also show
how to encode records, but it seems that encoding arbitrary merges
and intersections is not possible. For the special case of functional
merges, the conditions that are used in A& are incomparable in ex-
pressive power to those in A;. That is, A& accepts some functional
merges that A; rejects, and A; accepts some functional merges that
A& rejects. For example, the functional merge

(Int — Char)&(Int — Bool)

is accepted in A; but not in A&. One reason why A; also rejects
some functional intersections, which are accepted in A&, seems
to be related to the presence of arbitrary merges. As discussed
in Section 5, the combination of contravariance and the presence
of arbitrary merges means that we can always find a common

supertype of two functions that have non-disjoint co-domains. In
A& the non-existence of arbitrary merges means that it is harder to
find common supertypes of functions, allowing for a more liberal
notion of coherent functional merges.

Our work is largely inspired by Dunfield [14], and throughout
the paper we have already made extensive comparisons with his
work. He described a similar approach to ours: compiling a sys-
tem with intersection types and a merge operator into ordinary A-
calculus terms with pairs. One major difference is that our system
does not include unions. As acknowledged by Dunfield, his cal-
culus lacks coherence. Dunfield also mechanically formalized his
proofs, using the Twelf proof assistant [21]. However he did not
prove any results about coherence, so his meta-theoretical results
were not immediately useful to us. Since we were also not familiar
with Twelf, we decided to start a new formalization in Coq (which
we are familiar with), while proving many new results related to
coherence.

Pierce [23] made a comprehensive review of coherence, espe-
cially on Curien and Ghelli [10] and Reynolds’ methods of prov-
ing coherence; but he was not able to prove coherence for his Fx
calculus. He introduced a primitive glue function as a language
extension which corresponds to our merge operator. However, in
his system users can “glue” two arbitrary values, which can lead to
incoherence.

Coherence without Merge. Recently, Castagna et al. [7] studied
a very interesting and coherent calculus that has polymorphism
and set-theoretic type connectives (such as intersections, unions,
and negations). Unfortunately their calculus does not include a
merge operator like ours, which is our major source of difficulty
for achieving coherence.

Going in the direction of higher kinds, Compagnoni and Pierce [§]
added intersection types to System F,, and used a new calculus,
FX, to model multiple inheritance. In their system, types include
the construct of intersection of types of the same kind K. Davies
and Pfenning [12] studied the interactions between intersection
types and effects in call-by-value languages. And they proposed a
“value restriction” for intersection types, similar to value restriction
on parametric polymorphism. We borrowed the notion of ordinary
types from Davies and Pfenning. Ordinary types play a fundamen-
tal role in ensuring coherence in A;. In contrast to A;, none of those
calculi include a merge operator.

There have been attempts to provide a foundational calculus
for Scala that incorporates intersection types [1, 2]. However, the
type-soundness of a minimal Scala-like calculus with intersection
types and parametric polymorphism is not yet proven. Recently,
some form of intersection types has been adopted in object-oriented
languages such as Scala, Ceylon, and Grace. Generally speaking,
the most significant difference to A; is that in all those languages
there is no explicit introduction construct like our merge operator.

Other Type Systems with Intersection Types. Refinement inter-
section [11, 13, 17] is the more conservative approach of adopting
intersection types. Refinement intersections usually have a restric-
tion on the formation of an intersection type A&B. In refinement
intersections A&B is a well-formed type if A and B are refinements
of the same simple (unrefined) type. However this is a different re-
striction from disjointness. Refinement intersection increases only
the expressiveness of types but not terms. But without a term-level
construct like “merge”, it is not possible to encode various language
features.

Coherence in other Type-Directed Mechanisms Other type-
directed mechanisms such as type classes [31] and, more generally,
qualified types [19] also require special care to ensure coherence.
For example, in Haskell, a well-known example of ambiguity [18]
that could lead to incoherence is:



£ String -> String

f s = show (read s)

Here the functions read and show have, respectively the types
Read a => String -> a and Show a => a -> String. The
constraints Read a and Show a represent requirements that the
compiler should implicitly infer. That is the compiler should find
a suitable implementation of the read and show functions for the
particular type a. The problem is that there is not enough type
information to determine what the type a should be. An arbitrary
choice of a could lead to different code being inferred depending on
the particular choice of a. In this case the behavior of the program
would be dependent on the particular choice made by the compiler.
As a result Haskell compilers, reject programs like the above.
Jones [18] provided a formal treatment of coherence for qualified
types and type classes, designing suitable restrictions that ensure
that incoherent programs are not accepted. In recent versions of
Haskell compilers, it is possible to use type annotations to remove
type ambiguity:

£ String -> String

f s = (show :: Int -> String) (read s)

Here the type annotation instantiates a to Int, removing the ambi-
guity and allowing the program to be accepted. In A; we also use
annotations to remove type ambiguity. The bidirectional type sys-
tem ensures that the additional annotations required in terms are
sufficient to remove any type ambiguity in A; programs.

8. Conclusion and Future Work

This paper described A;: a coherent and type-safe core calculus that
combines intersection types and a merge operator. We investigated
three different variants of A;: two variants with a T type; and an-
other one without. To ensure coherence the type system accepts
only disjoint intersections. For each variant of A; there is a differ-
ent definition of disjointness. Nevertheless all definitions of dis-
jointness follow the same principle: they are defined in terms of the
subtyping relation; and they describe which common supertypes
are allowed in order for two types to be considered disjoint.

For the future, we would like to study the addition of union
types. This will also require changes in our notion of disjointness,
since with union types there always exists a type A|B, which is the
common supertype of two types A and B, and that is not a top-like
type. Another interesting challenge is to address the combination
between disjoint intersection types and polymorphism. A naive
combination does not seem to be difficult. Since an expression with
a polymorphic type can be instantiated to any type, a simple option
is simply to forbid polymorphic variables in intersections. However
this has limited expressiveness, and would prevent many useful
programs. More thought is needed to achieve more expressiveness.
Finally more work is needed to illustrate the practical applicability
of this calculus. One direction that we started exploring is the
design of object-oriented languages with sophisticated multiple
inheritance mechanisms. The idea is to use the merge operator,
combined with fixpoints, to encode multiple inheritance. The role
of disjointness is then to remove the ambiguity caused by multiple
inheritance.
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