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Great efforts are needed to create new programming languages, and to maintain and
improve existing ones, since it requires both knowledge about language design and
implementation, and knowledge about specific domains. Therefore, it is a desire to
modularize languages as components and share common features among different
languages, including syntax and semantics. Most current tools towards this goal, in-
cluding many extensible compilers and language workbenches, depend on metapro-
gramming and code generation. They achieve only syntactic modularity by allowing
users to write code separately. Semantic modularity, which requires the components
to be modularly type-checked and separately compiled, is not fully available.

A part of the language modularization issue is abstracted by the expression problem,
which requires a recursive datatype (abstract syntax tree, AST) to be extended with
both new operations (semantics) and new data variants (abstract syntax structures),
while retaining semantic modularity. However, some solutions to the expression
problem exist only on paper and practical tools and experiments are missing. Fur-
thermore, the expression problem only focuses on operations that consume such ex-
tensible ASTs, while operations that produce ASTs are neglected, such as parsing, the
bridge between concrete and abstract syntax.

In the thesis, we present our work on modularizing the whole pipeline of languages.
We build a Scala framework called Gems (Language Modularization, Semantically),
which consists of two parts: a set of techniques to modularize languages, and a
metaprogramming library for practical development. Semantic modularity is guar-
anteed in every aspect: parsing, abstract syntax, semantics (operations on ASTs). We
use techniques of type-safe modular parsing, and modular external visitors with some en-
hancements. Gems only requires features that have strong theoretical background in
object-oriented programming, including higher-order generics, type variance, and
multiple inheritance. Scala-specific features such as case classes are not needed.
Moreover, Gems does not rely on metaprogramming to achieve modularity, but only
uses it to generate local boilerplate code. To evaluate its utility, we conduct a case
study by implementing interpreters of the first 18 languages in book Types and Pro-
gramming Languages, and compare with a non-modular implementation.
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Chapter 1

Introduction

The idea of dividing a whole software program into modular components was in-
troduced decades ago [41]. In terms of programming language development, it is
a desire to modularize languages and share common features among different lan-
guages, including syntax and semantics.

This thesis presents a language modularization framework called Gems (Language
Modularization, Semantically), which allows languages to be divided into reusable
components and developed modularly. It consists of two parts:

• A set of techniques to semantically modularize languages, including parsers,
abstract syntax, and semantics (operations on ASTs).

• A metaprogramming library for practical development, which generates boiler-
plate code according to the abstract syntax, for reducing effort in implementation.

Beyond syntactic modularity that enables syntactical separation of code, our frame-
work achieves semantic modularity, which allows the components to be modularly
type-checked and separately compiled (see Section 2.1). Therefore, more errors could
be detected statically and components can be distributed in binary.

1.1 Motivation

The world is complex and programmers encounter a variety of difficulties in soft-
ware development. The tools they have are programming languages. However,
most languages are only suitable in their own fields. For example, the C program-
ming language is handy for systems development, but it would be painful to write
web applications using its naked pointers.

Building more general languages does not solve the problem. Languages features
are not always orthogonal, so that some advantages may need to be sacrificed to
combine them. Moreover, the explosion of language features would make it hard
to perform optimizations and reasoning on the language. Programmers would also
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have to be patient to learn and careful to use the language. Instead, we still need
more specific languages to save the time of programmers and machines.

However, creating new languages requires both knowledge about the theory of pro-
gramming language and the knowledge of the specific domain. Furthermore, heavy
engineering effort is needed to build and maintain the language.

Language workbenches [20] are tools that facilitate implementation of (domain-
specific) languages. They provide utilities to define, reuse and compose languages,
together with auxiliary functionalities such as IDE support and debugging. Exam-
ples include Ensō [14], MetaEdit+ [37], MPS [43], Spoofax [36] and Xtext [17].

Language workbenches allow us to modularize languages as components. Thus, the
effort of creating and maintaining languages could be reduced by sharing common
parts among different languages. Nevertheless, for most of them, the representation
and composition of languages achieve only a syntactical level of modularity. Se-
mantical properties including modular type-checking and separate compilation of
language components are not fully available. That makes the correctness heavily
rely on the tool itself, and programmers do not have the flexibility to manipulate
components directly. The need of global compilation is also unpleasant since it re-
quires more time and textual level access to existing components.

We argue that, better techniques for representation and composition that ensure se-
mantic modularity could make modularization of languages easier and safer. Gems,
which uses modular external visitors [49] and type-safe modular parsing [70], is our
attempt towards that goal.

1.2 Contributions

The contributions in the thesis are:

• A pattern for modularizing syntax and semantics: We propose a pattern for writ-
ing abstract syntax and semantics (operations on ASTs) in a modular way. It is
based on modular external visitors [49], and we add several enhancements.

• A technique for semantically modular parsing1: We present a technique for
building semantically modular parsers, which can evolve with the abstract syn-
tax. We also identify challenges to achieve modularity in parsing.

• A metaprogramming library for reducing boilerplate code: We design and im-
plement a metaprogramming library to automatically generate boilerplate code
in modular language components, which is based on Scala’s macro annotation [9]
and Scalameta toolkit [55].
1As stated in the acknowledgements, it is a joint work [70] with Haoyuan Zhang.
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• A case study of TAPL interpreters: We implement interpreters of the first 18 lan-
guages in Types and Programming Languages (TAPL) book [46]. They are compared
with a non-modular implementation to investigate the extent of reuse and perfor-
mance penalty of language modularization.

It is worth mentioning that, although we use Scala and metaprogramming in our im-
plementation, the modularization techniques and patterns do not rely on metapro-
gramming and Scala-specific features such as case classes.

1.3 Outline

The thesis is structured as follows:

In Chapter 2, we introduces background knowledge, including the concept of mod-
ularity, the expression problem [66], the VISITOR pattern [23], Object Algebras [50],
and parser combinators [8, 64].

In Chapter 3, we demonstrate an intuitive example of language modularization us-
ing Gems, in which we compose two small languages to create a new one.

In Chapter 4, we present modularization techniques of abstract syntax and semantics
(operations on ASTs). We empoly modular external visitors [49], and add several
enhancements.

In Chapter 5, we introduce semantically modular parsing, with traditional OO ASTs,
Object Algebras, and visitors.

In Chapter 6, we combine all the techniques to create modular language components
and illustrate code generation by metaprogramming.

In Chapter 7, we show a case study of interpreters in Types and Programming Lan-
guages (TAPL) book [46], and compare with a non-modular implementation.

In Chapter 8, we review related work and conclude.
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Chapter 2

Background

This chapter introduces some concepts and techniques as background knowledge.
Section 2.1 talks about syntactic and semantic modularity. Section 2.2 demonstrates
the expression problem [66] as a challenge of pursuing modularity. Section 2.3 reviews
the famous VISITOR design pattern in object-oriented programming. Section 2.4 in-
troduces Object Algebras as a variant of VISITOR pattern and a lightweight solu-
tion of the expression problem. Section 2.5 discusses parser combinators and Scala’s
parser combinators library.

2.1 Modularity

The idea of dividing a whole software program into modular components was intro-
duced decades ago [41]. Organizing code by various type of modules is encouraged
and supported by many programming languages and frameworks. However, the
term "modularity" is too general and too vague for discussion. Therefore, we ex-
plain the concept of modularity by dividing it into two levels: syntactic and semantic
modularity.

Syntactic modularity refers to modular components on the syntactical level. Related
modularization techniques allow programmers to write code separately. Several
Language Workbenches [20, 36, 17] and many extensible parser generators [45, 25, 24]
belong to this category. These approaches apply some sort of textual code composi-
tion and generation to glue code together. For instance, superimposition [1] combines
so-called feature structure trees and generates corresponding code.

Although such approaches are relatively popular in practice, the correctness of code
composition heavily depends on modularization tools, and errors are reported only
after composition. Moreover, there is no explicit interface for modular reasoning
about the program. These concerns lead to stronger models for modularity [35].

Semantic modularity requires the components to be modularly type-checked and sep-
arately compiled. It is on a higher level of modularity, and more related to the host
programming languages. Type checking on individual components often reveals
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bugs earlier, before composing them together. Separate compilation reduces the cost
of updating components, and also encourages independent development. Some ex-
amples for semantic modularity are Family Polymorphism [16] and solutions [50, 44]
to the expression problem [66].

In this thesis, all modularization techniques we use are applied on the level of se-
mantic modularity, and the word modularity implies semantic modularity in the
following content unless explicitly specified.

2.2 The Expression Problem

The value of extensibility and modularity is evident, nevertheless it could be chal-
lenging to achieve them. As a classic and fundamental problem, the expression prob-
lem [66] illustrates the difficulty of preserving semantic modularity with extensions.

The problem appears when extending a recursive datatype and operations that con-
sume it. There are two dimensions of extension. One is adding new data variants to
the datatype. The other is adding new operations.

A solution must satisfy five requirements, which are listed below. The fifth one is
added by Zenger and Odersky [44].

1. Extensibility in both dimensions: Adding both new operations and new data
variants should be supported. Existing operations should be able to be up-
dated to include new data variants.

2. Strong static type safety: Operations which do not cover all variants should
not be applied on a datatype. Such errors should be spotted statically.

3. No modification or duplication: When extending from existing components,
modification or duplication of old code is not allowed.

4. Separate compilation and type-checking: Only the new-added components
need to be compiled and type-checked. Old ones are not reprocessed.

5. Independent extensibility: Non-linear extensions should be supported by al-
lowing independent components to be created, added, or composed.

Using ordinary datatype representations, the two major programming paradigms
Functional Programming (FP) and Object-Oriented Programming (OOP) each excel
in one dimension of extension.

In functional programming, the recursive datatype is usually represented by Alge-
braic Data Type (ADT). ADT is also known as "sum of product types", as each alter-
native of the outermost sum type represents a data variant. Operations are naturally
represented by functions. Therefore, it is easy to add new operations but hard to add
new data variants.
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Client
Visitor

+visitA(a: ConcreteElementA): void
+visitB(b: ConcreteElementB): void

ConcreteVisitor1

+visitA(a: ConcreteElementA): void
+visitB(b: ConcreteElementB): void

ConcreteVisitor2

+visitA(a: ConcreteElementA): void
+visitB(b: ConcreteElementB): void

ObjectStructure Element

+accept(v: Visitor): void

ConcreteElementA

+accept(v: Visitor): void

ConcreteElementB

+accept(v: Visitor): void

accept(v: Visitor): void =
v.visitA(this);
accept(v: Visitor): void =
v.visitA(this);

accept(v: Visitor): void =
v.visitB(this);
accept(v: Visitor): void =
v.visitB(this);

FIGURE 2.1: UML diagram of the VISITOR design pattern.

In object-oriented programming, the datatype is usually represented by an abstract
class or interface, with abstract methods for the operations. Data variants are sub-
classes which implement those methods. Adding new data variants equals adding
new subclasses, thus it is easy. However, adding new operations is hard since it
requires adding methods in the whole class hierarchy.

2.3 The VISITOR Pattern

Instead of having operations entangled with class declarations, the VISITOR design
pattern [23] allows us to write them separately. In terms of the expression problem,
it swaps extensibility of the two dimensions for object-oriented languages. That
is, with the VISITOR pattern, adding new operations is easy but adding new data
variants is hard. Figure 2.1 shows this pattern as a UML diagram.

In the diagram, the Visitor interface is an abstraction of all ConcreteVisitors. It has
several visit methods, one for each ConcreteElement. Each ConcreteVisitor is a concrete
operation with all the methods implemented.
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trait Visitor[E] {
def lit(x: Int): E
def add(l: E, r: E): E

}
trait Exp {
def apply[E](vis: Visitor[E]): E

}
case class Lit(x: Int) extends Exp {
def apply[E](vis: Visitor[E]): E = vis.lit(x)

}
case class Add(l: Exp, r: Exp) extends Exp {
def apply[E](vis: Visitor[E]): E =
vis.add(l(vis), r(vis))

}
object Eval extends Visitor[Int] {
def lit(x: Int): Int = x
def add(l: Int, r: Int): Int = l + r

}

FIGURE 2.2: AST and evaluation using internal visitors.

Element is the abstract datatype, which has only an accept method taking a Visitor.
Each ConcreteElement represents a data variant, with its special accept method to se-
lect the corresponding visit method to call when being visited.

We can simply add a new operation as a ConcreteVisitor by extending the Visitor in-
terface and implementing the methods for every data variant. It will not break mod-
ularity. However, adding new data variants becomes a problem, since it requires
modifying the Visitor interface to include a new visit method.

Internal and External Visitors If the datatype is recursive, operations often need
recursive calls on subtrees. Regarding where to place recursive calls, visitors can be
divided into internal and external visitors [7].

We will illustrate their difference by writing the abstract syntax tree (AST) and an
evaluation operation for an expression language consisting of literals and additions.
The grammar is below.

<exp> ::= literal

| <exp> "+" <exp>

Internal visitors do the recursive calls in accept methods by feeding the visitor ar-
gument to subtrees, so that concrete visitors (operations) only combine recursive
results. Figure 2.2 shows AST and evaluation operation written by internal visiters.
For more concise code, we use Scala’s special method name apply instead of "accept",
thus arguments can be passed without an explicit method call.
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trait Visitor[E] {
def lit(x: Int): E

def add(l: Exp , r: Exp ): E

}
trait Exp {

def apply[E](vis: Visitor[E]): E
}
case class Lit(x: Int) extends Exp {

def apply[E](vis: Visitor[E]): E = vis.lit(x)
}
case class Add(l: Exp, r: Exp) extends Exp {

def apply[E](vis: Visitor[E]): E = vis.add( l , r )
}
object Eval extends Visitor[Int] {
def lit(x: Int): Int = x

def add(l: Exp , r: Exp ): Int = l(Eval) + r(Eval)

}

FIGURE 2.3: AST and evaluation using external visitors.

External visitors allow concrete visitors to control the recursive calls by themselves.
Instead of taking recursive results, they take subtrees at recursive positions. There-
fore, it is more flexible to choose when and wether to perform recursive calls, or even
delegate to other visitors. Figure 2.3 shows the version using external visitors, with
difference highlighted as grey.

Comparing the two variants, internal visitors are more simple when writing concrete
operations, whereas external visitors are more flexible and powerful in terms of per-
forming recursive traversal and expressing dependencies. Because of that, external
visitors are more suitable for language ASTs and related semantic operations.

For example, if-then-else expressions are very common in programming languages.
Considering evaluation, if we use internal visitors, both branches will be evaluated
and one result is discarded finally. By contrast, with external visitors we can decide
which branch to evaluate according to the condition value. It is not only more effi-
cient but also obeys the semantics. Furthermore, evaluation may cause side effects
in some cases so that unnecessary recursive calls must be eliminated.

2.4 Object Algebras

Object Algebras [50] were proposed as a solution to the expression problem. It is a
lightweight design pattern and only requires simple generics and (multiple) inheri-
tance, which are ordinary features in object-oriented programming. Therefore, it can
be easily encoded in mainstream OO languages such as Java.



10 Chapter 2. Background

Object Algebras are closely related to Church encodings and internal visitors. We
will continue using the example in the last section, and compare with the code of
internal visitors in the following demonstration.

Object Algebra Interface An Object Algebra interface is just an internal visitor inter-
face, which captures all variants of the datatype as abstract methods.

trait Alg[E] {

def lit(x: Int): E

def add(l: E, r: E): E

}

The code above is as same as the visitor interface shown in Figure 2.2, with only the
name changed.

Object Algebra (Operation) A concrete Object Algebra represents an operation by
implementing the Object Algebra interface, which is similar to a concrete visitor. The
only difference here is we are using trait instead of object for extensibility.

trait Eval extends Alg[Int] {

def lit(x: Int): Int = x

def add(l: Int, r: Int): Int = l + r

}

This type of extension does not introduce new methods, but only implements all
abstract methods declared in the Object Algebra interface. In the example above,
methods lit and add are inherited from Alg and implemented in Eval.

Adding New Variants Now let us consider adding subtraction expressions to the
language. The new grammar is shown below.

<exp> ::= literal

| <exp> "+" <exp>

| <exp> "-" <exp>

A new data variant must be added to incorporate the new syntax structure. Thus,
a new Object Algebra interface AlgSub is created by extending from Alg, with a new
method sub added.

trait AlgSub[E] extends Alg[E] {

def sub(l: E, r: E): E

}

Different from the previous extension of Eval, this type of extension introduces new
abstract methods without concrete definitions.
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After that, the old evaluation operation Eval must be patched for subtraction expres-
sions. This can be achieved by create a new Object Algebra called EvalSub, which
implements the interface AlgSub and inherits from Eval for code reuse.

trait EvalSub extends AlgSub[Int] with Eval {

def sub(l: Int, r: Int): Int = l - r

}

Adding New Operations Adding new operations is easy since it equals creating
new Object Algebras. For instance, we write a printing operation PrintSub to print
ASTs.

trait PrintSub extends AlgSub[String] {

def lit(x: Int): String = x.toString

def add(l: String, r: String): String = s"($l + $r)"

def sub(l: String, r: String): String = s"($l - $r)"

}

Instances of the Datatype In contrast with internal visitors, Object Algebras do
not have a concrete representation for the datatype. Instances are created by generic
methods which take a concrete algebra. The following code shows representations
of two expressions.

// 2 + 3

def exp1[E](alg: Alg[E]): E = alg.add(alg.lit(2), alg.lit(3))

// 1 - (2 + 3)

def exp2[E](alg: AlgSub[E]): E = alg.sub(alg.lit(1), exp1(alg))

Operations are applied by feeding Object Algebras to those generic functions. We
can evaluate exp1 and print exp2 as below.

val i: Int = exp1(new Eval {})

val s: String = exp2(new PrintSub {})

Discussion As a lightweight approach, Object Algebras are quite practical in OO
languages such as Java. There have been several following research works towards
applications [47, 24, 4] and better usage [52, 71] of Object Algebras. Especially, there
were some attempts to modularize language syntax and semantics [24, 30]. How-
ever, some deficiencies have been pointed out in those works as well. We summarize
into two points.

Firstly, similarly to internal visitors, Object Algebras have a fixed pattern of recursion
which makes it hard to express dependencies. Thus, some operations can be written
in a very elegant way, while some others are awkward to implement.
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Secondly, there is no concrete representation of the datatype. It is very hard to store
and pass the instances in traditional OO languages like Java, since they are writ-
ten as generic methods. This may also lead to efficiency problems. In the work of
NOA [24], they found that the straightforward implementation of parsers would re-
quire re-parsing the input for applying every operation, and their partial solution
relies on runtime type information (Java’s instanceof).

However, we must point out, it is not a technical issue, but a limitation of current lan-
guages like Java and Scala. Specifically, they do not have full integration of function
subtyping and polymorphism. Thinking in a functional way, the type of previous
exp1 (and all the other expressions of the Alg algebra) is just a polymorphic function
type forall E. Alg[E] => E. In an ideal language, we could have such standalone
functions as concrete datatypes, and subtyping relationship could be straightfor-
wardly derived.

2.5 Parser Combinators

Parsing is fundamental to computer programming and it has been heavily studied.
There are two major techniques of building parsers: parser generators and parser com-
binators [8, 64]. A parser generator tool often provides a DSL for specifying syntax,
and then parsers are generated automatically. A parser combinator library usually
does not have explicit syntax specifications. Instead, small parsers are glued together
by combinators in some host languages.

Parser combinators can be traced to the work of Burge [8] in 1975, and over the years
many works have been conducted [64, 28, 18, 29]. Parser combinators are very pop-
ular in functional programming, where parsers are represented by functions, and
combinators are represented by higher-order functions. One famous parser combi-
nator library is Parsec [39] in Haskell. Because all parsers and combinators are first
class values in the host language, programmers have great flexibility to manipulate
and customize parsing. It also avoids integration of different tools and languages as
parser generators often required by [27].

Scala has a standard parser combinator library [54]. Table 2.1 shows some common
parser combinators we selected from the library documentation. The alternative
combinator |, the sequential concatenation combinator ~, and the application com-
binator ^^ are especially frequently used among them.

Figure 2.4 shows an example of parsing addition expressions using the library. The
object Parser is extended from StandardTokenParsers to inherit basic parsers and com-
binators. In line 4 we define delimiters for lexical analysis. From line 6 to 12, we write
three parsers pLit, pAdds, and pExp. The types in the bracket of Parser[] are types of
parsing results. In line 12, the result of pLit and pAdds are extracted and summed up.



2.5. Parser Combinators 13

def *: Parser[List[T]]

Returns a parser that repeatedly parses what this parser parses.
def ?: Parser[Option[T]]

Returns a parser that optionally parses what this parser parses.
def +: Parser[List[T]]

Returns a parser that repeatedly (at least once) parses what this parser parses.
def ~[U](q: => Parser[U]): Parser[~[T, U]]

A parser combinator for sequential composition.
def ^^[U](f: (T) => U): Parser[U]

A parser combinator for function application.
def ^^^[U](v: => U): Parser[U]

A parser combinator that changes a successful result into the specified value.
def <~[U](q: => Parser[U]): Parser[T]

A parser combinator for sequential composition which keeps only the left result.
def ~>[U](q: => Parser[U]): Parser[U]

A parser combinator for sequential composition which keeps only the right result.
def |[U >: T](q: => Parser[U]): Parser[U]

A parser combinator for alternative composition.
def |||[U >: T](q0: => Parser[U]): Parser[U]

A parser combinator for alternative with longest match composition.

TABLE 2.1: Common combinators in Scala’s parser combinator library [54].

1 import scala.util.parsing.combinator.syntactical.StandardTokenParsers
2

3 object Parser extends StandardTokenParsers {
4 lexical.delimiters += ("(", ")", "+")
5

6 lazy val pLit: Parser[Int] =
7 numericLit ^^ { _.toInt }
8 lazy val pAdds: Parser[List[Int]] =
9 ("+" ~> pExp).*

10 lazy val pExp: Parser[Int] =
11 "(" ~> pExp <~ ")" |
12 pLit ~ pAdds ^^ { case a ~ as => as.foldLeft(a)((x, y) => x + y) }
13 def parse(input: String): Int =
14 phrase(pExp)(new lexical.Scanner(input)).get
15 }

FIGURE 2.4: An example of using parser combinators in Scala.



14 Chapter 2. Background

Finally, a method parse is defined as a wrapper to parse input strings. In client code,
the parser can be used as below.

val x: Int = Parser.parse("1 + (2 + 3)") // 6

Here we directly calculate an integer as the parsing result, while normally the result
of parsing is an AST of the language. It brings challenges of reusing parsers when
the language evolves. In Chapter 5, we will discuss more about parsing in terms of
modularity and extensibility.
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Chapter 3

Collecting Gems

In this chapter we will demonstrate an example of language modularization using
Gems, as an overview and intuition to technical details in the following chapters.
The example is to compose two self-contained languages:

• bool

The language includes boolean literals and if-then-else expressions, with a simple
boolean type. Some example expressions in the language are:

if true then false else true

if false then (if true then false else true) else true

• stlc

The language includes basic structures of the simply type lambda calculus, with
the unit value and type. Some example expressions in the language are:

(λx: Unit. x) unit

(λf: Unit->Unit. f unit) (λx: Unit. x)

The two languages are written using Gems and composed together to build a new
language boolstlc. It combines the power of both bool and stlc, and thus allows us
to write more complex expressions. The following figure illustrates the composition.

bool

〈type〉 ::= Bool

〈term〉 ::= true

| false
| if 〈term〉

then 〈term〉
else 〈term〉

stlc

〈type〉 ::= Unit

| 〈type〉 -> 〈type〉

〈term〉 ::= x

| unit
| λx: 〈type〉. 〈term〉
| 〈term〉 〈term〉

boolstlc

(λf: Unit->Bool. if (f unit) then false else true) (λx: Unit. true)



16 Chapter 3. Collecting Gems

As we said, the two languages bool and stlc are self-contained. Except the abstract
syntax, they may have their own parsers, typers, evaluators, etc. In this example, we
are not only composing their syntax, but their whole interpreter pipelines. Thus, the
result of composition is a comprehensive implementation of the new language.

For the sake of brevity, we list the full code online [22], and only show important
code in the demonstration. Readers may focus on the overall structure and skip
details of the code in the first reading, since they will be discussed in later chapters.

Basically we will demonstrate two aspects of language modularization using Gems:
how to write a language in a modular way so that they can be reused, and how
to compose those languages to create a new one. In Section 3.1, we implement the
abstract syntax, operations (semantics), and parser of language bool using Gems. In
Section 3.2 we first present the abstract syntax of language stlc. Other parts of stlc
are omitted for brevity since they are similar with bool. Then we demonstrate the
composition to build boolstlc, which can be done with a small amount of code. In
Section 3.3 we show an example of building an imaginary DSL from a base language
with direct extensions.

3.1 Implementation of the Language bool

We take the language bool as an example to demonstrate how to write a modular
language that is open for future reuse.

Abstract Syntax The abstract syntax of the language bool is implemented in Fig-
ure 3.1. We have two visitor interfaces Term and Type containing the corresponding
variants of the abstract syntax. At recursive positions of the datatype, the type pa-
rameter R is used instead of a concrete type for extensibility.

With the interfaces defined, ASTs of language bool are captured by type Exp[Term]

and Exp[Type]. The technique we use is based on modular external visitors [49]. De-
tails about the technique will be discussed in Section 4.2, including the apply method
for managing recursive calls.

The two macro annotations of Lang are required by Gems for generating companion
objects of the two interfaces, that contain utilities which can reduce boilerplate code.
The name of the language is passed as a string (in this case "bool"), which should
correspond with the package name. Table 3.1 shows structures in the generated
companion object of Term. Code generation will be discussed in Section 6.3.

Operations Figure 3.2 shows the implementation of a small-step evaluation oper-
ation. There are two concrete visitors Eval and IsVal. Eval is mixed with a interface
IIsVal which has the following definition:
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Name Generated structures

Factory classes
case class TmTrue[A[-X, Y] <: Term[X, Y], B[-R, _]]()

case class TmFalse[A[-X, Y] <: Term[X, Y], B[-R, _]]()

case class TmIf[A[-X, Y] <: Term[X, Y], B[-R, _]](..)

Factory wrapper object Factory

Traversal templates
trait Query[-R, E]

trait Transform[A[-X, Y] <: Term[X, Y]]

Lifter trait Lifter[-R, E, C]

Type conversion trait Convert[A[-X, Y] <: Term[X, Y]]

TABLE 3.1: Generated structures for Term in Figure 3.1.

trait IIsVal[A[-R, E]] {

def isVal: A[Exp[A], Boolean]

}

The field indicates that the evaluation depends on the IsVal operation to decide
whether a term is a value and thus cannot be further reduced. Section 4.3 discusses
more about operation dependencies.

Eval is also mixed with trait Term.Convert, which is generated by Gems for type con-
version. It provides a method convertBool which is used in line 12. After type conver-
sion, we are able to analyse the condition term of if-then-else, namely e1, by applying
an anonymous visitor from line 13 to 18. Such case analysis is useful in practice since
we often need to perform ad-hoc operations and we certainly do not want to write
them as named, top-level operations. Section 4.7 talks about this issue. The apply

method is used for performing recursive calls in line 21.

The IsVal operation extends from a generated traversal template Term.Query. The
template sets all cases to a default value beforehand, and thus we only need to over-
ride interesting cases instead of repeating the fallback value everywhere.

Parser Parser of language bool is implemented in Figure 3.3. It uses Packrat pars-
ing [19] utilities in Scala’s parser combinator library. It has a quite similar structure
to the example in Section 2.5. There are two fields pBoolE and pBoolT for parsing terms
and types, and two aliases pE and pT for them. When perform recursively parsing,
those aliases are used. That is the key for extensibility. Details about semantically
modular parsers will be discussed in Chapter 5.

3.2 Composition for the Language boolstlc

Figure 3.4 shows the abstract syntax of language stlc. It also has two sorts: terms
and types. However, it is different from bool because the two sorts are nested. There-
fore in the interface Term we define an extra type parameter T for type occurrences.
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package language.bool
import gems._

@Lang("bool")
trait Term[-R, E] {
def tmTrue(): E
def tmFalse(): E
def tmIf(e1: R, e2: R, e3: R): E
def apply(e: R): E

}

@Lang("bool")
trait Type[-R, E] {
def tyBool(): E
def apply(e: R): E

}

FIGURE 3.1: The abstract syntax of language bool using Gems.

1 package language
2 package bool
3 import gems._
4 import Term.Factory._
5

6 trait Eval[A[-X, Y] <: Term[X, Y]] extends Term[Exp[A], Exp[A]]
7 with IIsVal[A] with Term.Convert[A] {
8 def tmTrue(): Exp[A] = TmTrue[A, A]()
9 def tmFalse(): Exp[A] = TmFalse[A, A]()

10 def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =
11 if (e1(isVal)) {
12 val c = convertBool(e1).getOrElse(cnvFailed)
13 c(new Term[Exp[A], Exp[A]] {
14 def tmTrue(): Exp[A] = e2
15 def tmFalse(): Exp[A] = e3
16 def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] = runtimeError
17 def apply(e: Exp[A]): Exp[A] = impossible
18 })
19 }
20 else
21 TmIf[A, A](apply(e1), e2, e3)
22 }
23

24 trait IsVal[A[-R, _]] extends Term.Query[Exp[A], Boolean] {
25 override def default: Boolean = false
26 override def tmTrue(): Boolean = true
27 override def tmFalse(): Boolean = true
28 }

FIGURE 3.2: The evaluator of language bool using Gems.
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package language
package bool
import gems._
import Term.Factory._
import Type.Factory._

trait Parse[A[-X, Y] <: Term[X, Y], B[-X, Y] <: Type[X, Y]] extends BaseParser {
lexical.reserved += ("true", "false", "if", "then", "else", "Bool")
lexical.delimiters += ("(", ")")
private lazy val pTrue = "true" ^^^ TmTrue[A, A]()
private lazy val pFalse = "false" ^^^ TmFalse[A, A]()
private lazy val pIf =

("if" ~> pE) ~ ("then" ~> pE) ~ ("else" ~> pE) ^^ { case e1 ~ e2 ~ e3 =>
TmIf[A, A](e1, e2, e3) }

lazy val pBoolE: PackratParser[Exp[A]] =
pTrue ||| pFalse ||| pIf ||| "(" ~> pE <~ ")"

lazy val pBoolT: PackratParser[Exp[B]] =
"Bool" ^^^ TyBool[B, B]()

lazy val pE: PackratParser[Exp[A]] = pBoolE
lazy val pT: PackratParser[Exp[B]] = pBoolT

}

FIGURE 3.3: The parser of language bool using Gems.

Such multi-sorted syntax is discussed in Section 4.5.

The other parts of language stlc are omitted because they have similar structure to
bool. Full code is listed online [22].

It is easy to merge the two languages bool and stlc using our framework, and the
code is neat because the features from the two languages do not interfere with each
other. We still demonstrate the composition from three aspects: the abstract syntax,
operations, and parsers.

Figure 3.5 illustrates composition to build the abstract syntax of boolstlc. It only
requires 4 lines of code excluding the imports. The visitor interfaces are composed
correspondingly for each sort using multiple inheritance.

Figure 3.6 shows composition of operations. For each operation, it takes 2 to 3 lines
to extend from the parent languages with auxiliary utilities. If we want to redefine
some cases we could override them in the new trait, but here we do not need to do
so.

Figure 3.7 composes parsers. Comparing with other parts, it needs a bit more code to
select the corresponding fields in the two parent parsers. However it is still straight-
forward and simple.

As we can see, if we have modularized language as components, it is easy to quickly
build a new language by composing the related elements. We also have great flexi-
bility to modify the language since every part can be customized as needed in com-
position. Furthermore, the compositions are statically type-safe in the host language
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package language.stlc
import gems._

@Lang("stlc")
trait Term[-R, E, -T] {
def tmVar(x: String): E
def tmApp(e1: R, e2: R): E
def tmAbs(x: String, t: T, e: R): E
def tmUnit(): E
def apply(e: R): E

}

@Lang("stlc")
trait Type[-R, E] {
def tyArr(t1: R, t2: R): E
def tyUnit(): E
def apply(t: R): E

}

FIGURE 3.4: The abstract syntax of language stlc using Gems.

package language
package boolstlc
import gems._

@Lang("boolstlc")
trait Term[-R, E, -T] extends bool.Term[R, E] with stlc.Term[R, E, T]

@Lang("boolstlc")
trait Type[-R, E] extends bool.Type[R, E] with stlc.Type[R, E]

FIGURE 3.5: Composition of abstract syntax for language boolstlc.

and components can be separately compiled.

3.3 Direct Extensions and New DSLs

The previous example shows how to define two independent language components
and merge them to easily form a single language. It belongs to the category of lan-
guage unification [15]. Another kind of composition, which is perhaps more com-
mon, is to enrich a base language with some (domain-specific) extensions directly.
The base language could be explicit, which means it has been built with a unique
name, or implicit, which means it is in-place merged from components.

We show an imaginary toy language that aims at making shell scripting easier. The
language is extended from an implicit base language, which consists of three compo-
nents: boolstlc for functions and booleans, record for records, and string for strings.
The last two have similar corresponding ones in the case study. Thus the language
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package language
package boolstlc
import gems._

trait Eval[A[-R, E, -F] <: Term[R, E, F], T]
extends Term[Exp2[A, T], Exp2[A, T], T]
with bool.Eval[A[-?, ?, T]] with stlc.Eval[A, T] with Term.AllChains[A, T]

trait IsVal[A[-R, E, -F], T] extends Term.Query[Exp2[A, T], Boolean, T]
with bool.IsVal[A[-?, ?, T]] with stlc.IsVal[A, T]

trait Subst[A[-R, E, -F] <: Term[R, E, F], T] extends Term.Transform[A, T]
with stlc.Subst[A, T]

trait Print[A[-R, E, -F], T] extends Term[Exp2[A, T], String, T]
with bool.Print[A[-?, ?, T]] with stlc.Print[A, T]

trait PrintT[A[-R, _]] extends Type[Exp[A], String]
with bool.PrintT[A] with stlc.PrintT[A]

FIGURE 3.6: Composition of operations for language boolstlc.

package language
package boolstlc
import gems._

trait Parse[A[-R, E, -F] <: Term[R, E, F], B[-X, Y] <: Type[X, Y]]
extends stlc.Parse[A, B] with bool.Parse[A[-?, ?, Exp[B]], B] {
lazy val pBoolstlcE: PackratParser[Exp2[A, Exp[B]]] = pBoolE ||| pStlcE
lazy val pBoolstlcT: PackratParser[Exp[B]] = pBoolT ||| pStlcT
override lazy val pE: PackratParser[Exp2[A, Exp[B]]] = pBoolstlcE
override lazy val pT: PackratParser[Exp[B]] = pBoolstlcT

}

FIGURE 3.7: Composition of parsers for language boolstlc.
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has first class functions and a simple type system. Some other structures are added
to the language to execute shell commands and write log.

The code below shows an example of writing a backup script using the language.

fn backup(from: String, to: String) = {

log (exec "date").result

if (exec "cp -r $from $to").success

then log "Successfully backed up: $from"

else log "Failed to back up: $from"

}

backup from "~/docs/" to "~/backup/"

The language has a simple syntactic sugar, the dollar sign $, for embedding variables
into a string. Two built-in functions exec and log allow the user to execute a shell
command and write log. exec returns a record of boolean and string, representing
the exit status and result. Function applications have a special syntax that parameter
names can be put before the arguments, as indicated by the last line. Other parts are
straightforward.

The abstract syntax of the language would be built as the code below, in which we
only need to introduce the built-in functions as the domain-specific part.

@Lang("mydsl")

trait Term[-R, E, -T] extends boolstlc.Term[R, E, T] with record.Term[R, E]

with string.Term[R, E] {

def TmExec(e: R): E

def TmLog(e: R): E

}

@Lang("mydsl")

trait Type[-R, E] extends boolstlc.Type[R, E] with record.Type[R, E]

with string.Type[R, E]

Semantics of the components could be mostly reused in this language, but the parsers
need to be rewritten since the concrete syntax is changed.

This imaginary example shows that, if we had a rich library of language compo-
nents, it would be convenient to build a DSL by importing components from the
library and adding domain-specific structures. We already have some finished com-
ponents in our case study, listed in Table 7.2. Although they are probably not robust
enough to build real languages, they provide a starting point to explore the idea.
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Chapter 4

Modular Syntax and Semantics

This chapter presents how we modularize ASTs and semantic operations in Gems.
We adopt modular external visitors [49] and make several enhancements. Section 4.1
introduces the expression families problem [49]. Section 4.2 shows the original work of
modular external visitors. The subsequent sections demonstrate our enhancements.
In Section 4.3 and 4.4 we borrow the idea from EVF [72] to deal with operation de-
pendencies and have flexible recursive calls. In Section 4.5 we show how to extend
abstract syntax with multiple sorts. In Section 4.6 we present context propagation
for further extensibility, which is inspired by implicit context propagation [30]. In Sec-
tion 4.7 we discuss how to perform case analysis on ASTs.

4.1 Expression Families Problem

Based on the expression problem (Section 2.2), expression families problem [49] is a
stronger version that has more requirements. While satisfying the requirements of
the expression problem, one solution must also have the following properties.

1. Distinguishable types: A combination of data variants should have its own
distinguishable type. Thus, new datatypes extended from old ones have dif-
ferent identities in the type system.

2. Subtyping of components: Those different datatypes, together with their re-
lated operations, should have proper subtyping relationships.

3. Full composability: With all the data variants and operations, all combination
of them should be allowed and flexibly composed.

For example, if we represent datatypes by sum types, when Exp2 adds more variants
on Exp1, Exp2 is a supertype of Exp1. Thus, for any type T, Exp2 => T is a subtype of
Exp1 => T, which indicates that operations on Exp2 are able to consume Exp1 as well.

Therefore, we have a family of related datatypes during extensions. The distinguish-
able types enable us to specify the "version" as typing constraints. The subtyping
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relationship guarantees that we cannot apply operations unsafely. In terms of lan-
guage modularization, those properties are desired.

4.2 Modular External Visitors

As a solution to the expression families problem, modular external visitors [49] ex-
ploit type variance to maintain the subtyping relationship during extension. Type
variance is well supported in Scala, represented by annotations before type param-
eters. The plus and minus (+ and -) annotations mean covariance and contravariance,
respectively. We will introduce modular external visitors by demonstrating differ-
ences from the traditional external visitors.

4.2.1 Visitor Interface

Similarly to traditional external visitors, a visitor interface with method signatures is
used to abstract over concrete visitors. However, names of the concrete datatype at
recursive positions are replaced by a contravariant type parameter. In the example
below, it is -R.

trait IAdd[-R, E] {

def lit(x: Int): E

def add(l: R, r: R): E

}

Comparing with the code in Figure 2.3, this change decouples the visitor interface
with the concrete datatype. Thus, it is easy and straightforward to extend the visitor
interface for adding new variants.

trait ISub[-R, E] extends IAdd[R, E] {

def sub(l: R, r: R): E

}

4.2.2 Datatype

In the VISITOR pattern, the datatype has an accept (we use apply in our examples)
method which takes a concrete visitor and returns the result value. The code below
shows two datatypes AddExp and SubExp, corresponding to the two visitor interfaces
IAdd and ISub.

trait AddExp {

def apply[E](vis: IAdd[AddExp, E]): E

}

trait SubExp {

def apply[E](vis: ISub[SubExp, E]): E
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}

The problem is, although the two interfaces have subtyping relationship, the two
datatypes are not related at all. Writing different datatypes for each interface is not
acceptable, since it does not meet the requirements of the expression families prob-
lem. Instead, we abstract the visitor interfaces as a type parameter, so that they can
share a common datatype.

trait Exp[-A[-R, _]] {

def apply[E](vis: A[Exp[A], E]): E

}

The type parameter -A above represents any visitor interface, and Exp[A] is the corre-
sponding datatype. Exp can be regarded as a fixed-point operator on the type level,
that builds the recursive type Exp[A] for interface A.

The contravariance of A guarantees the subtyping relationship is preserved. For in-
stance, we rewrite AddExp and SubExp as type synonyms as below. AddExp is now a
subtype of SubExp, since IAdd is a supertype of ISub.

type AddExp = Exp[IAdd]

type SubExp = Exp[ISub]

4.2.3 Factories

Factories of traditional external visitors contain hardcoded datatype names, thus
they are not reusable. Similar to the abstraction of the datatype, the visitor interfaces
can be passed into factories as a type parameter. It is constrained by an upper type
bound to express that the interface must include certain cases.

In the example below, two factories Lit and Add have a type parameter A which must
be a subtype of IAdd, thus the visitor interface represented by A contains lit and add

methods.

case class Lit[A[-X, Y] <: IAdd[X, Y]](x: Int) extends Exp[A] {

def apply[E](vis: A[Exp[A], E]): E = vis.lit(x)

}

case class Add[A[-X, Y] <: IAdd[X, Y]](e1: Exp[A], e2: Exp[A]) extends Exp[A] {

def apply[E](vis: A[Exp[A], E]): E = vis.add(e1, e2)

}

A factory class Sub for the subtraction case can be defined similarly, with only the
corresponding names changed.

case class Sub[A[-X, Y] <: ISub[X, Y]](e1: Exp[A], e2: Exp[A]) extends Exp[A] {

def apply[E](vis: A[Exp[A], E]): E = vis.sub(e1, e2)

}
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With the factories, it is easy to construct concrete expressions. Notice the subtyping
relationship allows us to reuse e1 in e2 straightforwardly.

val e1: AddExp = Add(Lit(1), Lit(2)) // 1 + 2

val e2: SubExp = Sub(e1, Lit(3)) // (1 + 2) - 3

4.2.4 Concrete Visitor

Concrete visitors or operations are implementations of the visitor interface. For ex-
tensibility, concrete visitors should not have concrete datatypes hardcoded in them.
The example below shows an evaluation visitor which implements the IAdd inter-
face. Notice the datatype is abstract.

trait EvalAdd[A[-R, _]] extends IAdd[Exp[A], Int] {

self: A[Exp[A], Int] =>

def lit(x: Int): Int = x

def add(l: Exp[A], r: Exp[A]): Int = l(this) + r(this)

}

The self type feature of Scala is used here to explicitly denotes the fact that, in the
future, the whole object has this trait mixed-in has the type A[Exp[A], Int]. It is nec-
essary because the object itself (represented by self reference, namely this) is passed
to subtrees which have type Exp[A] for every recursive call.

To apply an operation, we first instantiate it as an object, then feed it to an expression.
As an example, here we evaluate the expression e1 defined in Section 4.2.3.

val e1: AddExp = Add(Lit(1), Lit(2)) // 1 + 2

object EvalAddObj extends EvalAdd[IAdd]

val v1: Int = e1(EvalAddObj) // 3

New visitors could be built by extending from old ones, thus code are reused.

trait EvalSub[A[-R, _]] extends ISub[Exp[A], Int] with EvalAdd[A] {

self: A[Exp[A], Int] =>

def sub(l: Exp[A], r: Exp[A]): Int = l(this) - r(this)

}

4.3 Operation Dependencies

It is common in practice that one operation depends on others. Evaluation operation
probably depends on substitution, and pretty-printing operation may depend on
precedence of syntax structures. The use of external visitor makes it easy to apply
other operations, because we have direct access to subtrees of AST.
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To express such dependencies, we could use the similar style of EVF [72], that having
abstract declarations in visitors. Each declaration represents a required operation
that can be used in the current one.

For instance, when printing ASTs we often need to add parentheses. We do not
want to add parentheses everywhere since it would pollute the result. One simple
strategy is that we only add parentheses if a subtree has lower or equal precedence
than the current. Precedence is defined for every syntax structure, and it is another
separate operation that can be used somewhere else.

The code below presents a printing operation for the IAdd interface shown before. It
depends on a precedence operation to add parentheses.

1 trait Print[A[-X, Y] <: IAdd[X, Y]] extends IAdd[Exp[A], String] {

2 self: A[Exp[A], String] =>

3 val prec: A[Exp[A], Int] // Dependency declaration

4 private def addParens(f: Boolean, s: String): String =

5 if (f) s"($s)" else s

6 def lit(x: Int): String = x.toString

7 def add(l: Exp[A], r: Exp[A]): String = {

8 val myPrec = prec.add(l, r)

9 val pl = addParens(l(prec) <= myPrec, l(this))

10 val pr = addParens(r(prec) <= myPrec, r(this))

11 s"$pl + $pr"

12 }

13 }

In line 3, the prec field for precedence represents the dependency. It remains abstract
until Print is instantiated. From line 7 to line 12, the add method uses prec to obtain
precedence of subtrees and compare with the precedence of "add". Then it can de-
cide whether to add parentheses or not. The constraint of type parameter A limits it
to be a subtype of IAdd. That guarantees the add method exists in prec.

An operation Precedence for syntax precedence is defined as follow, together with an
object Print to instantiate the printing operation.

trait Precedence[A[-R, _]] extends IAdd[Exp[A], Int] {

def lit(x: Int): Int = 10

def add(l: Exp[A], r: Exp[A]): Int = 1

}

object Print extends Print[IAdd] {

val prec: IAdd[Exp[IAdd], Int] = new Precedence[IAdd] {}

}

Literals will not be surrounded by parentheses because of the higher precedence.

val e: Exp[IAdd] = Add(Lit(1), Add(Lit(2), Lit(3)))

val s: String = e(Print) // 1 + (2 + 3)
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When abstract syntax evolves, operations and dependencies can be extended with
semantic modularity. Dependencies are inherited in extensions. Moreover, we can
change the implementations of dependencies since they are hidden behind the field
declarations.

A better approach to declare dependencies is creating a distinct interface for each
operation. Thus, other operations only need to extend the interface. It ensures con-
sistency of names in multiple inheritance, and dependencies are more explicitly ex-
pressed. The following code illustrates this pattern.

trait DepOfPrec[A[-R, _]] {

val prec: A[Exp[A], Int]

}

trait Print[A[-X, Y] <: IAdd[X, Y]] extends IAdd[Exp[A], String]

with DepOfPrec[A] {

...

}

4.4 Abstracting Recursive Calls

In the previous sections, we showed how to use self type and self reference for making
recursive calls in concrete visitors. However, an alternative approach using abstract
and indirect recursive calls, as presented in EVF [72], is possibly better under certain
circumstances.

Instead of feeding the self reference this to subtrees, this approach abstracts them
as calls of a specific method. For example, we rewrite the EvalAdd in Section 4.2.4 as
below, making recursive calls by calling a method apply.

trait EvalAdd[A[-R, _]] extends IAdd[Exp[A], Int] {

def lit(x: Int): Int = x

def add(l: Exp[A], r: Exp[A]): Int = apply(l) + apply(r)

}

The apply method is declared in abstract visitor interface IAdd. It accepts a subtree
and returns the result of applying the recursive call on that subtree.

trait IAdd[-R, E] {

def lit(x: Int): E

def add(l: R, r: R): E

def apply(x: R): E

}

The implementation of apply remains undefined until concrete visitor instances are
created. When creating an instance, apply is implemented, often by simply feeding
the self reference this like below.
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object EvalAdd extends EvalAdd[IAdd] {

def apply(x: Exp[IAdd]): Int = x(this)

}

There are two advantages of using this approach.

Firstly, and the most important, the abstraction of recursive calls gives us the chance
to delay and redefine its meaning. For example, later in Section 4.6 we delegate the
recursive calls of the inner visitor to the outer for context propagation. Without such
abstraction, it would be impossible to achieve that.

Secondly, the special name apply we use, enables both syntax datatype(operation)

and operation(datatype) when performing an operation on a datatype. Sometimes
one is more natural than the other. For example, we could have:

val b: Bool = expr(IsValue)

val v: Value = Evaluate(expr)

Furthermore, this approach eliminates the annoying self type declaration at the be-
ginning of every concrete visitor and it is lightweight in terms of coding.

4.5 Multi-Sorted Syntax

In the previous examples, we only have one extensible datatype representing the
abstract syntax tree. In other words, the syntax has only one sort: expressions. How-
ever, multiple sorts are often needed in practical languages, such as expressions,
types, kinds and so on. The original work of modular external visitors [49] did not
discuss this issue.

As an instance, the syntax below shows a language which has two sorts: expressions
and types. Expressions are literals, additions, and functions. Types are integer type
and function (arrow) types.

<type> ::= "Int"

| <type> "->" <type>

<expr> ::= literal

| <expr> "+" <expr>

| "\" ident ":" <type> "." <expr>

We definitely do not want to mix them up, otherwise we would have ill-formed
terms such as 1 + Int. Therefore, we use two extensible datatypes for them, the code
below shows two visitor interfaces: IType for type ASTs and IExpr for expression
ASTs. The IAdd is reused from Section 4.2.1.
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trait IType[-R, E] {

def int(): E

def arrow(a: R, b: R): E

}

trait IExpr[-R, E, -T] extends IAdd[R, E] {

def func(x: String, t: T, e: R): E

}

Because expressions contain types, we have an extra parameter -T in IExpr. As same
as the recursive parameter -R, the minus annotation indicates contravariance. Thus,
subtyping relationship is preserved, whichever of type and expression is extended.

However, writing the concrete datatypes as we shown in Section 4.2.2 is not straight-
forward. If we write the following synonyms using the Exp defined identical as be-
fore, a compile error will arise saying the number of type parameters is wrong.

trait Exp[-A[-R, _]] {

def apply[E](vis: A[Exp[A], E]): E

}

type Type = Exp[IType]

type Expr = Exp[IExpr] // Error! Number of parameters is not correct.

The problem is IExpr takes three type parameters while the abstract interface A in Exp

expects only two. We cannot simply change A to take three parameters, since other
components may require different numbers. Creating a new trait instead of Exp is
not acceptable either, because we would lose subtyping relationship if so.

Fortunately, Scala allows us to write type level lambdas by type projections. We use
the wrapper Exp2 below to represent datatypes with two sorts.

type Exp2[-A[-R, E, -F], +V] = Exp[({type l[-R, E] = A[R, E, V]})#l]

The type parameter V is abstracted for the second sort. On the right hand side of the
definition, the type lambda l[-R, E] which takes two parameters is passed to Exp. In
the body of it, abstract interface A is partially applied, using V as the second sort.

Then we can rewrite the wrong code before to pass Scala’s type checker.

type Type = Exp[IType]

type Expr = Exp2[IExpr, Type]

Because Exp2 is just a type synonym, it does not introduce a new type identity.
The Expr above is still derived from Exp, hence subtyping relationship is preserved.
Namely, the type Expr, which equals Exp2[IExpr, Type], is a supertype of Exp[IAdd].
As denoted by the plus sign of V, datatype of the second sort is covariant, hence it
preserves subtyping as well.

The long type encoding of type lambdas is annoying, especially when writing opera-
tions. A compiler plugin called kind-projector [38] provides shorthand for such types.
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With the plugin, we can have a quite concise definition for Exp2 as below, where each
question mark represents a type parameter.

type Exp2[-A[-R, E, -F], +V] = Exp[A[-?, ?, V]]

4.6 Context Propagation

In Section 4.2, we showed the modular external visitors enable us to write and reuse
modular datatypes as well as operations (visitors). However, in practice, reusing
operations could be more complicated than demonstrated before. Especially when
modularizing languages and their interpreters that compute semantics, we often
need to add auxiliary contexts. As a result, the mismatch of type signatures prevents
new operations from extending and reusing existing ones.

This section first demonstrates this issue, then shows our solution which is inspired
by implicit context propagation [30]. The crucial point is delegating recursive calls,
based on the technique discussed in Section 4.4.

4.6.1 Motivation

Let us review the example in Section 4.2.4, in which we have EvalSub visitor extends
and thus reuses EvalAdd. We need to point out there are two implicit conditions
which make that extension possible. The first is that the ISub interface is a subtype
of IAdd. The second is that the "return type" declared in the signatures of the two
visitors are both Int.

The second condition, that new visitors must have exactly the same return type with
the existing ones it intends to reuse, could be too restrictive in some cases. For in-
stance, we consider extending the language of literals and additions by adding vari-
ables. The visitor interface could be easily extend as below.

trait IVar[-R, E] extends IAdd[R, E] {

def vr(x: String): E

}

When evaluating the new language, we want to use an extra context which stores
value bindings for variables. The context could be different in each evaluation pro-
cedure and should be passed as an argument. Therefore, the return type of the eval-
uation operation should be a function Context => Int.

In the code below, we are using a map for the context, and trying to reuse old oper-
ation EvalAdd by extending from it.
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type Context = Map[String, Int]

trait EvalVar[A[-R, _]] extends IVar[Exp[A], Context => Int]

with EvalAdd[A] { // Illegal inheritance!

..

}

Unfortunately, the code will get a compile error of "Illegal inheritance", because in
EvalAdd the return type is Int rather than Context => Int.

This issue is painful in terms of language modularization, because contexts are quite
frequently used when writing interpreters or semantic functions. Basically, we have
two options to make the code compile, but neither is satisfying.

• We can anticipate the future need of context at the very beginning. An abstract
type parameter could be used to represent a context in the signature of EvalAdd.
Their methods for every cases also take an extra context parameter, but do nothing
with it except passing it down to subtrees.

Anticipating future extensions does not actually solve the problem, but transfers
the burden to early stages of the development. It would complicate the base op-
erations by having unused and unnecessary contexts everywhere. Furthermore,
it is not scalable for more than one context.

• We can implement all the methods such as lit and add again in the new operation
EvalVar. Usually this is done by copying old code and modifying it.

This workaround would lose the value of modularity, since no code is reused at
all. Code which is almost the same would be duplicated in each extension and
finally be hard to maintain.

4.6.2 Propagation by Delegating Recursive Calls

The vital issue of reusing existing operations is to pass the context downwards re-
cursively. Because modification on old code is not acceptable, we can only pass the
context implicitly. From previous comparison, we know that, in Object Algebras
and internal visitors the values on recursive positions are results, while in external
visitors they are subtrees of the datatype.

We first abstract recursive calls, as demonstrated in Section 4.4. New operations can-
not inherit from existing ones because types are mismatched, but we can compose
and incorporate their instances for reuse. When reusing existing operations, we del-
egate all recursive calls in them, in order to propagate the context without affecting
their logic.
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1 trait IAdd[-R, E] {
2 def lit(x: Int): E
3 def add(l: R, r: R): E
4 def apply(x: R): E
5 }
6 trait EvalAdd[A[-R, _]] extends IAdd[Exp[A], Int] {
7 def lit(x: Int): Int = x
8 def add(l: Exp[A], r: Exp[A]): Int = apply(l) + apply(r)
9 }

10 trait IVar[-R, E] extends IAdd[R, E] {
11 def vr(x: String): E
12 }
13 type Context = Map[String, Int]
14 trait EvalVar[A[-R, _]] extends IVar[Exp[A], Context => Int] {
15 def propagate(c: Context) = new EvalAdd[A] {
16 def apply(x: Exp[A]): Int = EvalVar.this.apply(x)(c)
17 }
18 def vr(x: String): (Context) => Int = _ (x)
19 override def lit(x: Int): (Context) => Int = propagate(_).lit(x)
20 override def add(l: Exp[A], r: Exp[A]): (Context) => Int =
21 propagate(_).add(l, r)
22 }

FIGURE 4.1: An example of context propagation by delegating recursive calls.

Figure 4.1 shows an example of context propagation using our approach. It is the ex-
ample we used in the last section, adding variables to a language of literals and ad-
ditions. Lines 1 to 12 are visitor interfaces, and the old evaluation operation EvalAdd

whose return type is just Int. From line 14 we create a new operation EvalVar whose
return type is Context => Int.

In EvalVar, three methods vr, lit, and add are implemented. The last two are old
methods we intend to reuse from EvalAdd. They are overridden by feeding the con-
text to the propagate method, which is the crucial point. propagate creates instances
of EvalAdd and implements the apply method for recursive calls. The apply of EvalAdd
is delegated to the apply of EvalVar, which has the context added thus it can be prop-
agated to subtrees.

Consequently, the evaluation operation is extended with a context while retaining
semantic modularity. This approach is inspired greatly by implicit context propaga-
tion [30], which was originally proposed for Object Algebras. However, it is quite
different since we are working on external visitors rather than internal visitors and
Object Algebras.

4.6.3 Lifter

Although the context propagation approach we demonstrated works well, we still
have some redundant code in Figure 4.1. Specifically, the two methods lit and add

in EvalVar are overridden by hand, and they do nothing but call propagate.
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If we have many such methods in old operations, it will be painful for the user to
override all of them. Moreover, they would be duplicated if there were more than
one new operations extending from a same existing operation.

Fortunately, we can abstract those boilerplate code as a template, we call it a lifter.
Every visitor interface has its own lifter, for adding a context parameter to existing
operations. The code below shows lifter for interface IAdd in the previous example.

trait Lifter[-R, E, C] extends IAdd[R, C => E] {

def propagate(c: C): IAdd[R, E]

def lit(x: Int): C => E = propagate(_).lit(x)

def add(l: R, r: R): C => E = propagate(_).add(l, r)

}

It has an abstract type parameter C for context. Operations whose return type is E are
transformed as operations of type C => E. With this lifter, we can easily rewrite the
EvalVar in Figure 4.1 as below.

trait EvalVar[A[-R, _]] extends IVar[Exp[A], Context => Int]

with Lifter[Exp[A], Int, Context] {

def propagate(c: Context): IAdd[Exp[A], Int] =

new EvalAdd[A] {

def apply(x: Exp[A]): Int = EvalVar.this.apply(x)(c)

}

def vr(x: String): (Context) => Int = _ (x)

}

Now we only need to implement the new method vr for variables. All old ones are
handled automatically by extending from Lifter.

Furthermore, lifters have two advantages worth mentioning.

• They are modular. Because they are actually concrete visitors, they can be com-
posed modularly along with corresponding visitor interfaces, and only deal with
new added methods.

• They can be generated. The pattern of lifters is clear, that they declare an abstract
method propagate and delegate all methods to it. Therefore, they can be generated
automatically from visitor interfaces. Later in Section 6.3, we will discuss code
generation including lifters.

4.6.4 Disscussion

Adding contexts is a special case of managing effects. In functional programming,
effects are usually encapsulated by monads [42, 65]. Our context propagation is
an analog to the reader monad if we exclude mutable states. In terms of language
implementation, many typing semantics only involve read-only contexts, and thus



4.7. Case Analysis on ASTs 35

context propagation can be useful. The pattern is able to cover more situations with
mutable states, as demonstrated in the implicit context propagation[30] work.

A more elegant way to resolve the mismatching of return types is to return monadic
values and keep the monad abstract until the final instantiation. With a proper en-
coding of monad, monad transfers [40], and MTL-style type class constraints [32,
26], the previous example could be implemented like below:

trait EvalAdd[A[-R, _], M[_]: Monad] extends IAdd[Exp[A], M[Int]] {...}

trait EvalVar[A[-R, _], M[_]: MonadReader] extends IVar[Exp[A], M[Int]] with

EvalAdd[A, M] {...}

That is actually our initial attempt to address the problem. However, we failed to
build such a pattern due to issues [12, 57] of the current monad encoding using
Scala’s implicits. The issues prevents us from using MTL-style type class constraints
as in Haskell, and it may require language changes to Scala to fix them. We hope
a future release of Scala will support better monad encodings and then makes this
solution possible.

4.7 Case Analysis on ASTs

When implementing operations, it is very common to analyse datatypes (and ASTs)
case by case and process them differently for each case. Pattern matching is a neat so-
lution for such analysis and it is closely related to visitors. Scala has pattern match-
ing on case classes and a sealed modifier to enable the compiler to check exhaustive-
ness.

However, datatypes should not be sealed in the modular setting, thus exhaustive-
ness in pattern matching has to be sacrificed if we use case classes. Moreover, case
classes are deeply rooted in the type system of Scala. If a set of case classes are not
sealed, it cannot be implemented using traditional OO structures in a type safe man-
ner. That would obstruct the migration of code to other OO languages which do not
have such mechanisms.

This section presents our solution for analyzing datatypes with static type safety.
Our approach uses only visitors, thus exhaustiveness is guaranteed. The key idea is
to abstract the top level representation of datatypes and concretize it when needed.

4.7.1 Motivation

To illustrate the issue, we use an example of boolean literals and if-then-else expres-
sions. The visitor interface is written below.
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1 trait Eval[A[-X, Y] <: IBool[X, Y]] extends IBool[Exp[A], Exp[A]] {
2 val isVal: A[Exp[A], Boolean]
3 def tTrue(): Exp[A] = TTrue[A]()
4 def tFalse(): Exp[A] = TFalse[A]()
5 def tIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =
6 if (e1(isVal))
7 // if e1 is true/false then e2/e3, else raise an error
8 ???
9 else

10 TIf(apply(e1), e2, e3)
11 }

FIGURE 4.2: An evaluation operation which requires analysis on a subtree.

trait IBool[-R, E] {

def tTrue(): E

def tFalse(): E

def tIf(e1: R, e2: R, e3: R): E

def apply(e: R): E

}

Three corresponding factory classes TTrue, TFalse and TIf are implemented using the
pattern shown in Section 4.2.3. We omit their code here.

Figure 4.2 shows an incomplete implementation of small step evaluation. The two
cases for boolean literals are trivial. For the if-then-else case, we first check whether
the condition expression is a value. If it has not been reduced to a value, we apply
the evaluation operation on it recursively. Otherwise, we need to perform a case
analysis on it to decide which branch to return, or raise an error if the value is neither
true nor false.

Now let us consider how to fill the blank at line 7. A straightforward way is to use
case classes and pattern matching.

e1 match {

case TTrue() => e2

case TFalse() => e3

case _ => sys.error("Error")

}

As discussed before, the exhaustiveness checking is sacrificed and the use of case
classes makes the implementation heavily relies on the language features of Scala.
The code cannot be written using traditional OO language features with static type
safety. Furthermore, it is awkward to use visitors outside and case classes inside,
regarding the fact they are closely related.

Unfortunately, it is not easy to employ visitors in this situation. The subtree e1 we
want to analyse has an abstract type Exp[A], where A is a subtype of the visitor inter-
face IBool. That makes it impossible to create a visitor and feed it to e1. The following
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code shows our failed attempt.

e1(new A[Exp[A], Exp[A]] { // Illegal, because A is abstract

...

})

The problem is that some parts of A are unknown at the current time. Although they
are irrelevant to the analysis, we still have to specify the corresponding results.

4.7.2 Abstracting the Top Level Interface

The abstraction of visitor interface A is essential to extensibility, but now it blocks
the creation of visitors. The key of our solution is to separate the top level visitor
interface and the interface used in subtrees.

The Exp trait we used previously was defined as following.

trait Exp[-A[-R, _]] {

def apply[E](vis: A[Exp[A], E]): E

}

A datatype Exp[A] is represented by a function which expects visitors of shape A, and
all subtrees have the same type of Exp[A].

However, it is not necessary to use a same interface A in both places. Instead, we can
abstract the interface at the top level as A, and the interface used in subtrees as B.

trait SExp[-A[-R, _], -B[-F, _]] {

def apply[E](alg: A[SExp[B, B], E]): E

}

Compatibility with the original Exp is easily preserved using a type synonym, which
sets both A and B to be the same again.

type Exp[-A[-R, _]] = SExp[A, A]

This encoding requires some small modifications on the factory classes. A new type
parameter needs to be added and the return type needs to be changed. We demon-
strate a modified factory TTrue for the boolean true case as an example.

case class TTrue[A[-X, Y] <: IBool[X, Y], B[-R, _]]() extends SExp[A, B] {

def apply[E](vis: A[Exp[B], E]): E = vis.tTrue()

}

The new representation SExp allows us to specify the type of ASTs more clearly, and
enables type conversions of subtrees. After conversions, the top level interface be-
comes concrete, therefore visitors can be applied.

Figure 4.3 show our implementation of the evaluation operation, using visitors for
analyzing the condition subtree in the if-then-else case. The auxiliary trait Convert
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1 trait Convert[A[-X, Y] <: IBool[X, Y]] {
2 def convert[B[-R, _]](e: SExp[A, B]): Option[SExp[IBool, B]]
3 }
4 trait Eval[A[-X, Y] <: IBool[X, Y]] extends IBool[Exp[A], Exp[A]]

5 with Convert[A] {

6 ...
7 def tIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =
8 if (e1(isVal)) {

9 val c: SExp[IBool, A] =

10 convert(e1).getOrElse(sys.error("Conversion failed"))
11 c(new IBool[Exp[A], Exp[A]] {
12 def tTrue(): Exp[A] = e2
13 def tFalse(): Exp[A] = e3
14 def tIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =
15 sys.error("Not a value")
16 def apply(e: Exp[A]): Exp[A] = sys.error("Impossible")
17 })
18 }
19 ...
20 }

FIGURE 4.3: Type conversion of a subtree and analysis using visitors.

contains a generic method convert. The method converts the type of the parameter
e from SExp[A, B] to SExp[IBool, B] for arbitrary B, as long as A is a subtype of IBool.
Possible failure of the conversion is indicated by the Option type. In the evaluation,
convert is used in line 10. The type of the subtree e1 is converted to SExp[IBool, A].
Therefore, a visitor of type IBool[Exp[A], Exp[A]] can be applied for implementing
the semantics of if-then-else, as demonstrated by line 11 to 17.

4.7.3 Conversion and Chaining

Now the problem becomes how to implement the method for type conversion. If we
use IBool as a language directly, the method will be the injection function of Option.
Except this trivial case, we need to separate new variants and old ones in IBool after
extensions.

We first define an injection operation which just wraps an expression in Option. The
following code shows an implementation for the IBool interface.

trait Inject[A[-X, Y] <: IBool[X, Y], B[-R, _]]

extends IBool[Exp[B], Option[SExp[A, B]]] {

def tTrue(): Option[SExp[A, B]] = Some(TTrue[A, B]())

def tFalse(): Option[SExp[A, B]] = Some(TTrue[A, B]())

def tIf(e1: Exp[B], e2: Exp[B], e3: Exp[B]): Option[SExp[A, B]] =

Some(TIf[A, B](e1, e2, e3))

}
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trait ConvertChain[A[-X, Y] <: IExtBool[X, Y]]
extends Convert[A] with ConvertExt[A] {
def convert[B[-R, _]](e: SExp[A, B]): Option[SExp[IBool, B]] = {

val v = new IExtBool[Exp[B], Option[SExp[IBool, B]]] with Inject[IBool, B] {
def not(e: Exp[B]): Option[SExp[IBool, B]] = None
def apply(e: Exp[B]): Option[SExp[IBool, B]] = sys.error("Impossible")

}
convertExt(e).flatMap(_ (v))

}
}

FIGURE 4.4: An example of chaining conversions.

Then let us consider extensions. For instance, we add the boolean operator "not" to
the language by creating a new visitor interface IExtBool which extends IBool.

trait IExtBool[-R, E] extends IBool[R, E] {

def not(e: R): E

}

A new conversion which restricts the top level interface to be IExtBool is introduced
correspondingly.

trait ConvertExt[A[-X, Y] <: IExtBool[X, Y]] {

def convertExt[B[-R, _]](e: SExp[A, B]): Option[SExp[IExtBool, B]]

}

We have two conversions at present and they have a strong connection, that is. their
results have a subtyping relationship. Consequently, we can use convertExt to im-
plement convert. Figure 4.4 shows such chaining of the two conversions.

Chaining of conversions has advantages comparing with implementing them indi-
vidually.

Firstly, it reduces method instantiations when finalizing operations as objects. For
example, the evaluation of the new interface EvalExt could be implemented using
ConvertChain as following.

trait EvalExt[A[-X, Y] <: IExtBool[X, Y]] extends IExtBool[Exp[A], Exp[A]]

with Eval[A] with ConvertChain[A] {

def not(e: Exp[A]): Exp[A] = ...

}

object EvalExt extends EvalExt[IExtBool] {

val isVal: IExtBool[Exp[IExtBool], Boolean] = ...

def convertExt[B[-R, _]](e: SExp[IExtBool, B]): Option[SExp[IExtBool, B]] =

Some(e)

def apply(e: Exp[IExtBool]): Exp[IExtBool] = e(this)

}
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Both of the two conversions are available in the trait EvalExt, whereas only the new
convertExt needs to be instantiated in the object EvalExt. Even after several exten-
sions, the number of undefined conversion is still one, which is the conversion to
the current interface.

Secondly, it preserves the property of maintaining only direct dependencies between
language components (see Section 6.2). In other words, old conversions are hidden
and dependencies on them are transformed to new ones in extensions. Furthermore,
it enables local code generation for automatically creating conversions, as well as the
injection and chaining utilities. As a result, users do not need to implement any aux-
iliary structures by themselves. Section 6.3 discusses details about code generation.

To summarize, our solution for analyzing ASTs uses pure visitors, with both exten-
sibility and exhaustiveness. It does not depends on any language specific features,
and it brings little overhead to users since conversions and chaining could be au-
tomatized. Even if we wrote them by hands, it would not be hard to obtain correct
implementations because main structures are checked with visitor interfaces.
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Chapter 5

Type-safe Modular Parsing
1

In previous chapters we showed modularization of ASTs and operations. This chap-
ter presents our work for type-safe modular parsing, that allows parsers to evolve
together with abstract syntax. Our approach achieves semantic modularity, there-
fore parsers can be modularly type-checked and separately compiled. In Section 5.1
we introduce the requirements of modular parsing problem. In Section 5.2 we dis-
cuss the choice of parsing techniques. In Section 5.3 we show our approach of type-
safe modular parsing using traditional OO ASTs. To illustrate the generality of the
technique and achieve greater modularity, we show variants of the technique using
Object Algebras in Section 5.4, and modular external visitors in Section 5.5. The last
variant using modular external visitors is used in our framework Gems.

5.1 Modular Parsing Problem

Operations such as evaluation and pretty-printing which process or consume ASTs
are important for implementing programming languages, and we have shown how
to modularize them. However, operations that produce ASTs should not be ignored,
since programmers normally do not write ASTs by hand. Parsing is one such opera-
tion, which is fundamental as the "front end" of interpreters and compilers.

Parsing is the bridge between concrete syntax and abstract syntax of a language. Usu-
ally both of them have clear specifications that implementations must follow. There-
fore, parsing should be incorporated when modularizing languages as components.

We prefer semantic modularity for parsers. To be concrete, we pose modular parsing
problem by listing requirements as follows:

• Extensibility and reusability: When abstract syntax evolves, parsers should
be able to be extended and reused. Identical code should not be duplicated,
and existing code should not be modified.

1As stated in the acknowledgements, this chapter describes joint work [70] with Haoyuan Zhang.
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• Separate compilation and type-checking: Parsers should be modularly type-
checked and separately compiled. The parsing technique is not allowed to
access source code, grammar definition, or other textual content of existing
parsers.

• Independent from abstract syntax: Having multiple parsers for one same set
of abstract syntax should be supported. Thus, the boundary of concrete and
abstract syntax is clear.

Futhermore, if ASTs can be composed in a independent, non-linear manner, corre-
sponding parsers should also be able to do so.

These requirements rule out nearly all syntactically modular approaches for exten-
sible parsing [25, 24, 58], because global generation and analysis are forbidden. To
fulfill the requirements, we need to solve two major challenges.

The first challenge is how to choose proper parsing techniques. In Section 5.2, we
will discuss it in details. The second challenge is how to define, extend and compose
parsers. We will show general approaches in Section 5.3, and demonstrate variants
in Section 5.4 and 5.5, since it varies on different representations of AST.

5.2 Choose Parsing Techniques for Modularity

Although a lot of parsing techniques and algorithms have been developed, they
are usually not designed with concern for modularity and extensibility. Especially,
parser generators such as the famous tool Yacc [31] have difficulties in extending
parsers.

One reason is that parser generators often require full information about the syntax
for generating parsers. Once the syntax is changed, even a little, the global genera-
tion must be performed again. Futhermore, in practice we usually have source code
fragments attached with the syntax, as actions for building ASTs during parsing.
That code is only glued and type-checked after the generation, thus static type safety
is not assured. Such deficiencies are against the requirements of the modular parsing
problem.

As discussed in Section 2.5, parser combinators are closer to the host language and
more flexible regarding composition, that makes them quite suitable for modular
parsing. Parsers are naturally extensible, since they can be combined and manip-
ulated by programmers. Additionally, they can be statically and separately type-
checked, because the code are written directly in the host language rather than gen-
erated by tools.
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5.2.1 Challenges with Parser Combinators

However, even with parser combinators, there are still several difficulties towards
modular setting. Ordinary parser combinator libraries including Haskell’s Parsec [39]
do not fulfill modularity requirements, thus cannot be directly adopted. In particu-
lar, left-recursion, priority of alternatives, and backtracking are three major blocking
issues. Those issues are discussed next.

Left-recursion Most parser combinator libraries employ the top-down, recursive
descent parsing strategy, which cannot support left-recursive grammars directly. We
use the example of literals and addition expressions again, the syntax is below.

<exp> ::= literal

| <exp> "+" <exp>

Notice that the addition branch in the syntax is left-recursive. The following code
shows parsers written by directly following the syntax, using Parsec.

parseExp = parseAdd <|> parseLit

parseAdd = do

e <- parseExp

...

This implementation will get into an infinite loop, because when running the parser,
parseExp and parseAdd call each other and never stop.

A common solution for this issue is to transform the syntax into an equivalent but
not left-recursive one. This is called left-recursion elimination. For our example, a
transformed syntax is shown below.

<exp> ::= literal <exp'>

<exp'> ::= empty

| "+" <exp'>

After left-recursion elimination, the structure of grammar is changed, as well as its
corresponding parser. Since the access to textual content of existing components is
forbidden, it is very complicated to analyse and rewrite the grammar when doing
extensions. Reusing the existing compiled parsing code is also hard after the trans-
formation.

A workaround is anticipating that every non-terminal is left-recursive, regardless its
current productions, at the very beginning of development. However, this is quite
cumbersome and overkill, because it unnecessarily pollutes syntax representation
and parser implementation.

Moreover, left-recursion elimination requires extra bookkeeping to retain the origi-
nal parsing trees. Actions for building ASTs are often tied closely with parsing trees,
hence it is quite hard to reuse them.
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Priority of Alternatives Considering the alternative definitions (interpreted as "or")
in syntax, the order or priority of them should be managed carefully in practice. As
an example, we could have two alternative branches and one is a prefix of the other.

<exp> ::= literal

| literal "+" <exp>

Following the syntax, its parser is possibly written as:

parseExp = parseLit <|> parseAdd

parseAdd = do

x <- parseLit

...

However, a subtle issue is that Parsec’s alternative combinator <|> will try all the
alternative parsers in the given order, and return the first successful parsing result,
even if it only consumes a prefix of the input and subsequent parsers may parse the
whole input. Specifically, parseExp parses input "1 + 2" as 1, because the parseLit

successfully consumes 1 hence it will not try the next branch.

Regarding extensibility, the correctness of parsers heavily depends on the strategy
of alternative combinator. One approach to resolve the problem in most cases is to
use a longest match alternative combinator, which selects the longest parsing result
from all successful ones. For more complex cases, a prioritized match alternative com-
binator could be employed, and every alternative branch should be attached with
a comparable priority value provided by the user. Therefore, the order of selecting
results is explicitly under control.

Backtracking Backtracking is another blocking issue related with alternative pro-
cessing. Among all the alternative branches, if any two of them share a common
prefix, the parser must backtrack to obtain the correct result.

<stmt> ::= "import" ident "from" ident

| "import" ident "as" ident

Considering the syntax above, if the first "import-from" alternative fails after con-
suming the "import" keyword and the identifier, we must backtrack to the beginning
and start from "import" again to try the second alternative.

Given the full syntax, we can decide when to backtrack. Usually we only do so when
necessary to achieve better performance. For example, backtracking is off by default
in Parsec and programmers need to use a try function to backtrack explicitly. How-
ever, in the modular setting we must always backtrack, because we do not know
what will be added in the future. That results in the worst-case exponential time
complexity, and thus is not satisfying.
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1 import scala.util.parsing.combinator.PackratParsers
2 import scala.util.parsing.combinator.syntactical.StandardTokenParsers
3

4 object Parser extends StandardTokenParsers with PackratParsers {
5 lexical.delimiters += ("(", ")", "+")
6

7 lazy val pLit: PackratParser[Int] = numericLit ^^ { _.toInt }
8 lazy val pExp: PackratParser[Int] =
9 pLit |||

10 "(" ~> pExp <~ ")" |||
11 pExp ~ ("+" ~> pExp) ^^ { case x ~ y => x + y }
12

13 def parse(input: String): Int =
14 phrase(pExp)(new lexical.Scanner(input)).get
15 }

FIGURE 5.1: An example of using Packrat parsing in Scala.

5.2.2 Packrat Parsing

To resolve aforementioned issues in modular parsing, we need more powerful tech-
niques than ordinary parser combinators. Packrat parsing [19] is a good choice. It
uses a memoization table to store the results of applying each parser at each posi-
tion of the input, so that repeated parsing is eliminated. As a result, full backtracking
does not cost exponential time but only linear time for non-left-recursive grammars.
Futhermore, Packrat parsing can be extended to support both direct and indirect
left-recursive grammars [68]. It is therefore very suitable as the underlying parsing
technique for building modular parsers.

In Section 2.5 we introduced Scala’s parser combinator library. The library includes
Packrat parsing utilities with direct left recursion support, and the longest match
alternative combinator. In Figure 2.4, the parser is not written in a left-recursive
manner. We rewrite it using Packrat parsing and the longest match alternative com-
binator in Figure 5.1.

In the code, we just change the return type to PackratParser, which is inherited from
the PackratParsers trait. Then the parser pExp can be written in a left-recursive way.
From line 9 to line 11, the three alternative branches are composed by the longest
match combinator |||, which guarantees all of them will be applied. Readers may
refer to Table 2.1 for description of parser combinators.

5.3 Modular Parsing for OO ASTs

With Packrat parsing as a nice underlying parsing technique, now we can focus
on the modularity issue itself. A starting point is to use traditional object-oriented
ASTs, which often consist of an abstract class as the datatype, and several subclasses
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import scala.util.parsing.combinator.PackratParsers
import scala.util.parsing.combinator.syntactical.StandardTokenParsers

trait BaseParser extends StandardTokenParsers with PackratParsers {
def parse[T](parser: PackratParser[T])(input: String): T =

phrase(parser)(new lexical.Scanner(input)).get
}

FIGURE 5.2: An auxiliary parser trait for code demonstration.

as different data variants. Adding new data variants is easy using OO ASTs and
semantic modularity is preserved naturally.

We will use a simple example in this and the following sections, that extending a lan-
guage of literals and addition expressions by adding variables as a new data variant.
The syntax is shown below.

<exp> ::= literal

| <exp> "+" <exp>

| ident

Initial ASTs and Parser It is straightforward to write corresponding classes for
ASTs before the extension. We add a simple operation print to them.

trait Exp {

def print: String

}

case class Lit(x: Int) extends Exp {

def print: String = x.toString

}

case class Add(l: Exp, r: Exp) extends Exp {

def print: String = s"${l.print} + ${r.print}"

}

For better demonstration of parsing code, we define an auxiliary trait BaseParser in
Figure 5.2. The parser before extension is implemented as follow.

trait Parser extends BaseParser {

lexical.delimiters += ("(", ")", "+")

lazy val pLit: PackratParser[Exp] =

numericLit ^^ { x => Lit(x.toInt) }

lazy val pAdd: PackratParser[Exp] =

pExp ~ ("+" ~> pExp) ^^ { case l ~ r => Add(l, r) }

lazy val pExp: PackratParser[Exp] =

pLit ||| pAdd ||| "(" ~> pExp <~ ")"

}
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Extending the ASTs and Parser Extending the abstract syntax only requires adding
a new class which implements the Exp interface.

case class Var(x: String) extends Exp {

def print: String = x

}

Considering extension of the parser, inheriting from the old one is essential to reuse
code. An attempt of writing the new parser is shown below. A new pVar is added
for variables, and expressions are parsed by pExp ||| pVar.

trait NewParser extends Parser {

lazy val pVar: PackratParser[Exp] = ident ^^ Var

// Wrong

lazy val pNewExp: PackratParser[Exp] = pExp ||| pVar

}

However, this attempt fails to parse valid input like "1 + x". The reason is that the
old parser contains recursive calls of pExp for parsing sub-expressions, but those re-
cursive calls are not updated to include the new added pVar.

Therefore, we must override the inherited pExp to incorporate pVar. This is the key
point in our approach of writing modular parsers.

trait NewParser extends Parser {

lazy val pVar: PackratParser[Exp] = ident ^^ Var

// Correct but cannot compile

override lazy val pExp: PackratParser[Exp] = super.pExp ||| pVar

}

Because of dynamic dispatch, all recursive calls of pExp in the inherited code are
properly updated. However, as remarked in the comment, there is a subtle issue
of Scala that blocks the code to be compiled. Scala’s super keyword cannot refer to
fields that declared by the val keyword, but the parser combinator library requires
the use of lazy val for left recursion. The incompatibility of super and val is a bug of
Scala for years [53], and it has not been fixed for unknown reasons.

Explicit Name Resolution The problem is that the old field is shadowed by the
new one when overriding it. A workaround is to make an explicit copy of the field
with a distinct name, thus it can be referred unambiguously. The initial parser could
be written as below.
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trait Parser extends BaseParser {

lexical.delimiters += ("(", ")", "+")

lazy val pLit: PackratParser[Exp] = numericLit ^^ { x => Lit(x.toInt) }

lazy val pLitAdd: PackratParser[Exp] =

pLit |||

"(" ~> pExp <~ ")" |||

pExp ~ ("+" ~> pExp) ^^ { case l ~ r => Add(l, r) }

lazy val pExp: PackratParser[Exp] = pLitAdd

}

The pLitAdd and pExp are identical. That allows us to use pLitAdd to represent pExp in
the extended parser.

trait NewParser extends Parser {

lazy val pVar: PackratParser[Exp] = ident ^^ Var

lazy val pLitAddVar: PackratParser[Exp] = pLitAdd ||| pVar

override lazy val pExp: PackratParser[Exp] = pLitAddVar

}

In the new extended parser, a new name pLitAddVar is introduced as a copy of pExp,
so that we are able to use it afterwards in the same manner.

This workaround is lightweight, however it still pollutes the name space. The prob-
lem is not fundamental but quite specific to Scala and the parsing library. It could be
avoided in other languages which have better support for the "super" reference.

Independent Extensibility Instead of extending parsers linearly, we can compose
several parsers at the same time using multiple inheritance to achieve independent
extensibility.

If we ignore the aforementioned name shadowing issue, two independent parsers
from LanguageA and LanguageB can be composed as below.

trait LanguageA {...}

trait LanguageB {...}

trait LanguageC extends LanguageA with LanguageB {

override val pExp = super[LanguageA].pExp ||| super[LanguageB].pExp

}

5.4 Modular Parsing with Object Algebras

In Section 2.4, we showed that Object Algebras are a lightweight solution to the ex-
pression problem. Comparing with OO ASTs, Object Algebras bring extensibility
to not only data variants but also operations. The modular parsing pattern demon-
strated in the last section can be adopted to work with Object Algebras.
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Initial Parser Using the same example in the last section, we write Object Algebra
interface of the initial language as below.

trait IAdd[E] {

def lit(x: Int): E

def add(l: E, r: E): E

}

The corresponding parser contains a field of the Object Algebra interface. Auxiliary
trait BaseParser is defined in Figure 5.2.

trait Parser[E] extends BaseParser {

val alg: IAdd[E]

lexical.delimiters += ("(", ")", "+")

lazy val pLit: PackratParser[E] =

numericLit ^^ { x => alg.lit(x.toInt) }

lazy val pAdd: PackratParser[E] =

pExp ~ ("+" ~> pExp) ^^ { case l ~ r => alg.add(l, r) }

lazy val pLitAdd: PackratParser[E] =

pLit ||| pAdd ||| "(" ~> pExp <~ ")"

lazy val pExp: PackratParser[E] = pLitAdd

}

In the code above, the alg field provides methods for parsers to build results. It is at
a covariant position, thus can be properly overridden and refined afterwards.

Extending the Parser Considering the extension of adding variables, the Object
Algebra interface is extended in the standard way.

trait IVar[E] extends IAdd[E] {

def vr(x: String): E

}

The parser is extended similarly as before. The type of the Object Algebra field alg

is refined to be IVar[E], so that the method vr can be used for the variable case.

trait NewParser[E] extends Parser[E] {

override val alg: IVar[E]

lazy val pVar: PackratParser[E] = ident ^^ alg.vr

lazy val pLitAddVar: PackratParser[E] = pLitAdd ||| pVar

override lazy val pExp: PackratParser[E] = pLitAddVar

}

Independent extensibility of parsers is supported using multiple inheritance, as dis-
cussed in the last section.

A Deficiency Object Algebras are more flexible that traditional OO ASTs. How-
ever, a deficiency is that we do not have a concrete representation of ASTs. That
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makes parsing and operations entangled in our examples, therefore each opera-
tion performs an reparsing of the input. For example, client code using NewParser

is shown below. It actually involves two processes: parsing from input and apply-
ing the Print operation.

trait Print extends IVar[String] {...}

val parser = new NewParser[String] {

val alg: IVar[String] = new Print {}

}

val s: String = parser.parse(parser.pExp)("1 + 2")

The result is a string rather than an AST. If we want to apply another operation, the
parser must be created again to instantiate a different alg field.

This is a known problem [24]. Existing solutions include merging operations to-
gether [52], and using reflection to record the structure [24]. Neither one is com-
pletely satisfying in terms of semantic modularity. To actually solve the problem,
we need a concrete representation of ASTs such as modular external visitors.

5.5 Modular Parsing for Visitor ASTs

In Chapter 4, we discussed modular external visitors. They are heavier than Object
Algebras with regard to encoding, but provide more functionality, including dif-
ferent type identities, subtyping relationships, and explicit traversal control. Most
importantly, modular visitors have a concrete representation of ASTs which can be
naturally used as parsing results.

We continue using the previous example for demonstration.

Initial ASTs and Parser We write the visitor interface for the initial language as
below. Readers may refer to Section 4.2 for details of modular external visitors.

trait IAdd[-R, E] {

def lit(x: Int): E

def add(l: R, r: R): E

def apply(x: R): E

}

Two factories Lit and Add are defined correspondingly for building concrete ASTs.

case class Lit[A[-X, Y] <: IAdd[X, Y]](x: Int) extends Exp[A] {

def apply[E](vis: A[Exp[A], E]): E = vis.lit(x)

}

case class Add[A[-X, Y] <: IAdd[X, Y]](e1: Exp[A], e2: Exp[A]) extends Exp[A] {

def apply[E](vis: A[Exp[A], E]): E = vis.add(e1, e2)

}
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The parser is defined as follow using the auxiliary trait BaseParser in Figure 5.2.

trait Parser[A[-X, Y] <: IAdd[X, Y]] extends BaseParser {

lexical.delimiters += ("(", ")", "+")

lazy val pLit: PackratParser[Exp[A]] =

numericLit ^^ { x => Lit[A](x.toInt) }

lazy val pAdd: PackratParser[Exp[A]] =

pExp ~ ("+" ~> pExp) ^^ { case l ~ r => Add(l, r) }

lazy val pLitAdd: PackratParser[Exp[A]] =

pLit ||| "(" ~> pExp <~ ")" ||| pAdd

lazy val pExp: PackratParser[Exp[A]] = pLitAdd

}

The parser trait has a type parameter A which is restricted to be a subtype of IAdd.
That makes Exp[A] to be a supertype of Exp[IAdd], therefore Lit and Add are valid data
variants as parsing results.

Extending the ASTs and Parser We first extend the visitor interface and add a new
factory class for the new case.

trait IVar[-R, E] extends IAdd[R, E] {

def vr(x: String): E

}

case class Var[A[-X, Y] <: IVar[X, Y]](x: String) extends Exp[A] {

def apply[E](vis: A[Exp[A], E]): E = vis.vr(x)

}

The new parser is written as below. It is very similar to the one in Section 5.3.

trait NewParser[A[-X, Y] <: IVar[X, Y]] extends Parser[A] {

lazy val pVar: PackratParser[Exp[A]] = ident ^^ Var[A]

lazy val pLitAddVar: PackratParser[Exp[A]] = pLitAdd ||| pVar

override lazy val pExp: PackratParser[Exp[A]] = pLitAddVar

}

In order to include the new case, the upper bound of type parameter A is refined to
the new interface IVar.

Apart from the type parameter, the use of modular external visitors does not intro-
duce any complexity to the parser comparing with OO ASTs. Parsing results have
a concrete AST representation, therefore they can be used flexibly and following
operations are independent of parsing. The combination of semantically modular
parsing and techniques presented in Chapter 4 enables us to have a fully extensible
framework of language implementation.





53

Chapter 6

Modular Language Components

In Chapter 3 we showed examples of using our framework Gems to modularize
languages. Such modularization enables us to abstract features from languages as
components and reuse them. This chapter discusses more details about language
components. In Section 6.1 we introduce the idea of packing related structures to-
gether to abstract common language features. In Section 6.2 we show how to com-
pose language components, considering only direct dependencies among them. In
Section 6.3 we use metaprogramming to automatically generate boilerplate code in
language components so that users do not bother to write them by hand.

6.1 Language Components

The modularization techniques we demonstrated in previous chapters enable us to
abstract language features as reuseable, independent components. For example,
most programming languages have boolean literals, logical operators, and if-then-
else expressions. They can be packed into a component. When a language includes
the component, its syntax is extended to incorporate those structures and it imme-
diately knows how to parse, traverse, and manipulate them.

It can be very useful for rapid development of a Domain Specific Language (DSL),
because we do not need to design and implement all of the language from scratch.
Instead we can reuse existing language components. Futhermore, all techniques we
introduced support semantic modularity, that guarantees type safety and efficiency
of language composition.

A language component may contain the following structures.

• Abstract syntax: Abstract syntax structures are the core of a language compo-
nent. We use modular external visitors (Chapter 4) to represent them.

• Parsers: Corresponding parsers are often needed to build ASTs. We use the
modular parsing pattern described in Chapter 5 to modularize them.
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object Common {
trait SExp[-A[-R, _], -B[-F, _]] {
def apply[E](vis: A[SExp[B, B], E]): E

}
type Exp[-A[-R, _]] = SExp[A, A]
trait BaseParser extends StandardTokenParsers with PackratParsers {

def parse[T](parser: PackratParser[T])(input: String): T =
phrase(parser)(new lexical.Scanner(input)).get

}
trait Default[T] {
def default: T

}
}

FIGURE 6.1: Auxiliary structures shared in language components.

package component.bool
...
trait Term[-R, E] {
def tmTrue(): E
def tmFalse(): E
def tmIf(e1: R, e2: R, e3: R): E
def apply(e: R): E

}
case class TmTrue[A[-X, Y] <: Term[X, Y], B[-R, _]]() extends SExp[A, B] {
def apply[E](vis: A[Exp[B], E]): E = vis.tmTrue()

}
case class TmFalse[A[-X, Y] <: Term[X, Y], B[-R, _]]() extends SExp[A, B] {

def apply[E](vis: A[Exp[B], E]): E = vis.tmFalse()
}
case class TmIf[A[-X, Y] <: Term[X, Y], B[-R, _]](e1: Exp[B], e2: Exp[B], e3:

Exp[B]) extends SExp[A, B] {
def apply[E](vis: A[Exp[B], E]): E = vis.tmIf(e1, e2, e3)

}

FIGURE 6.2: Abstract syntax and factories in a language component.

• Operations: Concrete operations such as evaluation and pretty-printing can
be implemented by modular external visitors as well.

• Traversal templates: Operations often involve traversal of ASTs. The Shy [71]
framework proposed several traversal patterns to eliminate boilerplate code.
They could be incorporated for implementing operations.

• Other utilities: Other utilities can be included as needed. Especially, lifters [30]
for context propagation (Section 4.6), and type conversions (Section 4.7) are
useful in practice.

For instance, we show a simple language component consisting of boolean literals
and if-then-else expressions. In Figure 6.1 we define some auxiliary structures which
are shared in language components. The abstract syntax and factories are defined in
Figure 6.2.
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package component.bool
...
trait Query[-R, E] extends Term[R, E] with Default[E] {
def tmTrue(): E = default
def tmFalse(): E = default
def tmIf(e1: R, e2: R, e3: R): E = default

}
trait Transform[A[-X, Y] <: Term[X, Y]] extends Term[Exp[A], Exp[A]] {

def tmTrue(): Exp[A] = TmTrue[A, A]()
def tmFalse(): Exp[A] = TmFalse[A, A]()
def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =

TmIf[A, A](apply(e1), apply(e2), apply(e3))
}
trait Lifter[-R, E, C] extends Term[R, C => E] {
def propagate(c: C): Term[R, E]
def tmTrue(): C => E = propagate(_).tmTrue()
def tmFalse(): C => E = propagate(_).tmFalse()
def tmIf(e1: R, e2: R, e3: R): C => E = propagate(_).tmIf(e1, e2, e3)

}
trait Inject[A[-X, Y] <: Term[X, Y], B[-R, _]]
extends Term[Exp[B], Option[SExp[A, B]]] {
def tmTrue(): Option[SExp[A, B]] = Some(TmTrue[A, B]())
def tmFalse(): Option[SExp[A, B]] = Some(TmFalse[A, B]())
def tmIf(e1: Exp[B], e2: Exp[B], e3: Exp[B]): Option[SExp[A, B]] =
Some(TmIf[A, B](e1, e2, e3))

}
trait Convert[A[-X, Y] <: Term[X, Y]] {
def convertBool[B[-R, _]](e: SExp[A, B]): Option[SExp[Term, B]]

}

FIGURE 6.3: Traversal templates, lifter, and utilities for type conversion
in a language component.

package component.bool
...
trait Parse[A[-X, Y] <: Term[X, Y]] extends BaseParser {
lexical.reserved += ("true", "false", "if", "then", "else")
lexical.delimiters += ("(", ")")
private lazy val pTrue = "true" ^^^ TmTrue[A, A]()
private lazy val pFalse = "false" ^^^ TmFalse[A, A]()
private lazy val pIf =

("if" ~> pE) ~ ("then" ~> pE) ~ ("else" ~> pE) ^^
{ case e1 ~ e2 ~ e3 => TmIf[A, A](e1, e2, e3) }

lazy val pBoolE: PackratParser[Exp[A]] =
pTrue ||| pFalse ||| pIf ||| "(" ~> pE <~ ")"

lazy val pE: PackratParser[Exp[A]] = pBoolE
}

FIGURE 6.4: Parser in a language component.
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package component.bool
...
trait Eval[A[-X, Y] <: Term[X, Y]] extends Term[Exp[A], Exp[A]]
with Convert[A] {
val isVal: A[Exp[A], Boolean]
def tmTrue(): Exp[A] = TmTrue[A, A]()
def tmFalse(): Exp[A] = TmFalse[A, A]()
def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =
if (e1(isVal)) {
val c = convertBool(e1).getOrElse(sys.error("Conversion failed"))
c(new Term[Exp[A], Exp[A]] {
def tmTrue(): Exp[A] = e2
def tmFalse(): Exp[A] = e3
def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] =

sys.error("Not a value")
def apply(e: Exp[A]): Exp[A] = sys.error("impossible")

})
}
else
TmIf[A, A](apply(e1), e2, e3)

}
trait IsVal[A[-R, _]] extends Query[Exp[A], Boolean] {
def default: Boolean = false
override def tmTrue(): Boolean = true
override def tmFalse(): Boolean = true

}
trait Print[A[-R, _]] extends Term[Exp[A], String] {
def tmTrue(): String = "true"
def tmFalse(): String = "false"
def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): String =
s"if (${apply(e1)}) then (${apply(e2)}) else (${apply(e3)})"

}

FIGURE 6.5: Operations in a language component.
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In Figure 6.3, we define traversal templates, lifter, and utilities for type conversion.
The Query traversal template is for operations that have a fallback value, so that we
can only focus on interesting cases and all the other cases are automatically set to
the default value. The Transform template is for operations that transform ASTs for
certain cases. Similarly, only non-trivial cases need to be implemented, and when
it encounters other cases it will simply copy the structure. Readers may refer to the
original work of Shy framework [71] for more details about traversal templates.

A parser is defined in Figure 6.4. Operations including evaluation and printing are
defined in Figure 6.5. Finally, we group all the elements together in a Scala package,
namely component.bool.

6.2 Composition and Direct Dependencies

Our language components fully support three forms of language composition: lan-
guage extension, language unification, and extension composition [15]. By defini-
tion, we also have language restriction since "language extension subsumes lan-
guage restriction" [15]. However, their definition is just a weak form that uses a
restriction phrase to narrow the syntax. Strong language restriction that actually
drops syntax structures is not supported, because we cannot delete a method from
the visitor interfaces.

In other words, we can extend a language linearly by adding components to it, and
we can also combine independent extensions and languages together. We have a
uniform representation of languages and extensions, so that we usually do not need
to distinguish them.

For example, suppose we have a package named component.bool which contains all
structures from Figure 6.2 to 6.5, and another package named component.utlc which
also has all the structures representing untyped lambda calculus. We can compose
them together to build a small language utlcbool, as shown in Figure 6.6.

Most of the code glue corresponding structures together using straightforward mul-
tiple inheritance. In some structures such as parsers, we need more modifications.

Direct Dependencies and Factories The composition of language components in-
troduces dependencies between them. Dependency relationships can be described
as an acyclic graph. For example, Figure 6.7 shows dependencies after composing
utlcbool and another component X to build language Y.

We can further divide dependencies into two categories: direct and indirect depen-
dencies. For the language Y, it has indirect dependencies on bool and utlc, and a
direct dependency on X. If possible, we only want to consider direct dependencies
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1 package component.utlcbool
2 ...
3 import component.{bool, utlc}
4

5 trait Term[-R, E] extends bool.Term[R, E] with utlc.Term[R, E]
6

7 trait Query[-R, E] extends Term[R, E]
8 with bool.Query[R, E] with utlc.Query[R, E]
9 trait Transform[A[-X, Y] <: Term[X, Y]] extends Term[Exp[A], Exp[A]]
10 with bool.Transform[A] with utlc.Transform[A]
11 trait Lifter[-R, E, C] extends Term[R, C => E]
12 with bool.Lifter[R, E, C] with utlc.Lifter[R, E, C] {
13 override def propagate(c: C): Term[R, E]
14 }
15 trait Inject[A[-X, Y] <: Term[X, Y], B[-R, _]]
16 extends Term[Exp[B], Option[SExp[A, B]]]
17 with bool.Inject[A, B] with utlc.Inject[A, B]
18 trait Convert[A[-X, Y] <: Term[X, Y]] {
19 def convertUtlcbool[B[-R, _]](e: SExp[A, B]): Option[SExp[Term, B]]
20 }
21 trait ConvertChainBool[A[-X, Y] <: Term[X, Y]]
22 extends bool.Convert[A] with Convert[A] {
23 def convertBool[B[-X, Y]](e: SExp[A, B]): Option[SExp[bool.Term, B]] = ...
24 }
25 trait ConvertChainUtlc[A[-X, Y] <: Term[X, Y]]
26 extends utlc.Convert[A] with Convert[A] {
27 def convertUtlc[B[-X, Y]](e: SExp[A, B]): Option[SExp[utlc.Term, B]] = ...
28 }
29

30 trait Eval[A[-X, Y] <: Term[X, Y]] extends Term[Exp[A], Exp[A]]
31 with bool.Eval[A] with utlc.Eval[A] with ConvertChainBool[A]
32 trait IsVal[A[-R, _]] extends Query[Exp[A], Boolean]
33 with bool.IsVal[A] with utlc.IsVal[A]
34 trait Print[A[-R, _]] extends Term[Exp[A], String]
35 with bool.Print[A] with utlc.Print[A]
36

37 trait Parse[A[-X, Y] <: Term[X, Y]] extends bool.Parse[A] with utlc.Parse[A] {
38 ...
39 }

FIGURE 6.6: Composition of two language components.
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bool

utlcbool

Y

utlc

X

FIGURE 6.7: Direct (solid arrow) and indirect (dashed arrow) dependencies.

package component.bool
...
trait Factory {
type TmTrue[A[-X, Y] <: Term[X, Y], B[-R, _]] = component.bool.TmTrue[A, B]
val TmTrue = component.bool.TmTrue
type TmFalse[A[-X, Y] <: Term[X, Y], B[-R, _]] = component.bool.TmFalse[A, B]
val TmFalse = component.bool.TmFalse
type TmIf[A[-X, Y] <: Term[X, Y], B[-R, _]] = component.bool.TmIf[A, B]
val TmIf = component.bool.TmIf

}
object Factory extends Factory

FIGURE 6.8: A wrapper for factory classes defined in Figure 6.2.

in compositions, because they behave like abstract interfaces hiding the details of
indirect ones.

Using the pattern demonstrated in Figure 6.6, all the structures can be composed
considering only direct dependencies except factories. Because Scala does not have
a mechanism to export imported classes, it is not straightforward to pack factory
classes in a composition.

Our approach is to wrap their references in traits. Figure 6.8 shows a wrapper trait
containing factory classes defined in Figure 6.2, with an object for instantiation. The
reason we do not put the classes in the trait but use type synonyms and fields to
refer them, is to avoid creation of new type identities by Scala’s path-dependent
types. Otherwise, component.bool.Factory.TmTrue would be a totally different type
with component.utlcbool.Factory.TmTrue, thus the ASTs would not be reuseable.

In utlcbool, factories from bool and utlc can be composed as shown below. All
classes are inherited in the trait Factory and they can be referred under the object
Factory.

package component.utlcbool

...

trait Factory extends bool.Factory with utlc.Factory

object Factory extends Factory
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Visitor interface:

@Lang("〈Name〉")
trait 〈Interface〉[-〈R〉, 〈E〉] extends 〈Parent〉[〈R〉, 〈E〉] {

def 〈method〉(〈x〉: 〈T〉): E
}

Meta-variables:
〈Name〉 The component name
〈Interface〉 The interface name
〈Parent〉 Name iterating parent interfaces.
〈OtherParents〉 Name iterating interfaces of the other parents for a 〈Parent〉.
〈PComponent〉 The component name of a 〈Parent〉
〈method〉 Name iterating methods, the first letter is in lower case
〈Method〉 〈method〉with the first letter capitalized
〈R〉 and 〈E〉 Type parameters
〈x〉 and 〈T〉 Names iterating parameters and their types of a method

Transformation for every pair of parameter and type:

J〈T〉KA Replace 〈R〉 in 〈T〉 by Exp[A]

J〈T〉KB Replace 〈R〉 in 〈T〉 by Exp[B]

L〈x〉M When 〈R〉 is replaced, change the corresponding expression e to apply(e)

FIGURE 6.9: Meta-variables and notations for code generation (simplified).

Now language components can be used only considering direct dependencies, and
consistency of types is preserved.

6.3 Eliminating Boilerplate by Metaprogramming

While the operations and parsers in a language component are customized by the
user, many other structures have a fixed correspondence with the visitor interface.
Specifically, the factory classes in Figure 6.2, their wrapper in Figure 6.8, and the
traversal templates and lifter in Figure 6.3 are derived from the visitor interface in a
straightforward way. The corresponding glue code in compositions, such as line 7
to 28 in Figure 6.6, are also closely related with the inheritance of interfaces.

The visitor interface itself is enough to represent the abstract syntax in a language
component. That allows us to generate aforementioned boilerplate code automati-
cally by metaprogramming. In particular, we employ Scala’s macro annotation [9]
and Scalameta toolkit [55] to annotate visitor interfaces, and then generate compan-
ion objects containing those boilerplate code. That is the metaprogramming library
part of our framework Gems.

Figure 6.9 shows meta-variables and notations for demonstration. Meta-variables
are in angle brackets, and the overline means multiple appearances. Figure 6.10
presents template of generated companion object, which contains boilerplate code
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of factories, traversal templates, and lifter. For readability, the demonstration is sim-
plified by using single-sorted abstract syntax, although our actual implementation
is powerful enough to handle multiple sorts.

The visitor interface may inherit from other parent interfaces, representing direct
dependencies between components. As discussed in Section 6.2, we only need to
consider these direct dependencies for composing structures. Therefore, our code
generation requires only local and syntactical information of interface inheritance,
rather than global and semantical analysis deeply into existing components.

In client code, the user only needs to annotate macro @Lang on the visitor interface
with the name of component, then all generated structures are accessible via the
companion object.

For example, if we annotate a Term interface as below, an operation IsVal could use
the query template by extending Term.Query.

@Lang("name")

trait Term[-R, E] extends ... {...}

trait IsVal[A[-R, _]] extends Term. Query[Exp[A], Boolean] with ... {...}

If we annotate @Lang("bool") to the Term interface in Figure 6.2, the metaprogram-
ming library of Gems will generate a companion object in Figure 6.11. As we can
see, the meta-variables are instantiated by corresponding names, and then we have
factory classes, traversal templates, lifter, and conversion utilities for free.

Code generation is not limited to the boilerplate structures we listed, and the user
could adjust the annotation processor to incorporate more structures as needed.
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object 〈Interface〉 {

case class 〈Method〉[A[-X, Y] <: 〈Interface〉[X, Y], B[-R, _]](〈x〉: J〈T〉K)
extends SExp[A, B] {

def apply[E](vis: A[Exp[B], E]): E = vis.〈method〉(〈x〉)
}

trait Factory extends 〈Parent〉.Factory {
type 〈Method〉[A[-X, Y] <: 〈Interface〉[X, Y], B[-R, _]] =
〈Interface〉.〈Method〉[A, B]

val 〈Method〉 = 〈Interface〉.〈Method〉
}
object Factory extends Factory

trait QueryThis[-〈R〉, E] extends 〈Interface〉[〈R〉, E] with Default[E] {

def 〈method〉(〈x〉: 〈T〉): E = default
}
trait Query[-〈R〉, E] extends 〈Interface〉[〈R〉, E]

with 〈Parent〉.Query[〈R〉, E] with QueryThis[〈R〉, E]

trait Transform[A[-X, Y] <: 〈Interface〉[X, Y]]

extends 〈Interface〉[Exp[A], Exp[A]] with 〈Parent〉.Transform[A] {

def 〈method〉(〈x〉: J〈T〉KA): Exp[A] = 〈Method〉[A, A](L〈x〉M)
}

trait Lifter[-〈R〉, E, C] extends 〈Interface〉[〈R〉, C => E]

with 〈Parent〉.Lifter[〈R〉, E, C] {
def propagate(c: C): 〈Interface〉[〈R〉, E]

def 〈method〉(〈x〉: 〈T〉): C => E = propagate(_).〈method〉(〈x〉)
}

trait Inject[A[-X, Y] <: 〈Interface〉[X, Y], B[-R, _]]
extends 〈Interface〉[Exp[B], Option[SExp[A, B]]] {

def 〈method〉(〈x〉: J〈T〉KB): Option[SExp[A, B]] = Some(〈Method〉[A, B](〈x〉))
}

trait Convert[A[-X, Y] <: 〈Interface〉[X, Y]] {
def convert〈Name〉[B[-R, _]](e: SExp[A, B]): Option[SExp[〈Interface〉, B]]

}

trait ConvertChain〈PComponent〉[A[-X, Y] <: 〈Interface〉[X, Y]]
extends 〈Parent〉.Convert[A] with Convert[A] {
def convertBool[B[-X, Y]](e: SExp[A, B]): Option[SExp[〈Parent〉, B]] = {
val t = new 〈Interface〉[Exp[B], Option[SExp[〈Parent〉, B]]]
with 〈Parent〉.Inject[〈Parent〉, B]
with QueryThis[Exp[B], Option[SExp[〈Parent〉, B]]]

with 〈OtherParents〉.Query[Exp[B], Option[SExp[〈Parent〉, B]]] {
def default: Option[SExp[〈Parent〉, B]] = None
def apply(e: Exp[B]): Option[SExp[〈Parent〉, B]] = sys.error("Impossible")

}
convert〈Name〉[B](e).flatMap(_ (t))

}
}

}

FIGURE 6.10: Companion object generated from the interface in Figure 6.9 (simplified).
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object Term {
case class TmTrue[A[-X, Y] <: Term[X, Y], B[-R, _]]() extends SExp[A, B] {
def apply[E](alg: A[Exp[B], E]): E = alg.tmTrue()

}
case class TmFalse[A[-X, Y] <: Term[X, Y], B[-R, _]]() extends SExp[A, B] {

def apply[E](alg: A[Exp[B], E]): E = alg.tmFalse()
}
case class TmIf[A[-X, Y] <: Term[X, Y], B[-R, _]](e1: Exp[B], e2: Exp[B], e3:
Exp[B]) extends SExp[A, B] {
def apply[E](alg: A[Exp[B], E]): E = alg.tmIf(e1, e2, e3)

}
trait QueryThis[-R, E] extends Term[R, E] with Default[E] {

def tmTrue(): E = default
def tmFalse(): E = default
def tmIf(e1: R, e2: R, e3: R): E = default

}
trait Query[-R, E] extends Term[R, E] with QueryThis[R, E]
trait Factory {
type TmTrue[A[-X, Y] <: Term[X, Y], B[-R, _]] = Term.TmTrue[A, B]
val TmTrue = Term.TmTrue
type TmFalse[A[-X, Y] <: Term[X, Y], B[-R, _]] = Term.TmFalse[A, B]
val TmFalse = Term.TmFalse
type TmIf[A[-X, Y] <: Term[X, Y], B[-R, _]] = Term.TmIf[A, B]
val TmIf = Term.TmIf

}
object Factory extends Factory
trait Transform[A[-X, Y] <: Term[X, Y]] extends Term[Exp[A], Exp[A]] {
def tmTrue(): Exp[A] = TmTrue[A, A[-?, ?]]()
def tmFalse(): Exp[A] = TmFalse[A, A[-?, ?]]()
def tmIf(e1: Exp[A], e2: Exp[A], e3: Exp[A]): Exp[A] = TmIf[A, A[-?, ?]](
apply(e1), apply(e2), apply(e3))

}
trait Lifter[-R, E, C] extends Term[R, C => E] {
def propagate(c: C): Term[R, E]
def tmTrue(): C => E = propagate(_).tmTrue()
def tmFalse(): C => E = propagate(_).tmFalse()
def tmIf(e1: R, e2: R, e3: R): C => E = propagate(_).tmIf(e1, e2, e3)

}
trait Inject[A[-X, Y] <: Term[X, Y], B[-R, _]] extends Term[Exp[B], Option[
SExp[A, B]]] {
def tmTrue(): Option[SExp[A, B]] = Some(TmTrue[A, B]())
def tmFalse(): Option[SExp[A, B]] = Some(TmFalse[A, B]())
def tmIf(e1: Exp[B], e2: Exp[B], e3: Exp[B]): Option[SExp[A, B]] = Some(TmIf
[A, B](e1, e2, e3))

}
trait Convert[A[-X, Y] <: Term[X, Y]] {
def convertBool[B[-R, _]](e: SExp[A, B]): Option[SExp[Term, B]]

}
}

FIGURE 6.11: Companion object generated from the Term interface in Figure 6.2.
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Chapter 7

Case Study

This chapter presents a case study to demonstrate the utility of our language mod-
ularization framework Gems. We implement interpreters for the first 18 languages1

from the Types and Programming Languages (TAPL) book [46]. Common language
structures are abstracted from those languages as reusable components to eliminate
duplications. The interpreters are built as full pipelines containing parsers, typing,
evaluation, printing, and other auxiliary utilities. We compare our modular imple-
mentation with an ordinary non-modular one available online, which is also written
in Scala using the same parsing library. Source lines of code (SLOC) and execution
time are measured for both implementations. The results suggest that our modular
implementation saves 59.9% of code, and it has 118.2% and 143.6% slower execution
time for parsing and evaluation, respectively.

7.1 Overview

The TAPL book introduces several languages from simple to complex, by gradu-
ally adding new features. The idea of using TAPL in case study is borrowed from
EVF [72]. However, their case study compares implementations written in two dif-
ferent languages (Java and OCaml), and thus they only compare the size of code but
not execution time. Furthermore, their interpreters do not include parsers.

The languages in TAPL are suitable for our case study for mainly three reasons.
Firstly, they capture many of the language features required in realistic program-
ming languages, such as functions, records and polymorphism. Secondly, the evo-
lution of languages in the book reveals advantages of language modularization, be-
cause we can reuse common features from those languages. Thirdly, the case study
poses several challenges to modularity, including multi-sorted abstract syntax, de-
pendent operations and operations with contexts.

1There are some more languages in the book, but they are either not ported by the implementation
we compare with, or do not introduce new syntax structures.
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7.1.1 Languages

Table 7.1 gives brief description of all the languages in our case study. It starts from
a simple arithmetic expression language arith and ends with an extended version of
System Fω named fullomega.

Multiple Sorts Those languages have different number of sorts in the abstract syn-
tax. The first three languages have only one sort: terms (expressions). Most other
languages have two sorts terms and types, except the last one fullomega which also
has kinds. The abstract syntax of those multi-sorted languages are defined using the
approach discussed in Section 4.5. As a result, every sort in the syntax of a language
is extensible, and subtyping relationships are properly preserved.

Another important aspect of those languages is typing. The first three single-sorted
languages are untyped. Some of the typed languages have subtyping (marked by
"S"), while some other are simply typed (marked by "T"). Two languages have type
reconstruction (marked by "R"), and types can be inferred.

Many languages are based on simply typed lambda calculus (STLC), which consists
of lambda abstraction, variables, lambda application and types. In addition, some
structures such as boolean expressions and records are shared among several lan-
guages. We benefit greatly from such sharing using Gems. Moreover, since different
sorts are independently modularized, we often have flexibility to specify what types
and what type checking procedure we need, while reusing structures of terms.

7.1.2 Interpreter Structure

For every language we implement an interpreter from parsing to evaluation with
several other facilities. Specifically, we implement the abstract syntax, parser, printing
operation and evaluation operation for all languages. The evaluation operation de-
pends on two auxiliary operations: substitution which replaces a variable by a term,
and is-value which tests whether a term is a value and thus cannot be reduced any-
more.

We also implement a typing operation for those typed languages, and it varies ac-
cording to the type system of each language. For simply typed languages, a type-
equivalence operation is introduced to check if two types are equal. A subtype-of op-
eration is used in several languages that have subtyping relationships. It depends
on two operations: meet for finding a closest common subtype and join for finding
a closest common supertype. Meet and join are mutually dependent on each other
and they both depend on the subtype-of operation. Moreover, some languages need
a type-substitution operation to substitute type variables. The last language fullomega

requires kinding and kind-equivalence operations in addition.
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Name # of sorts Typing Description
arith 1 Expressions of booleans and natural numbers
untyped 1 Untyped lambda calculus
fulluntyped 1 untyped plus arith and extensions
tyarith 2 T arith with type checker
simplebool 2 T STLC with boolean expressions
fullsimple 2 T STLC with extensions (variants, records, etc.)
bot 2 S STLC with top and bottom types
fullerror 2 S bot with bottom value as errors
rcdsubbot 2 S bot with record subtyping
fullsub 2 S Subtyping on extended STLC
fullref 2 S fullsub with mutable references
equirec 2 T STLC with equi-recursive types
fullequirec 2 T equirec with extensions
fullisorec 2 T Use iso-recursive types in fullequirec
recon 2 R Type reconstruction on STLC and tyarith
fullrecon 2 R recon with extensions
fullpoly 2 T System F with extensions
fullomega 3 T System Fω with extensions

TABLE 7.1: Languages in the case study.

T = Typing. S = Subtyping. R = Type reconstruction.

Type Substitution

Type Equivalence

Subtype-of
Meet

Join
Parser Abstract Syntax

Typing

Printing

Evaluation Is-value

Substitution

FIGURE 7.1: Interpreter structure with major operations.

Boxes = operations on terms. Circles = operations on types.
Dashed arrows = dependencies.
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Operation Dependencies As we described, many operations collaborate with and
depend on other operations. Figure 7.1 illustrates the structure of interpreters and
major operations in our implementation. Boxes (with sharp corners) are operations
on the term level, and circles are operations on the type level. Dependencies be-
tween operations are represented by dashed arrows. The technique we discussed
in Section 4.3 is used to solve the challenge of having dependent operations while
retaining extensibility for each one.

Operations with Contexts Another interesting issue is that the type of an oper-
ation may change in different languages, because it requires more contexts. For
example, the evaluation operation in language fullref needs an extra context for
storing references. This issue also happens on the type level. It is straightforward
to decide whether two simple types are equivalent, such as the boolean and unit
type. However, if more complex types such as recursive types are introduced, the
type equivalence operation needs contexts. In our implementation, we use context
propagation (see Section 4.6) for adding contexts when reusing old operations.

7.1.3 Components and Dependencies

Using our framework Gems, we extract common features from those languages as
reusable components. The components are listed in Table 7.2 with corresponding
usage count in all languages. The count numbers illustrate great reuse in the whole
implementation. For example, the nat component is used in 12 languages and that
means 11 times of duplication are eliminated.

There are 17 components which contain language structures, and one special compo-
nent named extension is just a bundle of some others for more concise composition.
Figure 7.2 demonstrates dependencies of all the 18 languages and 18 components
in the case study. White boxes represent components and grey boxes represent lan-
guages in the figure.
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Name # of usage Description
nat 12 Natural numbers
bool 14 Boolean literals and if-then-else
bottom 3 The bottom type
record 9 Records (labeled products) and projections
varapp 16 Variables and function applications
let 9 "let..in.." structures
typedrecord 8 record with record types
pack 2 Pack and unpack structures for existential types
typednat 10 nat with a type of numbers
typed 14 Simply typed lambda calculus (STLC) skeleton
ref 2 Structures of references
typedbool 12 bool with a boolean type
unit 7 The unit value and type
variant 4 Variants (labeled sums) and case analysis
floatstring 8 Floating numbers and strings
top 5 The top type
rectype 3 Recursive types
extension 7 tyarith, floatstring, let, typedrecord and unit

TABLE 7.2: Components in the case study.
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7.2. Comparison 71

7.2 Comparison

We compare our implementation using Gems (named Modular) with a non-modular
implementation available online2 (named NonMod). NonMod is suitable for comparison
because it also implements TAPL interpreters in Scala using the same parsing library.
The languages in NonMod are built independently from each other, thus they do not
reuse any code even when many languages are overlapped.

The comparison consists of two aspects. Firstly, we want to discover the extent
of reuse with language modularization. A direct measurement for that is source
lines of code (SLOC). Although the benefit of reuse is not limited to code reduction,
SLOC straightforwardly reflects how much effort users could save in terms of pro-
gramming. Secondly, we are interested to assess the performance penalty caused by
language modularization. Intuitively, visitors may be slower than plain functions
because they have more intermediate steps when performing an operation. There-
fore, we compare execution time of the interpreters in the two implementations with
same inputs.

7.2.1 SLOC Comparison

In the SLOC comparison, all blank lines and comments are excluded, and the code of
both implementations is formatted to guarantee that the length of each line does not
exceed 120 characters. Furthermore, NonMod has some extra functionalities than ours,
such as interpretation for a whole file. Such code is removed before comparison.

Table 7.3 shows comparison results. We compare our implementation Modular with
NonMod for every language. The percentage of difference is calculated by:

(Modular− NonMod)/NonMod ∗ 100%

To make the comparison more comprehensive, we calculate two set of numbers.
The column Modulara contains the lines of code for only the languages themselves,
excluding all imported language components. The column Modularb shows the lines
of code for standalone programs of each language. That means we count lines of
code of all required components in the numbers.

We can see that the code of Modular is considerably shorter because components are
reused among languages. The total numbers including all of the code illustrate that
Modular reduces 59.9% lines of code overall.

Moreover, if we suppose the components are available in an existing library, we only
need to glue them and add few extra structures to build a language. In that case, we
have even better code reduction rate 76.4%. For example, the language fullsimple is

2https://github.com/ilya-klyuchnikov/tapl-scala
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Language NonMod Modulara (+/-)% Modularb (+/-)%
arith 124 30 -75.8% 263 +112.1%
untyped 145 64 -55.9% 212 +46.2%
fulluntyped 310 45 -85.5% 576 +85.8%
tyarith 180 56 -68.9% 300 +66.7%
simplebool 244 69 -71.7% 359 +47.1%
fullsimple 716 65 -90.9% 571 -20.3%
bot 229 82 -64.2% 295 +28.8%
fullerror 439 131 -70.2% 500 +13.9%
rcdsubbot 312 78 -75.0% 466 +49.4%
fullsub 731 107 -85.4% 526 -28.0%
fullref 996 208 -79.1% 966 -3.0%
equirec 279 102 -63.4% 346 +24.0%
fullequirec 731 137 -81.3% 753 +3.0%
fullisorec 756 117 -84.5% 716 -5.3%
recon 391 145 -62.9% 571 +46.0%
fullrecon 413 109 -73.6% 726 +75.8%
fullpoly 719 143 -80.1% 572 -20.4%
fullomega 931 352 -62.2% 885 -4.9%
total 8646 2040 -76.4% 3466c -59.9%

a Lines of code for only the language, excluding all imported components.
b Lines of code for a standalone program, counting all imported components.
c Lines of code of the whole project. Each component is counted only once.

TABLE 7.3: Source lines of code (SLOC) comparison results.

a fortunate one, in which we only glue components and save 90.9% of code. It sug-
gests that if we build a relatively rich library of components representing common
language features, we can quickly develop a new language using few lines of code.
The more powerful the library is, the more easily users create a new language.

7.2.2 Execution Time Comparison

We test the performance of parsing and evaluation operation of every interpreter in
both implementations. Random expressions are generated as test cases according to
the features of each language and stored in files. For both implementations, parsing
time of 1000 random expressions and evaluation time of 10000 random expressions
are measured in milliseconds. The size of parsing test files varies from 41 KB to 212
KB (each file corresponds to a language), and the size of evaluation test files varies
from 2.2 MB to 10 MB.

We use ScalaMeter [56] benchmarking framework for testing. Default warm-ups
provided by the framework is applied and results are measured by the average of
10 runs. Time of reading inputs is excluded. Tests are performed using Scala 2.12.3,
Java 1.8.0_131, on a MacBook Pro with 2.9 GHz Intel Core i5 processor (6267U) and
8 GB RAM.
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Language
Parsing Evaluation

Modular NonMod (+/-)% Modular NonMod (+/-)%
arith 372.5 196.4 89.7% 20.5 6.9 197.1%
untyped 377.4 203.5 85.5% 60.0 34.6 73.4%
fulluntyped 1615.8 662.2 144.0% 216.0 69.6 210.3%
tyarith 376.3 201.9 86.4% 23.2 7.3 217.8%
simplebool 1580.9 786.6 101.0% 283.5 110.3 157.0%
fullsimple 2311.0 1062.3 117.5% 189.2 78.6 140.7%
bot 763.1 490.7 55.5% 73.1 35.0 108.9%
fullerror 1753.5 825.3 112.5% 70.4 38.9 81.0%
rcdsubbot 1102.5 605.6 82.1% 133.7 49.0 172.9%
fullsub 1833.1 794.9 130.6% 212.7 73.7 188.6%
fullref 2390.6 972.6 145.8% 292.6 119.3 145.3%
equirec 703.0 409.1 71.8% 85.4 60.3 41.6%
fullequirec 2453.3 1048.8 133.9% 195.3 75.3 159.4%
fullisorec 2395.4 1120.8 113.7% 174.4 69.4 151.3%
recon 1015.3 523.3 94.0% 174.8 59.7 192.8%
fullrecon 1260.9 557.3 126.3% 134.6 45.8 193.9%
fullpoly 1991.6 823.6 141.8% 213.8 97.2 120.0%
fullomega 2332.9 920.9 153.3% 314.1 146.0 115.1%
total 26629.1 12205.8 118.2% 2867.3 1176.9 143.6%

TABLE 7.4: Execution time comparison results. (in milliseconds)

Table 7.4 shows comparison results. The percentage numbers are calculated using
the same formula as in the SLOC comparison.

In the comparison of parsing time, Modular is slower in every case and the overall
result suggests that it spends 118.2% more time than NonMod. The use of left recursion
and creation of intermediate parsers are probably the reasons.

The results of evaluation time comparison demonstrate that Modular has 143.6%
slower performance overall. Comparing with normal functions, visitors have more
steps to perform an operation, since it relies on the accept method to select the corre-
sponding visit method.

Furthermore, visitors are harder to be optimized in Scala than normal functions. For
example, Scala has tail-call optimizations (TCO) to accelerate recursive functions.
The following code fragment shows a function isVal in language fullsimple of the
NonMod implementation, where a tail-call optimization is possible.

def isVal(ctx: Context, t: Term): Boolean = t match {

...

case TmTag(_, t1, _) => isVal(ctx, t1)

...

}

It is usually difficult to apply such optimizations using visitors because of the indi-
rect steps. Especially in Scala, TCO is limited to a direct recursive call on a function
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itself as its last operation. Thus, an operation isVal implemented by visitors will not
be optimized.

Although it depends on the situation, we believe the slower execution time is usu-
ally a worth trade for modularity, because it benefits both maintenance and future
extensions. More analysis on performance and optimization are left for future work.
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Chapter 8

Related Work and Conclusion

8.1 Related Work

8.1.1 Modular Parsing

Syntactically Extensible Parsing There have been several tools to modularize syn-
tax and corresponding parsers using extensible parser generators [45, 25, 58, 62, 24,
69]. They support composition of grammars and productions. Some of them such
as ANTLR [45], Rats! [25] enable users to override rules in extensions.

Those parser generators stay on the syntactical level of modularity. The result parsers
are generated by analyzing the composed grammar which often uses textual repre-
sentations. Even if the grammar is only modified a bit, it requires a full compilation
for building corresponding parsers. For example, NOA [24] first collects all syn-
tax definitions by Java annotations, and then generates grammars for ANTLR pars-
ing. Modular type-checking of parsers is often absent in those tools as well. The
work [62] presents grammar and production compositions in a static typed manner.
They build a Haskell library containing utilities for specifying syntax, and grammars
are guaranteed to preserve proper types. Generation of parsers is still performed af-
ter composition. An advantage of using parser generators is that they are able to
perform useful analysis such as ambiguity detection on grammars, while it is hard
to achieve this without access to grammars.

Combination of Parsers Instead of working on grammars, another way to achieve
extensibility is to directly combine parsers. The techniques of parse table composi-
tion [5, 59] allow users to compose DFA and NFA parse tables. Therefore, parsers
represented by tables can be separately compiled. Since users do not want to con-
struct parse tables by hand, this approach requires synchronization with grammar
definitions during evolution of the syntax, but the existing grammars do not need
to be touched. One potential issue is that it may not be easy to type-check the tables
and companion code for assembling ASTs, and we found little discussion about that
in those works.
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Parser combinators are adopted by us for modular parsing in Chapter 5. Parser
combinators can be traced to the work of Burge [8] in 1975, and they have been
studied in a lot of other work [64, 28, 18, 29] in the following years. Usually, parsers
are represented by functions using parser combinator libraries. That makes it easier
to write them by hand, which is the normal way in practice, and closer to the host
language because the generation step is avoided. The Parsec [39] library in Haskell
is a very famous one. However, it uses an algorithm of simple recursive descent
parsing and manual backtracking. That makes it inconvenient in a modular setting.
Advanced parser combinator techniques [19, 21] have been proposed to improve
issues of simple recursive descent parsing. We use Packrat parsing [19, 68] because
it is suitable for most cases in modular parsing and is accessible in Scala.

8.1.2 Datatype Modularization and Visitors

Extensible Datatypes in Functional Programming The expression problem [66]
poses a challenge to achieve semantic modularity when extending datatypes. In
functional programming, a famous solution is Datatypes à la Carte (DTC) [60], with
some following variants [3, 2, 51]. The different "shapes" of recursive datatypes,
which are different variants in a datatype, are represented by functors and com-
posed freely. DTC has a projection mechanism to inspect the outermost structure of
a datatype instance, and convert its type to a more concrete one. That is very simi-
lar to the type conversion technique we used in Section 4.7 to perform ad-hoc case
analysis. A difference is that they do not have real transitive subtyping relationships
for datatypes while we have. Another approach is final tagless [10], which essen-
tially uses the same encoding as Object Algebras. It uses type classes in Haskell to
represent interfaces carrying abstract methods.

Visitors There have been several works to make the visitor design pattern extensi-
ble in a type-safe way and thus give a solution to the expression problem [61, 44, 49].
Those works use different features of type system and programming language. The
solutions of Torgersen [61] mainly depend on generic techniques including wild-
cards and F-bounds. The two solutions proposed by Odersky and Zenger [44] use
virtual types and nested class scopes. The solution of modular external visitors [49]
needs higher-order type parameters and type variance. We take this solution be-
cause it is the most straightforward (and brute-force) one, and has great theoreti-
cal support. The datatype instances are encoded by recursive polymorphic function
types directly, and subtyping relationships of those types are preserved. Currently in
Scala we need auxiliary traits such as the Exp to "tie the recursive knot" for the types.
However, in a language with stronger support of subtyping with recursive types
and type alias, the encoding would be quite elegant to use. The work of EVF [72] is a
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visitor framework in Java, that relies on metaprogramming to generate AST defini-
tions for each extension. It requires few language features and allows operations to
be fully reused. The ASTs are not reusable though. We borrow its idea of abstracting
recursive calls and thus eliminate the need of self type annotations.

Scala’s case classes [13] provide an encoding of algebraic datatypes and allow the
extensibility of adding new constructors. However, case classes which are not sealed
do not guarantee exhaustiveness of pattern matching and cannot be implemented

using traditional OO structures in a type safe manner.

Object Algebras Object Algebras [50] are a lightweight design pattern that solves
the expression problem. The technique only requires simple generics and (multi-
ple) inheritance, which are ordinary features in object-oriented programming. There
have been several works towards applications [47, 24, 4] and better usage [52, 71]
of Object Algebras. Especially, there were some attempts to modularize language
syntax and semantics [24, 30]. The Shy framework [71] introduces several traver-
sal templates for Object Algebras to reduce boilerplate code. The work of implicit
context propagation [30] presents a solution to add contexts when reusing existing
operations in Object Algebras interpreters. As EVF [72] and our work demonstrated,
such techniques can also be applied on external visitors. Object Algebras are close to
Church encodings and internal visitors. They combine results on recursive positions
rather than perform operations on subtrees explicitly. That makes it elegant to write
simple folds but hard to express dependencies and let one operation cooperate with
others. Moreover, the lack of concrete datatype representation is inconvenient and
even inefficient in some cases.

8.1.3 Language Workbenches

Language workbenches [20] are tools that facilitate implementation of (domain-
specific) languages. They provide utilities to define, reuse and compose languages,
together with auxiliary functionalities such as IDE support, testing and debugging.
Therefore, the effort of creating new languages is reduced a lot and language-oriented
programming paradigm [67, 11] is advocated. Language workbenches may support
many forms of composition, including (linear) language extensions and language
unification [15]. Examples of language workbenches include Ensō [14], MPS [43],
MetaEdit+ [37], Spoofax [36] and Xtext [17]. Many of them have successful appli-
cations in practice. However most of the language workbenches use syntactic mod-
ularization techniques to achieve extensibility. For example, In Spoofax [36], the
syntax of languages are defined using SDF3 [63], and transformations are defined
using Stratego [6]. Then the implementation is generated from those definitions.
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Current language workbenches often rely on metaprogramming and code genera-
tion to reuse components. The textual input written in meta-languages which de-
scribes aspects of the working languages blocks separate compilation and modular
static type-checking. Some tools try to strengthen the meta-languages or apply more
analysis on the meta-language level to ensure the safety of components. However,
users are restricted to work on that level, and the type system is still separate from
the language they are targeting. An example is ableC [34], which is a framework to
extend the language C. It uses two analysis on the meta-language level to guard the
safety of syntax and semantics, and guarantees the safety of compositions.

8.2 Conclusion

In the thesis we present our work of a language modularization framework Gems.
We use only pure visitors and achieve semantic modularity in the full pipeline of a
language. The approach is quite lightweight overall. For ASTs and semantics, we
adopt modular external visitors [49] and make several enhancements. The modular
parsing part describes our recent work [70]. We build a simple metaprogramming
library that generates boilerplate structures to ease the development. A TAPL case
study is conducted to investigate the utility.

The heavy effort of creating new languages and maintain existing languages moti-
vates people to modularize and reuse languages, and that is really desired. When
C++ programmers want to use new features they may need to pass arguments such
as -std=c++17 to the compiler. Haskell programmers often put flags on the top of a
file to turn on certain language features. We believe that, in many cases, the seman-
tic modularization of language implementations is better than applying generation
tools on fragile textual representation of languages. Especially, the static type-safety
could detect errors earlier and save a lot of time. The overlap parts among languages
can be extracted and reused, thus the total workload is reduced a lot. The results of
our case study support that.

We must distinguish those modularization techniques that employ metaprogram-
ming and those rely on metaprogramming. Techniques in the former category use
metaprogramming to generate boring code. Without metaprogramming, the code
would be tedious but the logic and extensibility are not affected. Techniques in
the latter category really depend on metaprogramming to achieve modularity by
copying some code. Without metaprogramming, the extensibility would be lost and
programmers would have to repeat logic of existing works. For instance, EVF [72]
relies on metaprogramming to avoid repeating existing data variants when extend-
ing new ones. Fortunately, we are in the former category, that is we could abandon
metaprogramming but still have semantic modularity.
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In terms of practical programming, visitors indeed make the code more complex
comparing with plain functions, if we do not consider reuse of code. The compara-
tively weak type inference mechanism of Scala also forces us to add some redundant
type annotations. However, it is still acceptable to implement by hand in such a way.
Our approach could also be used as an internal representation of a language work-
bench. Especially considering some language workbenches are implemented using
dynamic languages.

To conclude, our work is an attempt towards semantically modularization of lan-
guages in practice. We believe this could be a good alternative to the current syntac-
tical approaches based on code generation.

8.3 Future Work

We propose the following directions for future work:

• Analyse the performance of parsing and other operation executions in more de-
tail, and study optimizations to improve the performance. We observed the im-
plementation using visitors have more intermediate steps, since it relies on the
accept method to select the corresponding visit method. Comparing with plain
functions, those intermediate function calls slow down the performance of every
operation application, including every recursive call, and eliminate the chance of
applying tail-call optimizations. A potential direction of improving this issue is
generative programming or staging [33], that dynamically generates and specializes
the code. LMS [48] is a library in Scala for that and might be helpful.

• There are still some boilerplate code in component compositions. Especially when
composing parsers and operations, the related structures from parents need to be
specified repeatedly. For example, we may have the following code:

trait Op1[..] extends Interface[..] with Parent1.Op1[..] with Parent2.Op1[..]

with Parent3.Op1[..] with ..

trait Op2[..] extends Interface[..] with Parent1.Op2[..] with Parent2.Op2[..]

with Parent3.Op2[..] with ..

It would be better to minimize such glue code of repeating parent structures.
This issue seems to be related to family polymorphism [16], because a language
contains multiple classes as a family and we are maintaining the relationships
between the corresponding classes and families. Thus the techniques of family
polymorphism might help. Moreover, a simple workaround is to apply metapro-
gramming to generate such code, but it is probably too ad-hoc.

• Develop a simple language workbench using Gems as the core for modulariza-
tion, and study the applicability of it. The workbench may allow users to directly
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develop in Scala using the patterns we introduced, or let users specify the syn-
tax and (parsing, typing, rewriting, etc.) rules to generate initial implementations
of visitors, parsers, and other utilities. Composition of languages could be auto-
mated, and users may import components from the library to their languages, or
share developed components with others.

• A more ambitious direction is to improve the support of visitors in programming
languages. If we had native support of extensible datatypes and visitors, the code
would be elegant and concise. The key point is to properly handle two recursions:
the recursion of datatypes and recursion of operations (visitors). The recursive ref-
erences should be bound dynamically to allow future extensions. An imaginary
syntax is shown below.

data Exp {

case Lit(x: Int)

case Add(e1: this, e2: this)

}

visitor Eval extends Exp {

case Lit(x: Int) => x

case Add(e1: Exp.this, e2: Exp.this) => this(e1) + this(e2)

}

data Exp2 extends Exp {

case Sub(e1: this, e2: this)

}

visitor Eval2 extends Exp2 with Eval {

case Sub(e1: Exp2.this, e2: Exp2.this) => this(e1) - this(e2)

}
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[14] Ensō. 2010. URL: http://www.enso-lang.org.

https://github.com/lampepfl/dotty/issues/2029
https://github.com/lampepfl/dotty/issues/2029
http://www.enso-lang.org


82 Bibliography

[15] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. “Language com-
position untangled”. In: LDTA. ACM, 2012, p. 7.

[16] Erik Ernst. “Family Polymorphism”. In: ECOOP. Vol. 2072. Lecture Notes in
Computer Science. Springer, 2001, pp. 303–326.

[17] Moritz Eysholdt and Heiko Behrens. “Xtext: implement your language faster
than the quick and dirty way”. In: SPLASH/OOPSLA Companion. ACM, 2010,
pp. 307–309.

[18] Jeroen Fokker. “Functional Parsers”. In: Advanced Functional Programming. Vol. 925.
Lecture Notes in Computer Science. Springer, 1995, pp. 1–23.

[19] Bryan Ford. “Packrat parsing: simple, powerful, lazy, linear time, functional
pearl”. In: ICFP. ACM, 2002, pp. 36–47.

[20] Martin Fowler. Language workbenches: The killer-app for domain specific languages?
2005. URL: https://martinfowler.com/articles/languageWorkbench.html.

[21] Richard A. Frost, Rahmatullah Hafiz, and Paul Callaghan. “Parser Combina-
tors for Ambiguous Left-Recursive Grammars”. In: PADL. Vol. 4902. Lecture
Notes in Computer Science. Springer, 2008, pp. 167–181.

[22] Full code of examples in Chapter 3. URL: https://github.com/lihuanglx/tapl-
visitor/tree/master/tapl/src/main/scala/language.

[23] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented Soft-
ware. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.
ISBN: 0-201-63361-2.

[24] Maria Gouseti, Chiel Peters, and Tijs van der Storm. “Extensible language
implementation with object algebras (short paper)”. In: GPCE. ACM, 2014,
pp. 25–28.

[25] Robert Grimm. “Better extensibility through modular syntax”. In: PLDI. ACM,
2006, pp. 38–51.

[26] Haskell mtl Package. URL: https://hackage.haskell.org/package/mtl.
[27] John Hughes. “Why Functional Programming Matters”. In: Comput. J. 32.2

(1989), pp. 98–107.
[28] Graham Hutton. “Higher-Order Functions for Parsing”. In: J. Funct. Program.

2.3 (1992), pp. 323–343.
[29] Graham Hutton and Erik Meijer. “Monadic Parsing in Haskell”. In: J. Funct.

Program. 8.4 (1998), pp. 437–444.
[30] Pablo Inostroza and Tijs van der Storm. “Modular interpreters for the masses:

implicit context propagation using object algebras”. In: GPCE. ACM, 2015,
pp. 171–180.

[31] Stephen C Johnson. Yacc: Yet another compiler-compiler. Vol. 32. Bell Laboratories
Murray Hill, NJ, 1975.

[32] Mark P. Jones. “Functional Programming with Overloading and Higher-Order
Polymorphism”. In: Advanced Functional Programming. Vol. 925. Lecture Notes
in Computer Science. Springer, 1995, pp. 97–136.

https://martinfowler.com/articles/languageWorkbench.html
https://github.com/lihuanglx/tapl-visitor/tree/master/tapl/src/main/scala/language
https://github.com/lihuanglx/tapl-visitor/tree/master/tapl/src/main/scala/language
https://hackage.haskell.org/package/mtl


Bibliography 83

[33] Ulrik Jørring and William L. Scherlis. “Compilers and Staging Transforma-
tions”. In: POPL. ACM Press, 1986, pp. 86–96.

[34] Ted Kaminski et al. “Reliable and Automatic Composition of Language Exten-
sions to C: The ableC Extensible Language Framework”. In: OOPSLA. ACM,
2017.

[35] Christian Kästner, Sven Apel, and Klaus Ostermann. “The road to feature
modularity?” In: SPLC Workshops. ACM, 2011, p. 5.

[36] Lennart C. L. Kats and Eelco Visser. “The spoofax language workbench: rules
for declarative specification of languages and IDEs”. In: OOPSLA. ACM, 2010,
pp. 444–463.

[37] Steven Kelly, Kalle Lyytinen, and Matti Rossi. “MetaEdit+: A Fully Config-
urable Multi-User and Multi-Tool CASE and CAME Environment”. In: CAiSE.
Vol. 1080. Lecture Notes in Computer Science. Springer, 1996, pp. 1–21.

[38] kind-projector. URL: https://github.com/non/kind-projector.
[39] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for

the real world. Tech. rep. UU-CS-2001-27. Department of Computer Science,
Universiteit Utrecht, 2001.

[40] Sheng Liang, Paul Hudak, and Mark P. Jones. “Monad Transformers and Mod-
ular Interpreters”. In: POPL. ACM Press, 1995, pp. 333–343.

[41] M. D. McIlroy. “Mass-produced software components”. In: Proc. NATO Conf.
on Software Engineering, Garmisch, Germany (1968).

[42] Eugenio Moggi. An abstract view of programming languages. Tech. rep. ECS-
LFCS-90-113. Laboratory for Foundations of Computer Science, University of
Edinburgh, 1990.

[43] MPS. 2003. URL: http://www.jetbrains.com/mps/.
[44] Martin Odersky and Matthias Zenger. “Independently Extensible Solutions to

the Expression Problem”. In: Proc. FOOL 12. 2005.
[45] Terence John Parr and Russell W. Quong. “ANTLR: A Predicated- LL(k) Parser

Generator”. In: Softw., Pract. Exper. 25.7 (1995), pp. 789–810.
[46] Benjamin C. Pierce. Types and Programming Languages. 1st. The MIT Press, 2002.

ISBN: 0262162091, 9780262162098.
[47] Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann.

“From object algebras to attribute grammars”. In: OOPSLA. ACM, 2014, pp. 377–
395.

[48] Tiark Rompf and Martin Odersky. “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs”. In: Commun. ACM
55.6 (2012), pp. 121–130.

[49] Bruno C. d. S. Oliveira. “Modular Visitor Components”. In: ECOOP. Vol. 5653.
Lecture Notes in Computer Science. Springer, 2009, pp. 269–293.

[50] Bruno C. d. S. Oliveira and William R. Cook. “Extensibility for the Masses -
Practical Extensibility with Object Algebras”. In: ECOOP. Vol. 7313. Lecture
Notes in Computer Science. Springer, 2012, pp. 2–27.

https://github.com/non/kind-projector
http://www.jetbrains.com/mps/


84 Bibliography

[51] Bruno C. d. S. Oliveira, Shin-Cheng Mu, and Shu-Hung You. “Modular reifi-
able matching: a list-of-functors approach to two-level types”. In: Haskell. ACM,
2015, pp. 82–93.

[52] Bruno C. d. S. Oliveira et al. “Feature-Oriented Programming with Object Al-
gebras”. In: ECOOP. Vol. 7920. Lecture Notes in Computer Science. Springer,
2013, pp. 27–51.

[53] Scala Issue SI-1938: traits should be able to call super on fields. URL: https://issues.
scala-lang.org/browse/SI-1938.

[54] scala-parser-combinators. URL: https://github.com/scala/scala-parser-combinators.
[55] Scalameta. URL: https://github.com/scalameta/scalameta.
[56] ScalaMeter. URL: https://github.com/scalameter/scalameter.
[57] Scalaz Issue 1110: MTL-style doesn’t seem to work in Scala. URL: https://github.

com/scalaz/scalaz/issues/1110.
[58] August Schwerdfeger and Eric Van Wyk. “Verifiable composition of determin-

istic grammars”. In: PLDI. ACM, 2009, pp. 199–210.
[59] August Schwerdfeger and Eric Van Wyk. “Verifiable Parse Table Composition

for Deterministic Parsing”. In: SLE. Vol. 5969. Lecture Notes in Computer Sci-
ence. Springer, 2009, pp. 184–203.

[60] Wouter Swierstra. “Data types à la carte”. In: J. Funct. Program. 18.4 (2008),
pp. 423–436.

[61] Mads Torgersen. “The Expression Problem Revisited”. In: ECOOP. Vol. 3086.
Lecture Notes in Computer Science. Springer, 2004, pp. 123–143.

[62] Marcos Viera, S. Doaitse Swierstra, and Atze Dijkstra. “Grammar fragments
fly first-class”. In: LDTA. ACM, 2012, p. 5.

[63] Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser. “Declarative specification
of template-based textual editors”. In: LDTA. ACM, 2012, p. 8.

[64] Philip Wadler. “How to Replace Failure by a List of Successes: A method for
exception handling, backtracking, and pattern matching in lazy functional lan-
guages”. In: FPCA. Vol. 201. Lecture Notes in Computer Science. Springer,
1985, pp. 113–128.

[65] Philip Wadler. “The Essence of Functional Programming”. In: POPL. ACM
Press, 1992, pp. 1–14.

[66] Philip Wadler. “The expression problem”. In: Java-genericity mailing list (1998).
[67] Martin P Ward. “Language-oriented programming”. In: Software-Concepts and

Tools 15.4 (1994), pp. 147–161.
[68] Alessandro Warth, James R. Douglass, and Todd D. Millstein. “Packrat parsers

can support left recursion”. In: PEPM. ACM, 2008, pp. 103–110.
[69] Alessandro Warth, Patrick Dubroy, and Tony Garnock-Jones. “Modular se-

mantic actions”. In: DLS. ACM, 2016, pp. 108–119.
[70] Haoyuan Zhang, Huang Li, and Bruno C. d. S. Oliveira. “Type-Safe Modular

Parsing”. In: SLE. ACM, 2017, forthcoming.

https://issues.scala-lang.org/browse/SI-1938
https://issues.scala-lang.org/browse/SI-1938
https://github.com/scala/scala-parser-combinators
https://github.com/scalameta/scalameta
https://github.com/scalameter/scalameter
https://github.com/scalaz/scalaz/issues/1110
https://github.com/scalaz/scalaz/issues/1110


Bibliography 85

[71] Haoyuan Zhang et al. “Scrap your boilerplate with object algebras”. In: OOP-
SLA. ACM, 2015, pp. 127–146.

[72] Weixin Zhang and Bruno C. d. S. Oliveira. “EVF: An Extensible and Expressive
Visitor Framework for Programming Language Reuse”. In: ECOOP. Vol. 74.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 29:1–29:32.


	Declaration
	Acknowledgments
	Introduction
	Motivation
	Contributions
	Outline

	Background
	Modularity
	The Expression Problem
	The Visitor Pattern
	Object Algebras
	Parser Combinators

	Collecting Gems
	Implementation of the Language bool
	Composition for the Language boolstlc
	Direct Extensions and New DSLs

	Modular Syntax and Semantics
	Expression Families Problem
	Modular External Visitors
	Visitor Interface
	Datatype
	Factories
	Concrete Visitor

	Operation Dependencies
	Abstracting Recursive Calls
	Multi-Sorted Syntax
	Context Propagation
	Motivation
	Propagation by Delegating Recursive Calls
	Lifter
	Disscussion

	Case Analysis on ASTs
	Motivation
	Abstracting the Top Level Interface
	Conversion and Chaining


	Type-safe Modular Parsing
	Modular Parsing Problem
	Choose Parsing Techniques for Modularity
	Challenges with Parser Combinators
	Packrat Parsing

	Modular Parsing for OO ASTs
	Modular Parsing with Object Algebras
	Modular Parsing for Visitor ASTs

	Modular Language Components
	Language Components
	Composition and Direct Dependencies
	Eliminating Boilerplate by Metaprogramming

	Case Study
	Overview
	Languages
	Interpreter Structure
	Components and Dependencies

	Comparison
	SLOC Comparison
	Execution Time Comparison


	Related Work and Conclusion
	Related Work
	Modular Parsing
	Datatype Modularization and Visitors
	Language Workbenches

	Conclusion
	Future Work

	Bibliography

