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Conventional programming environments operate with a complex

interplay among di↵erent tools for accessing di↵erent resources related

to source code. These resources contain various metadata, such as code

dependencies, naming organization or version control. Each kind of

metadata carries its specific format, such as binary or semi-structured

files of various formats, and corresponding access methods.

Code entities - such as functions, constants or variables - do not

have globally unique persistent identifiers in conventional programming

environments. Access to external code is name-addressable and resem-

bles hierarchical file systems. User-chosen hierarchical names, however,

are not globally unique. Name conflicts may, therefore, arise among

definitions from di↵erent libraries or even the same library of di↵erent

versions. The lack of persistent globally unique identifiers prevents code

entities from being directly associated with some metadata. The non-

unique identifiers depend on an implicit context: user-chosen identifiers

may refer to di↵erent entities at di↵erent times or locations. Addi-

tionally, conventional programming environments specify project-level

dependencies in which an unused code may need to be included when

dependencies are resolved.

To address these issues, this thesis proposes a design for program-



ming environments, named Search-focused Programming. Search-focu-

sed Programming environments have three key properties. First, code

entities are deterministically assigned globally unique persistent iden-

tifiers based on their content. With unique identifiers, relations can

associate dependencies among code entities directly. Second, code and

related metadata are uniformly stored. The uniformly stored data can

be accessed in two ways: by retrieving data using a declarative query

language, and by reading and writing individual records in the trans-

action log. Third, the shared source code is separate from the locally

edited code. Two proof-of-concept prototypes demonstrate two di↵er-

ent directions in which one can interact with code. The first proto-

type presents a command-line interface, providing indirect interactions

similar to conventional programming environments. The interaction is

realized through bulk processing local source code files and generating

corresponding queries or transactions. The second direction is in the

form of a web-based interactive interface. The interaction happens by

directly looking up individual code entities and manipulating them in

a structure-driven editor, i.e. without the bulk processing of layers of

naming structures. Finally, this thesis examines the e↵ects of definition-

level dependency tracking on existing source code bases. A popular com-

munity project repository was analysed, and the source code of the top

five most depended on projects was found to never be fully utilized by

libraries that declared their dependencies on them. A substantial frac-

tion of the code entities in these five projects remained in more than

one version of their respective libraries. Lastly, overhead was measured

in compilation speed on client code due to unused code, which would be

removed with definition-level dependencies. These results suggest the

possible merits of employing the ideas from Search-focused Program-

ming in existing programming environment infrastructures.
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Chapter 1

Introduction

In this thesis, we explore an alternative to how we can access and manage exter-

nal code and metadata associated to external code. Most computer programs

we write rely on external third party code. For example, in the C language,

we access the external code using the include directive:

#include ” l i b r a r y . h”

int main (void ) {

l i b r a r y f u n c t i o n ( 4 2 ) ;

}

This code snippet assumes that the symbol library function is exported

by the header file library.h and that the header file and the corresponding

object file can be found on the local file system. One inherent problem of this

name-addressable access to external code is the possibility of name collisions,

i.e. if other used libraries export symbols of the same name. More modern

languages, such as C++, try to reduce this problem through the use of names-

paces. Namespaces are abstract hierarchical structures that provide scoped

access to external symbols. Even though namespaces reduce name collisions,

we still encounter problems when faced with software development tools for

interacting with external code and metadata.

1



1.1 Conventional Programming Environments

In this section, we describe our problem setting, what we mean by conven-

tional programming environments, and identify key challenges in this setting.

A programming environment is a combination of programming language and

software project management tools and processes. We briefly overview exam-

ple tools and their metadata in Section 1.1.1, and show detailed examples in

Chapter 3.

1.1.1 External Code and Metadata

When using external third party code, we will most likely retrieve and man-

age it and its related metadata with a combination of software development

tools. Despite the widespread usage of such tools for interacting with external

code and metadata, programming languages do not account for them in their

abstractions.

Version Control Metadata. Both our client code and the external library

code are likely to reside in a version control repository. A popular version con-

trol system Git [2] implements a userspace content-addressable filesystem and

provides a version control interface to its stored objects (which are assigned

unique identifiers using a cryptographic hash function). Internally stored ob-

jects include actual physical files and directory trees as well as versioning meta-

data, such as commits, references or tags.

Package and Build Management Metadata. Usually, we do not man-

ually manage the external library code, but rely on semi-automatic “package

managers”. The library author “packages” source code with build scripts and

files describing various package metadata (dependencies, release version num-

bers, licenses etc.) and submits this package into a centralized repository. The

centralized repository may have additional semi-automated package approval

2



procedures before the package is exposed to “package managers”. The policies

in this regard vary across di↵erent language communities: some prefer imme-

diate publication without any approval, others may enforce policies on naming

or versioning conventions, signalling upgrades to dependent packages etc.

We specify what packages we depend on and their version bounds and

run the package manager. The package manager may either download all

dependent packages and isolate them with their own transitive dependencies,

or construct a graph of transitive dependencies and run a constraint solver

on version bounds. In the latter case, the solver may fail or find a version-

compatible set of packages. If it succeeds, the package manager then downloads

all the transitive dependencies and sets up a build procedure (e.g. changes the

compiler search path for these packages). The package manager may also

provide an environment isolation, i.e. dependent packages of other projects

are not seen in the current project (unless they are specified as dependencies).

Test and Performance Metadata. In addition to the actual library code,

the library author can also include suites of performance benchmarks and

unit, integration or functionality tests. Continuous integration servers rou-

tinely compile the library code, run its associated test suites, and record the

outcome of each execution. Even though package managers do not utilize these

additional forms of metadata, we may be interested in them. In the presence

of multiple libraries of the same functionality (or multiple versions of the same

library), looking at such metadata can help us decide which library or version

to choose. For example, some tests may express the behaviour we expect or we

may be interested if the library was tested on a particular operating system.

In any case, we usually investigate these forms of metadata manually in the

user interface of continuous integration software.

Documentation, Code Review, and Bug Tracking Metadata. Beyond

metadata for managing and assessing external code, we expect to find code

3



Figure 1.1: Conventional programming environment.

documentation. Code documentation exists in the form of embedded source

code comments or external files in various formats. Depending on a scenario,

we may either utilize a development environment or a web search engine for

finding relevant code documentation. Other than usage and functionality doc-

umentation, we may find other specialized documentation: reviews of code

changes, feature requests or bug reports. Additional tools usually store and

manage this specialized documentation. Again, we may manually investigate

these forms of metadata when working with external code.

Other Metadata. The above cases are only examples of what metadata we

encounter during development with external code. We can naturally utilize

other tools and metadata – for example, we may be interested in results of

analysis that computes code coverage of external code. Some metadata may

also not be explicitly stated – for instance, what style convention the external

code follows. They are, however, all potential factors we may consider when

working with external code.

Figure 1.1 summarizes our view of conventional programming environ-

ments. There are three layers of naming abstractions between the actual stored

external code and its usage in programming language constructs. In this case,

external source code originates from a version control system (VCS) reposi-

tory (i.e. it is assigned an internal identifier in VCS). This stored code is then

4



Figure 1.2: Identifier conflicts.

exposed either directly as a source file (for global compilation) or as object

and interface files (for separate compilation). These files are actually retrieved

based on interactions and versioning information in the package manager’s

metadata from a global repository. Finally, in the programming language se-

mantics, we have constructs for name-based accessing of external code that

vaguely relate to names in the local filesystem.

Generally, the code we edit is the same as the source we share and expose

through this layered mechanism. Programming language constructs are often

oblivious to the fact that the external code originated from elsewhere. In

other words, the programming language abstraction is that source code only

resides in certain paths of a local filesystem. Only some metadata is directly

available from within the programming language constructs, the rest relies on

pre-processing and di↵erent tools.

In this section, we described our general assumptions about conventional

programming environments. There exist various exceptions to this setting, for

example, some languages may o↵er or require qualifying the names in import

statements by URLs (e.g. in Go, “the repository URL and import path are one

and the same” [3]). Nonetheless, they may still share features of conventional

programming environments we described (e.g. name-based access or no direct

access to some metadata).

5



Figure 1.3: Context dependence.

1.1.2 Key Challenges

In this section, we overview issues that arise in the setting we described in

Section 1.1.1. Firstly, we look at challenges due to name-addressable access,

i.e. a lack of globally unique persistent identifiers.

The profound problem of identifier collisions (Figure 1.2) falls into this

category. Open source libraries are independently developed by di↵erent in-

dividuals and organizations. As such, name collisions of symbols exported

by di↵erent libraries may occur. Centralized package repositories can enforce

policies to prevent name collisions across di↵erent libraries. Even with that,

the same library can have name collisions with itself if we consider its di↵er-

ent versions. Package-level dependency trees can contain di↵erent versions of

the same library on di↵erent paths which may or may not be resolved by the

package manager.

The other problem in this category is context dependence (Figure 1.3). The

programming language abstraction of compilation is side-e↵ect free, i.e. given

the same input source code, we should obtain the same output target code.

This abstraction, however, depends on implicit local and global context. If

we compile the same code on two di↵erent machines, we may get di↵erent

outputs, because it was linked with di↵erent libraries. If we compile the same

code at di↵erent times on the same machine, we may get di↵erent outputs,
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because the external code was changed (e.g. updated by a package manager).

This situation is common. For example in the CRAN repository of the R

programming language community, 41% of the errors in a two year history of

packages were caused by incompatible package-level changes [4].

Secondly, challenges arise due to a lack of globally unique persistent iden-

tifiers in combination with heterogeneous metadata that we encounter in pro-

gramming environments. The key challenge here is directly relating code and

metadata, i.e. without processing or analysing code. For example, at a given

time, the continuous integration system stored a successful result of running

a set of unit tests for a given function. We would like to know which ver-

sions of the library this test set would pass as well. We have di↵erent indirect

options for how we could find this answer. One possibility is going through

the library’s version history and repeatedly executing these tests. The other

possibility is running an analysis on the repository which identifies revisions

where this function and its dependencies are identical with the tested one. Due

to refactoring changes, this analysis may be complex and involve a trade-o↵

between time and precision. Nonetheless, these options are not direct.

One related challenge is the impedance mismatch between code and related

metadata. This issue resembles the traditional OO-relational or multi-tier web

programming impedance mismatches [5]. As mentioned, there is a variety of

code-related metadata with many relations among di↵erent instances of meta-

data and code. Some of this information fails to be mapped onto a filesystem

structure which only provides a naming hierarchy. The challenge of directly

relating code and metadata is a consequence of code-metadata impedance mis-

match. One other consequence is the absence of uniform interfaces for retriev-

ing and managing code-related metadata.

Thirdly, challenges arise due to coarse-grained code distribution (Figure

1.4). Given our client code may not utilize 100% of the exposed library sym-

bols, we may experience ine�ciencies or complications. The compilation times
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Figure 1.4: Coarse-grained distribution.

can increase due to additional processing of the unused library parts. Fur-

thermore, the unused library parts could fail to compile or cause dependency

conflicts. Even though we do not need these unused library parts, coarse-

grained dependency specifications bring them in and could cause ine�ciencies

or complications in our build process.

In this section, we summarized key challenges in conventional programming

environments. These challenges occur due to three factors: a lack of globally

unique persistent identifiers in name-addressable code access, heterogeneity of

code-related metadata, and coarse-grained code distribution.

1.2 Search-focused Programming Environment

In this section, we describe the novel solution that addresses challenges found

in conventional programming environments. In particular, we propose Search-

focused Programming (SFP) as an alternative to conventional programming

environments. Search-focused Programming environments consist of several

parts:

1. A separation between source code that is interacted with and source code

that is viewed or shared.

2. Identifiers of shared source code and related metadata, such as static
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Figure 1.5: Search-focused programming environment.

dependencies, are persistent, globally unique and location-independent.

Identifiers are assigned through a content-addressable scheme.

3. Finer granularity of global code dependency tracking is used.

4. Declarative query language for retrieving versioned code declarations and

metadata.

5. Interface for reading and writing new shared code and metadata.

Figure 1.5 summarizes relationships and interactions in a Search-focused

Programming environment. Code is edited or viewed through a local interface

– be it a traditional o✏ine text-oriented editor with files and some explicit

synchronization, or a structural online editor. Dependencies among individual

code entities (functions, protocols, variables etc.) are stored and captured

directly. At the same time, other code-related metadata can be associated

with individual code entities through their unique identifiers.

The aim of SFP is to eliminate problems we identified in conventional

programming environments as well as enable new applications in a distributed

setting. We demonstrate these ideas by adapting an existing programming

language to this setting and conducting a study on its community-maintained

code repositories.
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Name collisions do not occur by design: code definitions are assigned glob-

ally unique identifiers based on their content, e.g. two function definitions

would have the same global identifier only if they were the same definition.

Metadata can directly refer to code using its location-independent identifier

and can be inserted and retrieved in a homogeneous way through the respective

interface and declarative query language. Context, such as assigned human-

readable names at a time, is explicit and can be retrieved using a declarative

language. Code distribution happens at a finer granularity and prevents or

reduces issues associated with coarse-grained code distribution.

Overall, the vision is to make programming environments “searchable” in

a distributed setting, i.e. to be able to access the entire environment in an

uniform way and issue queries that produce consistent results everywhere.

Besides addressing the challenges described in Section 1.1.2, it opens up new

opportunities in programming environments that we describe in Chapter 7.

In this section, we briefly described Search-focused Programming and how it

addresses challenges present in conventional programming environments.

1.3 Contributions

In this section, we summarize individual contributions of this thesis to alter-

native programming environments. Programming environments are used in

decentralized settings and pose various challenges when it comes to interact-

ing with external shared code. At the same time, with years of work put

into programming languages, environment tools, training and existing open-

source code, clean-slate solutions may not be viable. In this thesis, we present

Search-focused Programming as a distributed environment architecture and its

concepts may be useful on their own and backported to existing tools. While

Search-focused Programming can facilitate di↵erent ways of interaction with

shared code and related metadata, we also demonstrate it can simulate ex-

isting workflows of conventional programming environments. By adapting an
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existing language, we examine compatibility of various language features with

this new setting.

More concrete contributions of this thesis are as follows:

• This thesis introduces concepts behind Search-focused Programming.

Together, they serve as a basis for modular programming environment

architecture in a distributed setting. It can accommodate and expose

various kinds of metadata present in programming environments, while

representing all data (i.e. code and metadata about it) uniformly.

• This thesis studies an existing language, ClojureScript, and shows how it

can work within a Search-focused Programming environment. The thesis

considers compile time dependencies: the presented work may be appli-

cable to languages with static name resolution (C, Java, Erlang, etc.) or

in a limited context in other languages as well. Runtime dependencies,

metaprogramming interactions or dynamic name resolution remain as

future work.

• Two di↵erent usage ways are discussed in contrast to compare textual

usage compatibility and more experimental interfaces. Proof-of-concept

implementations of both of these approaches show the flexibility of in-

terfaces for transacting and declaratively retrieving code and metadata.

• Given the interaction usage is separate from storage, two usage ways

are di↵erent but compatible. With that, this thesis shows how existing

code could be imported and utilized using a prototype command-line

interface.

• This thesis analyses existing source code repositories using modified por-

tions of the prototype implementation and infers their characteristics. In

particular, within the community project repository Clojars, about 44%

to 78% of shared exposed code of five most depended on ClojureScript
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libraries was not used by other projects. The unused code of two libraries

increased cold start compilation time of their example client code projects

0.23x to 11.04x. This overhead is reduced by using definition-level de-

pendencies in Search-focused Programming environments. The results

demonstrate some of the challenges in conventional programming envi-

ronments. They also suggest possible merits if concepts from Search-

focused Programming are employed in existing programming environ-

ment infrastructures.

1.4 Thesis Outline

This chapter briefly introduced the setting of programming environments

– the layers of naming structures are used when accessing code and kinds

of metadata present in programming environments. It identified several key

challenges in conventional programming environments and set out to tackle

them using Search-focused Programming.

Chapter 2 reviews related work in programming languages, software engi-

neering, and various system implementations. It guides motivation for some

decisions in this thesis.

Chapter 3 walks through a workflow for a programming environment around

ClojureScript. It shows how projects are set up, versioned, shared, tested and

how related metadata can be retrieved.

Chapter 4 gives a conceptual overview of Search-focused Programming. At

first, it poses several requirements that motivate further design choices. It

then describes issues surrounding the assignment of persistent globally unique

identifiers for code distribution and dependency tracking. Following this, it

describes mutable and persistent metadata, and two ways for interacting with

the programming environment: a declarative query language for retrieving ag-

gregated information at a given time point, and log-based reading and writing

of new information.
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Chapter 5 then shows two proof-of-concept implementations of interfaces.

The first one is a command-line interface that aims to preserve backwards com-

patibility with the processes of conventional programming environments. The

other is a web-based interface that shows a more interactive approach to work-

ing with shared data in a programming environment. They both demonstrate

the flexibility of the underlying architecture for working with a Search-focused

Programming environment.

Chapter 6 examines existing source code repositories. This analysis reveals

some of the issues originating from the conventional programming environment

design. Experiments with example projects show overhead in compilation time

which would be reduced with more fine-grained code distribution, as present

in Search-focused Programming. It validates the approach’s applicability in

existing code structures.

Chapter 7 summarizes the overall findings and discusses di↵erent extensions

suitable for future work. Future work looks at adopting more expressive query

languages, di↵erent challenges for the storage layer, granularity of dependency

tracking, and related applications.

13



This page is intentionally left blank.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we overview di↵erent lines of work related to concepts in

Search-focused Programming (SFP) environments. They concern di↵erent as-

pects related to di↵erent features of SFP environments.

The first aspect is creation of persistent unique identifiers for code enti-

ties or code-related artifacts. Section 2.2 describes work that aims to assign

identifiers to software for the purpose of scholarly attributions. This line of

work may share some goals for identifier assignment in SFP, but has a di↵erent

focus (citable contributions) and means for assignment. Section 2.4 then looks

at package managers, file systems, and distributed systems. Similarly to SFP,

some of these systems use content-addressable schemes for assigning globally

unique identifiers, but have di↵erent aims (e.g. OS-level package management)

and respective di↵erences (e.g. di↵erent granularity of dependencies).

The second aspect is deterministic code management, i.e. retrieving the

same result for the same input at a specified time, through di↵erent means.

Section 2.4 references work in that direction, such as reproducible build sys-

tems. Section 2.5 looks at software engineering work and some of it may help

with deterministic code management, e.g. the practice of monolithic source

code repositories. Some of this line of work leads to similar e↵ects as SFP, but
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makes di↵erent assumptions (e.g. all within a single organization) from what

SFP environments a priori make.

The third aspect is code and related metadata organization. This topic

spans across several areas. Section 2.3 covers work around processing code-

related metadata for di↵erent uses, Section 2.5 then contains software en-

gineering practices and development environments that enable working with

code-related metadata. Some of them provide a uniform access to code-related

metadata, similarly to SFP environments, but focus on localized environments

with di↵erent assumptions and may deal with non-persistent identifiers and

potential non-determinism.

The final aspect is experimentation with software development and pro-

gramming environments. Various systems and programming languages are

presented in Sections 2.4 and 2.5. Some of their architecture may share com-

mon features with the interactive prototype we describe in Chapter 5, such as

more fine-grained program manipulation, but may rely on location-dependent

identifier assignment.

In addition to the mentioned aspects, this chapter overviews other lines of

related work. This line of work may not necessarily fit within the scope of

the mentioned aspects, but is still related to SFP, such as various software

engineering tools and techniques.

2.2 Persistent Identifiers

Over centuries, libraries and publishers developed and used standard long-

lasting references for reliable and e�cient finding sources of documents [6]. In

the context of digital documents, systems administered by institutions usually

create and maintain persistent identifiers. For example, a federation of regis-

tration agencies (appointed by the International DOI Foundation) manage the

popular Digital Object Identifiers (DOI) [7].

Recently, research communities started to put more emphasis on assigning
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persistent identifiers to other scholarly materials and datasets. For example,

DataCite [8] aims to manage DOI for published research datasets. Software

packages could be seen as datasets, but given the continuous software devel-

opment process and other factors, new approaches are proposed specifically

for software. One of such recent e↵orts is CodeMeta [9] which describes a

minimal metadata schema for published scientific software and code. Such

schemas, once standardized, could be used as a part of ontologies for captur-

ing project-level metadata in SFP environments.

While SFP shares the goal of reliable and e�cient finding of code, it aims to

capture general software development. As such, it does have not the primary

goal of creating citable contributions for the scholarly record and has other

requirements that may be in conflict with some restrictions in the scientific

software domain. We expand on these requirements in Chapter 4. In particu-

lar, Section 4.2.2 assesses centralized identifier assignment with the respect to

posed requirements for SFP environments.

2.3 Source Code and Metadata Processing

Various ways are used to express additional information about source code.

We give detailed examples of di↵erent metadata sources in Chapter 3. Source

code itself may utilize comments, documentation strings, marker interfaces

[10], annotations and similar mechanisms. Their usage ranges from extra pro-

cessable information (e.g. marking code as deprecated) to additional language

concepts (e.g. design-by-contract). Using naming conventions to describe con-

cepts beyond original builtin features of a programming language may cause

problems. Explicit Programming [11] was proposed to address these problems.

SFP does not focus on extending languages with additional concepts, but

on integrating metadata sources and providing a uniform access to them. With

these goals, adding and processing metadata about source code can be done

outside of language syntax and semantics. We expand on processing metadata

17



for extending languages in Chapter 7.

Some software development tools specify processing of code-related meta-

data in a declarative way. The most related to our work would be prom [12]

and Gerrit [13]. The prom tool was a replacement for the make build system

and used Prolog to specify build tasks. Gerrit is a tool for code review on

top of the Git version control system and allows specifying logical rules for

code changes. While the query language in SFP is not as expressive as Prolog,

it can facilitate some similar uses. We expand on the possibility of a more

expressive query language in Chapter 7.

2.3.1 Linked Data

Structured data exchange and integration appear as frequent topics in the Se-

mantic Web applications. In the domain of software development, software

chrestomathies [14] aim to connect code with documentation and other soft-

ware artifacts, mainly for educational purposes. Nava [15] is an experimental

language where software components were discovered and used via seman-

tic queries. For the implementation, they used Cyc, an artificial intelligence

project that includes an ontology, a knowledge base, a reasoning engine, and a

specification engine. The architecture behind blackboard systems [16] shares

some properties with the temporal view of the repository state in SFP envi-

ronments.

This line of work shares some common goals with SFP, such as uniform

programming access to metainformation about code. SFP, however, has other

requirements (that we detail in Chapter 4) that motivate other design choices.

For the read access at a certain time, we choose a dialect of Datalog. In contrast

with semantic queries or artificial intelligence software, Datalog only allows

limited domain-specific reasoning. The reason for choosing Datalog over a

more powerful or expressive query language is motivated by our requirements:

its behaviour is deterministic and has predictable performance. We discuss
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alternative query languages in Chapter 7.

If we view source code as databases, the database normalization [17] aims

to reduce redundancy and improve integrity. These goals are somewhat shared

in SFP environments with tracking code dependencies on a finer level. Shared

programming environments, however, need some degree of redundancy for pre-

serving the version history as well as due to the nature of software development

(e.g. the existence of multiple forks). With that in mind, the expectation of

“absence of update anomalies” is in contradiction with the expectations of

programming environments.

2.4 System Software

A wide variety of system software has been an inspiration for some of concepts

behind SFP. We overview system software areas that are close in their features

or goals to some portions of SFP.

2.4.1 Package Management

System and programming language package managers overlap in their function-

ality. They generally di↵er in their purpose. Programming language package

managers naturally aid software development in a given language. With that

goal in mind, their package repository processes (e.g. publishing and using

latest package versions) or functionality (e.g. allowing environment isolation)

may be tuned to particular language community standards. Nonetheless, even

system package managers are related to our work.

Traditional package managers of Linux distributions contain metadata in

their package formats, such as RPM or DEB. One relation to our work is

their advanced function for managing dependencies through virtual package

or feature specifications. Similar behaviour in SFP environments could be

achieved by a custom dependency resolution for queries that return multiple
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results.

In recent years, open source communities put more emphasis on “repro-

ducible builds” [18] which “aim to provide a verifiable path from software

source code to its compiled binary form.” Two issues appear in old systems

without these reproducible build guarantees: 1) conflicts among packages due

to unrestricted pre-install and post-install side-e↵ecting scripts [19], 2) non-

determinism in the build process (e.g. due to timestamps in produced outputs)

[18]. “Reproducible builds” eliminate or reduce these issues and di↵erent di-

rections exist how to realize “reproducible builds”.

One direction for achieving “reproducible builds” comes with recent “func-

tional package managers”, such as Nix [20] or Guix [21], or even earlier with

the Vesta [22] Software Configuration Management system. Inspired by func-

tional programming, these package managers aim to provide an immutable

abstraction over the system environment and purely functional behaviour of

build procedures: given the same inputs, we obtain the same outputs on any

system. Inputs include package dependencies, build configurations and steps,

while outputs are package binaries assigned with unique identifiers (which are

computed as cryptographic hashes from inputs and possibly contents). In

addition to that, these package managers manage symbolic links to isolate

di↵erent package versions (which end up with di↵erent identifiers) and rely

on community-curated build procedures patched for determinism. Nix has a

custom external domain specific language for managing packages, while Guix

uses GNU/Scheme as an internal domain specific language. Similarly to Nix,

Vesta used an external domain specific language. Vesta focused on specify-

ing build procedures and used a virtual file system that ensured reproducible

builds through a distributed append-only namespace.

SFP shares some goals with functional package and software configuration

management, such as determinism. On the other hand, it does not focus

on general operating system-level build procedures and package distribution
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where packages may contain unused code, and focuses more on aiding software

development and managing code-related metadata.

2.4.2 File Systems

The idea in functional package management for assigning unique identifiers

based on content (of inputs and possibly outputs) is itself inspired by work in

storage systems on content-addressable data management. We give examples

with Git’s internal storage in Chapters 1 and 3, so we omit an extensive dis-

cussion here. In general, Git could potentially serve as a storage layer for SFP

environments. One subtle point is that Git’s binary blob objects have iden-

tifiers generated purely based on their content without additional inputs (e.g.

transitive dependency structure). If Git was used as a storage layer in SFP en-

vironments, the Git storage-backed implementation would need to account for

this identifier assignment scheme di↵erence (e.g. by creating auxiliary binary

objects with embedded code dependency information in their format).

Apart from this line of work that motivated the persistent identifier assign-

ment in SFP, other new file systems aim for more flexible metadata manage-

ment. For example, TagFS [23] or hFAD [24] allow more flexible file organiza-

tion through attaching labels to files. Users can then find files by issuing search

queries using these labels. Hierarchical organization is a special case in these

more general file systems. This motivation is shared with code organization

and distribution principles in SFP.

2.4.3 Distributed Systems

Ideas from content-addressable storage expand to distributed systems because

of their advantages, such as elimination of duplicate data or implicit integrity

checks of stored data. A distributed hash table, such as Content-addressable

Networks [25], can serve hash table-like functionality for Internet-scale appli-

cations, such as peer-to-peer data sharing networks. One recent example is

21



Inter-Planetary1 File System (IPFS) [26] which is a peer-to-peer protocol “de-

signed to create a permanent and decentralized method of storing and sharing

files”. IPFS is an example of a content-addressable storage: each shared file is

assigned a unique persistent identifier based on its content. For mutable ref-

erences, IPFS has a service named “Inter-Planetary Naming System” (IPNS)

where references can be stored and updated under identifiers computed as

hashes of authors’ public keys. At the time of writing, IPFS is still under

development and various projects and initiatives are debated and developed.

The most related issue to our work is the idea of a programming language with

code stored on IPFS. One experimental language for this purpose is Annah [27]

(and its corresponding core language Morte). In Annah, all expressions are

encoded in calculus of constructions (using the Boehm-Berarducci encoding of

algebraic data types [28]) and stored in a textual representation. After reading

an input expression, Annah’s compiler downloads and parses external expres-

sions, and super-optimizes the whole program that can then be stored on IPFS.

Despite practical issues (e.g. ine�ciencies due to the chosen encoding), purely

functional languages, such as Annah, can bring foundations for programming

languages designed from scratch to fit distributed programming environments.

In SFP, the initial focus is on adapting existing languages rather than creating

fresh ones. The usage of decentralized storage layer, such as IPFS, is discussed

as future work in Chapter 7.

The extent of various distributed systems in related domains is large, so

we only list several notable software projects. GitTorrent [29] is a peer-to-peer

network of Git repositories and user profiles. Fractalide [30] provides a Flow-

based Programming system [31] where nodes are managed by Nix. Similarly

to functional package managers, a few novel distributed platforms, such as

Tunes OS [32], Awelon Blue [33] or Unison [34], separate location-based access

names from linking. Awelon Blue uses cryptographic hashes as unique identi-

1The name is a reference to J.C.R. Licklider’s “Intergalactic Computer Network”, a
concept that led to the creation of the Internet.

22



fiers for linking sequences of bytecode, while Unison assigns such identifiers to

high-level language definitions. Just as IPFS, many of these projects are un-

der development, so from their outlook, they share some common techniques

with each other as well as with SFP, such as having deterministic persistent

identifier assignment.

2.5 Programming Environments and Tools

Software engineering research and practices produce di↵erent lines of related

work, so we overview the most prominent and relevant ones.

2.5.1 Source Code Searching and Indexing

Wide literature exists on querying source code. CodeQuest [35] and Semm-

leCode [36] are related to our work in that they used Datalog for querying

program code. The query access intended in our SFP design is at a di↵erent

granularity, but the flexibility and deterministic performance of Datalog moti-

vated a use of its dialect. Google Kythe [37] is a project that describes itself as

”pluggable, (mostly) language-agnostic ecosystem for building tools that work

with code”. It provides a graph storage format and schema that allows track-

ing cross-references between data in di↵erent languages. Presenting a uniform

programming access to work with code and related artifacts is a motivation

shared in SFP, but our initial focus was in single language ecosystems. We

discuss cross-language extensions in Chapter 7.

2.5.2 Dynamic Functionality Resolution

Dependency injection, e.g. Google Guice [38], is finding dependencies dy-

namically based on the type. Loosely coupled components and services in

distributed systems [39, 40] use di↵erent discovery mechanisms or middleware

to establish mappings. All these techniques are done at runtime, while we
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focus on static resolution in SFP. We discuss the extension of using the pro-

gramming interfaces at code runtime in Chapter 7. Keyword programming

[41], CodeHint [42], and other IDE tools query a repository and return the

correct API call. These tools resemble the interactive web interface prototype

we demonstrate in Chapter 5. Apart from details in their experience, they gen-

erally work with a single code base (and selected dependencies) rather than

all published community code.

2.5.3 Monolithic Codebases

Many large software companies, such as Google [43] or Facebook [44], pub-

lished reports about their positive experience when using monolithic version

control repositories. This is in contrast with common engineering practices

with isolated project repositories. Google reported the following benefits [43]

of monolithic codebases: “Unified versioning, one source of truth; Extensive

code sharing and reuse; Simplified dependency management; Atomic changes;

Large-scale refactoring; Collaboration across teams; Flexible team boundaries

and code ownership; and Code visibility and clear tree structure providing

implicit team namespacing.”

Some of these reported benefits motivate SFP environments. The di↵erence

is that monolithic repositories assume a consensus on the global repository

filesystem structure and semantics enforced within a single organization. Given

shared code of community repositories spans across di↵erent organizations and

individuals, these requirements may not suit this setting. On the other hand,

SFP environments only assume a consensus on reading and writing records, as

described in Chapter 4. Any filesystem structures are only metadata separate

from code, so one can depend on code definitions with or without naming

conventions. Each project can follow its own workflow independently of others.

For instance, one workflow di↵erence may be in handling changes, i.e. how

to divide responsibility between downstream and upstream code (users and
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maintainers): Automated scripts for some projects may watch for changes

in transitive dependencies, actively request evidence and pull in latest results;

some may only watch for direct dependencies; others may update dependencies

manually, but automatically request all evidence that their dependants need.

2.5.4 Computer-aided Software Engineering

The prototypes we describe in Chapter 5 can be regarded as examples of

Computer-aided Software Engineering (CASE) [45]. Traditional CASE envi-

ronments, even in a distributed setting [46], however, generally operate within

a single organization. One related extensive research branch of automated

software engineering is tool integration [47]. Processing of multiple sources of

data plays a great role in improving code searching (e.g. SEXTANT [48]) where

data integration is an important issue [49]. The idea of di↵erent tools need-

ing a di↵erent access to related data was first explored in Garlan’s views [50].

Related approaches appeared in, for instance, virtual source files in Stellation

[51] or virtual files in the Desert software engineering environment [52]. The

idea is to separate usage of source code from its storage. Some goals of these

approaches are similar to the command-line interface prototype we describe in

Chapter 5, but they focused on integrated development environments.

OzWeb [53] was an experimental early web-based environment for dis-

tributed process-centred code development with artifacts. This environment

can be seen as a predecessor to many web-based environments, including the

proof-of-concept web-based interaction prototype we describe in Chapter 5.

OzWeb’s described implementation, however, seems to require strong consis-

tency of the system and its static data model lacks versioning.

2.5.5 Source Code in Database (SCID)

The idea of storing and manipulating code structures directly traces back to

early Lisp systems. The reference manual of Interlisp-D [54] describes so-

25



called “file packages” which were database collections of di↵erent data objects

(function definitions, records, etc.). In addition to them, the system also

contained Masterscope, a program analysis tool that had an interactive query

interface and kept track of cross-references, variable usage etc.

Later, Intentional Programming (IP) [55] enriched some of these ideas with

new concepts, implemented in a new interactive environment for structural

editing and generative programming. In such systems, the unique identifier

allocation is usually at random or incremental, i.e. independent of its initial

definition content. The assumption was that the database server with code

objects was shared. IP inspired further generative and metaprogramming sys-

tems which moved away from plain textual file storage. An example of these

metaprogramming systems is JetBrains MPS [56].

Many Smalltalk systems [57] (similarly to early Lisp systems) store together

application state with its source code in an image file and maintain a separate

file of all source code changes. This single image-based development improves

upon some issues present in conventional programming environments. The

management of external code dependencies is on the coarse package level,

similarly to conventional programming environments. For SFP environments,

we assume the separation between application state and static source code.

The extension to runtime code dependencies is discussed in Chapter 7.

Despite operating on top of textual files, Code Bubbles [58] visualizes

code in a more fragmented fashion. Code Bubble’s architecture [59] com-

bines Eclipse’s registrations and callbacks plugin mechanism with a message-

based one. The message-based mechanism resembles the read and write record-

oriented interface to the log we describe in Chapter 4.

Metaprogramming

Logic Metaprogramming [60, 61] stores fragmented program representations as

predicates in a deductive database and uses them for flexible and declarative
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form of metaprogramming. Using a dialect of Prolog, these approaches can

express compile-time variability of modules. Similar uses could potentially be

implemented within the context of SFP environments.

2.5.6 Dead Code Elimination

Various techniques exist for removing unused code [62]. Selective loading and

tree shaking are the most relevant. Selective loading aims to reduce memory

usage by loading function objects on-demand into memory (the first they are

used). Tree shaking, based on a programmer’s specifications, removes statically

unused code dependencies. One other technique is “smart linking” [63] where

minimal (single unit) object files are produced and only the used ones are

linked. These techniques are compile-time, link-time or load-time and results

of the underlying analysis are usually not shared and reused, unlike what

we assume in Chapter 6. Some of the compile-time and link-time techniques

could potentially be reused for processing existing projects in a style of the

command-line interface described in Chapter 5.
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Chapter 3

Conventional Programming

Environments

3.1 Introduction

In this chapter, we describe in detail a workflow example of a conventional

programming environment from the perspective of this thesis, i.e. we focus

on code and code-related metadata exchange and external code usage. We

omit discussing code editors, debuggers and other tools. These tools assist

development and may produce shareable metadata, but are orthogonal to the

example workflow we describe in this chapter.

Since some of later chapters focus on an existing language, ClojureScript,

we describe a process with examples related to this language. ClojureScript

[64] is a dialect of Clojure that compiles to JavaScript, and Clojure [65] itself

is a modern Lisp dialect that targets the Java Virtual Machine. Apart from

the underlying platform, the main di↵erences from Clojure are a lack of some

features (e.g. agents) and a di↵erent handling of macros. Macros are defined

separately from runtime code, accessed via a dedicated namespace primitive

require-macros and evaluated at compile time. We do not include further

discussion of the used language, since it is not the main focus of this chapter.

Section 3.2 starts with presenting an example project structure, as seen
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Table 3.1: Example metadata access and interaction summary
Origin Storage Format Access

Project struc-
ture

VCS internal binary ob-
jects

filesystem commands

Version control VCS internal binary ob-
jects

VCS commands

Project defini-
tion

Semi-structured (EDN) text editor, parsers

Dependencies Semi-structured (EDN /
XML)

text editor, parsers,
project/dependency
management commands

Source content Semi-structured (CLJ /
CLJS)

text editor, parsers,
REPL

Project hosting Relational database ta-
bles

HTTP REST API, web
interface

Community
repository

Relational database ta-
bles

HTTP REST API, web
interface

from the file system perspective. In the presence of a version control system

(VCS), the actual data source of the project structure originates in its internal

binary objects. The file system perspective and interactions are rather just a

view over the VCS internal storage. Section 3.3 then expands this example

with version control metadata which are accessible through VCS commands.

Section 3.4 looks at the project definition which contains additional meta-

data serialized in a semi-structured data format. Section 3.4.1 then focuses on

dependency metadata which is generated from the project definition. From it,

additional data is retrieved and computed through dependency resolution pro-

cedures inside a dependency management tool. Section 3.5 looks at the source

code content itself which includes more fine-grained dependency information.

Finally, Sections 3.6 and 3.7 look at additional data that is connected with

project hosting, continuous integration and a shared community repository.

This data internally resides in a relational database, and is exposed in a semi-

structured data format through HTTP REST API and in a custom web user

interface. Table 3.1 shows the overall summary of example programming en-

vironment metadata presented in this chapter.
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.
LICENSE
pro j e c t . c l j
README.md
s r c

c l j s
com

examp l e u t i l s . c l j s
t e s t

c l j s
com

ex amp l e u t i l s t e s t . c l j s

Figure 3.1: Example project structure

3.2 Project Structure

While it is possible to directly use ClojureScript’s compiler, the common prac-

tice is to use automated tasks of project manager software. Various project

manager and build automation tools exist. In our example, we describe one

of the widespread tools, Leiningen [66]. At first, it can help us to create a

project structure from a template. We show a very basic project in Figure

3.1. The purpose of each file is standard and names follow standard conven-

tions: LICENSE contains a full software license text, project.clj is a project

definition manifest (we come back to it in Section 3.4), README.md contains

introductory documentation, src/ is a directory tree with the source code files,

test/ is a directory tree with the testing code files.

The project structure shown in Figure 3.1 only contains visible files and

directories. In practice, a project would contain additional hidden files and

directories defining its environment. For example, with the Git version control

system, .gitignore file would contain path expressions to exclude from ver-

sion control (such as build caches) and .git/ directory with the internal files.

Given our example project is under version control, the structure shown in Fig-

ure 3.1 is not the “source”, but rather a view drawn from the internal binary

files present in .git/objects/ directories. Figure 3.2 shows a list of object
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39 e3638e8fcde49e79eb984bc3c812c93c375966 ( i n i t i a l commit ob j e c t )

03 c2440a1b0da6512432b5812e19ba60dcd7b041 ( root t r e e ob j e c t )

42 d437a17a2acb5779e523edd681935c68677fd4 ( . g i t i g n o r e blob ob j e c t )

d921d3df f e f3939870 f5eaa4ce69ac9a308ac2df (LICENSE blob ob j e c t )

a3ca72a647b9f4b2d5e7f7688cee6e62c152b62c (README.md blob ob j e c t )

a1dc4fcee8e3bee005a95d7718784118da6f8abe ( p r o j e c t . c l j blob ob j e c t )

6 c86de6845f2d057d68bfdbc2a790c89b35ce8fe ( s r c t r e e ob j e c t )

d5b77fc4 f2d94c3c4752382f23795dfe439 f33c5 ( s r c / c l j s t r e e ob j e c t )

752 e997580b7805892291eac4296fc8a8904a66e ( s r c / c l j s /com t r e e ob j e c t )

4 eab900ecfb40162ec553bc7f32931949f540b83 ( examp l e u t i l s . c l j s blob ob j e c t )

1 cb3689f8f468faa0d61173dac7d5aaa4c810c80 ( t e s t t r e e ob j e c t )

2 cdf1b502be861ccbd93bc971ba1e71077c3941c ( t e s t / c l j s t r e e ob j e c t )

a4 f f5c80dab9f51acaca f2be f9cb799323851651 ( t e s t / c l j s /com t r e e ob j e c t )

cc5a078d331f2df8896c56aa972113a5c53c09df ( e x amp l e u t i l s t e s t . c l j s blob ob j e c t )

Figure 3.2: SHA-1 identifiers of Git internal objects containing the example
project structure

t r e e 03 c2440a1b0da6512432b5812e19ba60dcd7b041
author Jo s e f K <josefk@example . com> 1486219272 +0800
committer Jo s e f K <josefk@example . com> 1486219272 +0800

i n i t i a l commit

Figure 3.3: Version control metadata example for an initial commit

identifiers that would correspond to the shown example project structure. The

first object is a “commit object” which contains version control metadata (au-

thor, date, and message) and hash references to a “tree object” and a previous

commit object (in this case, none). The content of the first object is shown in

Figure 3.3. In this scenario, tree objects contain hash references to other tree

objects and blob objects, i.e. they encode the directory structure and more

or less correspond to inodes. Blob objects then in this scenario contain the

content of files.

The origin of project content is thus in “nameless” binary objects which are

shared and exchanged. The host filesystem and Git version control commands

only provide a user interface to them.

3.3 Version Control

If we change files and commit them, the number of Git internal objects will

grow. Figure 3.4 shows a list of object identifiers that would correspond to the

example project after changing some of its source files. The second commit

object contains commit metadata, a reference to the first commit object and a
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e685f8e976cced2a91c8e9537c389204ee09a5bc ( second commit ob j e c t )

39 e3638e8fcde49e79eb984bc3c812c93c375966 ( f i r s t commit ob j e c t )

800 f5e574d4c01998a9eed15b2170e4426d2dd21 (new root t r e e ob j e c t )

. . . (new t r e e ob j e c t s )

2 b90d2971d87bbf f6767255feee5c5a0b804fc63 (new examp l e u t i l s . c l j s blob ob j e c t )

03 c2440a1b0da6512432b5812e19ba60dcd7b041 ( o ld root t r e e ob j e c t )

. . . ( o ld t r e e and blob ob j e c t s )

Figure 3.4: SHA-1 identifiers of Git internal objects containing the example
project structure and changes

reference to the new root tree object. The new root tree object then refers to

all new tree and blob objects, such as the changed source code files, after the

change. The objects corresponding to the state before the change, such as blob

objects for the original source files, are still present in the store. The version

control system may also compress the objects in its storage. Nonetheless, all

repository content and version control metadata are retrievable using their

hash identifiers.

Just as with the project content, version control metadata originates in this

data source. Each metadata field references internal objects directly through

their unique identifiers.

3.4 Project Definition

In this section, we look at some of additional metadata defined within the

content of the project.clj file and details of the dependency resolution pro-

cedure. We show the corresponding project definition in Code Listing 3.1.

The project definition is a Clojure code that utilizes Leiningen’s defproject

macro. This macro takes the provided arguments and creates a def special

form. The def form can create a global variable (in a namespace with a

given symbol) bound to a value. In this case, the value is a nested map data

structure. This data structure then contains both the provided and extra

information, such as the full compile path or default repositories.

The first two arguments follow the Maven’s namespace convention: com.

example is the so-called “group-id”, example-utils is “artifact-id”, and 0.1.0

is a specific version string. The following arguments then contain project-wide
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metadata which may also be duplicated in an unstructured form in the repos-

itory (e.g. the license information). Dependencies are specified in a vector

that lists dependencies in the mentioned Maven convention. Given di↵erences

between compiler versions and their standard libraries, even a simple example

project specifies two external dependencies. Finally, the standard compila-

tion with Leiningen for ClojureScript requires a plugin lein-cljsbuild and its

configuration. We come back to this in Section 3.6.

Listing 3.1: Example project definition

( d e f p r o j e c t com . example/ example�uti l s "0.1.0"

: d e s c r i p t i o n "Example library creation"

: u r l "http://lpaste.net/352020"

: l i c e n s e { :name "Eclipse Public License"

: u r l "http://www.eclipse.org/legal/epl-v10.html"}

: dependenc ies [ [ org . c l o j u r e / c l o j u r e "1.8.0" ]

[ org . c l o j u r e / c l o j u r e s c r i p t "1.9.456" ] ]

: p l ug in s [ [ l e i n� c l j s b u i l d "1.1.5" ] ]

: c l j s b u i l d {

: test�commands {

"unit"

[ "phantomjs"

"resources/private/js/unit-test.js" ]}

: bu i l d s {

: t e s t

{ : source�paths [ "src/cljs" "test/cljs" ]

: compi l e r {

: output�to "resources/private/js/unit-test.js"

: op t im i za t i on s : whitespace

}}

}}
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˜/ .m2/ r epo s i t o r y /
a r g s 4 j

. . .
c l j s b u i l d

c l j s b u i l d
1 . 1 . 5

c l j s b u i l d �1 . 1 . 5 . j a r
. . .

l e i n�c l j s b u i l d
l e i n�c l j s b u i l d

1 . 1 . 5
l e i n�c l j s b u i l d �1 . 1 . 5 . j a r

org
apache

. . .
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. . .

1 . 8 . 0
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c l o j u r e s c r i p t
. . .

1 . 9 . 4 56
c l o j u r e s c r i p t �1 .9 .456 . j a r

. . .

Figure 3.5: Fetched dependencies

)

3.4.1 Dependency Resolution

When we run the “lein deps” build task (which may be implicitly invoked be-

fore other tasks), the task will resolve dependencies and fetch corresponding

artifacts into a local Maven repository. Figure 3.5 shows some of the depen-

dencies fetched for the example project. Given their large number, we omitted

showing all artifacts, e.g. all transitive dependencies of the lein-cljsbuild plugin

and ClojureScript compiler, in Figure 3.5.

By default, the dependencies are resolved against two repositories: Maven

Central and Clojars (the Clojure community-maintained repository). The de-
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pendency resolution procedure follows the standard one from Maven. This

procedure is, however, fairly complex [67] and may be augmented by various

plugins, so we will only describe its high-level default mechanism.

The tool first fetches additional metadata about each dependency, including

their transitive dependencies. These kinds of metadata are usually retrieved

via the HTTP(S) protocol in the form of pom.xml files. From these additional

kinds of metadata, it tries to construct a full dependency tree and fetch cor-

responding artifacts (e.g. JAR files). When multiple versions of an artifact

are encountered in a dependency tree, the “dependency mediation” procedure

decides which one is chosen to prevent potential name conflicts between code

(e.g. Java classes) contained in these artifacts. The mediation procedure first

uses heuristics about the artifact location in the dependency tree. For exam-

ple, if libA uses libB-2.0 and libC-1.0, and libC-1.0 uses libB-2.5, it will pick

libB-2.0, because it is one depth level closer to libA than libB-2.5. If they were

on the same level, the procedure would use the order they were defined in.

If any of the conflicting versions were specified as fixed or using ranges, the

procedure will run a solver that would either find a version that satisfies all

constraints or fail the procedure. In our example, if libC-1.0 specified libB-2.5

as a fixed concrete version (denoted by square brackets), the procedure would

pick libB-2.5 instead of libB-2.0. If libC-1.0 specified a range and libB-2.0 fit-

ted in that range, the procedure would pick libB-2.0, otherwise it would choose

the biggest version in the range.

Lastly, we have more options: versions can be specified with qualifiers;

dependencies can be defined with di↵erent scopes and can be imported. All

these additional options then may play a role in ordering and heuristics used

by the dependency mediation procedure.

In this section, we have seen that, unlike project content and version

metadata, additional project-related metadata is present in di↵erent semi-

structured formats in one repository file and in files retrieved from remote
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repositories. Accessing these kinds of metadata involves using di↵erent user

or application programming interfaces.

3.5 Source Content

The source files themselves may contain additional metadata. Code Listing 3.2

shows an example of the example utils.cljs file. The macro may contain

references that would call respective namespace manipulating functions. In the

example listing, the local namespace will contain the join name referring to

the respective function defined in clojure.string (which is loaded with the

standard library, but not imported by default). Apart from the local names,

the function right-pad includes a documentation string. This string, unlike

in other programming languages, is not entirely discarded, but can be accessed

with other annotations at runtime using the function.

Listing 3.2: Example source code

(ns com . example�uti l s

( : require [ c l o j u r e . s t r i n g : refer [ j o i n ] ] ) )

(defn right�pad

"If S is shorter than LEN, pad it with CH on the right."

( [ s l en ] ( right�pad s l en " " ) )

( [ s l en ch ]

( j o i n ( f i r s t ( partition l en l en ( repeat ch ) s ) ) ) ) )

In this section, we have seen that other kinds of metadata are present

directly in source code files. Code-embedded metadata can be then seen as a

semi-structured format and need another interface for their access.
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3.6 Project Hosting

The local version control repository would likely be synchronized with a remote

version control repository to facilitate collaboration. The remote repository

can be using dedicate software or service that provides additional capabilities

on top of the plain version control. In our example, we will use the GitLab

repository manager [68]. By default, GitLab stores additional metadata about

projects (e.g. related issue reports) in a relational database. Typically, we do

not have a direct access to this database, so we interact with these kinds of

metadata in GitLab’s web interface or via REST API. Figure 3.6 shows a short-

ened output in JSON format from the api/v3/projects/:id REST resource on

GitLab 8.16. The resulting nested structure contains various metadata about

the project’s configuration and overall statistics. For example, the “stars” field

refers to the number of users that bookmarked a given project.

3.6.1 Continuous Integration

Projects often also set up a continuous integration service. This service tries

to build a given project or run test suites in an isolated environment (usually

a virtual machine). For ClojureScript, since the target language is JavaScript,

one possible environment is to execute a compiled test suite code in PhantomJS

which is a headless web browser (i.e. configured to be used on systems without

a monitor and input devices). This is what the project definition’s cljsbuild

configuration in Code Listing 3.1 specified. In addition to that, Code Listing

A.1 shows an example source test file with one unit test and helper code for

test execution. GitLab includes its own continuous integration service: Code

Listing A.2 then shows an example configuration for ClojureScript test suite

execution with PhantomJS. We omit showing this code directly here, because

it mostly contains environment-specific configuration details rather than new

metadata.

A common configuration is to run build scripts per each commit on one of
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{"id": 2,

"description": "Example of creating a CLJS library",

"default_branch": "master",

"tag_list": [],

"public": true,

"archived": false,

"visibility_level": 20,

"ssh_url_to_repo": ...

...

"owner": {...},
"name": "com.example -utils",

...

"container_registry_enabled": true,

"issues_enabled": true,

"merge_requests_enabled": true,

"wiki_enabled": true,

"builds_enabled": true,

"snippets_enabled": false,

"created_at": ...

...

"namespace": {...},
"avatar_url": null,

"star_count": 1,

"forks_count": 0,

"open_issues_count": 0,

...

"permissions": {...}}

Figure 3.6: GitLab project metadata example
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[{"id": 8,

"status": "success",

"stage": "test",

"name": "test",

"ref": "master",

"tag": false,

"coverage": null,

"created_at": ...

"user": {...},
"commit": {

"id": "3 c92583519e675e4f95f79b5e8a7489c5ab76a66",

"short_id": "3 c925835",

"title": "fixed phantomjs",

"author_name": ...

...},
"runner": {...},
"pipeline": {...}},
...]

Figure 3.7: GitLab CI metadata example

the mainline branches of the version control repository. Monitoring of their

status can be retrieved through the api/v3/projects/:id/builds REST resource.

Figure 3.7 shows a shortened example output from this resource. It contains

a variety of metadata about each CI build.

In this section, we have seen examples of many kinds of metadata that

project hosting services may provide on top of the plain version control. Ac-

cessing these kinds of metadata again involves formats and interfaces di↵erent

from the ones shown in other sections.

3.7 Deployment

We have di↵erent options for sharing bundled artifacts of a project. Di↵erent

programming language communities [69] have di↵erent policies and practices

when it comes to publishing libraries on community repositories. Some com-

munities may require an approval procedure from repository maintainers or

external tool checking (e.g. that the published library does not break any
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{ : jar name "example-utils" ,
: group name "com.example" ,
: homepage "http://lpaste.net/352020" ,
: d e s c r i p t i o n "Example library creation" ,
: u se r "josefk" ,
: l a t e s t v e r s i o n "0.1.0" ,
: l a t e s t r e l e a s e "0.1.0" ,
: r e c e n t v e r s i o n s ( { : v e r s i on "0.1.0" , : downloads 2} ) ,
: downloads 2}

Figure 3.8: Clojars metadata example

client code), other communities may not impose many restrictions on what

library authors can publish. In ClojureScript, the commonly used reposito-

ries are the default ones from tools: Maven Central and Clojars. Both of

them require a valid pom.xml file and a PGP signature of a given library’s

author. Maven Central imposes additional constraints (packages should only

be released versions and depend on other packages on Maven Central).

For Clojars, given one has created an account, Leiningen has a pre-configur-

ed task that will generate JAR and pom.xml files, sign and upload them. Apart

from them, Clojars store additional metadata about each library. They are

internally stored in a relational database, but exposed in Clojars’ web interface

or via REST API. Figure 3.8 shows an example of such metadata in Clojure’s

EDN format.

We have seen that community repositories contain and expose metadata

that were present elsewhere (such as the names and version numbers) as well

as its own information, such as the number of downloads of a particular library.

3.8 Example Client Code and Other Metadata

If we were to write client code using the library that we showed how it can

be shared on a community repository in Section 3.7, we would follow a similar

work flow. We need to include the example library in the dependencies section

of a project definition, as shown in Code Listing 3.3. An example client code
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that could then use the example right-pad library function is shown in Code

Listing 3.4.

Listing 3.3: Example client project definition

( d e f p r o j e c t com . example/ example�c l ient "0.1.0"

: d e s c r i p t i o n "Example library creation"

: u r l "http://lpaste.net/352020"

: l i c e n s e { :name "Eclipse Public License"

: u r l "http://www.eclipse.org/legal/epl-v10.html"}

: dependenc ies [ [ org . c l o j u r e / c l o j u r e "1.8.0" ]

[ org . c l o j u r e / c l o j u r e s c r i p t "1.9.456" ]

[ com . example/ example�uti l s "0.1.0" ] ]

. . .

)

Listing 3.4: Example client code

(ns com . example�c l ient

( : require [ com . example�uti l s : refer [ right�pad ] ] ) )

(defn show�progress

"Assuming loaded is [0,100], show either \"Loading\"

right padded with dots or \"Complete\""

( [ loaded ] ( i f (= loaded 100)

"Complete"

( right�pad "Loading"

(+ 8 (mod loaded 3) ) \ . ) ) ) )

The source code content of libraries in shared community repositories may

be processed and presented in other ways. For example, a documentation

may be extracted from documentation strings in source code and enhanced

with additional metadata. In the Clojure ecosystem, ClojureDocs is a popular
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community repository of documentation where extracted source code docu-

mentation may be enhanced by example usage submitted by external users.

These additional kinds of metadata are then stored in a document-oriented

database (MongoDB) and exposed via a custom web interface or possibly API

endpoints.

3.9 Summary

In this chapter, we have gone through various stages associated with the shared

code development and described examples of metadata encountered at each

stage. Their data source origins were heterogeneous: some metadata reside

in a custom binary format of version control internals, some are present in

di↵erent serialized semi-structured formats locally or remotely, or in remote

relational databases exposed via web user interfaces and API.

The disparity between various sources of metadata may result in issues we

described in Section 1.1.2. For example, the default dependency resolution pro-

cedure we outlined in Section 3.4.1 only concerns naming metadata retrieved

from pom.xml files. We could still encounter name conflicts later on if the

procedure includes two artifacts with distinct group and artifact identifiers,

but with their internal files exporting conflicting namespace identifiers.

Individual data sources are accessible often in a straightforward way. If we

want to retrieve a project structure and content at a given time point, we can

lookup a relevant commit object identifier and use the “git checkout” com-

mand. If we want to find out if code at a given commit compiles without any

problems, we can retrieve this information from the GitLab CI’s interface. If

we want to visualize a dependency tree computed by the resolution procedure,

we can run the “mvn dependency:tree” command.

In default repositories of ClojureScript, changing existing artifacts is not

possible, but other language communities may allow it. Other than that,

project changes that cannot be easily signalled through version numbers (such
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as splitting or merging projects) may cause problems.

Further challenges arise if we require some cross-data source information.

For example, our project manifest can specify that we depend on a certain

library of a certain version point or a range. We cannot, however, instruct the

underlying dependency management tools to fetch only portions (i.e. individ-

ual definitions) of transitive dependencies our client code actually depends on.

This is one example where combining metadata in source code and a project

manifest becomes a challenge.

Similarly, we can retrieve a continuous integration build status informa-

tion for any library that is hosted publicly. We cannot, however, instruct the

dependency management tool to verify that every artifact in our dependency

tree passed its associated unit tests or even external tests from other projects.

In this example, combing metadata from project manifests and continuous

integration services becomes a challenge.

These kinds of scenarios motivated design decisions behind Search-focused

Programming. In Chapter 4, we go into details of these design decision and

how they address challenges we described in Section 1.1.2 and illustrated with

detailed examples in this chapter.
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Chapter 4

Search-focused Programming

Environments

This chapter describes requirements and design decisions for Search-focused

Programming (SFP) environments in terms of code and metadata storage,

distribution, and organization. Presented design decisions are judged with

regards to properties induced by posed requirements. The discussed issues

and principles of SFP environments span from code distribution and assigning

global identifiers to code organization, access, and interaction with metadata.

Their consideration also includes factors introduced by incorporating existing

programming language features.

4.1 Requirements

Before we propose various concepts that build up SFP environments, we outline

properties of our key interest that are going to be addressed. The purpose is

to specify criteria SFP environments must conform to. These criteria provide

a guidance for di↵erent alternatives as well as for future extensions.
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4.1.1 Determinism

Conventional programming environments may imply context dependence (e.g.

local environment state at a certain time) and certain procedures in them can

become non-deterministic. For example, the complex dependency resolution

procedure relies on the fact everyone follows similar conventions for naming

and version incrementation. Some data sources are mutable and may change

existing information. So, while at some point in time we can retrieve certain

metadata, we may not have access to them in the future. We would be in-

terested in providing deterministic abstractions, i.e. procedures that can be

repeated and replicated with the same outcome.

4.1.2 Global Disambiguation

In conventional programming environments, code and metadata may be tied

to their physical location. Since there is no equivalent of Uniform Resource

Name (URN) for statically linked code definitions, we do not have an ability

to associate code with metadata, such that this association is globally unam-

biguous. We would be interested in global disambiguation of code definitions

without enforcing central naming authorities.

We outlined several issues in conventional programming environments due

to layers of naming abstractions in Chapter 1. The requirement for global

disambiguation would prevent some of these issues “by design”.

4.1.3 Flexibility, Extensibility and Expressiveness

A variety of entities in code, metadata and processes exist in conventional

programming environments. In order to capture them, the architecture should

be flexible enough. It should also allow extensions to accommodate new data

and services.

Individual data sources implied a limited range of metadata we had access

to. We would be interested in a more expressive language that can be used for
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accessing di↵erent kinds of metadata.

4.1.4 Absence of Inherent Bottlenecks

Since we are interested in accommodating all code and metadata and extend-

ing to their new forms, we would be interested in assessing the potential for

scalability, i.e. whether there are no inherent bottlenecks in the design. For

the purpose of discussing di↵erent design aspects, we point out any choices

that may prevent horizontal or vertical scaling. One example class of inherent

bottlenecks are architectural styles where centralized nodes may be flooded.

4.2 Design of Code Distribution

In this section, we briefly remind ourselves how code distribution works in

conventional programming environments (see Chapter 3 for more details). We

then overview the concept of global persistent identifiers. We follow it by ideas

from persistent structures and content-addressable systems [2], and show how

they can provide a way for global persistent identifiers for code. Finally, we

present di↵erent issues and their solutions when global persistent identifiers

are faced with existing programming language features.

4.2.1 Existing Code Distribution

We dedicated the whole Chapter 3 to conventional programming environments,

so we only summarize main points. If we want to access external code, we do

so by a mutable location-dependent reference to a desired definition in a file

bundle with other definitions (both needed and unneeded by client code). This

way could lead to name or path conflicts; if they are on the programming lan-

guage level, they could be limited through scoping and renaming mechanisms

of namespace semantics. Other than that, unneeded code may fail to compile

or increase processing time. Finally, unless it is enforced by repositories, the
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location we used to reference external code may become invalid. Overall, there

is no guarantee of persistent identifiers, and code distribution is a complex in-

terplay of solutions to di↵erent technical problems as well as social conventions

of di↵erent programming language communities.

4.2.2 Persistent Identifiers

The standards for reliable and e�cient finding sources of documents through

long-lasting references have developed over centuries. With the advent of the

World Wide Web, this issue has been addressed in the online context as well.

A common approach for creating persistent identifiers relies on systems ad-

ministered by institutions. For example, the popular Digital Object Identifiers

(DOI) [7] are assigned by a federation of registration agencies that were ap-

pointed by the International DOI Foundation.

Using standards developed in the context of library information systems

would be possible for code, but may be impractical. Unlike scholarly materials

and datasets, program code and metadata are generally self-published and

managed in ownership and merit-based hierarchies. This practice is wide-

spread and brings its advantages, and it would not be feasible or rational to

argue against it. It also remains a question whether the systems meant for

document identification would scale up to the level of statically linked code

definitions. In summary, traditional persistent identifier approaches would not

satisfy some of the requirements we described in Section 4.1.

Computer systems may use one of standardized versions of the universally

unique identifier (UUID) [70] scheme for assigning long-lasting references to

objects without relying on third party authorities. They, however, do not

satisfy the requirements we set out in Section 4.1:

• Versions 1 and 2 use time, so do not satisfy our requirement for deter-

minism.
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• Versions 3 and 5 use namespaces, so potentially do not satisfy our re-

quirement for global disambiguation that is independent of naming hier-

archies.

• Version 4 is randomized, so does not satisfy our requirement for deter-

minism.

4.2.3 Global Identifiers for Code

In Chapter 3, among other things, we discussed how persistent content-address-

able storage works in internals of version control systems. This mechanism

guarantees globally unique identifiers with an extremely small probability of

collisions (given good hash functions). These identifiers are generated in a

deterministic way and their creation and assignment do not require third party

naming authorities. In that sense, they would satisfy the requirements of

Section 4.1.

We can thus imagine a scheme where program entities (constants, func-

tions, types, etc.) that are declared with a global scope gain unique content-

dependent identifiers instead of user-chosen names (i.e. symbols). That is defi-

nitions of the form (def X body) bind ‘body’ to an identifier H(body’s external

dependencies + body) where H is some hash function. It may seem that we

lose human-readable names, but the idea is to store human-readable names for

global program entities separately and use them (along with other metadata)

for organizing and interacting with program entities. We expand on this side

in Section 4.3.

Name collisions happen with user-chosen non-unique identifiers. The global

identifier assignment using a content-addressable scheme may have an identifier

collision, but assuming hash functions used in practice, even with billions of

objects, the probability of collisions is minuscule [71]. With non-cryptographic

or weak algorithms, one may possibly construct a malicious input to find a

collision. Since it is outside of the scope of our posed requirements, we discuss
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one potential counter-measure in Section 4.2.8.

4.2.4 Deterministic Assignment of Identifiers

We briefly introduced a content-addressable mechanism for creating identifiers

for globally-scoped program entities. We can now discuss several practical is-

sues with regards to this mechanism. The first question is: what exactly should

we use as the input to H? For the code entity body’s external dependencies,

it could be a sorted list or a set of identifiers. For the ‘body’ itself, we have

di↵erent options and each option has its advantages and disadvantages:

• Surface Syntax : Using the surface syntax is a straightforward solution.

The main drawback is that this option is sensitive to small refactoring

or character changes (e.g. removing whitespaces) – one counter-measure

is to process the source text with the same auto-formatting style.

• Surface Abstract Syntax Tree (AST): This approach counters the prob-

lems of using textual source and is insensitive to character changes. It

still may be sensitive to small refactoring changes (e.g. renaming of in-

ternal symbols) and parsers of some languages may be non-deterministic

(e.g. they would execute certain macros or assign random symbols to un-

named parameters). Since determinism was one of our requirements, this

approach may require creating a custom parser or taking steps to restore

determinism, i.e. modifying the existing language’s parser or processing

the parser’s output.

• Intermediate Representations or Target Bytecode: Using “desugared”

core abstract syntax tree or the target bytecode would be more resilient

to small internal refactoring changes. The previous two options are linked

with the original source – so, assuming they are stored and can be looked

up using the assigned identifier, we can view and get an editable repre-

sentation easily. In this option, it is not the case, so we would either
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need to store the original sources (there could be many source defini-

tions that are assigned with the same identifier) and let the user choose

the preferred one, or employ some “resugaring” techniques [72] if it is

even possible. In addition to that, as with the surface AST, the output

may be non-deterministic (e.g. bytecode generated with profile-guided

optimizations), so we would need to take steps to restore determinism.

In summary, each option has its own advantages and disadvantages. The

selection depends on specific goals and conditions one may have in a given

language environment. In our case, we could choose to use the source syntax.

It may be a potential bottleneck for scalability, but with the increasing physical

storage sizes, we do not consider it to be a serious threat.

4.2.5 Name-dependent Programming Language Features

While content-addressable assignment of identifiers works for constants and

functions, it becomes a question how to deal with other entities. In Clojure-

Script, one example is a variable bound to a mutable atom:

(def ˆ : dynamic example�ref (atom 0) )

In this case, the definition’s body is not enough for generating a globally

unique identifier. In the standard language, this feature is tied to location-

based disambiguation. If we assign identifiers based only on the body content,

“distinct” definitions would be assigned the same identifier. One other example

is a protocol definition:

(defprotocol ReadWrite

( read [ t h i s ] )

( wr i t e [ t h i s message ] ) )

This feature is a more dynamic equivalent of interfaces. In languages with

expressive type systems, it may be possible to disambiguate such definitions

based on their type signatures. Here, we only have names and arities. It
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is, thus, possible to assign ambiguous identifiers. Multiple distinct protocols

could denote di↵erent semantics, but would be assigned the same identifier if

we assigned them identifiers only based on their body contents. For example,

ReadWriteAsync and ReadWriteSync could be protocol definitions that contain

the same body as the above shown ReadWrite, but expect di↵erent semantics

of their methods (which, in a dynamic language, could be specified externally

in documentation, tests or pluggable type systems).

Extended Input-based Solution

One approach in design would be to forbid the use of name-dependent language

features. This approach would not satisfy our requirement for flexibility. It

seems that for these features, the requirements for flexibility and global dis-

ambiguation are in opposition. That is partially true. The goal is to have an

identifier assignment scheme where we could globally disambiguate between

code fragments that have the same content (or even the same name), but

should be used in di↵erent contexts. For global variables, each identifier cor-

responds to a memory location. For protocols, each identifier corresponds to

a protocol’s structure as well as its author’s assumptions (given the lack of

expressive type annotations). Di↵erent contexts that we need to disambiguate

can be di↵erent global namespaces as well as same namespaces, but di↵erent

versions or forks.

Our solution for this problem is to assign identifiers using an extended

scheme: H(full qualified name+timestamp+author’s public key+signature+

body’s external dependencies + body).

Given that we require globally unique names without a centralized name-

assigning authority, we need additional input other than the full qualified

name:

• Timestamp: Name changes only rely on conventions, so it is possible that

an author may want to use the same definition at the same location to
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denote di↵erent semantics, for example with di↵erent versions. Since in

these cases, we need to disambiguate between these definitions, including

a timestamp ensures that they are assigned distinct identifiers.

• Author’s public key and signature: Without a centralized authority that

oversees and enforces globally unique names, di↵erent individuals may

use the same definition at the same location to denote di↵erent semantics,

for example by a coincidence or in case of forks. We need to disambiguate

between definitions in these cases. Since public keys for digital signature

schemes can be generated locally and shared through di↵erent means,

we do not sacrifice global disambiguation. Including an author’s public

key and signature ensures same definitions with colliding locations from

di↵erent authors are assigned distinct identifiers.

Overall, this extension still preserves determinism. Given the input in-

formation, the same identifier for a given code definition is generated every-

where. One alternative for Extended Input-based schemes would be to include

a “canonical specification” in additional inputs. These canonical specifications

could express essential assumptions and metainformation about given code en-

tities. They could range from naming and authorship information to pluggable

type system annotations. While this approach is more flexible, guaranteeing

determinism and the absence of bottlenecks may become a major challenge.

4.2.6 Hierarchical Identifiers

If we look beyond code identifiers, we can assign persistent unique identifiers

to other entities as well. This is di↵erent from conventional programming en-

vironments where identifiers are non-unique, mutable and may be unrelated to

their structural content. The way persistent unique identifiers can be assigned

in SFP is in a hierarchical fashion. For example, given that we have code

entities with identifiers id1, id2, id3 etc., we can assign an identifier to a file
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that contains them as H(id1, id2, id3, ...), and possibly include other inputs,

similarly to name-dependent language features. The versioned project unique

identifiers would then be assigned from these unique file identifiers.

In conventional programming environments, the version control system as-

signs persistent identifiers to files, but only based on their textual content.

The assigned identifiers, thus, do not reflect any structural information, tran-

sitive dependencies etc. So, even though we have a deterministic procedure to

retrieve files (given VCS’s assigned identifiers), we cannot disambiguate them

globally from files with the same textual content in di↵erent repositories or

project versions. For that, we would need additional inputs (physical reposi-

tory location, reference to a particular repository state, etc.) and processing

(potentially non-deterministic retrieval of project-level dependencies). Given

that, these persistent identifiers in conventional programming environments do

not satisfy our requirement for global disambiguation.

This is assuming that the VCS identifier assignment works, as described

in Chapter 3. We could possibly utilize VCS as a storage layer if we created

binary VCS objects for individual code fragments and embedded the input for

identifier assignment in their content. This idea is, however, related to imple-

mentation choices rather than design and principles we intended to discuss in

this chapter.

4.2.7 Mutual Recursion

One issue that is worth discussing is mutual recursion, i.e. how we assign

identifiers to program entities that are mutually dependent. Similarly to how

mutual recursion is handled in programming language semantics, we have sev-

eral options:

• Group the mutually recursive program entities into a single entity, assign

an identifier to that entity, and then create and assign identifiers to pro-

jections of that grouped entity. For example, if we have several mutually
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recursive functions, we can create, using a local let recursive binding, a

tuple where its components are the mutually recursive functions. We

would then generate an identifier for this tuple, and create and assign an

identifier for each component projection.

• Extract the recursive references into parameters and instantiate them at

the call site.

• Create forward name references using the extended input-based identifier

assignment (with timestamps and authors’ public keys and signatures)

and use that to bootstrap the recursive definitions.

These options are in a way equivalent, so the usage depends on individual

scenarios and language features that are required for their implementation.

4.2.8 Extensibility and Implementation Choices

Finally, commitment to a single hash function for assigning identifiers could

limit future extensibility, as new hash functions with better properties may be

invented in the future. A potential solution to this limitation could be the use

of multihash [73] for identifiers. Multihash is a recent informal proposal to use

the first several bytes for encoding what hash function and size the remaining

digest represents. Identifiers would as such self-define what hash function was

used for their generation. By doing so, multiple hash functions could coexist

for the identifier generation and assignment. The only consequence would be

that program entities could potentially have multiple globally unique persistent

identifiers.

We describe the prototype implementations in Chapter 5. For identifier

assignment, the prototypes used the Murmur3 hash algorithm and the surface

syntax as the input. These choices were made in the context of a proof of

concept prototype. Beyond the prototype, the implementation would need

to take into consideration other requirements. For example, if we required a
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code similarity detection, the assigned identifiers would need to reflect that,

as discussed in Section 7.2.3.

4.3 Design of Code Organization, Access and

Interaction with Metadata

In Section 4.2, we focused on the issue of assigning persistent identifiers to

program entities. We discussed a deterministic scheme that can assign per-

sistent globally unique identifiers to program entities. Its main advantage is

that this scheme is location-independent and does not require centralized nam-

ing authorities. The drawback is that generated identifiers do not convey any

human-readable information, unlike centralized location-based schemes. Cen-

tralized location-based schemes tie source code hierarchical organization with

human-readable names in identifier assignments.

In this section, we look at how human-readable names or other metadata

associated to program entities can be stored, retrieved and searched in a uni-

form manner. In conventional programming environments, since there are no

globally unique persistent identifiers, each data source creates its internal iden-

tifiers for managing metadata and exposes them through its custom interface.

The approach in conventional programming environments thus limits flexibility

and expressiveness requirements we have for interactions with metadata.

Many issues arise with data organization in a distributed environment, so

we do not aim to extensively cover every possible issue. The focus of this

section is on basic concepts and interfaces that underline proof of concept

prototypes we describe in Chapter 5. We point out some limitations and

expand on them in Chapter 7.
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4.3.1 Organization

We first explain the terminology we use in discussing code and metadata or-

ganization and then discuss two categories of metainformation present in pro-

gramming environments.

Here are common terms we use in our discussion:

• Entities refer to “objects” which were assigned persistent globally unique

identifiers. Apart from program entities we described in Section 4.2.3,

entities can represent projects or other objects in programming environ-

ments.

• Constants refer to “values” which do not have globally unique identifiers,

such as strings, booleans or numbers. Examples are names assigned to

program entities, license names and texts, return values or standard and

error outputs of test suit executions.

• Relations or attributes express a mapping between subjects (entities) and

objects (other entities or constants). For consistency, we denote predicate

symbols using Clojure’s named dictionaries: for example, {:code/uid id1 ,

:code/dependsOn id2} denotes that code with id1 depends on code with

id2. In the predicate logic notation, this fact could be expressed as

dependsOn (id1, id2). The relations imply names originating from a global

ontology or a schema – our used relation names are only examples and

other relation names would be equally good. We do not aim to dis-

cuss issues, such as ontology or schema mismatches – we assume that

relations used in the context of programming environments would rarely

change and their total number is small and mostly fixed. In contrast, we

assume names assigned to program entities may change frequently and

their total number is large and may grow.

• Some data can be stored and retrieved directly (“extensional predicates”

in the deductive database terminology) and some data could be com-
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puted using other data (“intensional predicates”). One example is that

using the direct code dependency data, we can compute the transitive

dependencies. We omit the further discussion here and expand on this

issue when discussing Code and Metadata Access and Interaction.

• We mention “temporal” facts. By that, we mean that each relation has

an implicit time component that tracks provenance, i.e. maps a given

fact to the transaction that introduced it. We discuss this concept further

in relation to Storage, Access and Interaction.

In summary, we operate with entities and constants: entities are objects

with persistent globally unique identifiers (e.g. program entities as we defined

in Section 4.2.3), constants are values of di↵erent types (e.g. strings or num-

bers). Relations correspond to facts and associate entities to other entities or

constants. We distinguish between two categories of facts:

• Temporal facts, also referred to as “tags”: these facts may change over

time, i.e. be retracted after they are added. They correspond to meta-

data that varies over time in programming environments: names, project

structures, etc.

• Persistent facts, also referred to as “evidence”: these facts do not vary

over time, i.e. once they are added, they are assumed at any time after-

wards. They correspond to code, static dependencies, continuous inte-

gration results, etc.

Modelling of persistence and mutability is a separate issue and we omit a

full discussion here. One possibility is to assume a time component in each

fact and express persistent or mutation through rules – this approach is used,

for example, in Deadalus [74].

Deciding what facts should be persistent depends on the perceived repro-

ducibility or irreversibility of a particular process. When code is published
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under a copyleft license, it can be freely distributed and persistence does not

pose a problem. Similarly if there was an irreversible approval process, e.g.

as a part of a code review, the “approval” can be a persistent fact. With

continuous integration results and running test suites, we assume the process

is reproducible. That means it produces a consistent result under “normal

conditions” (e.g. no hardware failures) at any time. Any such highly deter-

ministic processes, for example code analysers or style checkers, can represent

its results as persistent facts.

The example with test suite results depends on a particular fact we want

to express. If we want to express that a given function passed a particular test

suite (which is a statically known code), we take it as a persistent fact. On

the other hand, if we want to express code passed all its approved associated

tests at a given time, it is a temporal fact, because a new test may be added

later and fail. We discuss how one updates information in Section 4.3.3.

Lastly, some processes are non-deterministic in nature – for example, the

performance measurements. In such case, it depends on the trust in repro-

ducibility. If it is guaranteed that code profiling or performance measurements

are always done under the same stable setting and facts would represent rig-

orous statistical estimates, they can represent persistent facts.

We explained basic terminology and concepts for code and metadata organi-

zation. Using temporal relations is in line with our requirements for flexibility,

extensibility and expressiveness. We later discuss potential scalability issues

in relation to Storage and Access.

4.3.2 Storage

We discuss the issue of storing code and metadata and present log-based uni-

form storage. In conventional environments, as we demonstrated in Chapter 3,

various sources of code-related metadata exist with a di↵erent access to them.

That does not satisfy the global disambiguation requirement we set out for
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this chapter. Challenges arise in various situations. Due to a lack of globally

unique persistent identifiers, detecting the related code and metadata across

di↵erent sources becomes challenging. Similar situations may happen with

any source changes or topological changes – for example, if a project grows

and is split into sub-projects which are copied to newly created repositories,

sub-projects may lose parts of their metadata, e.g. continuous integration re-

sults, that were attached to the old repository. In general, synchronizing and

managing multiple heterogeneous sources in a distributed environment add

additional complexity and may prevent global disambiguation.

This problem setting appears in various forms in other domains. In dis-

tributed systems, independent computer nodes work towards a common goal,

so the common challenge is designing a protocol where messages are received

reliably and in the same order by all network participants. These protocols are

referred to as atomic broadcasts [75] and are present as primitives in di↵erent

distributed system implementations. In software architecture patterns, event

reading and committing can be used for tracking internal states of entities.

This pattern is known as Event Sourcing [76].

Overall, all of these concepts revolve around providing a uniform reliable

source of all data that can be thought as a data storage abstraction: append-

only totally-ordered sequence of records. This is akin to logs in various systems,

be it journalling in file systems, commit logs in version control or transaction

logs in databases. Log implementations di↵er in details – for example, one

di↵erence is whether we store state transforming operations or their results (a

part of the state after applying an operation) in the log. For the purposes of

our discussion, we assume these details are more or less equivalent with regards

to our requirements.

Since the log-centric storage is append-only, it mitigates issues related to

incompatible changes. Similarly to version control system, updates or dele-

tions do not remove the original objects, only mark them as not being a part
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of the latest project or other hierarchical metadata structure. We could, how-

ever, always come back and retrieve them. Depending on particular metadata

changes, di↵erent merge semantics may be needed. This is, however, beyond

the scope of our discussion and we assume the “last writer wins” strategy as

a default one.

From our perspective, the log-centric storage satisfies the requirements we

previously laid out in Section 4.1:

• Determinism: we talk more about the actual interfaces in Section 4.3.3,

but in general, the log-centric storage provides the history of all changes

and a deterministic way to obtain a state (i.e. an aggregated representa-

tion of requested data) at any point – be it through replaying operations

in the log, or through references to snapshots.

• Flexibility and Extensibility : since the log becomes one reliable uniform

source of all data, we do not need to worry about issues we face in con-

ventional programming environments (e.g. explicit synchronization and

fault tolerance of each source of data). This fact gives us flexibility to

capture and store any data related to a programming environment. Sim-

ilarly, the log can store new or extended forms of metadata. Extending

functionality or services is a matter of communicating schema changes

and processing these new or extended forms of metadata.

• Absence of Inherent Bottlenecks : Given various large-scale log-centric

system implementations exist [77, 78] and allow real-time processing with

multiple readers and writers, we assume that the log-centric storage does

not pose any inherent scalability issues.

One potential issue for global disambiguation could be assuming a central-

ized infrastructure in the same way “default repositories” exist in conventional

programming environments. Persistent facts would work without any prob-

lems even if they were inserted at di↵erent points at two distinct log-centric
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infrastructures. On the other hand, temporal facts may pose a challenge if

we tried to combine conflicting information from di↵erent logs or the same

log with itself at di↵erent points in time. We assume these situations are not

frequent and would be resolved at the client side. Alternative approaches with

di↵erent trade-o↵s would be to rely on a single infrastructure with a decentral-

ized consensus on the log content or enabling “rule delegation” on peers that

process the log and provide its materialized view at given time points. We

expand on these alternative approaches as well as other requirements (such as

security) in Chapter 7.

Finally, one potential issue for scalability is the maintenance of a complete

log. Even if we assumed an infinite storage, so that we do not run out of

storage, traversing the log would take longer and longer. The solution to this

issue depends on the log implementation details. If it is a Git-like sequence of

snapshots, we compress, archive or filter out data that may not be frequently

used or the most recent snapshots do not depend on. If it is a sequence of

change operations, the common strategy is “log compaction”. The goal there

is to remove obsolete records and only store the most recent ones. By doing

so, we lose the ability to replay all states, but still have the full “backup” and

can replay the most recent states.

We introduced the log-centric storage, explained how it satisfies our re-

quirements for determinism, flexibility and extensibility, and scalability. We

also discussed two potential issues and their solution.

4.3.3 Access and Interaction

We previously discussed the log-centric storage. Next, we look at ways how

we can access and interact with code and metadata in the log.

In conventional programming environments, access and interaction di↵er

and depend on particular application programming interfaces to given data

sources. In general, we observe two types of access and interaction:
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• Read-only view : in this type, we are interested in retrieving code and

metadata as of a given time point. For example, we retrieve answers for

queries: What is the unique persistent identifier of a function with the

name “foo” as of the most recent version of the project “bar”? What are

its dependencies? In other words, we are looking at a materialized view

over the log at a given time point (with indices or cached values for faster

retrieval).

• Read and write records : in this type, we are interested in retrieving

individual records from the log and inserting new ones to the log. We

use this access when building the materialized views with indices over

the log, inserting new code and metadata, and reacting to requests or

code changes. For example, a continuous integration service would read

an execution request, retrieve relevant code, attempt to compile it or run

a particular test suite, and write back the result.

These two types of access and interaction follow from what we observed

in conventional programming environments. For the read-only usage, we can

facilitate this access through using a query language. In our discussion, we

assume a query language to have at least an expressive power of Datalog

[79]. To coincide with our proof of concept implementation, we show our

examples in a notation similar to Datomic’s [80] query language, a variant

of Datalog, expressed as a Clojure domain specific language. For simplic-

ity, we omit discussing more complex expressions with parametrized bind-

ings and aggregates. Instead, we present each query in the following form:

[: find variable + :in $ % :where clause+] where variable+ represents one or

more symbols starting with ’?’ that bind a variable in one of more clauses.

The dollar symbol represents an external data source (a materialized view at

a given time point) and the percentage symbol represents logical rules, i.e.

intesional predicates. Clauses then contain expressions with extensional and

intensional predicates. Extensional predicates follow a schema obtained from

63



the data source. The example queries we formulated above would be expressed

as follows:

[ : find ? uid : in $ % : where

[ ? c : code/uid ? uid ]

[ ? c : code/name ” foo ” ]

[ ? p : p r o j e c t / conta in s ? c ]

[ ? p : p r o j e c t /name ”bar” ]

[ ? p : p r o j e c t / l a t e s t true ] ]

[ : find ?dep : in $ % : where

[ ? c : code/name ” foo ” ]

( trans�dep ?c ?dep )

[ ? p : p r o j e c t / conta in s ? c ]

[ ? p : p r o j e c t /name ”bar” ]

[ ? p : p r o j e c t / l a t e s t true ] ]

The trans�dep symbol here refers to an input rule for computing transitive

dependencies defined as:

[ [ ( trans�dep ? c1 ? c2 ) [ ? c1 : code/ uses ? c2 ] ]

[ ( trans�dep ? c1 ? c2 ) ( trans�dep ? c1 ? c )

( trans�dep ?c ? c2 ) ] ]

This rule has two parts. The first part says ?c2 is a transitive dependency

of ?c1 if ?c1 directly uses ?c2. The second part says that ?c2 is a transitive

dependency of ?c1 if there is ?c, such that ?c is a transitive dependency of ?c1

and ?c2 is a transitive dependency of ?c.

For evaluating queries at a given time point, we assume the data source

can be obtained and provided as follows: (as�of (connect uri ) txtime). Here,

uri is the data source universal resource identifier, connect is a function that

provides a connection to the data source, txtime is a time reference with the

respect to the log, and as�of is a function that provides the view over that
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data source as of a given time point. The evaluation of each query results in

a set of tuples.

For a fast access in certain workloads, di↵erent applications may provide an

access to a subset of the stored information. These applications may choose to

create specialized indices or caches that help with their workloads. For general

lookups, the indexing strategy of Datomic1 (a deductive database used for the

prototypes in Chapter 5) can be employed: it uses 4 covering indices with

di↵erent sort orders to allow e�cient navigation in di↵erent directions of each

relation.

The second type of interaction is on the level of reading and writing in-

dividual log entries. We can facilitate this type of interaction through using

the publish-subscribe pattern. The log plays the role of a message broker. For

example, given conn is a connection resulting from (connect uri ), Code Listing

4.1 shows how one would publish new data.

Listing 4.1: Example of transacting a record

( t r an sa c t conn [ { : db/ id uid1

: code/name ”baz”

: code/ source ” . . . ”}

{ : db/ id uid2

: p r o j e c t /name ”bar”

: p r o j e c t / conta in s uid1 } ] )

In the example, we are adding a record with code named “baz” into a

project named “bar”. The e↵ect of this transaction depends on the previous

events in the log: new entities may be created and related metadata attached

to them, metadata about existing entities may be updated, or everything stays

the same (if a record with the same content was previously committed). The

schema attributes are resolved to concrete identifiers at that time.

For retrieving new records as soon as they are added to the log, we would

1
http://docs.datomic.com/indexes.html
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use an intermediate structure. Given queue refers to a structure that is ob-

tained from the connection and filled with subscribed records from the log, the

following code would forever process newly arrived data:

(while true

( l et [ data ( . take queue ) ]

( do�something data ) ) )

In this example, we assume the . take method blocks if the queue is empty

and the do�something function processes retrieved records. Altogether with

the log metadata, the obtained data would contain the transacted record, e.g.

what we showed in Code Listing 4.1.

We have seen two types of accessing and interacting with the stored code

and metadata: the flatten query-oriented one for temporal read access, and the

transaction-oriented one for inserting and processing new records. Both types

are in line with our requirements for expressiveness, flexibility and extensibility:

the record structure is flexible to capture any form of metadata about code

entities and be extended to new ones; the query-oriented access allows us to

express queries that utilize di↵erent kinds of metadata. Both types enable

extensions for new services by providing a flexible and uniform interface.

4.4 Summary

In this chapter, we discussed di↵erent issues and explained design concepts

behind Search-focused Programming environments. We first set key proper-

ties we expect from Search-focused Programming environments: determinism,

global disambiguation, flexibility, extensibility, expressiveness, and the absence

of inherent bottlenecks. Each of these properties stands on its own and mo-

tivated issues we discussed for di↵erent areas of Search-focused Programming

environments.

The first area we focused on was code distribution. As we identified in
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Chapter 3, conventional programming environments distribute code in bulks

and rely on complex version numbering procedures to prevent identifier colli-

sions of individual definitions. In addition to that, identifiers in conventional

programming environments are mutable, location-dependent and globally non-

unique. In SFP, we propose an alternative approach where identifiers for code

entities are persistent, globally unique, and deterministically assigned based

on code content. We look at di↵erent issues with regards to this persistent

identifier scheme, such as what exact content to base identifiers on or what to

do with programming language features that are intervened with user-assigned

names (e.g. protocols or global variables).

We then focused on code organization. Given entities in SFP are assigned

globally unique identifiers, they can be associated with additional facts about

them. We discussed two forms of such facts: temporal and persistent. Classi-

fying a fact as temporal or persistent depends on the perceived reproducibility

or irreversibility of the process for obtaining a given fact.

The data source for all code and metadata is a uniform log-centric stor-

age. The log-centric storage plays a key role as an integration component in

enterprise architectures. It is also a basis for fault tolerance and scalability

in various system implementations. The storage flexibility allows extensions

of stored data. Lastly, the log provides a deterministic access for obtaining

changes in temporal facts as well as obtaining an aggregated state at any

given point in time.

We proposed two ways for accessing and interacting with code and meta-

data. The first one uses a materialized flat view at a given time in the form

of a deductive database. In this way, we have enough flexibility and expres-

siveness for queries to retrieve stored code and its corresponding metadata.

The second way is a transaction-oriented access for writing and retrieving new

records. This access can enable new extensions that process stored facts as

soon as they are inserted.
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Figure 4.1: Search-focused programming environment: storage, access and
interaction

The summary of Search-focused Programming environments is shown in

Figure 4.1. The log collects code and metadata from users as well as automated

services (which process the log and write back to it). The records in the log

can be materialized in flat views which are used for fast and declarative access.
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Chapter 5

Implementation of Prototype

Interfaces

5.1 Introduction

This chapter presents two directions in which interaction with code in SFP

environments can be realized. The proof of concept implementation of each

direction demonstrates the flexibility of SFP. The first direction aims to mimic

the commonly present text file editing interface of conventional programming

environments. The second direction shows a more interactive approach with-

out intermediate interactions with files and namespaces. Given both of these

interfaces are built on top of what we described in Chapter 4, code definitions

originating in one interface can be used in the other and vice versa.

5.1.1 Language Choice and Previous Work

Before presenting the proof-of-concept interface implementation, we comment

on di↵erences from previous work [81, 82] in early stages and the choice of

ClojureScript. ClojureScript was chosen for practical reasons:

• Its sizeable community and usage in industry can be more adequate in

our setting than, for example, a purely academic language environment.
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• Its uniform syntax and plain namespace resolution rules made imple-

mentation and experiments more manageable than it would have been

in environments with complex combinations of language versions, exten-

sions or globally scoped language features.

• The presence of existing tools, such as for the storage backend or exper-

imental editors, enabled more code reuse.

Previous work [81, 82] describes work done in the context of Python and

Haskell programming environments and briefly outlines some of ideas that are

examined in detail in Chapter 4. The focus di↵ered from goals set out in

Chapter 1 and mainly centred around modular tool development [82]. SFP

may be suitable for modular tool development, but the pursuits in this area

remain as future work due to the scope described in Section 7.2.6.

5.2 Command-line Interface

Since our primary goal is recreating the interaction known from conventional

programming environments, we follow examples we outlined in Chapter 3. For

example, we can take the client project definition and code we showed in Code

Listings 3.3 and 3.4. From that example, the namespace facility together with

the project definition could be interpreted as the following query:

Listing 5.1: “Namespace as query”

[ : find ? uid : in $ % : where

[ ? c : code/uid ? uid ]

[ ? c : code/name "right-pad" ]

[ ? f : f i l e /namespace "com.example-utils" ]

[ ? f : f i l e / conta in s ? c ]

[ ? p : p r o j e c t / conta in s ? f ]

[ ? p : p r o j e c t /name "com.example/example-utils" ]

[ ? p : p r o j e c t / ve r s i on "0.1.0" ] ]
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We look in detail how we can generate queries from project definitions and

source code namespace directives in Section 5.2.1. Even though the extracted

query contains the same information as the original project definition and

source code namespace directives, there are several di↵erences to be noted:

1. Extracted queries may seem more verbose and we do not assume they

would be written manually. Instead, we can think of the project def-

inition and source code namespace directives as a “frontend” or “sur-

face” language, and the extracted query represents a “backend” language

that the surface can be translated to. This is the main idea behind the

command-line interface presented in this chapter.

2. Even though the example extracted query encodes the original project-

file-code entity hierarchy, it does not need to do so in general (e.g. it

could only work with code entities).

3. Even though the example of the extracted query only contains the in-

formation in the source project definition and namespace directives, it

could in general utilize more metainformation.

4. The original namespace directives refer to a local environment that is

assumed to be modified by a dependency manager (which uses the project

definition in order to do so). The query is evaluated against a specified

database at a given time point (which gives a view over the log as we

discussed in Section 4.3).

5. The original namespace directives refer to symbols that can be found in

external files. These files are assumed to exist in a local environment (e.g.

previously compiled). The query resolves to a globally unique identifier

of a code entity that may exist in a local environment or brought to it

on-demand.

6. The original namespace directives are assumed to map each symbol to
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one definition. If there are multiple definitions, it depends on the imple-

mentation strategy – some interpreters or compilers may terminate with

an error, others may resolve the conflict in some way (e.g. by an implicit

ordering of search paths). On the other hand, the query evaluates into

a result set which may have a size di↵erent than one. A result set with

more than one element may be a desired feature (if we wish to gener-

ate di↵erent program variants) or not. When it is not a desired feature,

we revert to some conflict resolution strategy, similarly to conventional

programming environments. We expand on this topic in Section 5.2.1.

What we mentioned relates to using external code locally. Other di↵erences

arise when we try to share our local code. Given we assigned an identifier to the

shown code as well as the file and project it was in, we can imagine transacting

the following record:

Listing 5.2: Generated metadata

[ { : db/ id uid�show�progress

: code/uid uid�show�progress

: code/name ” show�progress ”

: code/ source ” ( defn show�progress . . . ”

: code/dependsOn uid�right�pad}

{ : db/ id uid� f i le�example

: f i l e /namespace ”com . example�c l ient ”

: f i l e / conta in s uid�show�progress}

{ : db/ id uid�project�example

: p r o j e c t /name ”com . example/ example�c l ient ”

: p r o j e c t / ve r s i on ” 0 . 1 . 0 ”

: p r o j e c t / conta in s uid� f i le�example } ]

As we discussed in detail in Chapter 4, some code (and metadata) is tied

with global names. For that, the user needs to be able to choose whether
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the identifiers of entities tied with names should be fixed to some existing

identifiers or generated as new ones.

5.2.1 Generating Queries

ClojureScript (and Clojure) include many commands for manipulating names-

paces. The most common ones are: require, refer, use, and import. These

commands are generally not used directly. The idiomatic way is to use the

namespace (ns) macro, as we have seen in our code examples. Each command

may also have additional options:

• require: This command loads all definitions from a given namespace

(and loads any additional namespaces transitively needed) and exposes

them via a fully qualified path symbol. It can take additional argu-

ments: :as introduces a shorthand alias symbol for the fully qualified

path, :refer exposes symbols from a given namespace directly without

the qualifying prefix.

• refer: This command works the same way as the optional argument of

require – it exposes symbols from other namespaces without using their

fully qualified prefixes. It allows additional arguments for selectively

exposing only specified symbols or renaming them.

• use: This command is a combination of require and refer.

• import: In Clojure, this command is used for working with Java pack-

ages and class names; in ClojureScript, it is only used for working with

Google Closure’s JavaScript library.

The combination of di↵erent commands and di↵erent options is fairly com-

plex, so for the purpose of our proof of concept implementation, we decided to

focus on a subset of available namespace functionality. Namely, we consider

the following constructs:
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(ns . . .

( : require n s f u l l ) )

(ns . . .

( : require [ n s f u l l : refer [ . . . ] ] ) )

(ns . . .

( : require [ n s f u l l : as ns shor t ] ) )

We focused on two areas of interaction in command-line interface implemen-

tation: deployment and build processing.

5.2.2 Deployment

By deployment, we mean the procedure of publishing a project in a community-

shared repository, similarly to what we described in Chapter 3. In our setting,

it would mean processing local files and transacting corresponding code and

metadata into the log. We implemented the command-line interface as an

extension of Leiningen’s cljsbuild plugin in Clojure – the prototype, hence,

operates with the standard project structures we presented in Chapter 3.

We show the main routine in Algorithm 3 for deployment: it is a simplified

pseudocode that omits various implementation details and presents the pro-

cedure more in an imperative style for a wider audience. The routine starts

by initialization. It creates a connection to either an implicit repository or

to a repository provided in the project manifest. It then tries to retrieve the

project’s unique identifier: if a project of a given version exists, it will get its

unique identifier; otherwise it will transact a record with this project metadata

and return its identifier. In the prototype implementation, the identifier as-

signment was left to the database engine. This is clearly a limitation, and the

full implementation will need to include a deterministic identifier assignment

for non-code entities as well. In this case, the identifier can be generated from
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the project metadata, time and author.

To emulate the bulk processing of conventional programming environments,

the resolution of dependencies is not on-demand (as in the example Code List-

ing 5.1), but done altogether in the routine for creating a global environment.

This subroutine for retrieving a global environment mapping is shown in Al-

gorithm 1. This subroutine takes listed dependencies from the manifest and

composes a disjunctive clause that relates all projects to their contained files.

The remaining query is almost the same as in Code Listing 5.1, but without the

specified namespaces and name symbols. The evaluation of this query, hence,

returns triples which contain the full namespace path, the exported name sym-

bol, and the unique identifier. From this result set of triples, a straightforward

nested mapping is constructed. If during the environment construction, a sym-

bol collision is encountered, a conflict handling routine is called. The default

behaviour is to print a warning and continue. This behaviour emulates the

one in conventional programming environments; we discuss other possibilities

in Chapter 7.

After generating the global environment, the routine continues by retrieving

and sorting the input files (using internal functions from the compiler). Each

input file’s content is processed – given ClojureScript is a Lisp-family language,

the file content is read as a sequence of form expressions. As with projects, a

file namespace entity identifier is retrieved or created and a local environment

is initialized.

Each form expression is analysed using the unmodified ClojureScript com-

piler’s analyser (details in the pseudocode are simplified). If the expression is

controlling the namespace, the local environment is modified accordingly (any

aliases and references are added accordingly). If the expression depends on

a global name (as discussed in Chapter 4), di↵erent policies may be applied:

either (if any) old identifiers can be used or new ones are generated. Since

change management is tied with this feature and is not fully implemented in
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the prototype, the implementation’s default behaviour is to follow the same

procedure as expressions independent of global names – the di↵erence is that

the global name is added as the input for the identifier generation. This is

clearly a limitation of the prototype – we expand on the full implementation

in Chapter 7.

Processing of forms is shown in Algorithm 2. The symbol resolution is

a lookup using the local and global environments. Through that, we get a

sorted set of identifiers of dependencies. The prototype implementation assigns

identifiers as the default Murmur3 hashes of dependencies and textual source

content (obtained from a source logging pushback reader). Chapter 4 provided

a throughout discussion about di↵erent options for assigning identifiers, so we

briefly comment on the prototype implementation choices:

• Using textual source content has a few drawbacks (e.g. identifier assign-

ment sensitive to small changes), as discussed in Chapter 4. This choice

in the prototype is mainly due to implementation details: ClojureScript’s

parser may be non-deterministic due to reader macro expansions. For

example, an expression ‘(x#) is implicitly expanded to a new generated

symbol (e.g. ( x 2804 auto )). If we wanted to use the abstract syntax

tree and enforce determinism, we would need to take additional steps in

the implementation, such as using a custom parser, modifying the pro-

cedure how these symbols are generated or defining our hash function to

ignore such symbols. One other reason for using textual source content

was the implicit storage of the form that is suitable for editing.

• Murmur3 is a non-cryptographic hash function, so it would be potentially

prone to collision attacks. We did not pose security requirements on

the prototype implementation, so the choice of a hash function was not

essential in the implementation. The full implementation would need to

consider this requirement as well as other issues discussed in Chapter 4

(e.g. using multiple hash functions).
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After the identifier is assigned, we modify the local environment (point all

defined symbols to this identifier) and prepare and transact metadata – i.e.

producing transactions with records similar to the example in Code Listing

5.2. After the whole file is processed, its local environment is added under a

corresponding namespace key in the global environment.

Input: Project definition, connection, time
Output: Global environment
clauses () ; // empty list initialization

foreach [project-name, project-version] 2 proj � deps do
append to clauses: (and [?p :project/name project�name]
[?p :project/version project�version])

end
query  
[ : f i nd ?n ?sym ? f i d

: where
[ ? p : p r o j e c t / conta in s ? f ]
[ ? f : f i l e /namespace ?n ]
[ ? f : f i l e / conta in s ?d ]
[ ? d : code/uid ? f i d ]
[ ? d : code/name ?sym ]
( or c l a u s e s ) ] ;

result eval(query, conn, t);
foreach [ns, symbol, uid] 2 result do

if genv[ns][symbol] exists then
handle-conflict(projdef, conn, t);

end
else

genv[ns][symbol] uid ;
end

end
return genv

Algorithm 1: Global environment generation

5.2.3 Build Processing

Building ClojureScript code may involve various options for build configura-

tions that we do not aim to replicate in the prototype implementation. We

make several assumptions:

• The unmodified version of the original compiler is used. This assumption
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Input: Used symbols, connection, form expression, a log of
transactions, file unique id, local and global environments

Output: Local environment
deps resolve� symbols(used, lenv, genv) ;
uid hash(deps, exp) ;
txout prepare� and� transact(conn, fuid, exp, defined, deps, uid) ;
append txout to txs ;
foreach symbol s 2 defined do

lenv[s] uid ;
end
return lenv

Algorithm 2: Process form expression

Input: Project definition
Output: A log of transactions
txs [] ; // empty vector initialization

conn create� connection(projdef) ;
puid get� or � create� project� uid(projdef, conn, txs) ;
genv  create� global � env(projdef, conn, current� time) ;
inputs find� src� files(projdef) ;
inputs topsort(inputs) ;
foreach input 2 inputs do

lenv  {} ; // empty map initialization

fuid get� or � create� file� uid(conn, puid, input, txs) ;
foreach form f 2 input do

if f is ns then
lenv  process� ns(genv, lenv, f) ;

end
else

(defined, used) analyze(f) ;
if f is name-dependent then

lenv  
process� nform(used, conn, f, txs, fuid, lenv, genv) ;

end
else

lenv  
process� form(used, conn, f, txs, fuid, lenv, genv) ;

end
end

end
genv[input� ns] lenv;

end
return txs

Algorithm 3: Main routine for deployment
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implies we need to provide it with inputs serialized in files.

• The source code was previously processed by a deployment procedure.

This assumption implies each definition extracted from the input files

was assigned a globally unique identifier.

• We focus on compiling ClojureScript code into a JavaScript file that can

then be loaded by a web browser. This focus implies a lack of a traditional

single “entry point” in the sense of computer programming (e.g. a single

dedicated function named “main”). Instead, we assume we are provided

a set of identifiers indicating any code blocks or definitions annotated

with ˆ:export. From these annotations, we obtain a set of points to all

“entry points”, i.e. code that should be translated (altogether with all

its transitive dependencies) into JavaScript. After the compilation into

JavaScript, the translated code “entry points” can be called from within

the JavaScript execution environment in a web page that loaded it.

The main routine is shown in Algorithm 4. First, all dependencies are col-

lected altogether with their respective file names. While deployment involves

resolving direct dependencies, transitive dependencies are collected for build

processing. The collected dependencies are, thus, traced from “entry points”

transitively. Transitive dependencies can be captured using the following rule

definition in the Datomic query language:

[ [ ( transDepends ? t1 ? t2 ) [ ? t1 : code/dependsOn ? t2 ] ]

[ ( transDepends ? t1 ? t2 ) ( transDepends ? t1 ? tx )

( transDepends ? tx ? t2 ) ] ]

The first part of the rule states that transitive dependencies are direct

dependencies. The second part is then recursive, stating given ?tx where ?t1

transitively depends on ?tx and ?tx transitively depends on ?t2, we conclude

that ?t1 transitively depends on ?t2.
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Some definitions may be associated with several file namespaces globally.

Since we emulate the semantics of command line interfaces, these conflicts are

resolved by restricting files to the ones specified by the project-level dependen-

cies. Then, for each dependency, we output its code to a corresponding file.

If the file does not exist, we create it and generate a namespace header for all

co-located code fragments.
Input: Entry points, connection

fdeps collect� dependencies(entry � points, conn) ;

foreach [file� name, dep� src] 2 fdeps do

if file-name does not exists then

create file� name;

header  generate� header(file� name, fdeps);

output header to file� name;

end

output dep� src to file� name;

end

compile-all(src-dir);

Algorithm 4: Build processing routine

5.3 Interactive Web Interface

The goal of the command-line interface prototype in Section 5.2 was to emulate

the bulk processing of conventional programming environments. The goal of

the interactive web interface prototype is to facilitate a more direct interaction

with the stored code and metadata. Since one of the aims of SFP is the

separation between the stored and edited or visualized code, we chose a web

interface over extending traditional editors which may be more tied to the file

storage.

The interface underwent several iterations of its development. The first it-

erations utilized the CodeMirror [83] editor, firstly in a custom interface, later

in a modified interface of the LightTable editor (which itself utilizes CodeMir-
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ror). The CodeMirror editor is flexible and extensible, works across di↵erent

versions of many web browsers and provides specialized editor modes for over

100 programming languages. Its main focus is, however, plain textual editing

and a tremendous amount of engineering has been put into it. With that, it

becomes rather non-trivial for structural operations and book keeping we need

for working with dependencies on a definition-level.

The current iteration has, thus, moved towards a more structural editor.

The underlying editor that has been extended is an experimental editor paren-

soup. Unlike CodeMirror, it only supports a single language, ClojureScript,

which is also its implementation language, and only creates editors out of

marked HTML elements with the “contenteditable” attribute. It uses a simple

embedding of the abstract syntax tree in the HTML Document Object Model

(DOM): each abstract syntax tree node becomes a span element which contains

the node type in its class attribute. In addition to this convenience for our

prototype implementation, it provides two builtin features desirable for our

prototype – we describe them in Sections 5.3.1 and 5.3.2.

The interactive web interface prototype aims to enable working directly

with external code. This is in contrast with the command-line interface where

external code lies behind two layers of indirection: the project manifest and

the namespace commands. We describe two main ways of interaction: one is

looking up external code and inserting references to it directly into the abstract

syntax tree; the other is editing external code. These interactions are described

in Sections 5.3.3 and 5.3.4. All this is done in the context of an interface which

allows flexible organization (i.e. fragments of code are not constrained by file

boundaries). The editing area (Figure 5.1) can, thus, contain code of di↵erent

origins.
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Figure 5.1: A screenshot of the experimental web-based interface.

5.3.1 Instant Evaluation Environment

This functionality is better known as “InstaREPL”. The traditional REPL

has an interactive command-line interface where expressions are typed and

their results are written in a sequence. With InstaREPL, results appear side-

by-side with all input. When input changes, results next to it get updated

immediately. This concept has been popularized with the mentioned Light

Table editor that was used for the earlier iterations of this interface. This

functionality was slightly augmented to display information related to SFP

concepts. For expressions that define any symbols, it displays their assigned

globally unique identifiers and indicates whether code has been shared in the

repository by the background colour (green and orange), as shown in Figure

5.1.

5.3.2 Indentation-driven Structural Editing

The Lisp family of languages has the property of homoiconicity where the

language syntax mirrors the structure of the abstract syntax tree. With that,

it becomes a commonplace to use more structure-driven editing as opposed

to plain text editing. The common approach is through using the ParEdit1

mode extension that exists for various editors. ParEdit allows manipulating

1
https://www.emacswiki.org/emacs/ParEdit
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Figure 5.2: A screenshot of the external code search dialogue window in the
experimental web-based interface.

Lisp code at the level of abstract syntax tree cells. Cells are manipulated

by dedicated key bindings, e.g. for creating new ones or moving around the

hierarchy. It is a fairly e↵ective way for writing Lisp code, but it requires

memorization of new key bindings.

A more recent alternative, named ParInfer2, combines structural editing

(in the spirit of ParEdit) with plain text editing. ParInfer achieves its edit-

ing mode by inferring the intended structure from whitespace indentation and

completing or removing corresponding parenthesis. This editing mode has

been ported to many other editors, including Code Mirror. For our proto-

type, it provides the simplicity of plain text editing combined with structural

modifications, which we utilize for our further extensions.

5.3.3 Inserting Dependencies

Given some edited code, we would like to insert a reference to an external

code entity. The first step is looking up external code. In the prototype,

when control and insert keys are pressed, a lookup dialogue window is opened

(Figure 5.2). The dialogue window allows either quick lookup using a keyword,

or an advanced lookup by specifying a full query. Other options are possible,

2
https://shaunlebron.github.io/parinfer/
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for example displaying and navigating a hierarchical structure and selecting

external code from it. Such alternatives are viable and perhaps desirable in the

full implementation, but were not essential for the prototype implementation.

The keyword lookup shows the results in the order of insertion in the proto-

type. The task of selecting external code one wishes to use may involve writing

additional keywords in order to narrow down the selection. As with displaying

and navigating through external code, alternative options could be employed

for the quick lookup functionality. For example, the ranking of quick search

results can incorporate additional criteria from the context (projects encom-

passing other external code, user preferences and recent actions, etc.). Again,

these options were not considered for the proof of concept prototype. They

are, however, feasible, i.e. could be built on top of the same infrastructure,

and can be a part of future work e↵orts described in Chapter 7.

After selecting the external code, a new variable node with a reference

to its unique identifier is inserted into the structure at the cursor’s location.

Before the edited code is evaluated in InstaREPL, the external code as well as

all its transitive dependencies need to be loaded. Transitive dependencies are

retrieved in the same way as in the command-line interface. In the prototype,

the external code with corresponding aliases is evaluated in the background

using the editor’s self-hosted REPL.

5.3.4 Editing and Synchronization

The second option is that we would like to edit an existing code. The procedure

is the same as with inserting dependencies, but one would choose to edit instead

of insert in the dialogue window (Figure 5.2). This appends selected code at

the end of the editor window. Before that, just as with inserting dependencies,

it loads all transitive dependencies with aliases needed by the selected code in

the editor’s self-hosted REPL.

For saving any changes from the editor, the prototype only provides a
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limited functionality. Visible code (and loaded dependencies) in the editor

window can be saved locally (using the LocalStorage API of the web browser).

For external synchronization, the editor code can be marked next to the editor

window and synchronized after pressing the InstaREPL area. The synchro-

nization assigns identifiers to marked code, and transacts them altogether with

dependency metadata. The log of corresponding events is then displayed at

the bottom of the editor screen (events are retrieved using the EventSource

web API).

As a proof of concept prototype, the full metadata synchronization is not

yet supported. With edited code, the prototype does not track the “origin” and

does not transact additional metadata, such as corresponding file and project

namespaces. The full implementation would require this, but the functionality

goes beyond transacting original metadata, e.g. users would need to be au-

thorized and permissions would need to be checked. For users synchronizing

editing code from non-owned projects, the editor would either need to create

their own “fork” or stop the synchronization with an error message. Lastly, for

code that was written freshly in the experimental web editor, synchronization

may need to present project and file assignment for compatibility with the

command-line interface (which only has a restricted access to external code

through generated queries, as described in Section 5.2.1).

Similarly, even on the level of code entities, the origin is not fully tracked in

the prototype. This would be desirable for generating and transacting version

control-related metadata. Again, this functionality is beyond the scope of

a proof of concept prototype. Finally, the experimental editor only focuses

on ClojureScript. The full programming environment, at least in the web

development context (where ClojureScript is used), would need to account for

editing additional resources, such as HTML, CSS and JavaScript.
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5.4 Summary

This chapter presented two directions in which interaction with external code

in SFP environments can be realized. The proof of concept implementations

of these interaction approaches demonstrated the flexibility of interfaces for

reading and writing data in SFP environments.

The first direction is more “conservative” and follows the interaction from

conventional programming environments. It provides a command-line interface

similar to what standard tools do and ensures compatibility with traditional

file-oriented editors. The interaction is “indirect” in the sense that external

code is accessed via two naming layers, as in conventional programming en-

vironments. Two naming layers are the project manifest and individual files’

namespace control expressions. The access is done by taking these two naming

layers and generating “bulk” retrieval queries from them. Sharing any changes

is done similarly by “bulk” processing local files and transacting corresponding

data. This direction shows that traditional interfaces can be emulated in SFP

environments.

The second direction o↵ers a more direct approach for interacting with

external code. The external code can be navigated and queried using the

query language of Datomic (a deductive database used in the prototype) in an

interactive web-based editor. The editor itself combines structural and text

editing. The overall organization may resemble traditional editors, but visible

edited code may have originated across di↵erent projects and files. Sharing of

edited code is then done per-individual definition rather than “bulk” as in the

command-line interface. This direction shows that potentially new and more

flexible interfaces can be realized in SFP environments.

Both directions were implemented as proof of concept prototypes, and as

such, they do not provide a full programming environment experience. In

particular, the interactive web-based editor only supports ClojureScript code,

which would limit its scope. Providing a full programming environment is,
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however, beyond the scope of proof of concept prototypes.

Given both of these interfaces are implemented on top of the same infras-

tructure, it hints how interoperability can be achieved. While the first interface

needs the naming hierarchy in order to access files, the second one needs results

of cross-reference analysis with aliases for external code. This interoperability

can be achieved by providing and transacting additional data on sharing code.

For example, the interactive web-based editor may need to present a project

and file namespace assignment in order to achieve interoperability.
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Chapter 6

Existing Repository Analysis

6.1 Introduction

In this chapter, we evaluate how ideas from SFP environments would a↵ect

existing code. It demonstrates that SFP environments could scale up to the

existing repository sizes. We also analyse in detail the e↵ect of tracking depen-

dencies at a finer level. This analysis shows whether the concepts from SFP

could potentially be applied independently of the overall environment as well

as how structures in existing code fit this setting.

In particular, Section 6.2 describes the experimental setting, how reposito-

ries were processed and the final dataset was obtained. With the dataset, we

conducted three experiments regarding definition-level dependencies. For the

top five most depended on projects, Section 6.3.1 compares the dependencies

declared on the project level with the dependencies on the definition level we

obtained from cross-reference program analysis. These results give an idea of

how suitable project level dependencies are and what portion of exposed func-

tionality in popular libraries is actually used across all projects in a community

repository.

Section 6.3.2 presents the results with the respect to version information,

i.e. what portion of definitions is shared across a di↵erent number of successive

versions. These results indicate, given the observed transitive usage, some
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version changes may not a↵ect clients even though they require their explicit

management. Lastly, Section 6.3.3 takes sample client code in two of the

libraries and presents results from measuring compilation time overhead with

project-level dependencies. These results suggest potential utility of definition-

level dependency tracking in existing programming environments. Section 6.5

discusses and summarizes our findings from the existing repository analysis.

6.1.1 Research Questions

To guide our evaluation presented in this chapter, we formulated three research

questions. The overall motivation is to compare conventional and Search-

focused Programming (SFP) environments by analysing structures in existing

code repositories and by conducting experiments on their e↵ects. In this sec-

tion, we state each research question and explain its motivation in detail.

RQ1 (Usage). How do declared project dependencies in conventional pro-

gramming environments compare with transitively used code (that is taken as

a dependency in SFP)? When introducing our problem setting in Chapter 1,

we introduced key challenges inherent to conventional programming environ-

ments. We, however, do not know how prevalent some of these challenges are.

Are declared project dependencies in existing code repositories optimal? By

optimal, we mean that they only contain code that is (transitively) used, e.g.

due to a manual curation of code maintainers. Understanding project-level and

code-level dependency structures in existing code can give us a comparison on

the granularity of code distribution in conventional and SFP environments.

Answers to these questions enable us to discuss implications for current pro-

gramming environments.

RQ2 (Persistence). How does project content persist across di↵erent project

versions? Di↵erent projects follow di↵erent conventions with regards to an-

notating their versions. Even with di↵erent conventions, version tracking hap-
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pens at the same (project-level) granularity. Each new version of external

project dependency, thus, requires potential attention, maintenance, recompi-

lation etc. on the client side. It may be the case that a client code depends

on a part of a project that did not change, yet the client is forced to worry

about the project level version change. Does project content change as much

as project versions? Looking into these issues can give us insights into change

management in conventional programming environments and what it means

in the context of SFP.

RQ3 (E↵ects). What are e↵ects of conventional and SFP code distribu-

tion on the compilation pipeline? Static characteristics of existing source code

repositories give us understanding and comparison between conventional and

SFP environments. The other area worth examining are e↵ects on existing

tools in the presence of these di↵erences. The compilation pipeline is poten-

tially directly a↵ected by distribution of unused code in conventional program-

ming environments. Comparison with code distribution in SFP can partially

give us a sense of practical impact on programming environments. Such esti-

mates help us understand and discuss how some of techniques we presented in

the context of SFP could be adopted and incorporated into existing environ-

ments.

6.2 Method

In this section, we describe how we collected the dataset, pre-processed it in

di↵erent steps and stored extracted information.

6.2.1 Context

The example of a conventional programming environment was the ecosystem

around ClojureScript. We described it in detail in Chapter 3. In summary, the

dependency management of Clojure and ClojureScript piggybacks on Java’s
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Maven repository infrastructure. Each artifact is published as a JAR file con-

taining ClojureScript source code. Dependencies are specified against these ar-

tifacts in configuration files of build automation tools (e.g. Leiningen or Boot)

and may be scoped (e.g. only for test time). Information specified in config-

uration files of build tools then translates into Maven’s pom.xml files. Maven

automatically resolves transitive dependencies from them. Even though depen-

dencies may be on “snapshots” or version ranges, the recommended guideline

encourages using specific versions.

6.2.2 Data Collection

We focused on the Clojars repository, since it is the default community repos-

itory of open source Clojure and ClojureScript projects. We obtained the

o✏ine copy of the entire repository via rsync: the snapshot we used contained

115,917 artifacts. In addition to that, we downloaded all versions of two addi-

tional libraries (core.async and transit-cljs) from Maven Central (the default

Java ecosystem repository) via HTTP. These two libraries were not present on

Clojars, but we found them among the most depended on projects during pre-

processing (Section 6.2.3). Lastly, for the compilation pipeline experiments, we

collected the sample client code from Github repositories of respective projects

(Reagent and om) and retrieved any additional dependencies from Maven Cen-

tral.

6.2.3 Pre-processing

We pre-processed the dataset in two stages.

Stage I. We first parsed all pom.xml files (this metadata is described in

Chapter 3) and examined their declared dependencies. We took dependen-

cies marked as provided, compile, or system. We resolved the “snapshot”

dependencies to the closest stable or latest nightly release. We selected only
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those projects that declared a dependency on ClojureScript (any version), i.e.

on the compiler and the standard library of ClojureScript. There were 9,582

projects that declared a dependency on ClojureScript. We stored all the parsed

project-level information (Section 6.2.4). Based on the declared project-level

dependencies, we selected the top five most depended on projects. We excluded

Clojure and ClojureScript compilers and standard libraries (which were nat-

urally depended on in every project) and CLJSJS projects (which package

JavaScript libraries for easy code distribution in the Clojure ecosystem). The

selected projects were the following ones:

• core.async: a library that facilitates asynchronous programming and

communication.

• Reagent : a library that provides a ClojureScript interface to React. Re-

act is Facebook’s popular JavaScript library for declarative creation of

interactive user interfaces.

• cljs-time: a library for data and time operations (e.g. time zone calcu-

lations).

• transit-cljs : a library for the Transit data interchange (serialization) for-

mat.

• om: a library that provides a ClojureScript interface to React, but has

various design and implementation di↵erences from Reagent.

We selected these most depended on projects with regards to our research

questions. These projects can aid in di↵erent development scenarios, are ma-

ture and have been actively developed for a few years. Given these properties,

we can explore them and client code that depends on them in order to answer

our research questions. If we selected projects that are not so depended on

(e.g. newer libraries), our results could be limited by that.
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Stage II. In the second stage, we processed the relevant artifacts of these

selected projects as well as of all their dependants. For this pre-processing

stage, we reused parts of the proof of concept command-line interface imple-

mentation we described in Chapter 5. In particular, we reused parts for a tool

to extract dependency information from existing source code and extended it

to read sources from JAR files. It calls the analyzer from the ClojureScript

compiler, intercepts its environment after each top level form and does a cus-

tom symbol resolution. This is to perform a limited form of cross-reference

analysis based on symbol usage. In particular, the macro definitions are not

expanded, hence we only approximate an estimate of static dependencies. For

the purpose of experiments, the unique identifiers were generated as hashes

of the extracted dependency information and the source text using Clojure’s

hash function (which internally uses MurmurHash3). From each artifact, we

extracted information about what files they contained, what top level expres-

sions each file contained as well as details about each expression (if it defines

any symbols, its dependencies, its unique identifier, etc.).

6.2.4 Storage

For storing the extracted information, we inserted everything into the Datomic

database. We used Datomic in the prototype described in Chapter 5 and we

reused parts of the prototype implementation, as mentioned in Section 6.2.3.

From the first stage of processing, we stored project name, version, project-

level dependencies, and other attributes (such as descriptions). Each project

then refers to its files that were extracted in the second stage of processing.

Each file then refers to top level expressions it contains. Lastly, there are

details about each top level expression. We show the overall simplified schema

of extracted information in Figure 6.1 – each rectangle represents an entity

type with its attributes.
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Figure 6.1: Simplified schema of the extracted information

6.2.5 Compilation Pipeline Experiments

In these experiments, we tried to estimate e↵ects of conventional and SFP

code distribution on the compilation pipeline. As mentioned in Section 6.2.2,

we retrieved sample client code projects in Reagent and om repositories. For

each of these projects, we prepared two variants. The first variant was the

project with all code of transitive dependencies, as distributed in conventional

programming environments. The second variant only contained used code

from transitive dependencies (based on the used symbols in the client code),

as distributed in SFP environments. The code for dependencies in the SFP pre-

processed variant was extracted from the collected dataset into corresponding

files and namespaces.

In addition to ClojureScript code, non-ClojureScript code dependencies

were manually added to all project variants. They include the JavaScript

dependencies (react, react-dom, and react-dom-server) and Clojure macros (be

it directly in Reagent or om, or in transitive dependencies, such as core.async).

The conventional programming environment variant of om’s sample projects

also required Java dependencies (transit-java and jackson-core) for successful

compilation.

We tried to isolate the e↵ect on the compilation pipeline from other e↵ects

(network latency and speed for distributing code, computation or caching of

transitive dependencies, etc.), so the mentioned pre-processing was all done

o✏ine before the experiments. The experiments measured time for executing
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the compile function of ClojureScript compiler’s build API (version 1.9.293

on Clojure 1.8.0) on each project’s variant. We compiled all projects on the

following platform with the HotSpotTMVM (1.8.0 77): Intel R�CoreTMi5 3570

CPU, 1600MHz DDR3 16GB RAM, Ubuntu 16.04.1. For the time measure-

ment, we used Criterium1 which takes necessary steps to gain stable results:

non-measured warm-up iterations for the JIT compiler and managing GC be-

fore and after testing to isolate its impact on timing results. We measured

each variant in an isolated REPL instance and every compilation was “cold

start” from scratch (i.e. results from previous compilations were deleted). We

used the default configuration of Criterium for 60 measured runs from which

we report mean and standard deviation.

6.3 Results

6.3.1 Transitive Code Usage (RQ1)

In this experiment, we compared the portion of code that is being distributed

in conventional programming environments with what is transitively used (i.e.

that is distributed in SFP environments). As mentioned in Section 6.2, we

selected the top five most dependent on projects, collected all their version

artifacts and analysed each artifact. From this stored information, we report

the total number of top level expressions that were not marked as private

(e.g. by def�) and the total number of exposed top level expressions that

are transitively used. Transitively used expressions include the ones that are

indirectly (via other top level expressions) or directly used by their symbol in

all client code (of projects that declared a corresponding project dependency).

We then report the static usage estimate as this fraction:

total number of exposed expressions transitively used

total number of exposed expressions distributed

The results are shown in Figure 6.2 and Table 6.1: the second column shows

1https://github.com/hugoduncan/criterium
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Table 6.1: Transitive code usage results

Library
Version
Artifacts

Exposed
Expressions

Transitively
Used

Usage

core.async 18 366 206 56.3%
reagent 20 1064 572 53.8%
cljs-time 32 758 198 26.1%
transit-cljs 14 52 29 55.6%
om 56 1120 246 22.0%

Figure 6.2: Transitive code usage (%)

the number of distinct version artifacts of each project, the third column shows

the total number of top level expressions that declared some exposed symbols

(from all versions), the fourth column shows the number of top level expressions

that are transitively depended on, the last column estimates the overall static

usage of top-level expressions declaring some exposed symbols.

We can see that the usage varies from 22% to 56.3%. We further discuss

these results in Section 6.4.
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6.3.2 Project Content Persistence across Di↵erent Ver-

sions (RQ2)

In this experiment, we evaluate how many top level expressions are preserved

across di↵erent versions. We took all top level expressions present in the

mentioned five most depended on projects and grouped them according to the

number of project versions they were present in. The results are shown in

Figure 6.3.

The majority of top level expressions are present in more than two versions.

In Reagent, the number of top level expressions present in only one version

slightly outweighs the number of expressions present in two or more versions.

6.3.3 Code Distribution E↵ects on the Compilation Pi-

peline (RQ3)

In this experiment, we try to estimate the e↵ects of conventional and SFP code

distribution on the compilation pipeline. As mentioned in Section 6.2.5, we

took sample client code projects of Reagent and om and prepared two variants

of their code dependencies. We then measured cold start compilation time for

each sample project’s variant.

The results are shown in Table 6.2 and Figures 6.4, 6.5 and 6.6: reported

times are means and corresponding standard deviations of 60 measured runs.

The conventional programming environment code distribution of unused

code caused the compilation to be 0.23x to 11.04x slower on the sample client

projects than with only used code in SFP code distributed variants.

6.4 Discussion

In this section, we discuss our results, their practical implications and outline

limitations of the experiments we conducted.
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Version(s) 1 2+

core.async 106 260
reagent 552 512
cljs-time 143 615
transit-cljs 11 41

om 449 671

Figure 6.3: The total number of top level expressions of di↵erent projects
present in one and two or more of their versions
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Table 6.2: Sample client projects mean compilation times (in seconds)
Variant conventional SFP
Reagent
simple 1.40± 0.06 s 1.06± 0.01 s
todomvc 1.46± 0.03 s 1.16± 0.05 s
geometry 1.50± 0.01 s 1.22± 0.03 s

om
animation 18.71± 0.06 s 1.92± 0.02 s
counters 20.83± 1.74 s 2.55± 0.02 s

cursor as key 18.61± 0.04 s 2.13± 0.01 s
harmful 18.66± 0.53 s 2.08± 0.02 s
hello 18.39± 0.04 s 1.95± 0.01 s
input 18.47± 0.73 s 1.94± 0.02 s

instrument 18.64± 0.05 s 1.97± 0.01 s
mixins 18.44± 0.53 s 3.77± 0.03 s
mouse 21.18± 0.04 s 4.39± 0.04 s
multi 18.13± 0.70 s 1.97± 0.01 s

multiroot 18.92± 0.05 s 1.94± 0.01 s
refs 18.78± 0.71 s 2.06± 0.02 s

shared 18.75± 0.04 s 1.94± 0.02 s
sortable 20.54± 0.79 s 2.72± 0.02 s
state bug 18.50± 0.04 s 2.16± 0.02 s
stateful 18.11± 0.60 s 1.64± 0.02 s
two lists 18.71± 0.04 s 2.01± 0.02 s
typeahead 18.08± 0.73 s 4.48± 0.04 s
unmount 18.69± 0.04 s 1.99± 0.01 s

update props 18.40± 0.58 s 1.94± 0.03 s
verify 18.63± 0.05 s 3.85± 0.04 s
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Figure 6.4: Reagent example projects compilation times (in seconds)

6.4.1 Results

Transitive Code Usage. Reported transitive dependencies were only the

static ones and did not include dependencies introduced at runtime or via

macros. The artifacts we processed only included the source files, i.e. no test

or benchmark files. These facts should be taken into account when considering

the usage and may explain why portions of code distributed in conventional

programming environments were never used.

For example, among all ClojureScript projects we processed, we did not

find any usage of to�chan function of core.async (which creates a channel out

of a collection). This function is, however, used in internal test suites. The

reported usage, hence, should not be interpreted as absolute.

Nonetheless, even though some parts of projects are not used (at least

in application code), they are still distributed in conventional programming

environments to all dependent projects. In our dataset, transitive usage of all

exposed code of the five most depended on projects varied from 22% to 56.3%.

In SFP environments, we would not need to distribute and process external

code that is not used in our client code.
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Figure 6.5: Om example projects compilation times (in seconds), part 1
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Figure 6.6: Om example projects compilation times (in seconds), part 2
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Project Content Persistence across Di↵erent Versions. We looked at

how project content persists across di↵erent project versions and found that

a large portion of source code content remains in two or more versions. As

project versions change, client code that depends on that particular project

needs to manage these changes. Client code may only use parts of the external

project that did not change across its versions and still needs to handle external

project version changes. In SFP environments, we know precisely content

associated with each version and track only what client code depends on.

Code Distribution E↵ects on the Compilation Pipeline. We found

that unused code is distributed in conventional programming environments, so

moved to investigate the e↵ects it has on the compilation pipeline. The three

sample projects of Reagent were fairly self-contained and only depended on

several functions of Reagent (and their transitive dependencies). Given that,

the compilation time with conventional programming environment code distri-

bution of unused code was about 0.23-0.32x higher than when only depending

on used code in the SFP variants.

The sample projects of om contained more dependencies – for example,

projects “mouse”, “counters”, and “sortable” used core.async. The om project

itself brings additional dependencies, such as transit-cljs (and related transit-

clj, transit-java, and jackson-core). The transit-cljs related code, however, was

never used in the sample projects. The compilation time with conventional

programming environment code distribution of unused code was up to 11.04x

higher than when only depending on used code in the SFP variants.

The SFP variants were actually including some portions of unused code due

to the limitations of our cross-reference static analysis. One example are top

level expressions in “om.dom” generated by the gen�react�dom�fns macro

(which generates a defn expression for every HTML tag). Given that, even

though only some of these generated expressions are used, all of them were

included even in the SFP variants. Despite this restriction to only static code
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dependencies, the SFP variants still improved the initial compilation speed in

all sample client code programs.

6.4.2 Implications

We compared conventional and Search-focused Programming (SFP) environ-

ments with the respect to existing source code repositories. Given that many

other existing programming language environments contain similar elements

as the one of ClojureScript, we expect they follow similar trends of transitive

code usage. The outcomes from our comparison are potentially transferable

to other programming language environments.

We gained some insights into what unused code may be distributed in

conventional programming environments. One example is helper code used in

the content of local test suites. We observed that distributing unused code

causes adverse e↵ects on the compilation pipeline.

The outcomes from our study could aid design and development of pro-

gramming environment infrastructures. One option would be to adopt parts

of what SFP proposes. For example, the community repository storage could

be changed to track cross-reference dependencies and allow their transitive re-

trieval. Such change could be done, while the existing user interface is partially

preserved, as illustrated by the command-line interface prototype in Chapter

5. The other option would be to develop tools and user interfaces that would

aid project maintainers, e.g. by giving a global overview of their exposed code

usage and providing hints for project restructuring.

Given that we conducted our experiments on the entire community repos-

itory of projects, we indirectly examined that SFP can work at the scale of

existing open source code. It was not our primary goal, so our comments in

that regard are limited observations. In general, without compressions or opti-

mizations, the total size of all artifacts was in tens of GBs. Given it had dupli-

cate definitions, it was su�cient to use Datomic on top of standard relational
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database backends at this scale. The only experienced issues were sometimes

with recursive rules at a large scale: in the used versions (0.9.5530 and earlier)

during experiments, we had to reorder where clauses or split queries to help

the underlying database engine. These steps forced the engine not to compute

too many unused intermediate results. Overall, these steps did not present any

fundamental challenges and experienced issues were orthogonal to our goals.

Detailed stress testing experiments that compare di↵erent storage backends

would be desirable for implementations beyond the proof of concept proto-

type. Di↵erent Datalog engines were used and compared in the area of static

code analysis [84] where more complex recursive rules were executed against

a dataset recording statement-level metadata as source code relations. These

results suggest that mature Datalog engines, such as LogicBlox2, can optimize

and e�ciently execute rules for static code analysis, so data management work-

loads from programming environments should not present non-overcomeable

challenges.

6.4.3 Limitations

We outline several limitations that may a↵ect our results. Firstly, the used

cross-reference analysis was restricted to static code dependencies. This re-

striction excluded capturing dependencies that are introduced at runtime, via

macro expansions at compile time or via other languages (Clojure, JavaScript,

Java). Given this restriction, our results should not be interpreted as absolute.

When looking at project content persistence across di↵erent versions, dif-

ferences in how version changes are expressed may a↵ect the results. For

example, there may be new version releases that only update test suites or

non-ClojureScript code-related dependencies. Semantics of how such changes

are expressed in version number changes may result in di↵erent numbers of

artifacts.
2
http://www.logicblox.com
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Lastly, the dataset was mainly collected from the default community repos-

itory. Other sources could potentially provide a more complete view for the

existing code comparison in conventional and SFP environments. For the us-

age and persistence research questions, the community repository, however,

provided a su�ciently large dataset for our study. For the e↵ects research

question, the sample projects may limit the scope of the results. The purpose

of sample projects is to illustrate the usage of a particular library, so their

source code and dependency structure may not match those of whole applica-

tions. Even with these restrictions, our experiments allowed us to examine the

e↵ects of code distribution on the compilation pipeline. As mentioned in our

discussion, given all restrictions, our findings should be interpreted as estimates

(rather than absolute) of the overall existing code properties in programming

environments.

6.5 Summary

Code distribution in SFP environments can be applicable with existing source

code. In the context of one large community repository, we found that a

substantial portion of exposed code in the five most depended on projects was

not statically used in other projects that depended on them. Beyond that,

a substantial portion of exposed code in the five most depended on projects

persisted across two or more of their versions. Lastly, for the sample projects of

Reagent and om, code distribution in conventional programming environments

resulted in 0.23x to 11.04x slower initial compilation speed than with SFP

variants.

We can conclude that SFP environments could potentially scale to exist-

ing code repositories. In addition to that, our results suggest that ideas from

SFP environments could bring improvements in di↵erent factors, such as ini-

tial compilation speed, when employed in existing programming environment

infrastructures.
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Chapter 7

Conclusions and Future Work

In this chapter, we draw overall conclusions and summarize main findings

from the thesis. We then move onto describing potential extensions and future

directions that can follow from this work.

7.1 Conclusions

Programming environments encompass the life cycle of software libraries and

applications. They involve managing and processing code-related metadata.

They include metadata that facilitates access to external code, version control,

package and build management, continuous integration, documentation, and

many other kinds. In conventional programming environments, each kind of

metadata carries its own specific storage format and access method. This

non-uniform approach of managing resources in conventional programming

environments brings certain challenges.

The first set of challenges comes from the lack of globally unique persistent

identifiers for code entities. Historically, the access to external code is name-

addressable and resembles the file system hierarchy. User-chosen names, how-

ever, do not yield persistent and globally unique identifiers. Naturally, name

conflicts may arise among definitions from di↵erent libraries or even the same

library of di↵erent versions. In addition to that, the lack of persistent globally
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unique identifiers prevents associating code and metadata. Finally, there is an

implicit context dependence (user-chosen identifiers may mean di↵erent things

at di↵erent times or locations) and coarse-grained code distribution where un-

used definitions may be included.

With these challenges in mind, we proposed a design for programming envi-

ronments, named Search-focused Programming. Search-focused Programming

environments are composed of the following features:

1. Shared code and related metadata entities are assigned globally unique

persistent identifiers. The identifier assignment is deterministic and only

relies on static inputs.

2. Given that individual code fragments have globally unique identifiers,

code dependencies can be tracked and distributed at a finer granularity.

3. Code and related metadata are uniformly stored in a deductive database.

4. With the uniform storage, two ways for accessing it are present. One is

through a declarative query language for aggregated retrieval; the other

is reading and writing records at the level of transactions.

5. Shared code is stored at a fine granularity; any namespace metadata

that references it is stored separately from it. Due to this separation,

the code that we interact with is separate from the code that we share.

The interaction can be achieved in di↵erent ways.

In order to demonstrate the last point, we implemented two proof of concept

prototypes. These prototypes show two directions in which code interaction

can be realized. The first direction presents a command-line interface that is

akin to conventional programming environments. The interaction is realized

through bulk processing local source code files and generating corresponding

queries or transactions. The second direction comes with a web-based inter-

active interface. The interaction happens by directly looking up external code
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and manipulating it in a structure-driven editor interface, i.e. with more flex-

ibility and without a bulk processing of layered naming structures. Both of

these proof of concept prototypes are built on top of the same infrastructure,

and hence could interchange code and metadata.

Lastly, in order to examine potential e↵ects of SFP on existing source code

bases, we conducted experiments on a popular community project repository.

These experiments provided a comparison of project-level and definition-level

dependency tracking. We found out that source code of top five most popular

projects was never fully utilized by libraries that declared dependencies on

them. A substantial fraction of the same code in these projects remained in

several of their versions. From these results, it is possible that we may depend

on a fraction of a library that remains the same across di↵erent versions, while

we need to maintain project-level dependencies and potentially deal with ver-

sion conflicts. Finally, with sample client code from two of the projects, we

examined the e↵ects of project-level and definition-level dependencies on cold

start compilation speed. We observed a speed-up in compiling variants where

dependencies were taken from definition-level usage. This result suggests one

possible merit that could be potentially applied in programming environments.

In summary, the overall contributions of this thesis are as follows:

• It introduces the requirements and design for Search-focused Program-

ming (SFP) environments. Each topic, from issues concerning globally

unique identifiers to uniform data access, lays foundations for program-

ming environment interactions in a distributed setting.

• It presents this framework while considering features and programming

environment of an existing programming language, ClojureScript. Given

similarities in other programming environments, work from this thesis

can be applicable in other programming environments.

• It develops a proof-of-concept implementation of a command-line inter-
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face which is akin to interactions in conventional programming environ-

ments.

• It develops a proof-of-concept implementation of a web-based interactive

interface which allows more direct and finer interactions with external

code.

• It shows a potential migration path from infrastructures of conventional

programming environments. Both of these proof-of-concept implemen-

tations show di↵erent directions and flexibility in which Search-focused

Programming (SFP) environments can be realized. While di↵erent from

each other, they are compatible and can share code with each other,

which presents a potential migration path from existing programming

environments.

• It analyses an existing popular community project repository and in-

fers comparisons between di↵erent levels of granularity in dependency

tracking. Given tracking dependencies on a definition-level may bring

merit on its own, conventional programming environments could bene-

fit from adapting some elements of Search-focused Programming (SFP)

environments.

We have summarized the outcomes of work presented in this thesis. Over-

all, SFP aims to store and represent programming environment entities and

relationships uniformly and provide a deterministic retrieval mechanism. With

this aim in mind, this thesis lays foundations for future work which we describe

in Section 7.2.

7.2 Future Work

In this section, we outline several possible directions for future work. Section

7.2.1 describes potential extensions to the query language used for interacting
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with the stored code and metadata. Section 7.2.2 looks at the possibility of

making the environment more resilient in a distributed setting. Section 7.2.3

examines challenges associated with declaring dependencies at the granular-

ity of expressions. Section 7.2.4 describes the potential application in using

metadata for generative metaprogramming. Section 7.2.5 looks at some issues

related to the runtime setting (rather than the static compile or load time

setting). Section 7.2.6 lists several other topics, such as extensions to other

programming languages.

7.2.1 Query Language

Datalog as a logical query language o↵ers a predictable performance of its

execution, and has been widely studied and used in various domains [85]. One

drawback is limited expressiveness, but di↵erent extensions exist. Datomic’s

variant of Datalog is itself an extension that adds aggregation, negation, and

other features. The extensions we consider for future work are in di↵erent

directions. Evita Raced [86] and MetaLogiQL [87] explored metacompilation of

Datalog dialects – that itself presents an interesting direction for a declarative

lightweight macro system. We expand on several ideas in that direction (not

limited to Datalog metacompilation) in Sections 7.2.3 and 7.2.4.

We can expand to query languages that operate in a distributed setting.

An example is WebdamLog [88]. It is a distributed Datalog-style language

which supports aggregation, access control, and rule delegation, i.e. assigning

evaluation tasks to di↵erent network nodes (peers). Rule delegation and access

control are aspects that may benefit programming environments:

• We can assume multiple “search spaces” where metadata may di↵er –

e.g. labels attached to source code definitions. With this assumption, one

requirement for the query language is the ability to express merging of

di↵erent data sources. WebdamLog may be suitable for this application,

as it allows bodies of query rules to refer to relations on remote peers
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and to use variables in place of relations or peers. This flexibility would,

for example, allow expressing automated conflict resolution where labels

from one data source are preferred over others.

• For the prototype, we did not consider access control as a requirement.

Even with open source code, access control is an important consideration

for the full implementation. WebdamLog’s formal semantics includes

annotations for access control propagation and a set of rules for each

peer that enable implementing an access control policy. This feature

presents a more principled approach towards access control in the query

language.

We can also expand to query languages with expressiveness comparable

with general purpose programming languages. These more expressive query

languages can facilitate more complex code processing in programming envi-

ronments:

• They can enable more complex rules related to metaprogramming, such

as inheritance, ML-style modules or some applications mentioned in Sec-

tion 7.2.4.

• They can enable conceptual reasoning with knowledge base ontologies.

Some preliminary work of this kind has been done in the experimental

Nava language [15].

One uncertainty when it comes to higher expressiveness is the question

of scalability. For the sake of large code bases, it may be necessary to have

two levels of query languages: one with a predictable performance of its ex-

ecution that is executed against the entire code base, and one with a higher

expressiveness that is executed against a view resulting from the first query’s

execution.
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7.2.2 Federated or Decentralized Source

The question of consensus and infrastructure ownership presents another chal-

lenge for future work. With mutable labels, multiple sources of truth could

potentially exist: in one search space, we can attach a certain label to shared

code; in a di↵erent search space, we can remove that label. Two possible

approaches can deal with this scenario:

• Federated : Federated sources follow what is a commonplace scenario

where multiple sources of truth exist. With that assumption, various is-

sues open up, such as discovery and integration of sources. Some of these

issues have been addressed in the context of semantic web and biomedical

data [89]. Querying federated sources would require a language support,

which is discussed in Section 7.2.1.

• Decentralized : If we assume a single source of truth, it does not necessar-

ily imply a centralized storage infrastructure. With several distributed

systems projects we mentioned in Chapter 2, we could assume a single

decentralized network as a storage mechanism. Even with decentralized

storage, integration and querying are not solved problems. It is possible

that, despite decentralized storage, issues from federated sources would

need to be considered in some form, because a global consensus may be

hard to reach.

7.2.3 Granularity of Dependencies

One natural area for future work is a di↵erent granularity of tracking depen-

dencies on external code. This is mainly at the level of data types, but it could

possibly extend to control flow constructs. A finer granularity would enable

more precise dependency tracking – e.g. given an object, we could state we

only depend on a subset of its methods. Di↵erent challenges exist with this

proposal.
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First, some challenges circle around the implementation. One natural way

would be creating abstract syntax trees as Merkle hash trees [90] where each

non-leaf node has an associated hash label computed from labels or values of its

child nodes. Using abstract syntax trees for assigning identifiers has inherent

advantages and disadvantages, as discussed in Chapter 4.

Using more fine-grained tracking becomes more coupled with the used pro-

gramming language’s semantics. With complex data types, the case may be

that even seemingly unused portions of code may have load time side-e↵ects

that are required for correct behaviour. One other issue is that existing lan-

guages may not provide support for structural reasoning (i.e. to state that

input requires only a subset of some structure). For dependency tracking, not

all identifiers may refer to identifiers of “meaningful” external dependencies.

With the last point, this finer granularity may be more useful for other ap-

plications. One example is code coverage computation where the result could

refer directly to traces by their identifiers rather than o↵sets from top-level def-

initions. Some of these applications may pose additional requirements on the

identifier assignment. One application scenario is if we wanted to lookup sim-

ilar code to our client code and check if similar code had any reported or fixed

bugs. With such scenario in mind, we may need to introduce one additional

requirement on the identifier assignment which is that similar code should be

assigned similar identifiers. This requirement could be met by fingerprinting

[91] techniques.

A finer granularity of dependencies may be applied in programming lan-

guage feature evolution. Metadata could have a form of annotations at given

points of abstract syntax trees and annotations processors could be imple-

mented in order to support new features.
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7.2.4 Configurations and Generative Metaprogramming

One potential application where SFP may be expanded is with storing pro-

gram configuration metadata and generating variants based on these annota-

tions. In the Clojure-ClojureScript ecosystem, the natural choice is what is

achieved with “reader conditionals”. They are syntax annotations for reader-

time macros that parse an expression based on the platform, so that one can

write the same code for all platforms (JavaScript, Java, or Common Language

Runtime) in one place. In SFP environments, plain text files may be used for

interaction, but not for the primary storage of the shared source code. With

that, variants for di↵erent platforms can be stored separately with metadata

annotating their respective platforms. Viewing them or automatically generat-

ing new variants that use them can be achieved in a similar way to annotative

variation management [92].

With more complex build settings, expressiveness of meta-level operations

in annotative approaches may not be su�cient. More complex build settings

may involve a large number of variables with various relationships among them.

These relationship may state that some variables preclude or imply others. In

order to capture that only certain configurations are valid, we may need to have

program code entities stored at a finer granularity and to use a more complex

query language, such as a full Prolog dialect. Both of these requirements

present challenges on their own, as discussed in Sections 7.2.3 and 7.2.1.

7.2.5 Change Management, Runtime Lookup and De-

pendencies

Chapter 5 did not focus on version management and associated metadata.

When sharing code, change management has an important role. In conven-

tional programming environments, change management revolves around num-

bered version releases and responsibilities of upstream and downstream devel-

opers. Di↵erent communities adapt di↵erent standards for change management
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[69]: some assume it is a client’s responsibility to upgrade libraries his or her

code depends on, some require the library authors to fix client code, others

may spread the responsibility among multiple parties. All these approaches

can co-exist in SFP environments. The di↵erence is the granularity of tracking

changes.

This thesis focused on static, i.e. compile or load time, resolution. Sim-

ilar techniques, however, could be adapted to runtime. In combination with

change management, this future work direction can find applications in hot

code reloading. After detecting a change (by periodically monitoring the trans-

action log, as described in Chapter 4), the system may try to upgrade relevant

parts. Upgrade may be conditioned by a presence of certain metadata – e.g.

that it was flagged as a security fix by several maintainers, or that successful

passing of relevant test suites was recorded.

7.2.6 Beyond a Prototype

Some areas o↵er opportunities for future work in extensions beyond the proof

of concept prototypes presented in Chapter 5. The command-line interface

prototype focused on processing project manifests, code and its naming struc-

tures, but did not work with other metadata. Some types of metadata, given

they are bundled with source code, may not present research challenges for

processing; others may require additional analysis that connects it with shared

source code.

We focused on a single language and a platform in Chapter 5. Supporting

multiple languages and platforms can take di↵erent forms. One possibility

was outlined in Section 7.2.4 where the main parts of the source language

are shared, but target platforms are di↵erent. When we look beyond that,

with di↵erent source languages, we may raise various questions, such as how

identifiers should be assigned. Should di↵erent source languages have di↵erent

identifier assignment schemes, or provided they target the same platform (such
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as Clojure and Java), should their identifiers be assigned based on the target

abstract syntax or bytecode?

Additionally, as discussed in Chapter 4, globally unique identifier assign-

ment schemes need many considerations when it comes to existing program-

ming languages. One issue in environments with multiple languages arises with

their name-dependent features. Presumably, the used language may be one of

the extended inputs for identifier assignment. Chapter 4 sketched out the pos-

sibility of having “canonical specifications” as a general form of input. If such

specifications can be written independently of the underlying programming

languages (e.g. using an interface description language), they could poten-

tially serve as an input for these cross-language identifier assignment schemes.

The web-based interface in Chapter 5 centred around displaying and edit-

ing code. Extending it for displaying further metainformation may present

additional work. If change management is present (as discussed in Section

7.2.5), debugging and ways for interrogating external code lineage may be

worth exploring.

Lastly, in terms of extensions beyond the proof of concept prototype, scal-

ability and security are requirements that need to be addressed in a greater

depth. The system implementation that addresses such concerns could possibly

uncover further research opportunities in this regard – for instance, optimiza-

tions of prevalent retrievals and operations in programming environments.

More complete environment implementations would also enable exploring

research questions related to development productivity. Randomized con-

trolled trials could contrast development experience in conventional program-

ming environments and in various implementations of SFP (a set of command-

line tools, existing IDE plugins, interactive web-based editor with interactive

search functionality, etc.). Outside these experiments, more complete imple-

mentations could serve as case studies of tool development experience in dif-

ferent programming environment architectures.
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---------- 转发的邮件 ----------
发件人："Dexter H. Hu" <hyhu84@gmail.com>
日期：2011-7-3 下午3:44
主题：Re: progress report (June 24)
收件人："C.L. Wang" <choliwang@gmail.com>, "Di sheng" <sdi@cs.hku.hk>, "gdhan" <gdhan@cs.hku.hk>, "Weida Zhang" <wdzhang@cs.hku.hk>, "Luwei Cheng" <chengluwei@gmail.com>, "Chenggang Zhang" <cgzhang@cs.hku.hk>
抄送：

Dear Dr. Wang,

Ok, I finally have time to respond to you. Because I was busy with
other things I value. Let me respond one by one.

On Sat, Jul 2, 2011 at 2:52 PM, C.L. Wang <choliwang@gmail.com> wrote:
> On Sat, Jul 2, 2011 at 2:41 PM, Dexter H. Hu <hyhu@cs.hku.hk> wrote:
>> Dear Dr. Wang,
>>
>
> Sorry, I really don't understand why prepare
> trader licence examinations at this critical stage?
> You should get your thesis done before you do so.
>

Time is MONEY for me. I want to start to work as early as possible to
make money. What are these 7000HKD/month gonna help me? This the real
reason why I live in Office for almost a year now. I am not your cheap
labor. You can exploit the new comers, but not me. Who do you think
you are? 郭台銘 ? I am not a foxconn worker. You are an educator, watch
yourself.

I finally realized money is more important than academic value. Plus
you don't even really care about research/academic value. You argued
for argument purpose, just to demonstrate your authority and power.
DON'T LIE. I really thought chasing money is less hypocritical than
doing these now.

> Am I also paying your part-time RA for
> preparing your trader licence examinations ?

Am I supposed to feel guilty, and thankful for this part-time RA ?
Hell NO. You wasted my time for almost another year. I thought we
agreed last September that I will concentrate on my thesis and doing a
TA unit to reduce the cost. You are GREEDY and inconsistent by
distracting me to do other things. This is manipulative. Graduation
with a job as soon as possible is the most important thing for a
student, GET IT? You probably don't even care.


> Or you intend to make me like a stupid (As you
> said so before for Yinfeng and Xiaolei's cases
> -- Now I feel I am really stupid since you don't care
> about your thesis work, while I keep waiting for your
> results and tried not to give you any pressure.)
>

You are STUPID in Yingfeng and Xiaolei's cases. You deserve it.
But hey Dr. Wang, you are smarter this time, because 7000HKD is much
less than 20000HKD and a RA's salary. God Job Dr. Wang!!! You are even
smarter to make use of Liu Hao to do your research work, who's a Msc
student studying for almost two years and paid by himself. You are
REALLY smart this time. This is my way of educating you to be smart.
Glad to see you grow.

But, look I am INNOCENT in both cases, right? What is further wrong
with YOU is that you dragged me into these traps to save your ASS,
which is not acceptable to me. I need to concentrate to do my own
stuff.

You said you still believe in CBR approach, which is laughable and
shameless. What do you have to believe in yourself?  Money or your
hard work?. You said you have endorsed this approach according to
Xiaolei's suggestion. Is this the reason it can't be changed? This is
laughable and gives youself away as a researcher, but a stubborn
freak. It's the student who are doing the hard work. I said it is not
promising, you should at least listen to me and RESPECT my idea at
least. How about you contacting your postdoc Yinfeng to publish an
English version now? Threaten him first before you even try to
threaten me.

The unhappiness of every paper, FYP projects, MSC projects, being a
tutor for CSIS7302 are just too long to be mentioned here. You know it
well.

> Let's make this clear, if you don't revise your thesis
> according to all reviewers' comments and make me and Prof. Tse
> satisfied with your revision, we won't approve your thesis submission.

Don't pretend to be professional this time. The reviewer's comments
are much easier to address than yours. And don't mix the reviewer's
comments with your own greedy ones.
You don't want me to try out other complicated p2p protocols, do you ?
Hope you aren't greedy this time.

> Is it clear enough ?
It IS clear. But don't scare me. I am fragile. I WILL review my
thesis, but only for my own benefits and judgement.

Oh, Come On Dr Wang! You care about this degree only to save your
face. I care about this degree only to graduate with a job. I am doing
you a FAVOR to save your face trying to graduate. You should thank me
for not quitting. I am doing much better than Luo Yang (James), Allan
Li, Xiaolei, Fan Dong, maybe much worse than Di Sheng, King Tin. The
real phatheic part for all of us is that you make me hate to do
research right now. Maybe you aren't really a researcher. You are a
politician playing politics. Should I be scared of you? You tell me.

Seriously, I have been stuck here for almost 5 years now. All I wanna
do is to get the FUCK out of the whole trap with dignity ! GET IT? I
don't want to be a postDOG or in academia any more. My whole PhD life
is digging myself out of this black hole. Because you are a control
freak that don't respect your OWN students' research ideas. Right now
I only respect you as a normal person, not as a profess at all. Don't
EVEN get me started, you control freak.

Do you know the real reason I refused to write the research funding
report of GPS? Because you said 30KHKD is too few in front of me,
which made me want to slap you in your face. First off it's the
professor's main duty to write funding proposal. Secondly, If he is
incompetent, so he should respect his students, and not to maintain
his freaking high ego during meeting and emails. But seriously we all
need to thank King Tin's for his main efforts in 2 RGC proposal
successes, not you. I know he will thank God instead. I Do respect
him.

I dare to write this email because I am not intimidated by you any
more, seriously. You might be a winner of being a professor in name
only. But you are a loser in terms of cultivating PhDs. Am I the first
one to graduate supervised by you only (not co-supervise with any
other professors) ?  I need to say these before I graduate. Because I
don't even want to talk to you after I graduate. I need to start a new
chapter of my life. I haven't worked outside, or FUCKED a girl yet.
The outside world is so much beautiful to me. I am really looking
forward to it. DON'T BLOW it for me. I hope I can find a good job
without your recommendation letter. I don't EVEN want to save this
relationship with your now. Just get the heck out of my way after I
graduate.

Lastly I feel the need to cc this to almost everyone to witness.
Because I don't want to be scared and also want to calm myself, I
might be out of control. I don't really know where this email is gonna
escalate ( a fight or legal action?  I don't know).

May God mercy you, seriously. You SINed a lot. Better yet you please
consult a psychology doctor first.

Best Regards,
Dexter




Appendix A

Sample User Code

Listing A.1: Example test code

(ns com . example�ut i l s�test

( : require [ c l j s . t e s t : refer�macros [ d e f t e s t i s t e s t i n g

run�tests ] ]

[ com . example�uti l s : refer [ right�pad ] ] ) )

( d e f t e s t a�test

( t e s t i n g "Hello world padding."

( i s (= ( right�pad "hello world" 14 \ . ) "hello world

..." ) ) ) )

(defn e x i t [ code ]

( j s / setTimeout #(. e x i t j s /phantom code ) 0)

( aset j s /phantom "onError" ( fn [ ] ) ) )

(defmethod c l j s . t e s t / r epo r t [ : c l j s . t e s t / d e f au l t :

end�run�tests ] [m]

( i f ( c l j s . t e s t / s u c c e s s f u l ? m)

( e x i t 0)
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( e x i t 1) ) )

( try

( enable�console�pr int ! )

( run�tests )

( catch j s /Object e

(print (.� s tack e ) )

( e x i t 1) ) )

Listing A.2: Example continuous integration configuration

image : c l o j u r e : l e i n �2.7.0

b e f o r e s c r i p t :

� apt�get update �y

� apt�get i n s t a l l �y bzip2 wget l i b f r e e t y p e 6

l i b f o n t c o n f i g

� wget https : // b i tbucket . org / a r i ya /phantomjs/downloads

/phantomjs�2.1.1� l inux�x86 64 . ta r . bz2

� ta r �x j f phantomjs�2.1.1� l inux�x86 64 . ta r . bz2

� rm ⇤ . bz2

� mv phantomjs�⇤ / usr / share /phantomjs

� ln �s / usr / share /phantomjs/bin /phantomjs / usr / bin /

phantomjs

� l e i n deps

t e s t :

s c r i p t :

� l e i n c l j s b u i l d t e s t
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