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Since software modularity makes software systems controllable, maintainable and exten-
sible, improving software modularity has been a hot topic in the programming community
for many years since the beginning of programs. Researchers and software developers of-
ten apply different modularity techniques to reduce the complexity of software systems and
make themmoremodular. These techniques include newdesign patterns, newprogramming
languages, new type systems and tool support. Object-Oriented Programming (OOP) is a
programming paradigm, which has been investigated and used for a long time. It improves
modularity by modeling the world as objects and providing abstractions by wrapping data
and functions into a single unit. Later, the idea of multiple inheritance is proposed to fur-
ther improve modularity in OOP. However, there are still unsolved (or not elegantly solved)
problems such as the Expression Problem and issues in supporting multiple inheritance.

This thesis investigates various softwaremodularity andmultiple inheritance related issues
in the context of OOP. In particular, we divide the thesis into two parts: (I) multiple inheri-
tance for modularity and reuse, and (II) revisiting models of multiple inheritance. In part I,
we explore the canonical modularity problem (the Expression Problem) and discuss various
existing solutions. These solutions are not satisfactory because they are complex and require
either advanced type systems or complex language features. Our proposed solution in both
Scala and Java uses simple subtyping feature and it shows that only subtyping is enough
to solve the EP. Then we propose a new programming paradigm called interface-based pro-
gramming, as opposed to class-based programming and prototype-based programming. The
purpose is to lower coupling among software components. We implement this programming
style into Java and it is called Classless Java, where OO programs and reusable libraries can
be defined and used without defining a single class.



In part II, we explore the conflicts issues in multiple inheritance. In particular, we explore
the unintentional conflict problems, which previous approaches/models either do not sup-
port or cannot provide satisfactory solutions. The reason is that they have to compromise
between code reuse and type safety. Moreover, they do not support hierarchical overriding in
the presence of unintentional conflicts. We propose the formal multiple inheritance model
FHJ, solving the unintentional method conflicts issue by supporting hierarchical dispatch-
ing and hierarchical overriding algorithms. To further solve the unintentional state conflicts
problem and provide a general treatment to the diamond problem, we propose FHJ+ as an
extension to FHJ. Both models are formalized following the style of Featherweight Java. We
also propose many properties of the two models to prove the models to be sound.

In summary, this thesis investigates and solves the interesting problems around modular-
ity and multiple inheritance, providing insights for future researchers to improve software
modularity further.

An abstract of exactly 294 words
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1 Introduction

In the Object-Oriented Programming community, people strive to improve software modu-
larity. Two main OO models emerged to this end: prototype-based languages (PB) such as
Self [Ungar and Smith, 1987a] and class-based languages (CB) such as Java, C# or Scala. In
prototype-based languages, objects inherit from other objects. Thus objects own both behav-
ior and state (and objects are all you have). In class-based languages, an object is an instance
of a specific class, and classes inherit from other classes. Objects own state, while classes
contain behavior and the structure of the state. Concepts such as multiple inheritance have
been proposed to improve modularity. However, people also suffer from the problems ac-
companying multiple inheritance. Such problems include member conflicts, the Expression
Problem [Wadler, 1998], state issues, etc.

In this thesis, we will investigate various modularity and multiple inheritance-related is-
sues in the context of Object-Oriented Programming. We will discuss the Expression Prob-
lem and provide a simple solution (as a new design pattern) to it. We will study various
multiple inheritance models, such as the trait model, the mixin model, and the C++ model.
Also, we will analyze their advantages and disadvantages. Meanwhile, we will discuss the
multiple inheritance related issues in these languages and provide our solutions to them. The
programming language techniques we use include but are not restricted to design patterns,
language features, and formal calculi.

1.1 Modularity

Modularity techniques, in simple words, are techniques to divide systems into multiple com-
ponents. In principle, each of these components should implement one functionality and be
relatively independent. They can communicate with each other via interface signatures. Soft-
ware systems are getting more and more complicated as they are proliferating as time goes.
Software designers and developers often apply different modularity techniques, which are
essential to alleviate the complexity of software systems and make them controllable, main-
tainable and extensible.
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1.1.1 Modularity Benefits

Modularity of software systems brings many benefits to software development. Firstly, mod-
ularity improves work efficiency. For example, a team has developed a module in project
A. After engineers finish project A, they may start another project B. In project B, they can
reuse the modules in project A directly. Reusable software will cut the cost of future devel-
opment. The more frequently the modules get reused, the lower the amortized cost of the
initial development of the modules will be. Secondly, modularity improves software quality.
Reusable software systems with modularity are usually more reliable than non-reusable soft-
ware systems in terms of system maintainability. The reason is that in the process of reuse,
bugs and defects are getting fixed and the reusable software becomes more and more stable
and robust. Last but not least, human resources can be better managed with modularity. The
more experienced engineers can be responsible for the definition of module interfaces, while
the less experienced engineers can work on concrete module development.

1.1.2 How to Achieve Modularity

What are the modules? As we mentioned above, modularity is about dividing software sys-
tems into small components, based on the divide-and-conquer idea. As a result, the divided
modules should have clear boundaries. Different languages treat modules differently. For in-
stance, in Smalltalk [Goldberg and Robson, 1983], which is one of the pioneers as an Object-
Oriented Programming language, there is no concept of modules and the only way to divide
modules is using classes. As a comparison, the concept of packages is supported in Java, and
both classes and modules can be used to divide modules. Another example is JavaScript,
which is a prototype-based programming language. There is no need to declare a class to
create an object in JavaScript and objects are naturally used to divide modules.

In addition to language features, various design patterns are also necessary for achiev-
ing software modularity. Design patterns are the common practice of solutions to var-
ious issues in software design. The principles of design patterns can be concluded as
SOLID [Fenton et al., 2017], which stands for:

• Single Responsibility Principle

• Open/Close Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle
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The detailed meaning of these principles can be found at [Gamma et al., 1995]. On the
whole, all the principles aim at avoiding tight coupling, which means a group of classes/mod-
ules are highly dependent on one another.

1.2 Object-Oriented Programming and Modularity

Originated from Simula [Dahl and Nygaard, 1966], a programming language for modeling
real-world phenomena, Object-Oriented Programming has been investigated and used for
a long time. Object-Oriented Programming is a programming paradigm which attempts to
model the world as objects and the interactions among the objects as methods. It modu-
larizes programs by wrapping data and functions into a single unit that can be used as tem-
plates for duplicating such modules when needed. The outstanding characteristics such as
data abstraction, encapsulation, inheritance and polymorphism make Object-Oriented Pro-
gramming attractive for modular software development. Modularity enables reusability and
minimizes code duplication. Moreover, modularity makes it easier to find and fix problems
as they can be traced to specific system models, thus limiting the scope of particular error
searching.

1.3 Necessity of Multiple Inheritance

Many OOP languages are restricted to single inheritance, which is less expressive
and flexible than multiple inheritance, which is one way to increase software mod-
ularity in the context of OOP. Multiple inheritance describes the case where one
class can have multiple superclasses and inherit features from all of these super-
classes. Different flavours of multiple inheritance have been adopted in some popular
OOP languages. C++ has had multiple inheritance from the start. Scala adapts the
ideas from traits [Schärli et al., 2003, Ducasse et al., 2006, Liquori and Spiwack, 2008]
and mixins [Bracha and Cook, 1990, Flatt et al., 1998, Limberghen and Mens, 1996,
Ancona et al., 2003, Hendler, 1986] to offer a disciplined form of multiple inheritance.
Java 8 provides a simple variant of traits, disguised as interfaces with default meth-
ods [Goetz and Field, 2012].

Multiple inheritance is necessary because it is a common need to combine multiple com-
ponents to create a new component/class. For example, we want to create a bunch of objects
of colored shapes, red rectangular, red triangle, white triangle, blue circle, etc. Thus, we need
to create the corresponding classes, RedRectangular, RedTriangle, WhiteTriangle,
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BlueCircle, etc. As we noticed, naturally, these classes should inherit from common su-
perclasses Red, Blue, Triangle, Circle, etc.

For example, without multiple inheritance, the following code would be impossible:

class Red { ... }
class White { ... }
class Blue { ... }

class Triangle { ... }
class Circle { ... }
class Rectangular { ... }

class RedTriangle extends Red, Triangle { ... }
class WhiteTriangle extends White, Triangle { ... }
class BlueCircle extends Blue, Circle { ... }
...

This kind of scenarios is ubiquitous. In languages that do not support multiple in-
heritance, programmers may use some design patterns (such as the Composite pat-
tern [Gamma et al., 1995]) as workarounds to mimic multiple inheritance. However, these
workarounds have their limitations; for example, they cannot express the subtyping relation-
ships well. In the composition way, RedTriangle is not a subclass of Triangle, which is
not desirable. Therefore, multiple inheritance is needed for true modularity.

1.4 Difficulty and Issues of Multiple Inheritance

Although multiple inheritance seems to be natural and simple, the reality is that it is
recognized as a technique that is hard to implement. Actually, before Bjarne Strous-
trup, many people thought adding multiple inheritance to C++ was impossible. Never-
theless, Bjarne Stroustrup found an implementation technique of multiple inheritance in
C++ in 1984 [Stroustrup, 1989] and Java supports a restricted form of multiple inheri-
tance since Java 8 in 2014. However, the implementations are not perfect, and we will
discuss in more detail in Section 2.2. In the literature [Schärli et al., 2003, Sakkinen, 1989,
Bracha and Cook, 1990, Malayeri and Aldrich, 2009], multiple inheritance, especially when
combined with state, has several tricky issues including several variants of the famous dia-
mond problem [Bracha and Cook, 1990, Sakkinen, 1989], state-related issues, initialization,
etc. We list the details of difficulty below:

1. In single inheritance, it is obvious which class is the father/grandfather of a class be-
cause the inheritance relationship is simple. However, in the case of multiple inheri-
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tance, one class has multiple fathers, and these fathers have their own fathers, then the
relationships among all these classes are complex.

2. When one class inherits two parent classes that have data members or methods with
the same name, it is difficult to resolve which one is being referenced by the subclass.

3. When two parent classes A and B inherit from the same base class T, forming a diamond
pattern in the inheritance hierarchy, for the subclass C that inherits from both A and
B, conflicts will occur. In the inheritance chain, there are two paths from class T to
class C. It becomes problematic to determine whether a member from T is in conflict
with another member or not and it would be even harder when the methods from T
are updated in class A or B.

4. The order that the initialization/elaboration of the parent classes needs to be specified.
It can sometimes lead to behaviour changes when the order of the inheritance changes.

5. Some languages support a reference (e.g., super) to an attribute of the base class for
this object. However, it is difficult to support such functionality in a language with
multiple inheritance.

1.5 Multiple Inheritance Related Problems

As stated before, there are many issues in implementing multiple inheritance. In this the-
sis, we cannot explore all of these issues. Instead, we will focus only on part of these issues,
investigate these canonical problems and propose solutions to them. By providing these so-
lutions, many modularity related problems can be solved. Our final goal is to make software
development more modular.

1.5.1 The Expression Problem

Multiple inheritance is often used to realize software modularity and extensibility, because
when an extended system is normally developed by combining the existing components and
new components/features. The Expression Problem (EP) [Wadler, 1998] (will be explained
in detail later in Section 2.1) is one of the most typical problems in this extension process. It
describes the problem of representing a system which can be extended in both dimensions
(i.e., both the data structure dimension and the behaviour dimension). It has also been a hot
topic in programming languages for almost twenty years.
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Solving the Expression Problem is of great importance because it means solving a large set
of modularity and expressiveness problems represented by the Expression Problem. How-
ever, solutions that work in existing languages (such as Java, Scala or Haskell) have em-
ployed various complex techniques and a combination of two different mechanisms: type-
parametrization and subtyping. Object algebras [Oliveira and Cook, 2012] are a simple solu-
tion to solve the EP in Java-like languages. While Object algebras do not require F-bounds or
wildcards, they still require generics. An open problem so far has been whether it is possible
to solve the EP just with simple techniques and type systems.

1.5.2 Interface-based Programming (with State) in Multiple Inheritance

In terms of modularity and code reuse, inheritance is a key mechanism in Object-
Oriented languages. Inheritance provides a modularization mechanism, which is
used to reuse the implementations from inherited classes/objects. Different flavors of
multiple inheritance have been adopted in some popular Object-Oriented Program-
ming languages. C++ has had multiple inheritance from the start. Scala adapts the
ideas from traits [Schärli et al., 2003, Ducasse et al., 2006, Liquori and Spiwack, 2008]
and mixins [Bracha and Cook, 1990, Flatt et al., 1998, Limberghen and Mens, 1996,
Ancona et al., 2003, Hendler, 1986] to offer a disciplined form of multiple inher-
itance. Java 8 offers a simple variant of traits, disguised as interfaces with default
methods [Goetz and Field, 2012].

Unfortunately, as widely acknowledged in the literature [Schärli et al., 2003,
Sakkinen, 1989, Bracha and Cook, 1990, Malayeri and Aldrich, 2009], multiple inheri-
tance (especially when combined with state) has several tricky issues, including several
variants of the famous diamond problem [Bracha and Cook, 1990, Sakkinen, 1989]. Many
of the problems related to inheritance arise from the direct use of fields to model state.
Inheriting two fields with the same name raises the question of whether the two fields
should be kept, or only one field should exist. Initialization of the fields is also problematic,
since initialization code may be inherited from multiple parents. Finally, an additional
problem with mutable fields is that their type cannot be type-refined in extensions, which
can cause modularity problems [Wadler, 1998, Wang and Oliveira, 2016]. Is it possible to
find a solution that handles state (even mutable state) in multiple inheritance properly and
in a modular way?
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1.5.3 Unintentional Method Conflicts

Other issues with multiple inheritance are conflicts. One of the most sensitive and criti-
cal issues is perhaps the ambiguity introduced by multiple inheritance. One case is the fa-
mous diamond problem [Sakkinen, 1989, Singh, 1995] (also known as the fork-join inheri-
tance [Sakkinen, 1989]). In the diamond problem, inheritance allows one feature to be in-
herited from multiple parent classes that share a common ancestor. Hence conflicts arise.
The variety of strategies for resolving such conflicts leads to the occurrence of different multi-
ple inheritancemodels, including traits, mixins, CZ [Malayeri and Aldrich, 2009], andmany
others. Existing languages and research have addressed the issue of diamond inheritance ex-
tensively.

In contrast to diamond inheritance, the second case of ambiguity is unintentional method
conflicts [Schärli et al., 2003]. In this case, conflicting methods do not actually refer to the
same feature. In a nominal system, methods can be designed for different functionality but
happen to have the same names (and signatures). We call such a case fork inheritance, in
analogy to diamond inheritance. When this kind of unintentional method conflicts happens,
they can have severe effects in practice if no appropriate mechanisms to deal with them are
available. In practice, existing languages only provide limited support for the issue. In most
languages, the mechanisms available to deal with this problem are the same as the diamond
inheritance. However, this is often inadequate and can lead to tricky problems in practice. It
is especially the casewhen it is necessary to combine two largemodules and their features, but
the inheritance is simply prohibited by a small conflict. As a workaround from the diamond
inheritance side, it is possible to define a new method in the child class to override those
conflicting methods. However, using one method to fuse two unrelated features is clearly
unsatisfactory. For example, C++ supports defining twomethods with the same name in two
classes and a new class can extend both of them without method conflicts. However, these
methods can only be overridden simultaneously, but they cannot be updated separately in a
flexible way. An open question has been whether it is possible to find a general solution to
treat unintentional method conflicts properly and formalize the solution.

1.5.4 State Conflicts

When dealing with multiple inheritance, as mentioned before, one issue is the unintentional
method conflicts. However, when it comes to multiple inheritance with state, another simi-
lar but different issue arises, which is dealing with the state conflicts (both intentional and
unintentional) scenarios. The concrete questions include, for example:

• How to represent state?
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• When dealing with unintentional state conflicts, how to keep both fields from different
parents without conflicts?

• Is is possible to refine the type of fields without duplication?

• How to merge the conflicted fields flexibly?

• How to deal with the more complicated diamond case?

The existing language solutions/models are not satisfying or cannot completely solve the
problem of multiple inheritance with state. For example, in research area, the trait model is
a popular language model to deal with multiple inheritance and in practice it has also been
applied to various languages such as Java. However, the classical model does not support
state. So we cannot rely on traits to solve the above mentioned issues.

The mixin model is another multiple inheritance model. It supports state but suffers from
the linearization problem (see details in Section 7.3.3). C++ is capable of keeping the con-
flicted fields but still problematic, especially in the diamond problem (see details in Chap-
ter 6). Various other models have their own problems. Can we create a language or a model
that can represent state conflicts properly and provide a satisfying approach to treat them so
that they can be flexibly inherited, merged and refined? Can we also handle the diamond
case of state conflicts properly?

1.6 Solutions and Main Contributions

In this thesis, starting from the expression problem [Wadler, 1998], we propose new design
patterns, new programming paradigms, new programming models to solve various multiple
inheritance related problems. In this section, we summarize the key contributions.

1.6.1 The Expression Problem, Trivially!

Our first contribution is to solve the Expression Problem using simple language features that
common Object-Oriented Programming languages support and use advanced features as
little as possible. We propose a variant of the Composite pattern that addresses the EP.

In Section 4.2, we will show that conventional subtyping is enough to solve Wadler’s Ex-
pression Problem and present a concise solution in Scala, which is essentially the same code
that programmers usually write in a typical (failed) attempt to solve the Expression Prob-
lem. The only difference is a simple type annotation. We also provide a Java solution, which
is slightly more cumbersome due to the use of covariant return types to simulate covariant

8



1.6 Solutions and Main Contributions

type-refinement of fields. Nevertheless, the Java solution is still quite simple and uses no
generics either. The key idea is to make use of covariant type-refinement of immutable fields
(in Scala) and covariant method return types (in Java).

1.6.2 Classless Java

In Chapter 4, we present a novel Object-Oriented model called interface-based object-
oriented programming (IB), where objects implement interfaces directly and fields are not
directly supported. Objects are instantiated by static factory methods in object interfaces.
To model state, we mimic fields in an object interface with abstract state operations. The ab-
stract state operations include various common utility methods (such as getters and setters,
or clone-like methods). Objects are only responsible for defining the ultimate behavior of a
method.

Object interfaces also provide support for automatic type-refinement. One of our works,
The Expression Problem, Trivially [Wang and Oliveira, 2016] in Java-like languages shows
how easy it is to solve the problem using only type-refinement. In IB, due to its emphasis
on type-refinement, the solution would be clearer and more concise. To summarize, the
main contributions are:

• IB and Object Interfaces. The concept of interface-based programming enables pow-
erful programming idioms using multiple-inheritance, type-refinement, and abstract
state operations.

• Classless Java. IB is a general concept and Classless Java is a practical realization
of IB in Java. Classless Java is implemented using annotation processing techniques,
allowing most tools to work transparently with our approach. Existing Java projects
can use our approach and still be backward compatible with their clients, in a way that
is specified by our safety properties.

• Type-safe covariant mutable state. We show how the combination of abstract state
operations and type-refinement enables a form ofmutable state that can be covariantly
refined in a type-safe way.

• Applications and case studies: we illustrate the usefulness of IB through various ex-
amples and case studies1. An extended version with a formal translation to Java can
be found in Appendix A.1.

1https://github.com/YanlinWang/classless-java
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1.6.3 FHJ

In Chapter 5, we will propose two mechanisms to deal with unintentional method conflicts:
hierarchical dispatching and hierarchical overriding. Hierarchical dispatching is inspired by
the mechanisms in C++ and provides an approach to method dispatching, which combines
static and dynamic information. Using hierarchical dispatching, themethod binder will look
at both the static type and the dynamic type of the receiver during runtime. When there are
multiple branches that cause unintentional conflicts, the static type can specify one branch
among them for unambiguity, and the dynamic type helps to find the most specific imple-
mentation. In that case, both unambiguity and extensibility are preserved. The main novelty
over existing work is the formalization of the essence of the hierarchical dispatching algo-
rithm, which (as far as we know) has not been proposed before.

Hierarchical overriding is a novel language mechanism that allows method overriding to
be applied only to one branch of the class hierarchy. Hierarchical overriding adds the ex-
pressive power that is not available in languages such as C++ or C#. In particular, it allows
overriding to work for classes with multiple (conflicting) methods sharing the same names
and signatures.

To present hierarchical overriding and dispatching, we introduce a formalized model FHJ
in Section 5.3 based on Featherweight Java [Igarashi et al., 2001], together with the theorems
and proofs for type soundness. To summarize, the main contributions are:

• A formalization of the hierarchical dispatching algorithm that integrates both the
static type and dynamic type for method dispatch, and ensures unambiguity as well as
extensibility in the presence of unintentional method conflicts.

• Hierarchical overriding: a novel notion that allows methods to override individual
branches of the class hierarchy.

• FHJ: a formalized model based on Featherweight Java, supporting the above features.
We provide the static and dynamic semantics and prove the type soundness of the
model.

• Prototype implementation2: a simple implementation of FHJ interpreter in Scala.
The implementation can type-check and run variants of all the examples shown in this
chapter.

2The implementation is available at https://github.com/YanlinWang/MIM/tree/master/Calculus
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1.6.4 FHJ+

In Chapter 6, combining the ideas from of FHJ andClassless Java, we have a clue to solve the
problem of state conflicts and also provide a general solution of treating state in the diamond
problem. Wemake use of abstract state operations inClassless Java to mimic state and apply
the hierarchical dispatching and overriding mechanism in FHJ. Based on FHJ, we provide a
formal model called FHJ+. FHJ+ makes use of the hierarchical dispatching algorithm and
adds the flavor of supporting state conflicts, which integrates the ideas from Classless Java
to support state with abstract state operations. More details are explained in Section 6.3. The
main contributions are:

• Representation of conflicted fields. Inspired by Classless Java, FHJ+ provides a new
way to represents state where these conflicted fields can be represented smoothly with
abstract state operations.

• Fields deferment. In FHJ+, fields are declared and manipulated by abstract state op-
erations, just like the way in Classless Java. However, different from Classless Java,
declaration of a field needs not only to be declared as a getter (and a setter, if needed)
but also to be declared in the object constructor. Therefore, programmers may declare
an abstract method in a class, but defer the decision of making it a field later.

• FHJ+ also provides a general solution to the diamond problem (with state). Facing
the diamond problem with state conflicts, programmers have the freedom to decide
how to merge fields, report conflicts, etc.

• A formalization of FHJ+, which is an extension of FHJ with the field conflicts sup-
port. The formalization differs with FHJ in the way that a new form of state conflicts is
supported. Themodel has the expressive power of field conflicts and chooses to merge
them or not.

• Prototype implementation3: a simple implementation of FHJ+ interpreter in Scala.

1.7 Thesis Organization

The rest of this thesis is structured as follows. We begin with some background about the
main topics of this thesis in Chapter 2, in order to keep this thesis self-contained. Then, we
will divide the technical content into two parts:

3The implementation is available at https://github.com/YanlinWang/MIM/tree/master/
StateMIM-small
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Part I: In Part I, we exploit multiple inheritance in existing languages, mostly in Java and
Scala. We leverage on the covariant return types feature in Java, which is used in both
works.

Chapter 3 exploits the Expression Problem. Wefirst review the definition of the Expres-
sion Problem and know the difficulty. Then we will directly give the specification of
our solution in Scala. Also, we will discuss the independent extensibility requirement
and how our Scala solution achieves this requirement. After that, we will present a par-
allel Java solution, which is more cumbersome than the Scala solution, but still concise.
Finally, we will have some discussion on this solution and talk about limitations and
related work.

In Chapter 4 we first propose the paradigm of interface-based programming. We then
define the calculus Classless Java to achieve the paradigm in Java. The prototype is also
implemented in Java on top of the project Lombok [Neildo, 2011]. The annotation pro-
cessing technique is used to transform programs from Classless Java to standard Java.
We prove that the transformation is safe so that the whole transformation reductions
are also safe. We also illustrate the usefulness of IB through various examples and case
studies.

Part II: In this part, we explore more issues related to conflicts in multiple inheritance. We
explain how the current solutions/languages are not enough to solve a specific kind
of conflict problems: unintentional conflicts. We propose new language features and
provide formal models to improve multiple inheritance for Java-like languages.

In Chapter 5, we first propose the issue of unintentional method conflicts and how
it affects software development semantics. We provide a formalization of the hierar-
chical dispatching algorithm which has not been proposed before. We then provide a
formal model called FHJ, a formalized calculus based on Featherweight Java, support-
ing hierarchical overriding. We also provide prototype implementation. At the end of
this part, we also propose several theorems of the model and provide the full proof.

As an extension of FHJ, in Chapter 6 we exploit the problem of unintentional state
conflicts. We motivate the problem with a bank payment example. We then give the
syntax, typing rules and semantics of the new calculus FHJ+. We also provide the type
soundness property of the calculus and give the full proof.

Chapter 7 reviews related work and Chapter 8 summarizes and concludes the whole thesis.
This thesis is mostly based on three publications of the author and the work on FHJ+ is based
on an on-going draft (Chapter 6).
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1.7 Thesis Organization

The materials covered in this thesis have been published in the following papers:

Chapter 3: Yanlin Wang, Bruno C. d. S. Oliveira, “The Expression Problem, Trivially!” In
15th International Conference on Modularity (Modularity 2016).

Chapter 4: Yanlin Wang, Haoyuan Zhang, Marco Servetto and Bruno C. d. S. Oliveira,
“Classless Java” In International Conference on Generative Programming: Concepts and
Experiences (GPCE 2016).

Chapter 5: YanlinWang, HaoyuanZhang, BrunoC. d. S. Oliveira andMarco Servetto, “FHJ:
A FormalModel forHierarchical Dispatching andOverriding.” In 32nd EuropeanCon-
ference on Object-Oriented Programming (ECOOP 2018).
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2 Background

In this chapter, we will elaborate on the background of the topics (i.e., the Expression Prob-
lem, multiple inheritance and Featherweight Java) which we are going to discuss in the re-
maining chapters.

2.1 The Expression Problem

In this section, we will review Wadler’s formulation of the Expression Problem (EP) and
present the naive non-solution which is often implemented by programmers, and then point
out the problems of this non-solution.

2.1.1 Problem Statement

Software nowadays is getting more and more complex to maintain. Programmers and re-
searchers in both industry and academia have learned that software should be constructed
in a modular way. However, modularity is hard to achieve due to both theoretical and prac-
tical reasons. As we discussed in Chapter 1, solving the Expression Problem is beneficial to
improve modularity. Therefore, in this section, let us review the concept of the Expression
Problem.

The EP has been widely discussed in the literature [Reynolds, 1975, Cook, 1990,
Krishnamurthi et al., 1998]. It was coined byWadler [Wadler, 1998] to illustrate modular ex-
tensibility issues in software evolution, especially when involving recursive data structures.
Wadler set a simple programming exercise: implementing a language for a straightforward
form of arithmetic expressions (for example: 1 + 2 or 3). There is an initial set of features
consisting of two types of expressions (integer literals and addition); and one operation (eval-
uation of expressions). Later, two additional features, which represent possible evolutions of
the original system, are added:

• New variant: a new type of expressions, e.g., subtraction.

• New operation: a new method, e.g., pretty printing.

15



2 Background

It is usually easy to extend the system in one dimension (either new variants or new oper-
ations). In particular, extending the system with new operations in functional languages is
easy, but adding new data variants is difficult. While in common object-oriented languages,
the dual problem appears: adding new data variants is easy, but adding new operations is
more difficult. Although design patterns like the Visitor pattern [Gamma et al., 1995] allow
operations to be added easily, it will make adding new data variants more difficult. Therefore,
the traditional Visitor pattern does not solve the expression problem: it merely swaps the
dimension of extensibility. The challenge is how to design a programming technique that
supports software evolution in both dimensions in a modular way, without modifying the
previously written code. The requirements of the solutions to the Expression Problem can
be stated more precisely as follows:

• Extensibility in both dimensions: A solution must allow the addition of new data vari-
ants and new operations and support extending existing operations.

• Strong static type safety: A solutionmust prevent applying anoperation to a data variant
which it cannot handle using static checks.

• No modification or duplication: Existing code must not be modified nor duplicated.

• Separate compilation and type-checking: Safety checks or compilation steps must not
be deferred until link or runtime.

There is also a common fifth requirement which is proposed by Zenger and Oder-
sky [Zenger and Odersky, 2005]:

• Independent extensibility: It should be possible to combine independently developed
extensions so that they can be used jointly.

2.1.2 A Non-Solution to Wadler’s Expression Problem

Figure 2.1 shows a naive attempt thatmany programmers trywhenfirst facedwith the Expres-
sion Problem. The basic idea is to define an interface Exp for expressions with an evaluation
operation eval() in it, and then define concrete implementations (i.e., data variants) such
as Lit and Add of that interface for particular types of expressions.

Adding a NewClass (Variant): It is easy to add new data variants to the code in Figure 2.1
while satisfying all the requirements for a solution. For example, Figure 2.2 shows the code
for adding the subtraction variant.
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interface Exp { int eval(); }
class Lit implements Exp {

int x;
Lit(int x) { this.x = x; }
public int eval() { return x; }

}
class Add implements Exp {

Exp e1, e2;
Add(Exp e1, Exp e2) {

this.e1 = e1;
this.e2 = e2;

}
public int eval() {

return e1.eval() + e2.eval();
}

}

Figure 2.1: An object-oriented encoding of arithmetic expressions.

class Sub implements Exp {
Exp e1, e2;
Sub(Exp e1, Exp e2) {

this.e1 = e1;
this.e1 = e2;

}
public int eval() {

return e1.eval() - e2.eval();
}

}

Figure 2.2: An object-oriented approach for adding a new variant Sub.

Adding a New Method (Operation): Figure 2.3 illustrates an example of adding a new
operation print. The basic idea is to define interfaces for extending old interfaces and to
define classes for extending old classes. This technique is needed in order to meet the “no
modification” requirement and is what many programmers usually implement when facing
the Expression Problem. The interface ExpP extending interface Exp is defined with the
extra function print(). Classes LitP and AddP are defined with concrete implementations
of operation print(), extending base classes Lit and Add, respectively.

The system with the new print operation is used as follows:

ExpP p = new AddP(new LitP(4), new LitP(9));
System.out.println(p.print() + " = " + p.eval());
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interface ExpP extends Exp { String print(); }
class LitP extends Lit implements ExpP {

LitP(int x) { super(x); }
public String print() { return "" + this.x; }

}
class AddP extends Add implements ExpP {

AddP(Exp e1, Exp e2) {
super(e1,e2);

}
public String print() {

return ((ExpP) e1).print()
+ " + "
+ ((ExpP) e2).print();

}
}

Figure 2.3: An object-oriented approach for adding a new operation print.

The aforementioned straightforward approach seems to solve Wadler’s Expression Prob-
lem. However, this approach is not type-safe: in the definition of the overriding function
print in class AddP, there are two downcasts from Exp to ExpP. The following example
shows that these casts violate the “strong static type safety” requirement. In this example,
variable a is defined as an instance of class AddP, with Lit(4) and Lit(9) as its two mem-
ber fields. If we try to call a.print(), a run-time class casting exception will occur because
Lit(4) and Lit(9) cannot be cast to ExpP.

ExpP a = new AddP(new Lit(4), new Lit(9));
System.out.println(a.print()); // run-time error!

The casting problem still exists, even if we change the definition of the constructor AddP
to be:

public AddP(ExpP e1, ExpP e2) {
super(e1,e2);

}

Here is an example of the casting problem with the above new constructor AddP.
AddP a = new AddP( new LitP(1), new LitP(2));
System.out.println(a.print());
a.e1 = new Lit(3);
System.out.println(a.print()); // run-time error!

In this example, a is an instance of class AddP. We can call a.print() directly because
AddP implements the interface ExpP and both member fields of a are of type ExpP. Now if
we try to update field a.e1 with a Lit object and then call a.print() again, this will pass
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static type checking at compile time but will generate a class casting exception at runtime.
The no type-safety problem, which is a clear violation of the requirements for a solution to
the Expression Problem, will be solved in Chapter 3.

2.2 Multiple Inheritance Models

In this section, we will review the concept of multiple inheritance and introduce the main-
stream multiple inheritance models, especially ones that are related to our research work
later.

Multiple inheritance is a feature of Object-Oriented Programming where a class inherits
from more than one parent. This is different from single inheritance, where a class can in-
herit from only one parent. For example, C++ supports a form of multiple inheritance, so
that a class in C++ can inherit from two or more parents. In contrast, Java only supports
single (class) inheritance, so the same feature as in C++ cannot be represented by Java. In
the following, we will introduce and discuss various multiple inheritance models.

2.2.1 Traits

Traits have been used to represent different things in Object-Oriented Programming. The
original definition from Schärli et al. [Schärli et al., 2003] is: “traits are a simple composi-
tional model for structuring object-oriented programs”. A trait is a collection of methods
that can be composed in arbitrary order. In this thesis, we follow the definition from Schärli
et al. As Schärli et al. [Schärli et al., 2003] summarized, the following equation holds:

Class = Superclass+ State+ Traits+Glue

In the trait model, a class can inherit from one and at most one superclass. A class may
consist of one or multiple traits, which contains a group of methods that serve as a building
block for classes and is a primitive unit of code reuse. In this model, classes are composed
of a superclass, a set of traits and the glue code that connects the traits together and accesses
the necessary state. Traits provide great structure, modularity, and reusability within classes.
However, they can be ignored when one considers the relationships between one class and
another. Traits greatly balance the reusability and understandability and enable better con-
ceptual modeling.

Let us look at a concrete example of using traits. In this example, we developed an animal
system with a toy shark, which will swim like a real shark. However, it should not extend
class Fish, since a toy shark is not fish. On the other hand, we know that fish is not the only
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animal that swims, many mammals also swim. Therefore, the swimming activity should not
be classified as the behavior of fish. Instead, it should be regarded as a general activity. In
the following, we will demonstrate how to implement it in Scala with traits, which supports
concrete implementation inside:

trait Swimming {
def swim() = println("I'm swimming like a Shark")

}

trait Charging {
def charge() = println("I'm charging my battery...")

}

class Fish
class Toy

class Shark extends Fish with Swimming
class ToyShark extends Toy with Swimming with Charging
class Dog extends Swimming {

override def swim() = println("I'm swimming using my four legs!")
}

val shark = new Shark
val toy = new ToyShark
val dog = new Dog

shark.swim() // a real shark can swim
//shark.charge() // but cannot charge
toy.swim() // a toy shark can swim
dog.swim() // a dog also swims, but in a different way as

sharks.

In this way, traits improve the reusability and more importantly do not break the required
subtyping relationship.

Every trait can define requiredmethods and required fields. A trait can be defined directly
by specifying its methods or by composing one or more traits. The composition of traits is
performed through these operators: sum, override, exclusion, and aliasing. With these four
trait operators, which are similar to the arithmetic operations in expressions, people can do
many creative designs.

• The sum operation combines multiple existing traits into one single trait. The sum
operation is symmetric, just like the sum operation in arithmetic expressions, so that
A sum B is the same as B sum A. If there are no conflicts, then the sum operation
succeeds. Otherwise, we have to use other operations to resolve the conflicts.
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• The overriding operation enables programmers to add additional methods to an origi-
nal trait to produce a target trait. If the method already exists in the original trait, then
the old version will be overridden, and finally, the new method is the effective one in
the target trait.

• The exclusion operation is similar to the subtraction operation in arithmetic expres-
sions. It can take a trait (original trait) and exclude one or more methods from it and
produce a new trait (target trait).

• Another trait operation is called aliasing. Given a trait (original trait), we can add
an additional name to a method to create a new trait (target trait). It seems that this
operation alone is meaningless. However, combining with the above operations, they
can be very beneficial. For example, in the case of method conflicts during the sum
operation, people can alias the conflicting methods and then exclude the conflicting
ones.

Starting from the original traitmodel, different researchers have proposedmany variations
and they share some common properties. Below, wewill list some typical properties for these
trait models.

1. A trait contains a set of methods (provided methods) that implement concrete func-
tionalities.

2. A trait can declare a set of methods (required methods) that will be used in the pro-
vided methods.

3. A trait does not contain state.

4. The composition order of classes and trait is not important.

5. Conflicting methods must be explicitly resolved.

6. Trait composition does not affect the semantics of a class: the meaning of the class is
the same as all of the methods obtained from the trait(s) were defined directly in the
class. It is also called the flattening property.

7. Similarly, trait composition does not affect the semantics of a trait itself: a composite
trait is equivalent to a flattened trait containing the same methods.

With the trait flattening property, for example, if class A is defined using trait T, and T
defines methods a and b, then the semantics of A is the same as it would be if a and b
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were defined directly in the class A. Naturally, if the glue code (code that serves solely
to ”adapt” different parts of code that would otherwise be incompatible) of A defines a
method b directly, then this b would override the method b obtained from T. Readers
are referred to [Ducasse et al., 2006, Schärli et al., 2003, Bettini et al., 2013, Bono et al., 2014,
Liquori and Spiwack, 2008, Reppy and Turon, 2006, Reppy and Turon, 2007], for more de-
tails about traits.

2.2.2 Java 8

It is widely known that Java does not support multiple (class) inheritance, and only single in-
heritance is supported. However, Java allows multiple interface implementation. Since Java
8, a new language construct is introduced: default methods inside interfaces. Researchers
started to explore whether we can achieve a form of multiple inheritance in Java. In 2014,
Bono et al. [Bono et al., 2014] show a different usage of interfaces with default methods to
achieve that. They use interfaces as traits and default methods for functionality implementa-
tion, which is called trait-oriented programming in Java. With this idea, a restricted form of
multiple inheritance becomes possible in Java and it improves code modularity a lot.

The syntax of default methods in Java is similar to ordinary methods with the difference
that the keyword default is used as the prefix. The main characteristic of default methods
is that they are virtual like all methods in Java, but they provide a default implementation
within an interface. For example:

interface A {
default void foo() {
System.out.println("In interface A");

}
}

interface B {
default void bar() {
System.out.println ("In interface B");

}
}

class C implements A, B { }

public class Main {
public static void main(String [] args) {
C c = new C();
c.foo();

}
}
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Now, class C inherits all implementations from components A and B. In this sense, Java
8 interfaces play the role of traits, with default methods as provided methods and abstract
methods as required methods. Java 8 also takes the same approach for dealing with method
conflicts: the programmer explicitly overrides the conflicting methods. For example:

interface A {
default void foo() {
System.out.println("In interface A");

}
}

interface B {
default void foo() {
System.out.println ("In interface B");

}
}

// class C implements A, B { } //Duplicate default methods named foo.

class C implements A, B {
public void foo() {
System.out.println("In interface C");

}
}

In the above code, class C extends interface A and B with the conflicting method foo(),
which needs to be explicitly resolved (by overriding) inside C.

As with stateless traits, required fields are encoded as required accessory (getter and setter)
methods, that is, as abstract methods, whose implementation will be provided as glue code
by the class implementing the traits. In order to introduce the trait-oriented programming
style, various programming patterns to match the trait operators listed in Section 2.2.1 are
proposed. See the mimic details in their paper [Bono et al., 2014].

There are also differences of default methods in Java from traits, for example, default meth-
ods conflict with any other default or abstract method. For example the following code is
rejected due to method conflicts.

interface A2 { default int m() {return 1;}}
interface B2 { int m(); }
interface C2 { default int m() {return 2;}}
interface D2 extends A2,B2 {} //rejected due to conflicting methods
interface E2 extends A2,C2 {} //rejected due to conflicting methods

Note how this is different from what happens in most trait models, where D2 would be
accepted, and the implementation in A2 would be part of the behavior of D2.
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2.2.3 Mixins

Different from traits, themixinmodel is anothermultiple inheritancemodel. As proposed
in [Bracha and Cook, 1990] by Bracha and Cook, “a mixin is an abstract component, which
is a subclass thatmay be applied to different superclasses to create a related family ofmodified
classes.” For example, a mixin can be defined to have the functionality of adding chocolate
flavor, and then this mixin could be applied to any kind of ice cream to create a chocolate ice
cream class.

Similar to the trait model, every class may have one (and at most one) superclass, but it
may have multiple mixins. For example, in the Scala programming language (although the
keyword for mixin is “trait”), the keyword extends is for class inheritance, and the keyword
with is for mixin. When composing a new class, extends can be used one (and at most one)
time, however, with can be used for multiple times. For example, we have a class IceCream,
and now we want to create an instance of the ice-cream with both chocolate and strawberry
flavor. In Scala, we may write:

val myIceCream = new IceCream with Chocolate with Strawberry

In case of conflict, mixin composition mechanism will chose one implementation (might
be the left or right mixin). And it gives priority to one component depends on the implemen-
tation of mixins. See more details in the mixins original paper [Bracha and Cook, 1990].

In contrast to traits, mixins may contain state. Thus instance variables can be defined in
mixins. In the mixin model, multiple inheritance is treated in a subtle way. Linearization is
enforced in the inheritance hierarchy so that every mixin is arranged to an appropriate place.

Mixin programming takes advantage of multiple inheritance in a subtle and unintuitive
way. When a mixin is defined with multiple mixins, it will choose the ordering of these
parent mixins. Eachmixin defines a certain ordering of its fathers, which determine a partial
ordering of all themixins components. However, the linearization of mixins is also criticized
by many researchers, see details in Chapter 7.

2.3 Featherweight Java

One important topic of this thesis is Object-Oriented Programming, and to model Object-
Oriented Programming there are manymodels/languages. One way is to encode the features
of Object-Oriented Programming into a core calculus, which can be formally modeled and
reasoned. Why do people investigate formal models? Firstly, formal models make precise
what a language means. They will specify what programs are accepted in the language and
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Programs P ::= CL e

Classes CL ::= class C extends C{C f;K M}

Constructors K ::= C(C f){super(f); this.f = f; }
Methods M ::= C m(C x){return e; }
Expressions e ::= x | e.f | e.m(e) | new C(e) | (C)e
Values v ::= new C(v)
Evaluation Context E ::= [.] | E.f | E.m(e) | v.m(v, E, e) | new C(v, E, e) | (C)E

Figure 2.4: Syntax of Featherweight Java

how a program executes. Secondly, formal models allow us to prove formal properties. Typ-
ically, they will reduce specific run-time errors.

In this section, we will introduce a core calculus for Java proposed by Igarashi, Pierce, and
Wadler called Featherweight Java [Igarashi et al., 2001]. Featherweight Java is a small calculus
and is a subset of the current Java programming language. The concise language components
of Featherweight Java includes classes, constructors, fields, methods, and casts. The essential
feature is class inheritance, and in Featherweight Java, only single inheritance is supported.
The model does not include many popular features, such as interfaces, overloading, excep-
tions, or the public, private or protectmodifiers. Because of the simplicity of themodel,
various reasoning about type soundness and other properties of the language is possible. It
is also easy to extend; actually, it has been a classic model for other calculus, for example,
FGJ(Featherweight Generic Java).

The syntax of Featherweight Java is given in Fig. 2.4. This is the standard BNF definition.
Note that an over-bar represents a sequence. A program consists of a sequence of class defini-
tions and an expression to be evaluated, which corresponds to the body of the mainmethod
in Java. The class definition of Featherweight Java class C extends C{C f;K M} contains
the name of the class C, the parent class D, fields f with types C, a single constructor K and
a set of method definitions M. The constructor declaration C(C f){super(f); this.f = f; }
takes a sequence of field values and use part of them to initialize the fields from the superclass
and the rest to initialize the fields defined inside the current class. The method declaration
C m(C x){return e; } introduces the method m with parameters x with types C and the
method body e with the return type C. Expressions in Featherweight Java can be a single
variable x, field lookup e.f, method call e.m(e), object creation new C(e) or expression cast-
ing (C)e. Note that it is a strict subset of Java so that every Featherweight Java program can
be executed in a standard Java compiler and JVM.
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The subtyping rules of Featherweight Java are shown in Fig. 2.5 is the standard subtyping
relation, which is reflexive (meaning A <: A for any type A) and transitive (meaning that
if A <: B and B <: C then A <: C). Also, the subclass relation declared by extends also
immediately lead to subtyping relation.

The reduction rules of Featherweight Java are shown in Fig. 2.6. It is the standard call-by-
value operational semantics. The explanation of the rules and more details (including the
type checking rules) can be found in TAPL [Pierce, 2002] Chapter 19.

C <: D C <: C

C <: D D <: E

C <: E

class C extends D {...}

C <: D

Figure 2.5: Subtyping rules of Featherweight Java

e → e ′
(E-ProjNew)

fields(C) = C f

new C(v).fi → vi

(E-InvkNew)
mbody(m,C) = (x, e0)

new C(v).m(u) → [x 7→ u, this 7→ new C(v)]e0

(E-CastNew)
C <: D

(D)(new C(v)) → new C(v)
(E-Field)

e0 → e ′0

e0.f → e ′0.f

(E-Invk-Recv)
e0 → e ′0

e0.m(e) → e ′0.m(e)

(E-Invk-Arg)
ei → e ′i

v0.m(v, ei, e) → v0.m(v, e ′
i, e)

(E-New-Arg)
ei → e ′i

new C(v, ei, e) → new C(v, e ′
i, e)

(E-Cast)
e0 → e ′0

(C)e0 → (C)e ′0

Figure 2.6: Evaluation rules of Featherweight Java

Below, wewill use an example fromTAPL to illustrate the standard step-by-step evaluation
process, which will be used later in Section 6.3:
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class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;
// Constructor:
Pair(Object fst, Object snd) {

super(); this.fst = fst; this.snd = snd;
}
// Method definition:
Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);
}

}

Evaluation steps:
((Pair)(new Pair(new Pair(new A(), new B()), new A()).fst).snd)
-> ((Pair)new Pair(new A(), new B())).snd
-> new Pair(new A(), new B()).snd
-> new B()

Under the standard call-by-value evaluation strategy, the expression ((Pair)(new Pair
(new Pair(new A(), new B()), new A()).fst will first be reduced at the (new
Pair(new Pair(new A(), new B()), new A()).fst).snd part, resulting the expres-
sion on the second line above (which is ((Pair)new Pair(new A(), new B())).snd).
Then ((Pair)new Pair(new A(), new B())) will be reduced to new Pair(new A(),
new B()), resulting the expression on the third line, which is new Pair(new A(), new
B()).snd. Finally, the expression will be reduced to the single value new B().

2.4 Project Lombok

Java supports compilation agents, where Java libraries can interact with the Java compilation
process, acting as a man in the middle between the generation of AST and bytecode.

This process is facilitated by frameworks like Lombok [Zwitserloot and Spilker, 2016]: a
Java library that aims at reducing Java boilerplate code via annotations. The flow of annota-
tion processing is illustrated as follows. First Java source code is parsed into an AST.TheAST
is then captured by Lombok: each annotated node is passed to the corresponding (Eclipse or
Javac) handler. The handler is free to modify the information of the annotated node, or even
inject new nodes (like methods, inner classes, etc.). Finally, the Java compiler works on the
modified AST to generate bytecode.
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There are a number of annotations provided by the original Lombok, including @Getter,
@Setter, @ToString for generating getters, setters and toString methods, respectively.
Furthermore, Lombok provides a number of interfaces for users to create custom transfor-
mations, as extensions to the original framework.

Advantages of Lombok The Lombok compilation agent has advantages with respect to al-
ternatives like pre-processors, or other Java annotation processors. Lombok offers in Java an
expressive power similar to that of Scala/Lisp macros; except, for the syntactic convenience
of quote/unquote templating.

Direct modification of the AST Lombok alters the generation process of the class files,
by directly modifying the AST. Neither the source code is modified nor new Java files
are generated. Moreover and probably more importantly, Lombok supports the genera-
tion of code inside a class/interface, while conventional Java annotation processors (e.g.,
javax.annotation) do not support.

Modularity While general preprocessing acts across module boundaries, compilation
agents act modularly on each class/compilation unit. It makes sense to apply the transfor-
mations to one class/interface at a time, and only to annotated classes/interfaces. This allows
library code to be reused without being reprocessed or recompiled, making our approach
100% compatible with existing Java libraries, which can be used and extended normally.

Tool support Features written in Lombok integrate and are supported directly in the lan-
guage and are also supported by most tools. In Eclipse, the processing is performed trans-
parently and the information of the interface from the compilation is captured in the “Out-
line” window. It contains all the methods inside the interface, including the generated ones.
Moreover, as a useful IDE feature, the auto-completion also works for these newly generated
methods.

Clarity against obfuscation Preprocessors bring great power, which can easily be mis-
used producing code hard to understand. Thus code quality andmaintainability are reduced.
Compilation agents start from Java syntax, but they can reinterpret it. Preserving the syntax
avoids syntactic conflicts, allowing many tools to work transparently.
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Multiple Inheritance for Modularity and
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3 The Expression Problem, Trivially!

This chapter details our solution to the Expression Problem (EP) [Wadler, 1998]. We will
present the solution in Scala with covariant field refinement feature and also the solution in
Java with method covariant return type feature. Then, we show a variant of our solution to
the EP that can encode simple family polymorphism [Ernst, 2001]. Finally, we will have a
discussion on the limitations of our approach.

3.1 Introduction

In Section 2.1, we have reviewed the concept of the EP and shown a non-solution. Solu-
tions to the EP have been a hot topic in programming languages for almost twenty years.
Today we know of various solutions to the EP that either rely on new programming language
features [Chambers and Leavens, 1995, Clifton et al., 2000, Ernst et al., 2006, Ernst, 2001], or
design patterns [Gamma et al., 1995] in existing languages [Torgersen, 2004, Swierstra, 2008,
Oliveira, 2009, Oliveira and Cook, 2012]. The non-triviality of the EP is associated with the
fact that existing solutions either require languages with specially crafted type systems or
encodings in existing languages using several techniques to overcome the limitations of the
type system. So far, solutions that work in existing languages (such as Java, Scala or Haskell)
have employed various techniques and a combination of two different mechanisms: type-
parametrization and subtyping.

This chapter shows that conventional subtyping (as found in Scala and Java) is enough
to solve Wadler’s EP. We present a Scala solution, which is essentially the same code that
programmers usually write in a typical (failed) attempt to solve the EP. The only minimal
difference is a simple type annotation. The annotation serves the purpose of covariantly re-
fining the extended types. This shows, somewhat surprisingly, that the Wadler’s EP can be
(almost) trivially solved. We also present a Java solution, which is slightly more involved due
to the use of covariant return types to simulate covariant type-refinement in fields. Never-
theless, the Java solution is still quite simple and uses no generics either. The code for the
solutions presented in this chapter is online1.

1https://bitbucket.org/yanlinwang/ep_trivially
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The new solution also provides new insights into tackling harder extensibility challenges,
such as family polymorphism. Using a variant of our solution we provide a technique for en-
coding a simple, although restricted, form of family polymorphism. The key idea is to use
nested components enclosed by classes, interfaces or even packages. Such nested compo-
nents allow the reuse of names of family members in extensions. Refinement of the types of
family members is achieved using conventional shadowing semantics. Default methods, in-
troduced by Java 8, are used for increased flexibility and improved support formultiple inher-
itance. The approach allows for independent extensibility [Zenger and Odersky, 2005] and,
unlike most approaches to family polymorphism, it allows subtyping relationships across
families.

Of course, having an (almost) trivial solution to the EP raises the question: are we done
looking for how to improve programming languages with respect to extensibility? Unfortu-
nately, that is not the case. Instead, we believe that what our solution shows is that Wadler’s
original programming challenge is too simple for exercising the difficulties encountered in
the design of extensible software. Therefore we identify a set of subproblems that go beyond
Wadler’s Expression Problem. These subproblems are needed, for example, to solve a more
fully featured form of family polymorphism, and arisemore generally in approaches to exten-
sibility. We summarize two of the main problems (together with some subproblems) faced
when trying to achieve general extensibility next:

1. Hardcoded recursive types: When software is designed, it normally uses composite
structures which model complex recursive types. However, such recursive types are
used as hardcoded references. This is a problem for extensibility, since in extensions
the references to recursive types should refer to the extended versions (and not to the
original versions). Within this general problem there are two different subproblems:

a) Recursive types in fields: This is the problem that is illustrated by the arithmetic
expressions example in Wadler’s Expression Problem.

b) Recursive types in argument/return positions: A generalization of a) is to con-
sider recursive types that appear in any argument or return positions of methods.

2. Hardcoded constructors: Another issue that arises when software is extended is that
constructors are also hardcoded. So, software using constructors cannot be easily ex-
tended because the constructors keep referring to the original code, instead of the
extensions.

Importantly, a solution to Wadler’s original Expression Problem needs only to solve prob-
lem 1a). As we show in this chapter solving problem 1a) requires only subtyping: no type-
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parametrization is needed. For the more general case 1b) there are additional complications,
for example, operations that create or transform expressions require the use of constructors
to build values of the extended types. However, as emphasized by problem 2), the use of con-
structors is problematic. Also, when recursive types are used as arguments we may need to
invoke methods on such parameters, but this requires more refined type information about
which methods are available. For challenges 1b) and 2) we do not know of any solution in
Java-like languages that does not involve type-parametrization.

To keep the spirit of Wadler’s original challenge, we propose to add to that challenge a
double operation that doubles all numbers in an expression. Unlike evaluation and pretty
printing, which were the operations involved inWadler’s original challenge, double requires
a solution to 2) and 1b), as well as 1a).

Having set the challenge, we develop a solution for it that works in Java-like languages.
However, we are no longer able to achieve the solution only with subtyping: we need to
resort to a range of techniques, including type-parametrization with F-bounded quantifica-
tion [Canning et al., 1989] and object algebras [Oliveira and Cook, 2012]. Using those tech-
niques, we can adapt the simple approach to family polymorphism and extend it to deal with
more complicated cases.

We believe that our results present valuable insights for researchers and programming
language designers interested in modularity and extensibility. Furthermore our results have
immediate applicability as practical design patterns for programmers interested in improving
extensibility of their programs and they have applications in the domain of software product-
lines.

3.2 A Trivial Solution in Scala

This section presents a solution to the EP in Scala. The main Scala feature used here is the
support for type refinement of (immutable) fields. This simple feature allows us to write the
solution to the EP very directly and compactly.

Initial System The initial system shown in Figure 3.1 defines a trait Expwith the evaluation
(eval) operation. Traits Lit and Add extend Exp with corresponding implementations of
eval. Note that e1 and e2 are immutable member fields, declared as vals.

Adding a NewVariant It is easy to add new data variants to the initial system in Figure 3.1
while satisfying all the requirements for a solution. For example, trait Sub illustrates the
addition of new variants and is almost the same as the definition of trait Add.
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trait Exp { def eval() : Int }
trait Lit extends Exp {

val x:Int
def eval() = x

}
trait Add extends Exp {

val e1, e2 : Exp
def eval() = e1.eval + e2.eval

}

Figure 3.1: Initial code in the Scala solution.

trait Sub extends Exp {
val e1, e2:Exp
def eval() = e1.eval - e2.eval

}

Adding a New Operation Figure 3.2 shows an example of extending the initial system
with a pretty printing operation. The basic idea is to extend traits Exp, Lit and Add with
traits ExpP, LitP, and AddP, respectively. Note that the type of member fields e1 and e2 in
AddP is refined! That is, instead of keeping the type of e1 and e2 as Exp, we change it to a
subtype (ExpP). Changing the type is allowed in Scala because it is just a form of covariant
type refinement of types in positive positions, which is well-understood in the theory of
object-oriented languages [Cardelli, 1988].

Importantly, note that it is the lack of this type-refinement that is to blame for typical naive
attempts to solve the EP. In a naive attempt, the trait AddP would be defined as:

// Incorrect: typical code in naive non-solution!
trait AddP extends Add with ExpP {
// method does not type-check!
def print() = "("+ e1.print + "+" + e2.print +")"

}

The problem is that, because the type of e1 and e2 is not refined, the call to the method
print fails to type-check: the trait Exp does not support a print method.

Instantiation The Scala solution is easy and concise to use:

// Initial system
val l1 = new Lit{val x=4}
val l2 = new Lit{val x=3}
val a = new Add{val e1=l1; val e2=l2}
println("a.eval = " + a.eval)
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trait ExpP extends Exp { def print():String}
trait LitP extends Lit with ExpP {

def print() = "" + x
}
trait AddP extends Add with ExpP {

val e1, e2 : ExpP // type refined!
def print() = "("+ e1.print + "+" + e2.print +")"

}

Figure 3.2: Adding an operation print in the Scala solution.

// Subtraction feature
val s = new Sub{val e1=l1; val e2=l2}
println("s.eval = " + s.eval)

// Print feature
val le1 = new LitP{val x=4}
val le2 = new LitP{val x=3}
val ae = new AddP{val e1=le1; val e2=le2}
println(ae.print + " = " + ae.eval)

Here, various objects are created from traits in Figures 3.1 and 3.2. The first block of code
illustrates how to use the initial system, building a simple expression and evaluating it. The
second block shows how to use the subtraction feature. Finally, the last block shows how to
build expressions and use both pretty printing and evaluation.

3.3 Independent Extensibility

Systems that satisfy independent extensibility should be able to combine multiple in-
dependently developed extensions easily. In this way, programmers can merge sev-
eral extensions into a single compound one. In a trait-based language like Scala,
it is easy to obtain independent extensibility by simply relying on multiple trait-
inheritance [Zenger and Odersky, 2005]. To illustrate independent extensibility, we extend
the initial system with a new operation collectLit (which collects all literal components
in an expression) in Figure 3.3. The code to combine two extensions (with print and
collectLit respectively) is:

trait ExpPC extends ExpP with ExpC
trait LitPC extends LitP with LitC with ExpPC
trait AddPC extends AddP with AddC with ExpPC {

val e1, e2 : ExpPC
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trait ExpC extends Exp {
def collectLit(): List[Int]

}
trait LitC extends Lit with ExpC {

def collectLit() : List[Int] = x :: List()
}
trait AddC extends Add with ExpC {

val e1, e2 : ExpC
def collectLit() : List[Int] = e1.collectLit ::: e2.collectLit

}

Figure 3.3: Adding an operation collectLit.

}

ExpPC is the new expression interface supporting print and collectLit operations;
LitPC and AddPC are the extended variants. Notice that except for the routine of extend
clauses, we only need to refine the type of e1,e2 in AddPC. We will omit the instantiation
code because it is essentially the same as the instantiation code presented in Section 3.2.

3.4 A Java Solution

This section presents a solution to the EP in Java. Since Java does not support type-refinement
of fields, we use covariant return types instead to allow refinements of the types of recursive
sub-expressions. Figure 3.4 shows a class diagram summarizing our Java solution.

Initial System The initial system shown in Figure 3.5 is almost the same as the Scala code
presented in Figure 3.1. The difference is that old member fields e1 and e2 in trait Add
are now replaced by the abstract functions getE1() and getE2(). Therefore the class Add
becomes an abstract class correspondingly. These abstract getter methods will enable future
extensions of the initial system to covariantly refine the return types of these methods.

Adding a New Variant Extending the initial system with a new data variant Sub is easy, as
shown here:

abstract class Sub implements Exp {
abstract Exp getE1();
abstract Exp getE2();
public int eval() {

return getE1().eval() - getE2().eval();
}
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Figure 3.4: The Java solution overview.

}

Adding aNewOperation Figure 3.6 shows an example of extending the initial systemwith
a new operation print. Importantly, note that the definition of the print()method in the
class AddP is well-typed. This is because the types of the getters getE1() and getE2() are
refined, using the covariant return types feature of Java, to return ExpP instead of Exp. If the
types were not refined, then there would be a type-error when using getE1().print() or
getE2().print(), since method print() would not be defined in Exp.

Instantiation Note that in the initial system, the abstract class Add is not immediately us-
able: abstract classes cannot be directly instantiated. As shown in Figure 3.7, an additional
class AddFinal is needed to extend Add and provide concrete implementations of abstract
methods getE1(), getE2() in its superclass. With AddFinalwe can create an expression
and execute an operation on it:

Exp exp = new AddFinal(new Lit(7), new Lit(4));
System.out.println(exp.eval());

Similarly, when updating the system with new operation print, an additional class
AddPFinal is defined for instantiation of the abstract class AddP (code for AddPFinal is
almost the same as AddFinal, so we omit it here).
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interface Exp { int eval(); }
class Lit implements Exp {

int x;
Lit(int x) { this.x = x; }
public int eval() { return x; }

}
abstract class Add implements Exp {

abstract Exp getE1(); //refinable return type!
abstract Exp getE2(); //refinable return type!
public int eval() {

return getE1().eval() + getE2().eval();
}

}

Figure 3.5: Initial code in the Java solution.

interface ExpP extends Exp { String print(); }
class LitP extends Lit implements ExpP {

LitP(int x) { super(x); }
public String print() { return "" + x; }

}
abstract class AddP extends Add implements ExpP {

abstract ExpP getE1(); //return type refined!
abstract ExpP getE2(); //return type refined!
public String print() {

return "(" + getE1().print() + " + " +
getE2().print() + ")";

}
}

Figure 3.6: Adding an operation print in the Java solution.

3.5 Simple Family Polymorphism

This section shows a variant of the solution to the EP presented in Section 3.4 that can be used
to encode simple forms of family polymorphism [Ernst, 2001]. The key idea is to use nested
components2 in Java to group family members. An advantage compared to the solution in
Section 3.4 is that the same names, as in the original system can be kept. We also discuss
some differences to existing approaches to family polymorphism, including the ability of our
solution to allow subtyping relations across families.

2By a component we mean either a class or an interface.
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class AddFinal extends Add {
Exp e1, e2;
AddFinal(Exp e1, Exp e2) {

this.e1 = e1;
this.e2 = e2;

}
Exp getE1() { return e1; }
Exp getE2() { return e2; }

}

Figure 3.7: An additional class for instantiation.

interface BaseFeature {
interface Exp { int eval(); }
interface Lit extends Exp {

public int getX();
public default int eval() { return getX(); }

}
interface Add extends Exp {

public Exp getE1(); // abstract getter for e1
public Exp getE2(); // abstract getter for e2
public default int eval() { return getE1().eval() + getE2().

eval(); }
}

}

Figure 3.8: A base feature/family of integer expressions.

Note that we use Java instead of Scala throughout the rest of this chapter. There are sig-
nificant differences between Java’s semantics for nested components and Scala. Generally
speaking Java’s semantics for nested components is less expressive. Since one of our goals is
to show the minimal set of features needed for extensibility, and Java’s semantics is enough,
we use Java.

3.5.1 Modelling Families as Interfaces with Nested Components

Figure 3.8 shows how to model a family of classes for integer expressions using an interface
BaseFeature to group all members of the family. The basic idea is to use interfaces as a
simple module system. Besides this difference, the code for the various (nested) interfaces
and classes is almost the same as the code presented in Figure 3.5. A small difference is the
use of an interface instead of an abstract class to model Add and Lit. As we shall see in
Section 3.6, this will be important to support independent extensibility.
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interface SubFeature extends BaseFeature {
interface Sub extends Exp {

abstract Exp getE1(); // abstract getter for e1
abstract Exp getE2(); // abstract getter for e2
public default int eval() {

return getE1().eval() - getE2().eval();
}

}
}

Figure 3.9: Adding a subtraction feature to integer expressions.

Nested components in Java Many Java-like languages (including C#, C++ or Scala) sup-
port some form of nested components: components which are defined inside other com-
ponents. In Java there are two forms of nested components: inner classes and static nested
components. Interfaces such as BaseFeature can only contain static nested components.
Thus Exp is a static nested interface and Lit and Add are static nested interfaces. The main
advantage of using interfaces for grouping family members is improved support for multi-
ple inheritance, due to Java semantics of multiple interface inheritance. Classes with nested
components can also contain inner classes. The difference between an inner class and a static
nested class is that instances of inner classes contain a reference to the enclosing instance of
the containing class. In Section 3.7 we will see some uses of inner classes.

3.5.2 Solving the Expression Problem

The code needed to add new variants and new operations is similar to the solution presented
in Section 3.4. Figure 3.9 shows the code that is required to add the subtraction variant. The
interface SubFeature extends BaseFeature, thus inheriting all of its members, while at
the same time adding a new interface Sub. The Sub interface is defined similarly to the Add
interface in BaseFeature except for the definition of the eval() method.

The code to add a new pretty printing operation is shown in Figure 3.10. Similarly to
adding a new variant, PrintFeature extends BaseFeature to inherit all its members. To
add the new operation locally, the interface Exp in PrintFeature extends the correspond-
ing interface in BaseFeature and adds a new method print(). Similarly both the Lit and
Add classes need to extend the corresponding classes in BaseFeature and implement the
new Exp interface. Importantly, note that we do not have to use new names for the extended
classes or interfaces. Instead, the use of nested components allows us to simply shadow the
old names, and reuse the same names as in BaseFeature.
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interface PrintFeature extends BaseFeature {
interface Exp extends BaseFeature.Exp { String print(); }
interface Lit extends BaseFeature.Lit, Exp {

public default String print() { return "" + getX(); }
}
interface Add extends BaseFeature.Add, Exp {

abstract Exp getE1(); // type-refinement for e1
abstract Exp getE2(); // type-refinement for e2
public default String print() {

return getE1().print() + " + " + getE2().print();
}

}
}

Figure 3.10: Adding a printing feature to integer expressions.

3.5.3 Initialization and Client Code

The code for a feature, such as BaseFeature, is not immediately usable for client code
due to the presence of interfaces. Therefore some additional code is needed to provide the
implementations for the various abstract members and allow the construction of objects.
Figure 3.11 shows the required code for BaseFeature. The class BaseFinal implements
BaseFeature and provides two factory methods [Gamma et al., 1995] Lit and Add. These
methods create, respectively, instances of the classes Lit and Add. In the case of Lit, we
initialize the integer field x and implement the method getX. In the case of Add, we create
two fields e1 and e2 of type Exp and implement the getter methods in an obvious way.

With BaseFinal it becomes possible to write some client code. For example:

BaseFinal i = new BaseFinal();
BaseFeature.Exp e = i.Add(i.Lit(3), i.Lit(4));
System.out.println("Result: " + e.eval());

creates an instance of BaseFinal and uses that instance to construct a simple integer ex-
pression, whose resulting evaluation is printed on the console.

Similarly, class SubFinal and PrintFinal are also needed for implementing
SubFeature and PrintFeature. The code for these final classes is essentially the same
as the code in Figure 3.11, so we omit it here. Provided with SubFinal and PrintFinal,
client code can be written as follows:

SubFinal mi = new SubFinal();
SubFeature.Exp me = mi.Sub(mi.Add(mi.Lit(3), mi.Lit(4)), mi.

Lit(2));
System.out.println("Result: " + me.eval());
PrintFinal pi = new PrintFinal();
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class BaseFinal implements BaseFeature {
Exp Lit(final int i) {

return new Lit() {
int x = i;
public int getX() { return x; }

};
}
Exp Add(final Exp left, final Exp right) {

return new Add() {
Exp e1 = left, e2 = right;
public Exp getE1() { return e1; }
public Exp getE2() { return e2; }

};
}
Exp exp() { return Add(Lit(3), Lit(4)); }
void printVal(Exp e) {

System.out.println("Value of e is:" + e.eval());
}

}

Figure 3.11: Initialization code for integer expressions.

PrintFeature.Exp pe = pi.Add(pi.Lit(3), pi.Lit(4));
System.out.println("Expression: " + pe.print() + " evaluates

to: " + pe.eval());

With this approach, we are able to do direct code copy-and-paste. For example, consider
the exp()method in class BaseFinal. When we extend the systemwith pretty printing, we
alsowant to have anexp()method in classPrintFinal. Instead of rewritingmethodexp()
with new names to fit in class PrintFinal, we can just directly copy the exp() method
definition and paste it into class PrintFinal. So an advantage with respect to the solution
in Section 3.4 is that the reuse of names allows for syntactic compatibility of components.

3.5.4 Subtyping Relations

In family polymorphism, each family normally supports its own identity, and members of
different families are not related by subtyping. Although in the general case disallowing
subtyping is required to ensure type-safety, that approach is sometimes too conservative.
Oliveira [Oliveira, 2009] has shown that in some cases subtyping across families is both type-
safe and useful. Our solution also supports some cross-family subtyping.
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interface StmtFeature extends BaseFeature {
HashMap<String, Integer> map = new HashMap<String, Integer>();
interface Stmt { void eval(); }
interface Var extends Exp {

public String getVarName();
public default int eval() { return map.get(getVarName()); }

}
interface Assign extends Exp { /* code omitted */ }
interface Expr extends Stmt {

abstract Exp getE();
public default void eval() { getE().eval(); }

}
interface Comp extends Stmt {

abstract Stmt getS1();
abstract Stmt getS2();
public default void eval() {

getS1().eval();
getS2().eval();

}
}

}

Figure 3.12: Code for the statement feature.

Consider again the exp()method in class BaseFinal. When we extend the system with
subtraction, we may want to have another method exp2() that can build expressions from
old expressions:

Exp exp2() { return Sub(super.exp(), Lit(1)); }

Doing so is allowed in our solution because although the base family and subtraction family
are in two different enclosing interfaces, they share the same interface Exp.

3.5.5 Multiple Types

In previous sections, our examples on the EP only involve single recursive type, namely
Exp. However, more complex systems often need multiple (potentially mutually) recursive
types. This is a typical situation in family polymorphism. We use an example by Oliveira
and Cook [Oliveira and Cook, 2012] to illustrate that our solution can also support multiple
types.

When we extend our language of expressions with statements, we need multiple evolving
types. Figure 3.12 shows how to encode the statement feature using our solution. Now be-
sides the recursive type Exp, there is another recursive type Stmt, representing statements.
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In statements the evaluation method eval() does not return a value. The classes Var (vari-
ables) and Assign (value assignments) denote two new forms of expressions. The classes
Expr (lifting expressions to statements) and Comp (statement composition) are two forms of
statements. As before, a final class for StmtFeature is needed for instantiation. The code
for StmtFinal is similar to the code for other final classes, so we omit it here.

3.6 More Independent Extensibility with Default Methods

Independent extensibility [Zenger and Odersky, 2005] is another requirement of solutions to
the Expression Problem besides Wadler’s four requirements. Systems that satisfy indepen-
dent extensibility should be able to combine multiple independently developed extensions
easily. In this way, programmers can merge several different extensions into a single com-
pound extension. This section shows the first solution to the problem of independent extensi-
bility that works in Java and uses only the built-inmechanisms for composition (inheritance).

Java 8 introduces default methods, allowing interfaces to add a default implementation
for methods. Therefore, in combination with multiple interface inheritance, this mechanism
provides a limited formofmultiple (implementation) inheritance. We exploit this to improve
the technique presented in Section 3.5 to be more modular and allow additional reuse and
provide a solution to independent extensibility in Java.

3.6.1 Combining Features

We define a feature that collects all literals in an expression. The implementation of this
feature is shown in Figure 3.13. For literals, method collectLiterals returns a singleton
list with the literal. For addition, it merges the collected lists of literals.

Having independently defined two features (pretty printing and collecting literals), we
may be interested in a system that contains both of these features, but this appears to require
multiple-inheritance. The problem is that components need to be composed of two different
features. Since Java only supports single (implementation) inheritance, it may look like we
are in trouble.

Fortunately, this is where the choice of interfaces to encode feature modules pays off:
while Java only supports single implementation inheritance, it does support multiple in-
terface inheritance. Therefore it is possible to compose multiple feature modules using
this mechanism. Figure 3.14 shows how to compose the two features. The interface
PrintCollectFeature extends both PrintFeature and CollectFeature. Since all
operations are already separately implemented in PrintFeature and CollectFeature,
we only need to do type refinement for the getter methods in interface Add. The class
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interface CollectFeature extends BaseFeature {
interface Exp extends BaseFeature.Exp {

List<Integer> collectLiterals();
}
interface Lit extends BaseFeature.Lit, Exp {

public default List<Integer> collectLiterals() {
List<Integer> lst = new ArrayList<Integer>(1);
lst.add(getX());
return lst;

}
}
interface Add extends BaseFeature.Add, Exp {

abstract Exp getE1(); // type-refinement for e1
abstract Exp getE2(); // type-refinement for e2
public default List<Integer> collectLiterals() {

List<Integer> lst = new ArrayList<Integer>();
lst.addAll(getE1().collectLiterals());
lst.addAll(getE2().collectLiterals());
return lst;

}
}

}

Figure 3.13: Adding a collecting literals feature to the base system.

PrintCollectFinal that implements PrintCollectFeature is essentially the same as
the code in Figure 3.11, so we omit it here. Client code can then be defined similarly as
before.

3.7 Beyond the Expression Problem

As stated in Section 3.1, we identify two main problems (with some subproblems) related to
extensibility. The solutions presented so far solve problem 1a) (Hardcoded recursive types
in fields) using only subtyping. However, for the more general cases 1b) and 2), we need
additional techniques and type-parametrization. This section proposes to extend Wadler’s
challenge of arithmetic expressions with a new feature: doubling the value of expressions.
The doubling feature is inspired by Zenger and Odersky’s work [Zenger and Odersky, 2005]
and it exercises the more general cases 1b) and 2).
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interface PrintCollectFeature extends PrintFeature, CollectFeature {
interface Exp extends PrintFeature.Exp, CollectFeature.Exp {}
interface Lit extends PrintFeature.Lit, CollectFeature.Lit, Exp {}

interface Add extends PrintFeature.Add, CollectFeature.Add, Exp {
abstract Exp getE1(); // type-refinement for e1
abstract Exp getE2(); // type-refinement for e2

}
}

Figure 3.14: Merging the printing feature and the collecting literals feature.

interface DbFeature0 extends BaseFeature{
interface Exp extends BaseFeature.Exp { Exp db(); }
class Lit implements BaseFeature.Lit, Exp {

int x;
public Lit(int y) { x = y; }
public int getX() { return x; }
public Exp db() { return new Lit(2*x); }

}
}

Figure 3.15: Implementing double operation without object algebras.

3.7.1 The Double Feature

In the original Expression Problem, only hardcoded recursive types in fields are encountered
in the evaluation and printing operations. However, it is hard to encode extended operations
with recursive types in parameters or return positions. An example is a double operation
that doubles the value of an expression. The code in Figure 3.15 shows the naive approach of
extending the initial system with a double operation.

Now suppose we further extend the system with a new feature, and refine the return type
of db(), as shown in Figure 3.16. The problem is that, instead of calling super.db()
we will have to copy the code from the method db() in DbFeature0 to the method
db() in NewFeature0. The expression super.db() is not well-typed because its type is
DbFeature0.Exp, but the expected type is NewFeature0.Exp. Since DbFeature0.Exp is
a supertype (and not a subtype) of NewFeature0.Exp the result is a type-error. Unfortu-
nately, the code duplication can be considered as a violation of the “no duplication” require-
ment to the EP.

The code duplication would be solved if we had virtual constructors, instead of stati-
cally bound constructors. In this context virtual constructors refer to a mechanism that
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interface NewFeature0 extends DbFeature0 {
interface Exp extends DbFeature0.Exp { void foo(); }
class Lit extends DbFeature0.Lit implements Exp {

public Lit(int y) { super(y); }
// public Exp db() { return super.db(); } //type error
public Exp db() { return new Lit(2*x); }
public void foo() {}

}
}

Figure 3.16: Extending DbFeature with NewFeature without object algebras.

can delay constructor bindings to runtime, similarly to the use of constructors of virtual
classes [Madsen and Moller-Pedersen, 1989]. Java does not support virtual constructor se-
mantics. However, it is possible to encode a mechanism similar to virtual constructors using
object algebras [Oliveira and Cook, 2012]. Object algebras are essentially a generalization of
abstract factories and contain a set of factory methods. These factory methods can be used
instead of constructors to create instances of objects.

3.7.2 Implementing the Double Feature

Figure 3.17 shows an example of using our solution to implement the double operation.
The enclosing DbFeature class is itself parametrized with a type parameter E. This type
parameter abstracts over the type of expressions. The type is bounded by DbFeature.Exp
<E>. Note that E appears in the bound itself. This feature of generics is called F-bounded
polymorphism [Canning et al., 1989]. The use of F-bounded polymorphism is not surpris-
ing, since various lightweight encodings of family polymorphism [Kamina and Tamai, 2007,
Saito et al., 2008, Saito and Igarashi, 2008, Kamina and Tamai, 2008] with extensions of Java
use it. The interface ExpAlg<E> is an object algebra interface with type parameter E and
methods lit and add that return values of type E. Note that nested interfaces in Java can
only be static, so the use of a type parameter of the enclosing class DbFeature is not allowed
inside ExpAlg. To overcome this limitation, the interface itself has to be parametrized with
E. The classes Lit and Add override the abstract method db() in class Exp and provide con-
crete implementations. To construct instances of expressions the db methods use an object
algebra, provided by the abstract method alg, to construct the corresponding objects.

With object algebras, writing NewFeature becomes possible without code duplication.
The code is shown in Figure 3.18. By dynamically deciding which constructor to call, object
algebras allow us to reuse code in the superclass by calling super.db() in the db()methods
of Lit and Add. This no longer breaks the “no duplication” requirement.
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abstract class DbFeature<E extends DbFeature.Exp<E>> implements
BaseFeature {
interface ExpAlg<E> { // requires E parameter because it is an

interface
E lit(int x);
E add(E e1, E e2);

}
abstract ExpAlg<E> alg();
interface Exp<E> extends BaseFeature.Exp { abstract E db(); }
abstract class Lit implements Exp<E>, BaseFeature.Lit {

public E db() { return alg().lit(2 * getX()); }
}
abstract class Add implements Exp<E>, BaseFeature.Add {

public abstract E getE1();
public abstract E getE2();
public E db() { return alg().add( getE1().db(), getE2().db() )

; }
}

}

Figure 3.17: Implementing the double feature using object algebras.

In summary, implementing the more challenging double feature is possible. However,
we must use a number of techniques and type-parametrization. So this solution is no longer
trivial.

3.8 Discussion and Limitations

It may seem surprising that this simple solution to the EP in mainstream languages ( Sec-
tions 3.2 and 3.4) has not been proposed before in the literature. One possible explanation
is that although many languages support covariant type refinement in some form, only Scala
allows a straightforward solution using type refinement of immutable fields. In Java, some
more ingenuity (and code) is required to make use of covariant return types. Although the
Java solution has some boilerplate (because Final classes are needed), that code is mechan-
ical and could be automatically generated. The Java solution can also support independent
extensibility by changing classes into interfaces with default methods (supported in Java 8).

Although the idea of covariant refinement has not been applied before to solutions of the
EP in mainstream OO languages, it has been a fundamental part of various new language
designs aimed at solving extensibility problems. For example, languages that support family
polymorphism rely on the fact that family extensions allow covariant type refinements. In
languages supporting family polymorphism, it is also possible to have a simple solution to
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abstract class NewFeature<E extends NewFeature.Exp<E>> extends
DbFeature<E> {

interface Exp<E> extends DbFeature.Exp<E> { abstract void foo(); }
abstract class Lit extends DbFeature<E>.Lit implements Exp<E> {

public E db() { return super.db(); }
}
abstract class Add extends DbFeature<E>.Add implements Exp<E> {

public E db() { return super.db(); }
}

}

Figure 3.18: Extending DbFeature with NewFeature using object algebras.

Wadler’s EP [Ernst, 2004]. One important difference to more conventional type systems like
Java is that in family polymorphism covariant type-refinement is also possible for arguments
of methods. In contrast, Java (or Scala) only allows type-refinements for types used in posi-
tive positions (that is, return or field types). There is a good reason for such restriction: it is
well-known that naively allowing covariant type-refinement everywhere would lead to type
unsoundness. Type systems for family polymorphism need to take special care to ensure that
covariant type-refinement can happen everywhere.

Binary and Producer Methods The restriction of type-refinement to types in positive po-
sitions implies that binary methods pose extra challenges for extensibility. For example, if
expressions were to support a (binary) equality method, then we would want to refine the ar-
gument type of the equality method in the extension. However, this is not possible in Scala
or Java. Producer methods that transform one expression and produce another are possi-
ble using the techniques presented here. However, they introduce some code duplication (as
discussed in Section 3.7.1) because the original code of themethod cannot be reused in exten-
sions. In the originalWadler’s EP, the two operations (printing and evaluation) are consumer
methods where the recursive type does not occur anywhere in the signature of the method.
It is for this special class of methods that our techniques shine and lead to particularly simple
solutions.

Mutability Another limitation of the approach presented here is the lack of mutability of
the sub-expressions: the Scala solution relies on immutable fields; and the Java solution relies
on getters. We do not know how to support mutability using only subtyping. However, if we
also allow the use of generics, then we can obtain a variant of the solution presented here
that supports mutability and even removes the need for final classes in Java. The idea is to
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abstract over the type of expressions in classes with sub-expressions. For example, instead of
the classes Add (in Figure 3.5) and AddP (in Figure 3.6), the following classes would be used:

class Add<E extends Exp> implements Exp {
E e1, e2;
public int eval() {return e1.eval() + e2.eval();}

}
class AddP<E extends ExpP> extends Add<E> implements ExpP {

public String print() {
return e1.print() + " + " + e2.print();

}
}

Now, the fields e1 and e2 are mutable, and the types of the fields are refined via the
bounds of E. This solution can be viewed as a simplification of Torgersen’s solution to the
EP [Torgersen, 2004], that avoids uses of F-bounds [Canning et al., 1989] and excessive type-
parametrization. The full source code for this variant, including instantiation code, can be
found online. If we go all the way to Torgersen’s solution it is even possible to deal with bi-
nary and producer methods. However this comes at the cost of simplicity, as now the code
gets filled with numerous type annotations and bounds.

Family Polymorphism As we have discussed in Section 3.5.3, every family like
BaseFeature requires a companion implementation class like BaseFinal. This makes the
approach cumbersome to use. However, technically, this boilerplate code can be automat-
ically generated with the help of techniques such as annotation processing. However, in
addition to the mechanical code, another limitation is the efficiency problem. As we can see
in the client code calling i.Lit(3), each time a new object is created, at the same time, a
new anonymous inner class that implements the interface Litwill be created. As the objects
in the system accumulate, the memory that the system occupies can go beyond control.
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This chapter presents an OO style without classes, which we call interface-based object-
oriented programming (IB). IB is a natural extension of closely related ideas such as
traits [Schärli et al., 2003, Ducasse et al., 2006]. Abstract state operations provide a new way
to deal with state, which allows for flexibility not available in class-based languages. In
IB, state can be type-refined in subtypes. The combination of a purely IB style and type-
refinement enables powerful idioms using multiple inheritance and state. To introduce IB
to programmers, we created Classless Java: an embedding of IB directly into Java. Classless
Java uses annotation processing for code generation and relies on new features of Java 8 for
interfaces. The code generation techniques used in Classless Java have interesting properties,
including guarantees that the generated code is type-safe and has good integration with IDEs.
Usefulness of IB and Classless Java is shown with examples and case studies.

4.1 Introduction

As mentioned in Chapter 1, for better code reuse in Object-oriented languages, two main
OO models CB (class-based languages) and PB (prototype-based languages) are proposed.
However, there are various limitations related to conflicts or fields such as the diamond prob-
lem, field initialization problem, mutable field problem, etc. To address those limitations,
this chapter presents a third alternative OOmodel called interface-based object-oriented pro-
gramming languages (IB), where objects implement interfaces directly and fields are not di-
rectly supported. In IB interfaces own the implementation for the behavior, which is struc-
turally defined in their interface. Programmers do not define objects directly but delegate
the task to object interfaces, whose role is similar to non-abstract classes in CB. Objects are
instantiated by static factory methods in object interfaces.

Due to the absence of fields, a key challenge in IB lies in how to model state, which is
fundamental to having stateful objects. All abstract operations in an object interface are in-
terpreted as abstract state operations. The abstract state operations include various common
utility methods (such as getters and setters, or clone-like methods). Objects are only respon-
sible for defining the ultimate behavior of a method. Anything related to state is completely
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contained in the instances and does not leak into the inheritance logic. In CB, the structure
of the state is fixed and can only grow by inheritance. In contrast, in IB the state is never
fixed, and methods such as abstract setters and getters can always receive an explicit imple-
mentation down in the inheritance chain, improvingmodularity and flexibility. That is, the
concept of abstract state is more fluid.

Object interfaces provide support for automatic type-refinement. In contrast, in CB spe-
cial care and verbose explicit type-refinement are required to produce code that deals with
subtyping adequately. We believe that such verbosity hinders and slows down the discovery
of useful programming patterns involving type-refinement. Our previous work in Chapter 3
on the Expression Problem [Wadler, 1998] in Java-like languages shows how easy it is to solve
the problem using only type-refinement. However, it took nearly 20 years since the formu-
lation of the problem for that solution to be presented in the literature. In IB, due to its
emphasis on type-refinement, that solution should have been more obvious.

One advantage of abstract state operations and type-refinement is that it allows a new
approach to the type-safe covariant mutable state. That is, in IB, it is possible to type-refine
mutable state in subtypes. This is typically forbidden in CB: it is widely known that naive
type- refinement ofmutable fields is not type-safe. Although covariant refinement ofmutable
fields is supported by some type systems [Bruce et al., 1998, Bruce, 1994, Ernst et al., 2006,
Saito and Igarashi, 2013], this requires significant complexity and restrictions to ensure that
all uses of the covariant state are indeed type-safe.

IB could be explained by defining a novel language (e.g., FHJ+ in Chapter 6), with new
syntax and semantics. However, this would have a steep learning curve. Therefore, we take
a different approach instead. For the sake of providing a more accessible explanation, we
will embed our ideas directly into Java. Our IB embedding relies on the new features of
Java 8: interface static methods and default methods, which allow interfaces to have method
implementations. In the context of Java, what we propose is a programming style, where we
never use classes (more precisely, we never use the class keyword). We call this restricted
version of Java Classless Java.

Using Java annotation processors, we produce an implementation of Classless Java, which
allows us to stick to pure Java 8. The implementation works by performing AST rewriting,
allowing most existing Java tools (such as IDEs) to work out-of-the-box with our implemen-
tation. Moreover, the implementation blends Java’s conventional CB style and IB smoothly.
We apply object interfaces to several interesting Java programs and conduct various case
studies. Finally, we also discuss the behavior of Classless Java and its properties.

In summary, the contributions of this chapter are:
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Figure 4.1: The complete structure of the animal system

• IB and Object Interfaces: we activate powerful programming idioms using multiple-
inheritance, type-refinement and abstract state operations.

• Classless Java: we provide a practical realization of IB in Java. Classless Java is imple-
mented using annotation processing, allowing most tools to work transparently with
our approach. Existing Java projects can use our approach and still be backward com-
patible with their clients, in a way that is specified by our safety properties.

• Type-safe covariant mutable state: we show how the combination of abstract state
operations and type-refinement enables a form ofmutable state that can be covariantly
refined in a type-safe way.

• Applications and case studies: we illustrate the usefulness of IB through various ex-
amples and case studies1. An extended version with a formal translation to Java can
be found in Appendix A.1.

4.2 A Running Example: Animals

This section illustrates how our programming style, supported by @Obj, enables powerful
programming idioms based on multiple inheritance and type refinements. We propose a
standard example: Animals with a 2-dimensional Point2D representing their location,
subtypes Horses, Birds, and Pegasus. Birds can fly, thus their locations need to be 3-
dimensional Point3Ds (field type refinement). We model Pegasus (a well-known creature
in Greek mythology) as a kind of Animalwith the skills of both Horses and Birds (multiple
inheritance). A simple class diagram illustrating the basic system is given in Fig. 4.1.

1https://github.com/YanlinWang/classless-java
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interface Animal {} // no points yet!
interface Horse extends Animal {

default void run(){out.println("run!");}
}
interface Bird extends Animal {

default void fly(){out.println("fly!");}
}
interface Pegasus extends Horse, Bird {}

Figure 4.2: Code for the simplified animal system

4.2.1 Simple Multiple Inheritance with Default Methods

Before modelling the complete animal system, we start with a simple version without loca-
tions. This version serves the purpose of illustrating how Java 8 default methods can already
model simple forms of multiple inheritance. Horse and Bird are subtypes of Animal, with
methods run() and fly(), respectively. Pegasus can not only run but also fly! This is the
place where “multiple inheritance” is necessary because Pegasus needs to inherit the fly
and run functionalities from both Horse and Bird. The first attempt to model the animal
system is depicted in Fig. 4.2. Note that the implementations of themethods run and fly are
defined inside interfaces, using default methods. Moreover, because interfaces support mul-
tiple interface inheritance, the interface for Pegasus can inherit behavior from both Horse
and Bird. Although Java interfaces do not allow instance fields, no form of state is needed
so far to model the animal system.

Instantiation To use Horse, Bird, and Pegasus, some objects must be created first. A
first problem with using interfaces to model the animal system is that interfaces cannot be
directly instantiated. Classes, such as:

class HorseImpl implements Horse {}
class BirdImpl implements Bird {}
class PegasusImpl implements Pegasus {}

are needed for instantiation. Now a Pegasus animal can be created using the class construc-
tor:

Pegasus p = new PegasusImpl();

There are some annoyances here. Firstly, the sole purpose of the classes is to provide a way
to instantiate objects. Although (in this case) it takes only one line of code to provide each
of those classes, this code is essentially boilerplate code, which does not add behavior to the
system. Secondly, the namespace gets filled with three additional types. For example, both

54



4.2 A Running Example: Animals

Horse and HorseImpl are needed: Horse is needed as an interface so that Pegasus can use
multiple inheritance; and HorseImpl is required to provide object instantiation. Note that,
for this very simple animal system, plain Java 8 anonymous classes can be used to avoid these
problems. We could have simply instantiated Pegasus using:

Pegasus p = new Pegasus() {}; // anonymous class

However, as we shall see, once the system gets a little more complicated, the code for instan-
tiation quickly becomes more complex and verbose (even with anonymous classes).

4.2.2 Object Interfaces and Instantiation

To model the animal system with object interfaces all that a user needs to do is to add an
@Obj annotation to the Horse, Bird, and Pegasus interfaces:

@Obj interface Horse extends Animal {
default void run() {out.println("running!");}

}
@Obj interface Bird extends Animal {

default void fly() {out.println("flying!");}
}
@Obj interface Pegasus extends Horse, Bird {}

The effect of the annotations is that a static factory method called of is automatically added
to the interfaces. With the of method a Pegasus object is instantiated as follows:

Pegasus p = Pegasus.of();

The ofmethod provides an alternative to a constructor, which ismissing from interfaces. The
followings show the code corresponding to the Pegasus interface after the @Obj annotation
is processed:

interface Pegasus extends Horse, Bird {
// generated code not visible to users
static Pegasus of() { return new Pegasus() {}; }

}

Note that the generated code is transparent to users, who only see the original code with the
@Obj annotation. Compared to the pure Java solution in Section 4.2.1, the solution using
object interfaces has the advantage of providing a direct mechanism for object instantiation,
which avoids adding boilerplate classes to the namespace.

4.2.3 Object Interfaces with State

The animal system modeled so far is a simplified version of the system presented in Fig. 4.1.
The example is still not sufficient to appreciate the advantages of IB programming. Now we
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model the complete animal system where an Animal includes a location representing its
position in space. We use 2D points to keep track of locations.

Point2D: simple immutable data with fields Points can be modeled with interfaces. In
IB state is accessed andmanipulated using abstract methods. The normal approach tomodel
points in Java is to use a class with fields for the coordinates. In Classless Java, interfaces are
used instead:

interface Point2D { int x(); int y(); }

The encoding over Java is now inconvenient: creating a new point object is cumbersome,
even with anonymous classes:

Point2D p = new Point2D() {
public int x() {return 4;}
public int y() {return 2;}

}

However, this cumbersome syntax is not required for every object allocation. As program-
mers do, for ease or reuse, the boring and repetitive code can be encapsulated in a method.
A generalization of the of static factory method is appropriate:

interface Point2D { int x(); int y();
static Point2D of(int x, int y) {

return new Point2D() {
public int x(){return x;}
public int y(){return y;}

};
}

}

Point2D with object interfaces This obvious “constructor” code is generated by the @Obj
annotation. By annotating the interface Point2D, a variation of the shown static method of
will be generated, mimicking the functionality of a simple-minded constructor. @Obj first
looks at the abstract methods and detects what the fields are, then generates an of method
with one parameter for each of them. We can just write:

@Obj interface Point2D { int x(); int y(); }

A field or factory parameter is generated for every abstract method that takes no parame-
ters. An example of using Point2D, where we “clone” an existing point but use 42 as the
x-coordinate, is:

Point2D p = Point2D.of(42,myPoint.y());
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with- methods in object interfaces The pattern of creating a new object by reusing most
information from an old object is very common when programming with immutable data-
structures. As such, it is supported by @Obj as with- methods:

@Obj interface Point2D {
int x(); int y(); // getters
// with- methods
Point2D withX(int val);
Point2D withY(int val);

}

Using with- methods, the point p can also be created by:

Point2D p = myPoint.withX(42);

If there is a large number of fields, with-methods will save programmers from writing large
amounts of tedious code that simply copies field values. Moreover, if the programmer wants
a different implementation, he may provide an alternative implementation using default
methods. For example:

@Obj interface Point2D {
int x(); int y();
default Point2D withX(int val){ /*myCode*/ }
Point2D withY(int val);

}

is expanded into

interface Point2D {
int x(); int y();
default Point2D withX(int val) { /*myCode*/ }
Point2D withY(int val);
static Point2D of(int _x, int _y) {

return new Point2D() {
int x=_x;
int y=_y;
public int x() { return x; }
public int y() { return y; }
public Point2D withY(int val) {

return of(x(),val);
}

};
}

}

Only code for methods needing implementation is generated. Thus, programmers can easily
customize the behavior for their special needs. Also, since@Obj interfaces offer theof factory

57



4 Classless Java

method, only interfaces where all the abstract methods can be synthesized can be object
interfaces. A non-@Obj interface is like an abstract class in Java.

Animal and Horse: simple mutable data with fields 2D points are mathematical entities,
thus we choose an immutable data structure to model them. Animals are real-world entities,
and when an animal moves, it is the same animal with a different location. We model this
with mutable state:

interface Animal {
Point2D location();
void location(Point2D val);

}

Here we declare an abstract getter and a setter for the mutable “field” location. Without
the @Obj annotation, there is no convenient way to instantiate Animal. For Horse, the @Obj
annotation is used, and an implementation of run() is defined using a default method.
The implementation of run() further illustrates the convenience of with- methods:

@Obj interface Horse extends Animal {
default void run() {

location(location().withX(location().x()+20));
}

}

Creating and using Horse is quite simple:

Point2D p = Point2D.of(0, 0);
Horse horse = Horse.of(p);
horse.location(p.withX(42));

Note how the of, withX and location methods (generated automatically) give a basic in-
terface for dealing with animals.

In summary, state (mutable or not) in object interfaces relies on a notion of abstract state,
and state is not directly available to programmers. Instead, programmers usemethods, called
abstract state operations, to interact with state.

4.2.4 Object Interfaces and Subtyping

Birds are Animals, but while Animals only need 2D locations, Birds need 3D locations.
Therefore when the Bird interface extends the Animal interface, the notion of points needs
to be refined. Such kind of refinement is challenging in typical class-based approaches. For-
tunately, with object interfaces, we are able to provide a simple but effective solution.
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Unsatisfactory class-based solutions to field type refinement In Java, if we want to define
an animal class with a field, we have a set of unsatisfactory options to choose from:

• Define a Point3D field in Animal: this is bad since all animals would require more
than needed. Also, it requires adapting the old code to accommodate for new evolu-
tions.

• Define a Point2D field in Animal and define an extra int z field in Bird. This solu-
tion is very ad-hoc, requiring to basically duplicate the difference between Point2D
and Point3D inside Bird. The most dramatic criticism is that it would not scale to a
scenario when Bird and Point3D are from different programmers.

• Redefine getters and setters in Bird, always put Point3D objects in the field and cast
the value out of the Point2D field to Point3D when implementing the overridden
getter. This solution scales to the multiple programmers approach, but requires ugly
casts and can be implemented in a wrong way leading to bugs.

We may be tempted to assume that a language extension is needed. Instead, the restriction
of (object) interfaces to have no fields enlightens us that another approach is possible; often
in programming languages “freedom is slavery.”

Field type refinement with object interfaces Object interfaces address the challenge of
type-refinement as follows:

• by covariant method overriding, the return type of location() is refined to Point3D;

• by overloading, a new setter for location is defined with a more precise type;

• a default setter implementation with the old signature is provided by the program-
mer.

Thus the code for the Bird interface is:

@Obj interface Bird extends Animal {
Point3D location();
void location(Point3D val);
default void location(Point2D val) {

location(location().with(val));
}
default void fly() {

location(location().withX(location().x() + 40));
}

}
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From the type perspective, the key is the covariantmethod overriding of location(). How-
ever, from the semantics perspective the crux is the implementation for the setter with the
old signature (location(Point2D)). The core part of the setter implementation is a new
type of with method, called a (functional) property updater.

Point3D and property updaters The Point3D interface is defined as follows:

@Obj interface Point3D extends Point2D {
int z();
Point3D withZ(int z);
Point3D with(Point2D val);

}

Point3D includes a with method, taking a Point2D as an argument. Other wither meth-
ods (such as withX) functionally update a field one at a time. This can be inefficient, and
sometimes hard to maintain. Often we want to update multiple fields simultaneously, for
example using another object as source. Following this idea, the method with(Point2D)
is an example of a (functional) property updater: it takes an object and returns a copy of the
current object where all the fields that match fields in the parameter object are updated to
the corresponding value in the parameter. The idea is that the result should be like this, but
modified to be as similar as possible to the parameter.

With the new with method, we may use the information for z already stored in the object
to forge an appropriate Point3D to store. Note how all the information about what fields sit
in Point3D and Point2D is properly encapsulated in the with method and is transparent
to the implementer of Bird.

Property updaters never break class invariants, since they internally call operations that
were already deemed safe by the programmer. For example, a list object would not offer a
setter for its size field (which should be kept hidden). Thus a property updater would not
attempt to set it.

Generated boilerplate To give an idea of how much code @Obj is generating, we show the
generated code for Point3D in Figure 4.3. Writing such code by hand is error-prone. For
example a distracted programmer may swap the arguments of calls to Point3D.of. Note
how with- methods are automatically refined in their return types, so that code like:

Point3D p = Point3D.of(1,2,3);
p = p.withX(42);

will be accepted. If the programmer wishes to suppress this behavior and keep the signature
as it was, it is sufficient to redefine the with-methods in the new interface repeating the old
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interface Point3D extends Point2D {
int z();
Point3D withZ(int val);
Point3D with(Point2D val);
// generated code
Point3D withX(int val);
Point3D withY(int val);
public static Point3D of(int _x, int _y, int _z) {

int x=_x; int y=_y; int z=_z;
return new Point3D() {

public int x(){return x;}
public int y(){return y;}
public int z(){return z;}
public Point3D withX(int val){

return Point3D.of(val, this.y(), this.z());
}
public Point3D withY(int val){

return Point3D.of(this.x(), val, this.z());
}
public Point3D withZ(int val){

return Point3D.of(this.x(), this.y(), val);
}
public Point3D with(Point2D val){

if(val instanceof Point3D)
return (Point3D)val;

return Point3D.of(val.x(), val.y(), this.z());
}

};
}

}

Figure 4.3: Generated boilerplate code.
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Operation Example Description
State op-
erations
(for a
field x)

“fields”/getters int x() Retrieves value from field x.
withers Point2D withX(int val) Clones object; updates field x to val.
setters void x(int val) Sets the field x to a new value val.
fluent setters Point2D x(int val) Sets the field x to val and returns this.

Other operations
factory methods static Point2D of(int _x,int _y) Factory method (generated).
functional updaters Point3D with(Point2D val) Updates all matching fields in val.

Figure 4.4: Abstract state operations for a field x, together with other operations, supported by the
@Obj annotation.

signature. Again, the philosophy is that if the programmer provides something directly,@Obj
does not touch it. The cast in with(Point2D) is trivially safe because of the instanceof
test. The idea is that if the parameter is a subtype of the current exact type, then we can just
return the parameter, as something that is just “more” than this.

Summary of operations in Classless Java In summary, object interfaces provide support
for different types of abstract state operations: four field-based state operations; and func-
tional updaters. Object instantiation is directly supported by of factory methods. Figure 4.4
summarizes the six operations supported by @Obj. The field-based abstract state operations
are determined by naming conventions and the types of the methods. Fluent setters are a
variant of conventional setters and are discussed in more detail in Section 4.4.2.

4.2.5 Advanced Multiple Inheritance

Finally, defining Pegasus is as simple as we did in the simplified (and stateless) version in
Fig. 4.2. Note how even the non-trivial pattern for field type refinement is transparently
composed, and Pegasus has a Point3D location:

@Obj interface Pegasus extends Horse, Bird {}

4.3 Bridging between IB and CB in Java

Creating a new language/extension would be an elegant way to illustrate the idea of IB. How-
ever, a significant amount of engineering effort would be needed to build a practical language
and achieve a similar level of integration and tool support as Java. To be practical, we have
instead implemented @Obj as an annotation in Java 8, and a compilation agent. That is, the
Classless Java style of programming is supported by the library.

Disciplined use of Classless Java (avoiding class declarations as done in Section 4.2) illus-
trates what pure IB is like. However, using @Obj, CB and IB programming can be mixed
together, harvesting the practical convenience of using existing Java libraries, the full Java
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Figure 4.5: The flow chart of @Obj annotation processing.

language and IDE support. The key to our implementation is a compilation agent, which
allow us to rewrite the Java abstract syntax tree (AST) just before compilation. We discuss
the advantages and limitations of our approach in the following.

4.3.1 Compilation Agents

As we have reviewed in Section 2.4, Java supports compilation agents, where Java libraries
can interact with the Java compilation process, acting as a man in the middle between the
generation of AST and bytecode.

Lombok is one such compilation agent which @Obj was created based on. Fig-
ure 4.5 [Neildo, 2011] illustrates the flow of the @Obj annotation. First Java source code is
parsed into an AST. The AST is then captured by Lombok: each annotated node is passed to
the corresponding (Eclipse or Javac) handler. The handler is free to modify the information
of the annotated node, or even inject new nodes (like methods, inner classes, etc). Finally,
the Java compiler works on the modified AST to generate bytecode.

Features written in Lombok are supported directly in the language and are also supported
by most tools. In Figure 4.6, @Obj generates an of method in Point2D, and of, withX,
withY methods in Point3D. In Eclipse, the processing is performed transparently and the
information of the interface from the compilation is captured in the “Outline” window.

4.3.2 @Obj AST Reinterpretation

Of course, a careless reinterpretation of the AST could still be surprising for poorly designed
rewritings. @Obj reinterprets the syntax with the sole goal of enhancing and completing code:
we satisfy the behavior of abstract methods; add method implementations; and refine return
types. We consider this to be quite easy to follow and reason about since it is similar to what
happens in normal inheritance. Refactoring operations like renaming and moving should
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Figure 4.6: Generated methods shown in the Outline window of Eclipse and auto-completion.

work transparently in conjunction with our annotation, since they rely on the overall type
structure of the class, which we do not arbitrarily modify but just complete.

Thus, in addition to the advantages of Lombok, Classless Java offers more advantages with
respect to arbitrary (compilation agent driven) AST rewriting.

Syntax and type errors Some preprocessors (like the C one) can produce syntactically in-
valid code. Lombok ensures only syntactically valid code is produced. Classless Java addi-
tionally guarantees that no type errors are introduced in generated code and client code. We
discuss these two guarantees in more detail as follows:

• Self coherence: the generated code itself is well-typed. In our case, it means that either
@Obj produces (in a controlled way) an understandable error or the interface can be
successfully annotated and the generated code (e.g., the of methods in Figure 4.6) is
well-typed.

• Client coherence: all the client code (for example method calls) that is well-typed
before code generation is also well-typed after the generation. The annotation just
adds more behavior without removing any functionality.

Heir coherence Another form of guarantee that could be useful in AST rewriting is heir
coherence. That is, interfaces (and in general classes) inheriting the instrumented code are
well-typed if they were well-typed without the instrumentation. In a strict sense, our rewrit-
ing does not guarantee heir coherence. The reason is that this would forbid adding any (de-
fault or abstract) method to the annotated interfaces or even doing type refinement. Indeed
consider the following:
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interface A { int x(); A withX(int x); }
@Obj interface B extends A {}
interface C extends B { A withX(int x); }

This code is correct before the translation, but @Obj would generate in B amethod “B withX
(int x);”. This would break C. Similarly, an expression of the form “new B(){.. A
withX(int x){..}}” would be correct before translation, but ill-typed after the transla-
tion.

Our automatic type refinement is a useful and convenient feature, but not transparent to
the heirs of the annotated interface. They need to be aware of the annotation semantics and
provide the right type while refining methods. To support heir coherence, we need to give
up automatic type refinement, which is an essential part of IB programming. However, Java
libraries almost always break heir coherence during evolution and still claim backward com-
patibility. In practice, adding any method to any non-final class of a Java library is sufficient
to break heir coherence. We think return type refinement breaks heir coherence “less” than
normal library evolution, and if no automatic type- refinements are needed, then @Obj can
claim a form of heir coherence. Formal definition/proofs for our safety claims can be found
in Appendix A.1.

4.3.3 Limitations

Our prototype implementation has certain limitations:

• Lombok allows writing handlers for either javac or ejc (Eclipse’s own compiler). Our
current implementation only realizes ejc version. The implementation for the javac
version is still missing.

• Simple generics is supported: type parameters can be used, but generic method typing
is delegated to the Java compiler instead of being explicitly checked by @Obj.

• Due to limited support in Lombok for separate compilation, i.e., accessing information
of code defined in different files, @Obj requires that all related interfaces have to appear
in a single Java file. Reusing the logic inside the experimental Lombok annotation @
Delegate, we also offer a less polished annotation supporting separate compilation.

4.4 Applications and Case Studies

This section illustrates applications and larger case studies for Classless Java. The first appli-
cation shows how a useful pattern, using multiple inheritance and type-refinement, can be
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conveniently encoded in Classless Java. The second application shows how to model embed-
ded DSLs (domain specific languages) based on fluent APIs. Then two larger case studies
refactor existing projects into Classless Java. The first one shows a significant reduction in
code size, while the second one maintains the same amount of code, but improves modular-
ity.

4.4.1 The Expression Problem with Object Interfaces

As the first application for Classless Java, we illustrate a useful programming pattern that
improves the modularity and extensibility of programs. This useful pattern is based on
an existing solution to the Expression Problem (EP) [Wadler, 1998], which is a well-known
problem about modular extensibility issues in software evolution. Actually, our solution
in Chapter 3 using only covariant type refinement was proposed. When this solution is
modeled with interfaces and default methods, it can even provide independent extensibil-
ity [Zenger and Odersky, 2005]: the ability to assemble a system from multiple, indepen-
dently developed extensions. Unfortunately, the required instantiation code makes a plain
Java solution verbose and cumbersome to use. The @Obj annotation is sufficient to remove
the boilerplate code, making the presented approach very appealing. Our last case study, pre-
sented in Section 4.4.4, is essentially a (much larger) application of this pattern to an existing
program. Here we illustrate the pattern in the much smaller Expression Problem.

Initial system In the formulation of the EP, there is an initial system thatmodels arithmetic
expressions with only literals, addition, and an initial operation eval for expression evalu-
ation. As shown in Figure 4.7, Exp is the common super-interface with operation eval()
inside. Sub-interfaces Lit and Add extend interface Exp with default implementations for
the eval operation. The number field x of a literal is represented as a getter method x() and
expression fields (e1 and e2) of an addition as getter methods e1() and e2().

Adding a new type of expressions In the OO paradigm, it is easy to add new types of
expressions. For example, the following code shows how to add subtraction.

@Obj interface Sub extends Exp {
Exp e1(); Exp e2();
default int eval() {

return e1().eval() - e2().eval();
}

}
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interface Exp { int eval(); }
@Obj interface Lit extends Exp {

int x();
default int eval() {return x();}

}
@Obj interface Add extends Exp {

Exp e1(); Exp e2();
default int eval() {

return e1().eval() + e2().eval();
}

}

Figure 4.7: The Expression Problem: initial system.

interface ExpP extends Exp {String print();}
@Obj interface LitP extends Lit, ExpP {

default String print() {return "" + x();}
}
@Obj interface AddP extends Add, ExpP {

ExpP e1(); //return type refined!
ExpP e2(); //return type refined!
default String print() {

return "(" + e1().print() + " + "
+ e2().print() + ")";}

}

Figure 4.8: The Expression Problem: code for adding print operation.

Adding a new operation The difficulty of the EP in OO languages arises from adding new
operations. For example, adding a pretty printing operation would typically change all exist-
ing code. However, a solution should add operations in a type-safe and modular way. This
turns out to be easily achieved with the assistance of @Obj. The code in Figure 4.8 shows
how to add the new operation print. Interface ExpP extends Exp with the extra method
print(). Interfaces LitP and AddP are defined with default implementations of print(),
extending base interfaces Lit and Add, respectively. Importantly, note that in AddP, the
types of “fields” (i.e., the getter methods) e1 and e2 are refined. If the types were not refined
then the print() method in AddP would fail to type-check.

Independent extensibility To show that our approach supports independent extensibil-
ity, a new operation collectLit which collects all literal components in an expression is
defined. For space reasons, we omit some code:
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interface ExpC extends Exp {
List<Integer> collectLit();

}
@Obj interface LitC extends Lit, ExpC {...}
@Obj interface AddC extends Add, ExpC {

ExpC e1();
ExpC e2(); ...

}

Now we combine the two extensions together:

interface ExpPC extends ExpP, ExpC {}
@Obj interface LitPC extends ExpPC, LitP, LitC {}
@Obj interface AddPC extends ExpPC, AddP, AddC {

ExpPC e1();
ExpPC e2();

}

ExpPC is the new expression interface supporting print and collectLit operations;
LitPC and AddPC are the extended variants. Notice that except for the routine of extends
clauses, no glue code is required. Return types of e1,e2must be refined to ExpPC. Creating
a simple expression of type ExpPC is as simple as:

ExpPC e8 = AddPC.of(LitPC.of(3), LitPC.of(4));

Without Classless Java, tedious instantiation code would need to be defined manually.

4.4.2 Embedded DSLs with Fluent Interfaces

Since the style of fluent interfaces was invented in Smalltalk as method cascading, more and
more languages (Java, C++, Scala, etc.) came to support fluent interfaces. In most languages,
to create fluent interfaces, programmers have to either hand-write everything or create a
wrapper around the original non-fluent interfaces using this. In Java, there are several li-
braries (including jOOQ, op4j, fluflu, JaQue, etc) providing useful fluent APIs. However,
most of them only provide a fixed set of predefined fluent interfaces.

The @Obj annotation can also be used to create fluent interfaces. When creating fluent
interfaces with @Obj, there are two main advantages:

1. Instead of forcing programmers to hand-write code using return this, our approach
with @Obj annotation removes this verbosity and automatically generates fluent set-
ters.

2. The approach supports extensibility: the return types of fluent setters are automatically
refined.
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We use embedded DSLs of two simple SQL query languages to illustrate. The first query
language Database models select, from and where clauses:

@Obj interface Database {
String select(); Database select(String select);
String from(); Database from(String from);
String where(); Database where(String where);
static Database of() {

return of("", "", "");
}

}

The main benefit that fluent methods give us is the convenience of method chaining:

Database query1 = Database.of().select("a, b").from("Table").where("c
> 10");

Note how all the logic for the fluent setters is automatically provided by the @Obj annotation.

Extending the query language The previous query language can be extended with a new
feature orderBy which orders the result records by a field that users specify. With @Obj
programmers just need to extend the interface Database with new features, and the return
type of fluent setters in Database is automatically refined to ExtendedDatabase:
@Obj interface ExtendedDatabase extends Database {

String orderBy();
ExtendedDatabase orderBy(String orderBy);
static ExtendedDatabase of() {

return of("", "", "","");
}

}

In this way, when a query is created using ExtendedDatabase, all the fluent setters return
the correct type instead of the old Database type, which would prevent calling orderBy.
ExtendedDatabase query2 = ExtendedDatabase.of().select("a, b").from("

Table").where("c > 10").orderBy("b");

Languages like Smalltalk and Dart offer method cascading and avoid the need for fluent
setters. This is achieved at the price of introducing additional syntax and intrinsically relies
on an imperative setting. Our approach supports both fluent setters and (functional) fluent
withers.

4.4.3 A Maze Game

This case study is a simplified variant of a Maze game, which is often
used [Gamma et al., 1995, Bono et al., 2014] to evaluate code reuse ability related to
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SLOC # of classes/interfaces
Bono et al. 335 14

Ours 199 11
Reduced by 40.6% 21.4%

Table 4.1: Maze game code size comparison

Code SLOC Code SLOC
original (eval) 626 original (eval+print) 661
refactored (eval) 560 refactored (eval+print) 677

Table 4.2: Interpreter code size comparison

inheritance and design patterns. In the game, there is a player with the goal of collecting as
many coins as possible. She may enter a room with several doors to be chosen among. This
is a good example because it involves code reuse (different kinds of doors inherit a common
type, with different features and behavior), multiple inheritance (a special kind of door may
require features from two other door types) and it also shows how to model operations
symmetric sum, override and alias from trait-oriented programming. The game has
been implemented using plain Java 8 and default methods by Bono et al. [Bono et al., 2014],
and the code for that implementation is available online. We refactored the game using
@Obj2.

We summarize the number of lines of code and classes/interfaces in each implementation
in Table 4.1. The @Obj annotation reduced the interfaces/classes used in Bono et al.’s im-
plementation by 21.4% (from 14 to 11) and the number of source lines of code (SLOC) is
reduced by 40%. We show some excerpts of Bono’s implementation in Appendix A.5.1 and
Classless Java implementation in Appendix A.5.2. To implement KnockDoor, Bono’s impl-
mentation needs four components: TDoor, TCounter, TKnockDoor and KnockDoor with
124 lines of code. Classless Java’s implementation only needs three components: TDoor,
TCounter and TKnockDoor. As we can see, the number of classes is reduced due to the
replacement of instantiation class KnockDoor in Appendix A.5.1 with the generated of
method in TKnockDoor in Appendix A.5.2. The SLOC is reduced due to both the removal
of instantiation overhead and generation of getters/setters.

2https://github.com/YanlinWang/classless-java/tree/master/bundle/UseMixinLombok/
src/casestudy/mazegame
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4.4.4 Refactoring an Interpreter

The last case study refactors the code from an interpreter for a Lisp-like language Mumbler3,
which is created as a tutorial for the Truffle Framework [Würthinger et al., 2013]. Keeping a
balance between simplicity and useful features, Mumbler contains numbers, booleans, lists
(encoding function calls and special forms such as if-expression, lambdas, etc.). In the orig-
inal code base, which consists of 626 SLOC of Java, only one operation eval is supported.
Extending Mumbler to support one more operation, such as a pretty printer print, would
normally require changing the existing code base directly.

Our refactoring applies the pattern presented in Section 4.4.1 to the existingMumbler code
base to improve its modularity and extensibility. Using the refactored code base, it becomes
possible to add new operations modularly and to support independent extensibility. We add
one more operation print to both the original and the refactored code base. In the original
code base, the pretty printer is added non-modularly by modifying the existing code. As
shown in table 4.2 the pretty printer in the refactored code is added modularly with more
interfaces. Thus the code is slightly increased by 2.4% SLOC. However, the modularity is
greatly increased, allowing for improved reusability and maintainability.

3https://github.com/cesquivias/mumbler/tree/master/simple
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Part II

Revisiting Models of Multiple
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In terms of method conflicts in multiple inheritance, numerous existing work provides solu-
tions for conflicts which arise from diamond inheritance: i.e., conflicts that arise from imple-
mentations sharing a common ancestor. However, most mechanisms are inadequate to deal
with unintentional method conflicts: conflicts which arise from two unrelated methods that
happen to share the same name and signature.

This chapter presents a new model called Featherweight Hierarchical Java (FHJ) that deals
with unintentional method conflicts. In our new model, which is partly inspired by C++,
conflicting methods arising from unrelated methods can coexist in the same class, and hier-
archical dispatching supports unambiguous lookups in the presence of such conflictingmeth-
ods. To avoid ambiguity, hierarchical information is employed inmethod dispatching, which
uses a combination of static and dynamic type information to choose the implementation of
a method at run-time. Furthermore, unlike all existing inheritance models, our model sup-
ports hierarchical method overriding: that is, methods can be independently overridden along
the multiple inheritance hierarchy. We give illustrative examples of our language and fea-
tures and formalize FHJ as a minimal Featherweight-Java style calculus.

5.1 Introduction

Inheritance in OOP offers a mechanism for code reuse. However many OOP languages are
restricted to single inheritance, which is less expressive and flexible than multiple inheri-
tance. Nevertheless, different flavours of multiple inheritance have been adopted in some
popular OOP languages. C++ has had multiple inheritance from the start. Scala adapts
the ideas from traits [Schärli et al., 2003, Ducasse et al., 2006, Liquori and Spiwack, 2008]
and mixins [Bracha and Cook, 1990, Flatt et al., 1998, Limberghen and Mens, 1996,
Ancona et al., 2003, Hendler, 1986] to offer a disciplined form of multiple inheritance.
Java 8 provides a simple variant of traits, disguised as interfaces with default meth-
ods [Goetz and Field, 2012].

A reason why programming languages have resisted to multiple inheritance in the past is
due to the difficulty of implementing multiple inheritance. One of the most sensitive and
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critical issues is perhaps the ambiguity introduced by multiple inheritance. One case is the
famous diamond problem [Sakkinen, 1989, Singh, 1995] (also known as the fork-join inheri-
tance [Sakkinen, 1989]). In the diamond problem, inheritance allows one feature to be inher-
ited frommultiple parent classes that share a common ancestor. Hence conflicts arise. The va-
riety of strategies for resolving such conflicts urges the occurrence of differentmultiple inher-
itance models, including traits, mixins, CZ [Malayeri and Aldrich, 2009], and many others.
Existing languages and research have addressed the issue of diamond inheritance extensively.
Other issues including how multiple inheritance deals with state, have also been discussed
quite extensively [Wang et al., 2016, Malayeri and Aldrich, 2009, Stroustrup, 1995].

In contrast to diamond inheritance, the second case of ambiguity is unintentional method
conflicts [Schärli et al., 2003]. In this case, conflicting methods do not actually refer to the
same feature, meaning that methods can be designed for different functionality but happen
to have the same names (and signatures). A simple example of this situation is two draw
methods that are inherited from a deck of cards and a drawable widget, respectively. In such
a context, the two drawmethods have very different meanings, but they happen to share the
same name. When inheritance is used to compose these classes, a compilation error happens
due to conflicts. However, unlike the diamond problem, the conflicting methods have very
different meanings and do not share a common parent. We call such a case fork inheritance,
in analogy to diamond inheritance.

When unintentionalmethod conflicts happen, they can have severe effects in practice if no
appropriate mechanisms to deal with them are available. In practice, existing languages only
provide limited support for the issue. In most languages, the mechanisms available to deal
with this problem are the same as the diamond inheritance. However, this is often inadequate
and can lead to tricky issues in practice. This is especially the case when it is necessary to
combine two large modules and their features, but the inheritance is simply prohibited by a
small conflict. As a workaround from the diamond inheritance side, it is possible to define
a new method in the child class to override those conflicting methods. However, using one
method to fuse two unrelated features is clearly unsatisfactory. Therefore we need a better
solution to keep both features separately during inheritance, so as not to break independent
extensibility [Zenger and Odersky, 2005].

C++ and C# do allow for two unintentionally conflicting methods to coexist in a class. C#
allows this by interface multiple inheritance and explicit method implementations. But since
C# is a single inheritance language, it is only possible to implement multiple interfaces (but
not multiple classes). C++ accepts fork inheritance and resolves the ambiguity by specify-
ing the expected path by upcasts. However, neither the C# nor C++ approaches allow such
conflicting methods to be further overridden. Some other workarounds or approaches in-
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Figure 5.1: DrawableSafeDeck: an illustration of hierarchical overriding.

clude delegation and renaming/exclusion in the trait model. However, renaming/exclusion
can break the subtyping relation between a subclass and its parent. This is not adequate for
the class model commonly used in mainstream OOP languages, where the subclass is always
expected to be a subtype of the parent class.

In this chapter, we propose two mechanisms to deal with unintentional method conflicts:
hierarchical dispatching and hierarchical overriding. Hierarchical dispatching is inspired by
the mechanisms in C++ and provides an approach to method dispatching, which combines
static and dynamic information. Using hierarchical dispatching, themethod binder will look
at both the static type and the dynamic type of the receiver during runtime. When there are
multiple branches that cause unintentional conflicts, the static type can specify one branch
among them for unambiguity, and the dynamic type helps to find the most specific imple-
mentation. In that case, both unambiguity and extensibility are preserved. The main novelty
over existing work is the formalization of the essence of a hierarchical dispatching algorithm,
which (as far as we know) has not been formalized before.

Hierarchical overriding is a novel language mechanism that allows method overriding to
be applied only to one branch of the class hierarchy. Hierarchical overriding adds expressive
power that is not available in languages such as C++ or C#. In particular, it allows overriding
to work for classes with multiple (conflicting) methods sharing the same names and signa-
tures. An example is presented in Figure 5.1. In this example, there are four classes/inter-
faces. Two classes Deck and Drawablemodel a deck of cards and a drawable widget, respec-
tively. The class SafeDeck adds functionality to check whether the deck is empty so as to
prevent drawing a card from an empty deck. The interesting class is DrawableSafeDeck,
which inherits from both SafeDeck and Drawable. Hierarchical overriding is used in
DrawableSafeDeck to keep two separate draw methods for each parent, but override only
the draw method coming from Drawable, in order to draw a widget with a deck of cards.

77



5 FHJ

Note that hierarchical overriding is denoted in the UML diagram with the notation draw()
↑Drawable, expressing that the draw method from Drawable is overridden. Although in
this example only one of the drawmethods is overridden (and the other is simply inherited),
hierarchical overriding supports multiple conflicting methods to be independently overrid-
den as well.

To present hierarchical overriding and dispatching, we introduce a formalized model FHJ
in Section 5.3 based on Featherweight Java [Igarashi et al., 2001], together with theorems and
proofs for type soundness. We also have a prototype implementation of an FHJ interpreter
written in Scala. The implementation validates all the examples presented in this chapter.
One nice feature of the implementation is that it can show the detailed step-by-step eval-
uation of the program, which is convenient for understanding and debugging programs &
semantics.

In summary, our contributions are:

• A formalization of the hierarchical dispatching algorithm that integrates both the
static type and dynamic type for method dispatch, and ensures unambiguity as well as
extensibility in the presence of unintentional method conflicts.

• Hierarchical overriding: a novel notion that allows methods to override individual
branches of the class hierarchy.

• FHJ: a formalized model based on Featherweight Java, supporting the above features.
We provide the static and dynamic semantics and prove the type soundness of the
model.

• Prototype implementation1: a simple implementation of FHJ interpreter in Scala.
The implementation can type-check and run variants of all the examples shown in this
chapter.

5.2 A Running Example: Drawable Deck

This section illustrates the problem of unintentional method conflicts, together with the fea-
tures of our model for addressing this issue, by a simple running example. In the follow-
ing text, we will introduce three problems one by one and have a discussion on possible
workarounds and our solutions. Problems 1 and 2 are related to hierarchical dispatching,
and in C++ it is possible to have similar solutions to both problems. Hence it is important

1The implementation is available at https://github.com/YanlinWang/MIM/tree/master/Calculus
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to emphasize that, with respect to hierarchical dispatching, our model is not a novel mech-
anism. Instead, inspired by the C++ solutions, our contribution is formalizing a minimal
calculus of this feature together with a proof of type soundness. However, for the final prob-
lem, there is no satisfactory approach in existing languages, thus what we propose is a novel
feature (hierarchical overriding) with the corresponding formalization of that feature.

In the rest of this chapter, we use a Java-like syntax for programs. All types are defined
with the keyword interface; the concept is closely related to Java 8 interfaces with default
methods [Bono et al., 2014] and traits. In short, an interface in our model has the following
characteristics:

• It allows multiple inheritance.

• Every method is either abstract or implemented with a body (like Java 8 default meth-
ods).

• The new keyword is used to instantiate an interface.

• It cannot have state.

5.2.1 Problem 1: Basic Unintentional Method Conflicts

Suppose that two components Deck and Drawable have been developed in a system. Deck
represents a deck of cards and defines a method draw for drawing a card from the deck.
Drawable is an interface for graphics that can be drawn and also includes a method called
draw for visual display. For simple illustration, the default implementation of the draw in
Drawable only creates a blank canvas on the screen, while the drawmethod in Deck simply
prints out a message "Draw a card.".
interface Deck {
void draw() { // draws a card from the Deck
println("Draw a card.");

}
}
interface Drawable {
void draw() { // create a blank canvas
JFrame frame = new JFrame();
frame.setVisible(true);

}
}

In Deck, draw uses println, which is a library function. The two draw methods can have
different return types, but for simplicity, the return types are both void here. Note that, sim-
ilarly to Featherweight Java [Igarashi et al., 2001], void is unsupported in our formalization.
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We could have also defined an interface called Void and return an object of that type instead.
To be concise, however, we use void in our examples. In interface Drawable, the draw
method creates a blank canvas.

Now, suppose that a programmer is designing a card game with a GUI. He may want to
draw a deck on the screen, so he first defines a drawable deck using multiple inheritance:

interface DrawableDeck extends Drawable, Deck {}

The point of using multiple inheritance is to compose the features from various compo-
nents and to achieve code reuse, as supported bymanymainstreamOO languages. Neverthe-
less, at this point, languages like Java simply treat the two draw methods as the same, hence
the compiler fails to compile the program and reports an error.

This case is an example of a so-called unintentional method conflict. It arises when two in-
herited methods happen to have the same name and parameter types, but they are designed
for different functionalities with different semantics. Now one may quickly come up with a
workaround, which is tomanuallymerge the twomethods by creating a new drawmethod in
DrawableDeck to override the old ones. However, merging two methods with totally differ-
ent functionalities does not make any sense. This non-solution would hide the old methods
and break independent extensibility.

Problem and Possible Workarounds The essential problem is how to resolve uninten-
tional method conflicts and invoke the conflicting methods separately without ambiguity.
To tackle this problem, there are several other workarounds that come to our mind. We
briefly discuss those potential fixes and workarounds next:

• I. Delegation. As an alternative to multiple inheritance, delegation can be used by in-
troducing two fields (or fieldmethods) with the Drawable type and Deck type, respec-
tively. Although it avoids method conflicts, it is known that using delegation makes it
hard to correctly maintain self-references in an extensible system and also introduces
a lot of boilerplate code.

• II. Refactor Drawable and/or Deck to rename the methods. If the source code for
Drawable or Deck is available, then it may be possible to rename one of the draw
methods. However, this approach is non-modular, as it requires modifying existing
code and becomes impossible if the code is unavailable.

• III. Method exclusion/renaming. Eiffel [Meyer, 1987] and some trait models support
method exclusion/renaming. Those features can eliminate conflicts, although most
programming languages do not support them. In a traditional OO system, they can
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break the subtyping relationship. Moreover, in contrast with exclusion, renaming can
indeed preserve both conflicting behaviours. However, it is cumbersome in practice,
as introducing new names can affect other code blocks.

FHJ’s solution To solve this problem, it is important to preserve both conflicting methods
during inheritance instead of merging them into a single method. Therefore FHJ accepts the
definition of DrawableDeck. To disambiguate method calls, we can use upcasts in FHJ to
specify the “branch” in the inheritance hierarchy that should be called. The following code
illustrates the use of upcasts for disambiguation:

interface Deck { void draw() {...} }
interface Drawable { void draw() {...} }
interface DrawableDeck extends Drawable, Deck {}
// main program
((Deck) new DrawableDeck()).draw() // calls Deck.draw
// new DrawableDeck().draw() // this call is ambiguous and rejected

In our language, a program consists of interfaces declarations and amain expressionwhich
produces the final result. In the above main expression ((Deck)new DrawableDeck()
).draw(), the cast indicates that we expect to invoke the draw method from the branch
Deck. Similarly, we could have used an upcast to Drawable to call the draw method from
Drawable. Without the cast, the call would be ambiguous and FHJ’s type system would
reject it.

This example illustrates the basic form of fork inheritance, where two unintentionally con-
flicting methods are accepted by multiple inheritance. Note that C++ supports this feature
and also addresses the ambiguity by upcasts. The code for the above example in C++ is sim-
ilar.

5.2.2 Problem 2: Dynamic Dispatching

Using explicit upcasts for disambiguation helps when making calls to classes with conflict-
ing methods, but things become more complicated with dynamic dispatching. Dynamic dis-
patching is very common in OO programming for code reuse. Let us expand the previous
example a bit, by redefining those interfaces with more features:

interface Deck {
void draw() {...}
void shuffle() {...}
void shuffleAndDraw() { this.shuffle(); this.draw(); }

}
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Figure 5.2: UML diagrams for 3 variants of DrawableSafeDeck.

Here shuffleAndDraw invokes draw from its own enclosing type. In FHJ, this invocation
is dynamically dispatched. This is important, because a programmer may define a subtype
of Deck and override the method draw:

interface SafeDeck extends Deck {
boolean isEmpty() {...}
void draw() { // overriding

if (isEmpty()) println("The deck is empty.");
else println("Draw a card");

}
}

Without dynamic dispatching, we may have to copy the shuffleAndDraw code into
SafeDeck, so that shuffleAndDraw calls the new draw defined in SafeDeck. Dynamic
dispatching immediately saves us from the duplication work, since the method becomes au-
tomatically dispatched to the most specific one. Nevertheless, as seen before, dynamic dis-
patch would potentially introduce ambiguity. For instance, when we have the class hierarchy
structure shown in Figure 5.2(left) with the following code:

interface DrawableSafeDeck extends Drawable, SafeDeck {}
new DrawableSafeDeck().shuffleAndDraw()

Indeed, using reduction steps following the reduction rules in FeatherweightJava-like lan-
guages, where no static types are tracked, the reduction steps would roughly be:

new DrawableSafeDeck().shuffleAndDraw()
-> new DrawableSafeDeck().shuffle(); new DrawableSafeDeck().draw()
-> ...
-> new DrawableSafeDeck().draw()
-> <<error: ambiguous call!!!>>
When the DrawableSafeDeck object calls shuffleAndDraw, the implementation in Deck
is dispatched. But then shuffleAndDraw invokes “this.draw()”, and at this point, the
receiver is replaced by the object new DrawableSafeDeck(). From the perspective of
DrawableSafeDeck, the draw method seems to be ambiguous since DrawableSafeDeck
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inherits two draw methods from both SafeDeck and Drawable. But ideally, we would like
shuffleAndDraw to invoke SafeDeck.draw because they belong to the same class hierar-
chy branch.

FHJ’s solution The essential problem is how to ensure that the correct method is invoked.
To solve this problem, FHJ uses a variant of method dispatching that we call hierarchical
dispatching. In hierarchical dispatching, both the static and dynamic type information is
used to select the right method implementation. During runtime, a method call makes use
of both the static type and the dynamic type of the receiver, so it is a combination of static
and dynamic dispatching. Intuitively, the static type specifies one branch to avoid ambiguity,
and the dynamic type finds the most specific implementation on that branch. To be specific,
the following code is accepted by FHJ:
interface Deck {
void draw() {...}
void shuffle() {...}
void shuffleAndDraw() { this.shuffle(); this.draw(); }

}
interface Drawable {...}
interface SafeDeck extends Deck {...}
interface DrawableSafeDeck extends Drawable, SafeDeck {}
new DrawableSafeDeck().shuffleAndDraw() // SafeDeck.draw is called

The computation performed in FHJ is as follows:
new DrawableSafeDeck().shuffleAndDraw()

-> ((DrawableSafeDeck) new DrawableSafeDeck()).shuffleAndDraw()
-> ((Deck) new

DrawableSafeDeck()).shuffle(); ((Deck) new DrawableSafeDeck()).draw()
-> ...
-> ((Deck) new DrawableSafeDeck()).draw()
-> ... // SafeDeck.draw

Notably, we track the static types by adding upcasts during reduction. In contrast to FJ,
where new C() is a value, in FHJ such an expression is not a value. Instead, an expres-
sion of the form new C() is reduced to (C) new C(), which is a value in FHJ and the
cast denotes the static type of the expression. This rule is applied in the first reduction
step. In the second reduction step, when shuffleAndDraw is dispatched, the receiver (
DrawableSafeDeck)new DrawableSafeDeck() replaces the special variable this by (
Deck)new DrawableSafeDeck(). Here, the static type used in the cast (Deck) denotes
the origin of the shuffleAndDraw method, which is discovered during method lookup.
Later, in the fourth step, ((Deck)new DrawableSafeDeck()).draw() is an instance
of hierarchical invocation, which can be read as “finding the most specific draw above
DrawableSafeDeck and along path Deck”. The meaning of “above DrawableSafeDeck”
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implies its supertypes, and “along path Deck” specifies the branch. Finally, in the last re-
duction step, we find the most specific version of draw in SafeDeck. In this sequence of
reduction steps, the cast that tracks the origin of shuffleAndDraw is crucial to unambigu-
ously find the correct implementation of draw. The formal procedure will be introduced in
Section 5.3 and Section 5.4.

5.2.3 Problem 3: Overriding on Individual Branches

Method overriding is common in Object-Oriented Programming. With diamond inheri-
tance, where conflicting methods are intended to have the same semantics, method overrid-
ing is not a problem. If conflicting methods arise from multiple parents, we can override
all those methods in a single unified (or merged) method in the subclass. Therefore further
overriding is simple because there is only one method that can be overridden.

With unintentional method conflicts, however, the situation is more complicated because
different, separate, conflicting methods can coexist in one class. Ideally, we would like to
support overriding for thosemethods too, in exactly the sameway that overriding is available
for other (non-conflicting) methods. However, we need to be able to override the individual
conflicting methods, rather than overriding all conflictingmethods into a single merged one.

We illustrate the problem and the need for a more refined overriding mechanism with an
example. Suppose that the programmer defines a new interface DrawableSafeDeck (based
on the code in Section 5.2.2 without the old DrawableSafeDeck), but he needs to override
Drawable.draw and give a new implementation of drawing so that the deck can indeed be
visualized on the canvas.

Potential solutions/workarounds in existing languages Unfortunately, in all languages
we know of (including C++), the existing approaches are unsatisfactory. One direction is
to simply avoid this issue, by putting overriding before inheritance. For example, as shown
in Figure 5.2(middle), we define a new component DrawableRect that extends Drawable,
which simply draws the deck as a rectangle, and modifies the hierarchy:

interface DrawableRect extends Drawable {
void draw() {
JFrame frame = new JFrame("Canvas");
frame.setSize(600, 600);
frame.getContentPane().setBackground(Color.red);
frame.getContentPane().add(new Square(10,10,100,100)); ...

}
}
interface DrawableSafeDeck extends DrawableRect, SafeDeck {}
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This workaround seems to work, but there are severe issues:

• It changes the hierarchy and existing code, hence breaks the modularity.

• Separate overriding is required to come after the fork inheritance, especially when the
implementation needs functionality from both parents. In the above code, we have
assumed that the overriding is unrelated to Deck. But when the drawing relies on
some information of the Deck object, we have to either introduce field methods for
delegation or change the signature of draw to take a parameter. Either way introduces
unnecessary complexity and affects extensibility.

There are more involved workarounds in C++ using templates and complex patterns, but
such patterns are complex to use and there are still issues. Amore detailed discussion of such
an approach is presented in Section 7.4.

FHJ’s solution An additional feature of our model is hierarchical overriding. It allows con-
flicting methods to be overridden on individual branches, hence offers independent extensi-
bility. The above example can be easily realized by:

interface DrawableSafeDeck extends Drawable, SafeDeck {
void draw() override Drawable {
JFrame frame = new JFrame("Canvas");
frame.setSize(600, 600);
frame.getContentPane().setBackground(Color.red);
frame.getContentPane().add(new Square(10,10,100,100)); ...

}
}
((Drawable)new DrawableSafeDeck()).draw(); //calls the draw in

DrawableSafeDeck

TheUML graph is shown in Figure 5.2(right), where the up-arrow ↑ is short for override.
Here the idea is that only Drawable.draw is overridden. This is accomplished by specifying,
in the method definition, that the method only overrides the draw from Drawable. The
individual overriding allows us to make use of the methods from SafeDeck as well. In the
formalization, the hierarchical overriding feature is an important feature, involved in the
algorithm of hierarchical dispatch.

Note that, although the example here only shows one conflictingmethod being overridden,
hierarchical overriding allows (as expected) multiple conflicting methods to be overridden
in the same class.

Terminology In Drawable, Deck, and SafeDeck, the draw methods are called orig-
inal methods here, because they are originally defined by the interfaces. In contrast,
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DrawableSafeDeck defines a hierarchical overriding method. The difference is that tra-
ditional method overriding overrides all branches by defining another original method,
whereas hierarchical overriding only refines one branch.

A special rule for hierarchical overriding is: it can only refine originalmethods, and cannot
jump over original methods with the same signature. For instance, writing "void draw()
override Deck {...}" is disallowed in DrawableSafeDeck, because the existing two
branches are Drawable.draw and SafeDeck.draw, while Deck.draw is already covered.
It does not really make sense to refine the old branch Deck.

A peek at the hierarchical dispatching algorithm In FHJ, fork inheritance allows several
original methods (branches) to coexist, and hierarchical dispatch first finds the most spe-
cific original method (branch), then it finds the most specific hierarchical overriding on that
branch.

Before the formalized algorithm, Figure 5.3 gives a peek at the behavior using a few exam-
ples. The UML diagrams present the hierarchy. In (d) and (e), a cross mark indicates that the
interface fails to type-check. Generally, FHJ rejects the definition of an interface during com-
pilation if it reaches a diamond with ambiguity. mbody is the method lookup function for hi-
erarchical dispatch, formally defined in Section 5.4.1. In general, mbody(m,X, Y) = (Z, ...)

reflects that the source code ((Y)new X()).m() calls Z.m at runtime. It is undefined when
method dispatch is ambiguous.

In Figure 5.3, (a) is the base case for unintentional conflicts, namely the fork inheritance.
(b) uses overriding to merge the conflicting methods explicitly. (c) represents hierarchical
overriding.

Furthermore, our model supports diamond inheritance and can deal with diamond prob-
lems. For example, (d) and (e) are two base cases of diamond inheritance in FHJ and the
definition of each C is rejected because T is an ambiguous parent to C. One solution for di-
amond inheritance is to merge methods coming from different parents. (f) gives a common
solution to the diamond as in Java or traits, which is to explicitly override A.m and B.m in
C. Our calculus supports this kind of merging methods. In the last three examples, conflict-
ing methodsA.m and B.m should be viewed as intentional conflicts, as they come from the
same source T .

5.3 Formalization

In this section, we present a formal model called FHJ (Featherweight Hierarchical Java), fol-
lowing a similar style to Featherweight Java [Igarashi et al., 2001]. FHJ is a minimal core
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(a) (b)
mbody(m,C,A) = (A, ...) mbody(m,C,A) = (C, ...)
mbody(m,C,B) = (B, ...) mbody(m,C,B) = (C, ...)

mbody(m,C,C) = undefined mbody(m,C,C) = (C, ...)

(c) (d)
mbody(m,C,A) = (C, ...) mbody(m, T, T) = (T, ...)
mbody(m,C,B) = (B, ...) mbody(m,C, T) = undefined

mbody(m,C,C) = undefined C rejected by type-check

(e) (f)
mbody(m, T, T) = (T, ...) mbody(m,C, T) = (C, ...)

mbody(m,C, T) = undefined mbody(m,C,A) = (C, ...)
C rejected by type-check mbody(m,C,B) = (C, ...)

mbody(m,C,C) = (C, ...)

Figure 5.3: Examples in FHJ. “m ↑ A” stands for hierarchical overriding “m override A”.

calculus that formalizes the core concept of hierarchical dispatching and overriding. The
syntax, typing rules and small-step semantics are presented.

5.3.1 Syntax

The abstract syntax of FHJ interface declarations, method declarations, and expressions is
given in Figure 5.4. The multiple inheritance feature of FHJ is inspired by Java 8 interfaces,
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which supports method implementations via default methods. This feature is closely related
to traits. To demonstrate how unintentional method conflicts are untangled in FHJ, we only
focus on a small subset of the interface model. For example, all methods declared in an inter-
face are either default methods or abstract methods. Default methods provide default imple-
mentations for methods. Abstract methods do not have a method body. Abstract methods
can be overridden with future implementations.

Notations The metavariables I, J, K range over interface names; x ranges over variables;m
ranges over method names; e ranges over expressions; and M ranges over method declara-
tions. Following Featherweight Java, we assume that the set of variables includes the special
variable this, which cannot be used as the name of an argument to a method. We use the
same conventions as FJ; we write I as shorthand for a possibly empty sequence I1, ..., In,
which may be indexed by Ii; and write M as shorthand for M1...Mn (with no commas).
We also abbreviate operations on pairs of sequences in an obvious way, writing I x for
I1 x1, ..., In xn, where n is the length of I and x.

Interfaces In order to achieve multiple inheritance, an interface can have a set of
parent interfaces, where such a set can be empty. Moreover, as usual in class-based
languages, the extension relation over interfaces is acyclic. The interface declaration
interface I extends I {M} introduces an interface named I with parent interfaces I
and a suite of methods M. The methods of I may either override methods that are already
defined in I or add new functionality special to I, we will illustrate this in more detail later.

Methods Original methods and hierarchically overriding methods share the
same syntax in our model for simplicity. The concrete method declaration
I m(Ix x) override J {return e; } introduces a method named m with result type
I, parameters x of type Ix and the overriding target J. The body of the method simply
includes the returned expression e. Notably, we have introduced the override keyword
for two cases. Firstly, if the overridden interface is exactly the enclosing interface itself,
then such a method is seen as originally defined. Note that the case of merging methods
from different branches is also regarded as originally defined. Secondly, for all other cases,
the method is considered a hierarchical overriding method. Note that in an interface J,
I m(Ix x) {return e; } is syntactic sugar for I m(Ix x) override J {return e; }, which
is the standard way to define methods in Java-like languages. The definition of abstract
methods is written as I m(Ix x) override J ;, which is similar to a concrete method but
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Interfaces IL ::= interface I extends I {M}

Methods M ::= I m(Ix x) override J {return e; } | I m(Ix x) override J ;
Expressions e ::= x | e.m(e) | new I() | (I)e

Context Γ ::= x : I
Values v ::= (I)new J()

Figure 5.4: Syntax of FHJ.

without the method body. For simplicity, overloading is not modelled for methods, which
implies that we can uniquely identify a method by its name.

Expressions & Values Expressions can be standard constructs such as variables, method
invocation, object creation, together with cast expressions. Object creation is represented
by new I()2. Fields and primitive types are not modelled in FHJ. The casts are merely safe
upcasts, and in fact, they can be viewed as annotated expressions, where the annotation in-
dicates its static type. The coexistence of static and dynamic types is the key to hierarchical
dispatch. A value “(I)new J()” is the final result of multiple reduction steps for evaluating
an expression.

For simplicity, FHJ does not formalize statements like assignments and so on because they
are orthogonal features to the hierarchical dispatching and overriding feature. A program in
FHJ consists of a list of interface declarations, plus a single expression.

5.3.2 Subtyping and Typing Rules

Subtyping The subtyping of FHJ consists of only a few rules shown at the top of Figure 5.5.
In short, subtyping relations are built from the inheritance in interface declarations. Subtyp-
ing is both reflexive and transitive.

Type-checking Details of type-checking rules are displayed at the bottom of Figure 5.5,
including expression typing, well-formedness ofmethods and interfaces. As a convention, an
environment Γ is maintained to store the types of variables, together with the self-reference
this.

(T-Invk) is the typing rule for method invocation. Naturally, the receiver and the argu-
ments are required to be well-typed. mbody is our key function for method lookup that im-
plements the hierarchical dispatching algorithm. The formal definition will be introduced in

2In Java the corresponding syntax is new I(){}.
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I <: J I <: I

I <: J J <: K

I <: K

class I extends I1, I2, ..., In {...}

I <: I1, I <: I2, ..., I <: In

Γ ⊢ e : I (T-Var) Γ ⊢ x : Γ(x)

(T-Invk)
Γ ⊢ e0 : I0 mbody(m, I0, I0) = (K, J x, I _) Γ ⊢ e : I I <: J

Γ ⊢ e0.m(e) : I

(T-New)
interface I extends I {M} canInstantiate(I)

Γ ⊢ new I() : I

(T-Anno)
Γ ⊢ e : I I <: J

Γ ⊢ (J)e : J

(T-Method)

I <: J findOrigin(m, I, J) = {J}

mbody(m, J, J) = (K, Ix x, Ie _) x : Ix, this : I ⊢ e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

(T-AbsMethod)

I <: J findOrigin(m, I, J) = {J}

mbody(m, J, J) = (K, Ix x, Ie _)
Ie m(Ix x) override J ; OK IN I

(T-Intf)

M OK IN I

∀J >: I and m, mbody(m, J, J) is defined ⇒ mbody(m, I, J) is defined
∀J >: I and m, I[m override I] and J[m override J] defined ⇒ canOverride(m, I, J)

interface I extends I {M} OK

Figure 5.5: Subtyping and typing rules of FHJ

Section 5.4. Here mbody(m, I0, I0) finds the most specific m above I0. “Above I0” specifies
the search space, namely the supertypes of I0 including itself. For the general case, however,
the hierarchical invocation mbody(m, I, J) finds “the most specific m above I and along the
path/branch J”. “Along path J” additionally requires the result to relate to J, that is to say, the
most specific interface that has a subtyping relationship with J.

In (T-Invk), as the compilation should not be aware of the dynamic type, it only requires
that invoking m is valid for the static type of the receiver. The result of mbody contains
the interface that provides the most specific implementation, the parameters and the return
type. We use underscore for the return expression, matching both implemented and abstract
methods.
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(T-New) is the typing rule for object creation new I(). The auxiliary function
canInstantiate(I) (see definition in Section 5.4.4) checks whether an interface I can be
instantiated or not. Since fork inheritance accepts conflicting branches to coexist, the check
requires that the most specific method is concrete for each method on each branch.

(T-Method) is more interesting since a method can either be an original method or
a hierarchical overriding, though they share the same syntax and method typing rule.
findOrigin(m, I, J) is a fundamental function, used to find “the most specific interfaces
that are above I and along the path J, and originally defines m” (see Section 5.4 for full def-
inition). By “most specific interfaces”, it implies that the inherited supertypes are excluded.
Thus the condition findOrigin(m, I, J) = {J} indicates a characteristic of a hierarchical
overriding: it must override an original method; the overriding is direct and there does not
exist any other original method m in between. Then mbody(m, J, J) provides the type of
the original method, so hierarchical overriding has to preserve the type. Finally, the return
expression is type-checked to be a subtype of the declared return type. For the definition of
an original method, I equals J and the rule is straightforward. (T-AbsMethod) is a similar
rule but works on abstract method declarations.

(T-Intf) defines the typing rule on interfaces. The first condition is obvious, namely,
its methods need to be well checked. The third condition checks whether the overriding
between original methods preserves typing. In this condition, we again use some helper
functions defined in Section 5.4. I[m override I] is defined if I originally defines m, and
canOverride(m, I, J) checks whether I.m has the same type as J.m. Generally the preser-
vation of method type is required for any supertype J and any method m.

The second condition of (T-Intf) is more complex and is the key to type soundness.
Unlike C++ which rejects on ambiguous calls, FHJ rejects on the definition of interfaces
when they form a diamond. Consider the case when the second condition is broken:
mbody(m, J, J) is defined but mbody(m, I, J) is undefined for some J and m. This indicates
that m is available and unambiguous from the perspective of J, but is ambiguous to I on
branch J. It means that there are multiple overriding paths of m from J to I, which form a
diamond. Hence rejecting that case meets our expectation. Below is an example (Figure 5.3
(e)) that illustrates the reason why this condition is needed:

interface T { T m() override T { return new T(); } }
interface A extends T { T m() override T { return new A(); } }
interface B extends T { T m() override T { return new B(); } }
interface C extends A, B {}
((T) new C()).m()

This program does not compile on interface C, because of the second condition in (T-Intf),
where I equals C and J equals T . By the algorithm, mbody(m, T, T) will refer to T.m, but
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mbody(m,C, T) is undefined since bothA.m and B.m are most specific toC along the path
T , which forms a diamond. The expression ((T)new C()).m() is one example of triggering
ambiguity, but FHJ simply rejects the definition of C. To resolve the issue, the programmer
needs to have an overriding method in C, to explicitly merge the conflicting ones.

Finally, rule (T-Anno) is the typing rule for a cast expression. By the rule, only upcasts
are valid.

5.3.3 Small-step Semantics and Propagation

Figure 5.6 defines the small-step semantics and propagation rules of FHJ. When evaluating
an expression, they are invoked and produce a single value in the end.

Semantic Rules (S-Invk) is the only computation rule we need for method invocation. As
a small-step rule and by congruence, it assumes that the receiver and the arguments are al-
ready values. Specifically, the receiver (J)new I() indicates the dynamic type I together with
the static type J. Therefore mbody(m, I, J) carries out hierarchical dispatching, acquires the
types, the return expression e0 and the interface I0 which provides themost specificmethod.
Here we use e0 to imply that the return expression is forced to be non-empty because it re-
quires a concrete implementation. Now the rule reduces method invocation to e0 with sub-
stitution. Parameters are substituted with arguments, and the this reference is substituted
with the receiver, and in themeanwhile, the static types are recorded via annotations. Finally,
the return type Ie is put in the front as an annotation.

Propagation Rules (C-Receiver), (C-Args) and (C-FReduce) are natural propagation
rules on receivers, arguments, and cast-expressions, respectively. (C-StaticType) automat-
ically adds an annotation I to the new object new I(). (C-AnnoReduce) merges nested
upcasts into a single upcast with the outermost type.

5.4 Key Algorithms and Type-Soundness

In this section, we present the fundamental algorithms and auxiliary definitions used in our
formalization and show that the resulting calculus is type sound. The functions presented in
this section are the key components that implement our algorithm for method lookup.

5.4.1 The Method Lookup Algorithm in mbody

mbody(m, Id, Is) denotes the method body lookup function. We use Id, Is, since mbody is
usually invoked by a receiver of a method m, with its dynamic type Id and static type Is.
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Such a function returns the most specific method implementation. More accurately, mbody
returns (J, Ix x, Ie e0) where J is the found interface that contains the desired method; Ix x

are the parameters and its types, e0 is the returned expression (empty for abstract meth-
ods). It considers both originally-defined methods and hierarchical overriding methods, so
findOrigin and findOverride (see the definition in Section 5.4.2 and Section 5.4.3) are
both invoked. The formal definition gives the expected results for the earlier examples in
Figure 5.3.

▷ Definition of mbody(m, Id, Is) :

• mbody(m, Id, Is) = (J, Ix x, Ie e0)

with: findOrigin(m, Id, Is) = {I}

findOverride(m, Id, I) = {J}

J[m override I] = Ie m(Ix x) override I {return e0; }

• mbody(m, Id, Is) = (J, Ix x, Ie )

with: findOrigin(m, Id, Is) = {I}

findOverride(m, Id, I) = {J}

J[m override I] = Ie m(Ix x) override I ;

To calculate mbody(m, Id, Is), the invocation of findOrigin looks for the most specific
original methods and their interfaces, and expects a singleton set, so as to achieve unambigu-
ity. Furthermore, the invocation of findOverride also expects a unique and most specific
hierarchical override. And finally, the target method is returned.

5.4.2 Finding the Most Specific Origin: findOrigin

Weproceed to give the definitions of two core functions that supportmethod lookup, namely,
findOrigin and findOverride. Generally, findOrigin(m, I, J) finds the set ofmost spe-
cific interfaces wherem is originally defined. Interfaces in this set should be above interface
I and along path J. Finally with prune (defined in Section 5.4.4) the overridden interfaces
will be filtered out.

▷ Definition of findOrigin(m, I, J) : (5.1)

• findOrigin(m, I, J) = prune(origins) (5.2)

with: origins = {K | I <: K, and K <: J ∨ J <: K, (5.3)

and K[m override K] is defined} (5.4)
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(S-Invk)
mbody(m, I, J) = (I0, Ix x, Ie e0)

((J)new I()).m(v) → (Ie)[(Ix)v/x, (I0)new I()/this]e0

(C-Receiver)
e0 → e ′0

e0.m(e) → e ′0.m(e)
(C-Args)

e → e ′

e0.m(. . . , e, . . .) → e0.m(. . . , e ′, . . .)

(C-StaticType) new I() → (I)new I()

(C-FReduce)
e → e ′ e ̸= new J()

(I)e → (I)e ′

(C-AnnoReduce) (I)((J)new K()) → (I)new K()

Figure 5.6: Small-step semantics.

By definition, an interface belongs to findOrigin(m, I, J) if and only if:

• It originally defines m;

• It is a supertype of I (including I);

• It is either a supertype or a subtype of J (including J);

• No subtype of it belongs to the same result set because of prune.

5.4.3 Finding the Most Specific Overriding: findOverride

The findOrigin function only focuses on original method implementations, where all
the hierarchical overriding methods are omitted during that step. On the other hand,
findOverride(m, I, J) has the assumption that J defines an original m, and this function
tries to find the interfaces with the most specific implementations that hierarchically over-
rides such an m. Formally,

▷ Definition of findOverride(m, I, J) :

• findOverride(m, I, J) = prune(overrides)

with: overrides = {K | I <: K, K <: J and K[m override J] is defined

By definition, an interface belongs to findOverride(m, I, J) if and only if:

• it is between I and J (including I, J);
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• it hierarchically overrides J.m;

• any subtype of it does not belong to the same set.

5.4.4 Other Auxiliaries

Below we give other minor definitions of the auxiliary functions that are used in previous
sections.

▷ Definition of I[m override J] :

• I[m override J] = Ie m(Ix x) override J {return e0; }

with: interface I extends I {Ie m(Ix x) override J {return e0; } . . .}

• I[m override J] = Ie m(Ix x) override J ;

with: interface I extends I {Ie m(Ix x) override J ; . . .}

Here I[m override J] is basically a direct lookup for method m in the body of I, where
such a method overrides J (like static dispatch). The method can be either concrete or ab-
stract, and the body of definition is returned. Notice that by our syntax, I[m override I] is
looking for the originally-defined method m in I.

▷ Definition of prune(set) :

• prune(set) = {I ∈ set | ∄J ∈ set \ I, J <: I}

The prune function takes a set of types, and filters out those that have subtypes in the
same set. In the returned set, none of them has subtyping relation to one another, since all
supertypes have been removed.

▷ Definition of canOverride(m, I, J) :

• canOverride(m, I, J) holds

iff: I[m override I] = Ie m(Ix x) override I . . .

J[m override J] = Ie m(Ix y) override J . . .

canOverride just checks that two original m in I and J have the same type.
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▷ Definition of canInstantiate(I) :

• canInstantiate(I) holds

iff: ∀m, ∀J ∈ findOrigin(m, I, I), findOverride(m, I, J) = {K},

and K[m override J] = Ie m(Ix x) override J {return e0; }

canInstantiate(I) checks whether interface I can be instantiated by the keyword new.
findOrigin(m, I, I) represents the set of branches that I inherits on method m. I can be
instantiated if and only if, for every branch, themost specific implementation is non-abstract.

5.4.5 Properties

We present the type soundness of the model by a few theorems below, following
the standard technique of subject reduction and progress proposed by Wright and
Felleisen [Wright and Felleisen, 1994]. The proof, together with some lemmas, is presented
in the Appendix. Type soundness states that if an expression is well-typed, then after many
reduction steps it must reduce to a value, and its annotation is the same as the static type of
the original expression.

Theorem 1 (Subject Reduction). If Γ ⊢ e : I and e → e ′, then Γ ⊢ e ′ : I.

Proof. See Appendix A.6.

Theorem 2 (Progress). Suppose e is a well-typed expression, if e includes ((J)new I()).m(v)

as a sub-expression, then mbody(m, I, J) = (I0, Ix x, Ie e0) and #(x) = #(v) for some I0,
Ix, x, Ie and e0.

Proof. See Appendix A.6.

Theorem 3 (Type Soundness). If ⊢ e : I and e →∗ e ′ with e ′ a normal form, then e ′ is a
value v with ⊢ v : I.

Proof. Immediate from Theorem 1 and Theorem 2.

Note that in Theorem 2, “#(x)” denotes the length of x.
Our theorems are stricter than those of Featherweight Java [Igarashi et al., 2001]. In FJ,

the subject reduction theorem states that after a step of reduction, the type of an expression
may change to a subtype due to subtyping. However, in FHJ, the type remains unchanged
because we keep track of the static types and use them for casting during reduction.
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Finally we show that one-step evaluation is deterministic. This theorem is helpful to show
that our model of multiple inheritance is not ambiguous (or non-deterministic).

Theorem 4 (Determinacy of One-Step Evaluation). If t → t ′ and t → t ′′, then t ′ = t ′′.

Proof. See Appendix A.6.

5.5 Discussion

In this section, we will discuss the design space and reflect on some of the design decisions
of our work. We relate our language to traits, Java interfaces as well as other languages. Fur-
thermore, we discuss ways to improve our work.

5.5.1 Abstract Methods

Abstract methods are one of the key features in most general OO languages. For exam-
ple, Java interfaces (prior to Java 8) were designed to include only method declarations, and
those abstract methods can be implemented in a class body. The formal Featherweight Java
model [Igarashi et al., 2001] does not include abstract methods because of the orthogonality
to the core calculus. In traits, the similar idea is to use keywords like “require” for abstract
method declarations [Schärli et al., 2003]. Abstract methods provide a way to delay the im-
plementations to future subtypes. Using overriding, they also help to “exclude” existing im-
plementations.

In our formalized calculus, however, abstract methods are not a completely orthogonal
feature. The canInstantiate function has to check whether an interface can be instanti-
ated by looking at all the inherited branches and checking if each most specific method is
concrete or not.

Our formalization has a simple form of abstract methods, which behave similarly to con-
ventional methods with respect to conflicts. Other languages may behave differently. For
instance, in Java 8 when putting two identical abstract methods together by multiple inheri-
tance, there is no conflict error. In Figure 5.7, we use italicm to denote abstract methods. In
both cases, the Java compiler accepts the definition of C and automatically merges the two
inherited methods m into a single one. FHJ behaves differently from Java in both cases. In
the fork inheritance case (left), C will have two distinct abstract methods corresponding to
A.m and B.m. In the diamond inheritance case, the definition of C is rejected. There are
two reasons for this difference in behaviour. Firstly, our formalization just treats abstract
methods as concrete methods with an empty body, and that simplifies the rules and proofs
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Figure 5.7: Fork inheritance (left) and diamond inheritance (right) on abstract methods.

a lot. Secondly, and more importantly, we distinguish and treat differently conflicting meth-
ods, since they may represent different operations, even if they are abstract. Thus our model
adopts a very conservative behavior rather than automatically merging methods by default
(as done inmany languages). Arguably, the diamond case it is actually an intentional conflict
due to the same source T . Therefore our model conservatively rejects this case. It is possible
to change our model to account for other behaviors for abstract methods, but we view this
as a mostly orthogonal change to our work, and should not affect the essence of the model
presented here.

5.5.2 Orthogonal & Non-Orthogonal Extensions

Ourmodel is designed as aminimal calculus that focuses on resolving unintentional conflicts.
Therefore, we have omitted a number of common orthogonal features including primitive
types, assignments, method overloading, covariant method return types, static dispatch, and
so on. Those features can, in principle, be modularly added to the model without breaking
type soundness. For example, we present the additional syntax, typing and semantic rules of
static invocation below as an extension:

Expressions e ::= . . . | e.J0@J1 :: m(e)

(T-StaticInvk)

J0[m override J1] = I m(J x) override J1 {return e; }
Γ ⊢ e0 : I0 I0 <: J0 Γ ⊢ e : I I <: J

Γ ⊢ e0.J0@J1 :: m(e) : I

(S-StaticInvk)
J0[m override J1] = Ie m(Ix x) override J1 {return e0; }

((J)new I()).J0@J1 :: m(v) → (Ie)[(Ix)v/x, (J0)new I()/this]e0
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A static invocation e.J0@J1 :: m(e) aims at finding the method m in J0 that hierarchically
overrides J1. Thus J0[m override J1] is invoked. As shown in (S-StaticInvk), static dis-
patch needs a receiver for the substitution of the “this” reference, so as to provide the latest
implementations. In fact, static dispatch is common in OO programming, as it provides a
shortcut to the reuse of old implementation easily, and super calls can also rely on this fea-
ture. For convenience, we just make it simple above, whereas in languages like C++ or Java,
the static or super invocations are more flexible, as they can climb the class hierarchy.

One non-orthogonal extension to FHJ could be to generalize the model to allow multiple
hierarchical method overriding, meaning that, we allow overridingmethods to updatemulti-
ple branches instead of only one branch. This feature offers a more fine-grained mechanism
for merging and can be helpful to easily understand the structure of the hierarchy. Multiple
overriding would be useful in the following situation, for example:

interface A { void m() {...} }
interface B { void m() {...} }
interface C { void m() {...} }
interface D extends A, B, C {

void m() override A,B {...} // overrides branches A and B only
void m() override C {...} // overrides branch C

}

HereD inherits from three interfacesA, B, Cwith conflictingmethodsm, but onlymerges
two of those methods. While we can simulate D without multiple overriding in our calcu-
lus (by introducing an intermediate class), a better approach would be to support multiple
overriding natively.

We present themodification of syntax, typing and semantic rules below (abstract methods
omitted):

Methods M ::= . . . | I m(Ix x) override J {return e; }

(T-MoMethod)

∀Ji ∈ J, I <: Ji

findOrigin(m, I, Ji) = {Ji} mbody(m, Ji, Ji) = (K, Ix x, Ie _)
x : Ix, this : I ⊢ e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

Semantic rules themselves remain unchanged, however, we need to change slightly the
definition of findOverride in mbody:
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▷ Definition of findOverride(m, I, J) :

• findOverride(m, I, J) = prune(overrides)

with: overrides = {K | I <: K, K <: J and K[m override J] where J ∈ J

With this approach, branches A and B are merged in the sense that they share the same
code, which can be separately updated in future interfaces. Another approach would be to
deeply merge the branches, with similar effect as introducing an intermediate interface AB
to explicitly merge the two branches. However, this approach is problematic because there is
no clear mechanism for identifying and further updating the merged branches. This could
be an interesting future work to explore.

Other typical non-orthogonal extensions to FHJ could be to have fields. The design of
FHJ can be viewed as a variant of Java 8 with default methods which allows for uninten-
tional method conflicts. Like Java interfaces and traits, state is forbidden in FHJ. There are
some inheritance models that also account for fields, such as C++ that uses virtual inheri-
tance [Ellis and Stroustrup, 1990]. In our model, however, we can perhaps borrow the idea
of interface-based programming [Wang et al., 2016], which models state with abstract state
operations. This can be realized by extending our current model with static methods and
anonymous classes from Java. We will discuss the extension with fields in the next chapter.

5.5.3 Loosening the Model: Reject Early or Reject Later?

FHJ rejects the following case of diamond inheritance:

interface A { void m() {...} }
interface B extends A { void m() {...} }
interface C extends A { void m() {...} }
interface D extends B, C {}

Here both B.m and C.m override A.m, and D inherits both conflicting methods without an
explicit override. In this case, automatically merging the two methods (to achieve diamond
inheritance) is not possible, which is why many models (like traits and Java 8) reject such
programs. Moreover, keeping the two method implementations in D is problematic. In
essence, hierarchical information is not helpful to disambiguate later method calls, since the
twomethods share the same origin (A.m). Our calculus rejects such conflicts by the (T-Intf)
rule, where D is considered to be ill-formed. We believe that rejecting D follows the principle
of models like traits and Java 8 interfaces, where the language/type-system is meant to alert
the programmer for a possible conflict early.
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Nonetheless, C++ accepts the definition of D but forbids later upcasts from D to A because
of ambiguity. Our language is more conservative on definitions of interfaces compared to
C++, but on the upside, upcasts are not rejected. We could also loosen the model to accept
definitions such as D, and perform ambiguity check on upcasts and other expressions. Then,
we would need to handle more cases than C++ because of the complication caused by the
hierarchical overriding feature.
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This chapter continues the topic of unintentional conflicts from Chapter 5. Besides uninten-
tional method conflicts, we will extend FHJ to FHJ+, which supports state and state conflict
resolution. Moreover, FHJ+ is also a general solution to the diamond problem. We provide
a formal calculus with concrete solutions to the corresponding issues.

6.1 Motivation

As stated by Taivalsaari [Taivalsaari, 1996], object-oriented systems are usually built
around classes, where a class represents a generic concept, and an instance represents an
individual. Classes are the templates for creating a set of similar objects while an instance
holds the local data representing the state of the object.

As we discussed in the last chapter, programmers have been struggling to solve various
issues caused by multiple inheritance. In the last chapter, FHJ tries to solve the uninten-
tional conflicts problem in multiple inheritance. It provides the algorithm for hierarchical
dispatching and a novel mechanism for disambiguation, even in the presence of uninten-
tional conflicts.

In this chapter, based on FHJ, we will deal with a related problem: multiple inheritance
with state. When it comes to state, new issues occur and the current language solutions/-
models are not satisfying. Developing full and faithful type systems for object-oriented lan-
guages is a well-known and challenging research problem. Moreover, in many cases, the
existence of state is the reason that causes this difficulty. As discussed in the original trait
paper [Ducasse et al., 2006], in single inheritance, inheriting state does not cause complica-
tions and a simple mechanism such as using the keyword super is enough to achieve the
goal. However, when it comes to multiple inheritance, state entangles with multiple inheri-
tance issues, which makes the situation more complicated. Existing languages/models either
ignore the problem or only provide limited support.

The trait model [Schärli et al., 2003] is a novel multiple inheritance model. However, it
does not introduce state. As reviewed in Section 2.2.1, a trait is a collection of methods
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Payment
+ check

Verify
+ check

VerifiedPayment
??

Figure 6.1: The UML diagram of the transaction example.

without state; it can be viewed as an incomplete stateless class, to avoid the complexity caused
by state. As Schärli et al. [Schärli et al., 2003] summarized the trait model with the following
equation:

Class = Superclass+ State+ Traits+Glue

From this equation, it is obvious that classes in their system can have state. However, traits
themselves (which provide the multiple inheritance functionality) do not support state. In
other words, it is hard to embed state into multiple inheritance models with traits directly.

The mixin model [Bracha and Cook, 1990] supports state. The main difference between
mixins and traits is that in the mixin model, when composing multiple mixins, a linear order
requirement is enforced. This linear order restriction causes significant fragility problems
and may make code maintainability difficult [Schärli et al., 2003]. Moreover, because of the
state, mixin models must also deal with constructor problems, which can be another source
of fragility since it is hard to predict what the interface of the super-class constructor will
be [Reppy and Turon, 2006].

C++ is problematic with state, especially in the diamond problem. For example, when a
class C inherits an ancestor A throughmore than one path where A has fields, should C inherit
multiple copies of the fields or just one? With virtual inheritance, C expects to inherit only
one copy of the fields from A. Then the object initialization would be problematic because we
cannot ensure that the object initializer of A is called only once [Malayeri and Aldrich, 2009].
The object initialization problem occurs in this semantics and it depends on how and when
the superclass constructor is called [Singh, 1995, Snyder, 1986].

The existence of state poses additional difficulty in the scenario of unintentional conflicts.
We will use the following example for illustration. Figure 6.1 is the UML diagram for a bank
transaction system. Class Payment represents a payment process made by users, where it is
paid by check, and the field check represents the check ID. Class Verify is a class repre-
senting the verification process with a flag field check to indicate whether the verification
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is checked or not. Class VerifiedPayment inherits both Payment and Verify, describing
the information of verified payments. Inside class VerifiedPayment, the two fields check
from Payment and Verify are in conflict. This kind of conflict is an unintentional con-
flict. The two fields have completely different meanings/domains which happen to have the
same name. Let us consider how to express this case in different languages and how they are
treated.

In Java-like languages, this state conflict case cannot even be directly expressed! The reason
is that multiple class inheritance is not allowed in Java. However, interfaces can be used to
mimic classes, and we can use state operations to mimic state. For example, the code in Java
with the Classless Java-style is shown below:

interface Payment {
String check(); // represents an entity 'check'

}
interface Verify {

// represents whether the verification is checked or not.
boolean check();

}
interface VerifiedPayment extends Payment, Verify {}

In the code above, the two methods check() are used to represent the two fields
of Payment and Verify, respectively. We want to keep both fields (separately)
in VerifiedPayment, but the program is rejected by Java because 'the return
types are incompatible for the inherited methods Payment.check(),
Verify.check()'. This method conflict is the limitation of abstract state operations in
Classless Java. Even if in other scenarios where the return types are the same, we still
expect the two fields are inherited separately instead of being treated as one since they are
unintentionally conflicted.

C++ partly supports this, just like how C++ supports unintentional method conflicts.
However, besides the drawbacks of the initialization problem we mentioned before, C++
cannot handle the case where fields need to be refined or two fields with conflicts need to
be merged. The following code illustrates the representation of the same example. Class
VerifiedPayment inherits both Payment and Verify, and class Paymenthas a field check
with the type of A*; class Verify has a same-named field check but with a different type
bool. It compiles and runs correctly, showing that C++ does support unintentional state
conflicts to a certain extent.

class A {};
class Payment {

public:
A* check;
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};
class Verify {

public:
bool check;

};
class VerifiedPayment : public Payment, public Verify {};

int main()
{

VerifiedPayment* vp = new VerifiedPayment();
vp->Verify::check = true;

}

Next, we will use a modified version of the transaction system to illustrate the issues:

class A {};
class B:A {};
class Payment {

public:
A* check;

};
class Verify {

public:
bool check;

};
class VerifiedPayment : public Payment, public Verify {

public:
B* check;

};

int main()
{

VerifiedPayment* vp = new VerifiedPayment();
vp->Verify::check = true;
vp->check = new B();
cout << vp->Verify::check << ", ";
cout << vp->Payment::check << endl;

}

Here, class VerifiedPayment still inherits Payment and Verify and would like to
refine the type of field check from a pointer to A to B. The desired semantics is
that class VerifiedPayment only contains two fields and running result should be 1,
#a_pointer_to_check. However, our experimental result is 1, 0x0, meaning that
the pointer to Payment.check is null. The experimental result shows that in class
VerifiedPayment, Payment.check, Verify.check and VerifiedPayment.check are
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three unrelated fields. Thus the solution in C++ is not satisfying. Note that in our current
formalization, field refinement via covariant return types is not supported yet.

6.2 Overview

Knowing that multiple inheritance gets complicated when dealing with state, in this section,
we will give an overview of FHJ+ and illustrate the issues in detail. Especially we summarize
the issues into several problems. We will introduce them one by one and show how FHJ+
solves them.

6.2.1 Abstract State Operations

We first quickly go through how to represent the fields. As discussed in Section 6.1, we may
use abstract state operations as in Classless Java to mimic state. An example program in
FHJ+ to represent fields would look like this:

class Payment {
int check();
//void check(int x);

}
class Verify {

bool check();
}

Here, component Payment has a method (getter) check() to represent the field check. The
commented out method void check(int x) can be regarded as the setter of check. Simi-
larly, component Verify has a method (getter) check() to represent the field check. These
getters and setters are abstract state operations to represent state in Java.

6.2.2 Constructors in FHJ+

In terms of constructors in FHJ+, they are basically generated with some specification from
programmers. For example, the following is the code for VerifiedPayment with the con-
structor and code for initialization. The code new (int Payment.check, bool Verify
.check); specifies a constructor with two arguments (also two fields) Payment.check and
Verify.check.

// VerifiedPayment with constructor
class VerifiedPayment extends Payment, Verify {

new (int Payment.check, bool Verify.check);
}
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// instantiation
VerifiedPayment vp = new VerifiedPayment(1, false);
(Payment)vp.check()

At the call site, for an object of class VerifiedPayment, the disambiguation of its two fields
from parent/branch Payment can be achieved through the type annotation Payment.

In C++ (and other OO languages), when a member of a class is declared, it is either de-
clared to be a field or a method. This member can have one and only one role. However,
there might be cases where people want to bind the role to a member later, to determine the
role in the future. In this case, FHJ+ can also help to achieve this goal with constructors.

class Payment {
int check();
int date();
new (int Payment.check);

}
class Verify {

int check();
new (int Verify.check);

}
class VerifiedPayment extends Payment, Verify {

new (int Payment.check, int Payment.date, int Verify.check);
}

In class Payment and Verify, both check are fields because they are both declared in the
constructors of Payment and Verify. Notice that in class Payment, although the method
date() takes the same form as method check(), since date does not exist in the construc-
tor of Payment, it is just an abstract method. However, in VerifiedPayment, we choose to
make date a field, so we can just put it into the constructor of VerifiedPayment.

In the rest of the thesis, we also simply use constructors to stand for constructor spec-
ification. Constructors also play the role of specifying the order of fields, this is impor-
tant in the case of fields with the same type or conflicting fields. For example, in class
VerifiedPayment, the constructor new (int Payment.check, int Payment.date,
int Verify.check) specifies that all the three members will be treated as fields and the

order is also specified so that at the call site, with the constructor signature, the order would
not confuse the programmers.

6.2.3 Problem 1: Unintentional State Conflicts

Section 6.1 illustrates what is the unintentional state conflicts problem, now how to solve it?
Assuming that we use abstract state operations to represent state, an example program in the
desired language FHJ+ should look like this:
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class Payment {
int check();
//void check(int x);

}
class Verify {

bool check();
}
class VerifiedPayment extends Payment, Verify {

...
}

When class VerifiedPayment inherits/extends classes Payment and Verify,
both the two fields Payment.check, and Verify.check will be inherited by class
VerifiedPayment without any conflicts. This solution in FHJ+ is simple and straightfor-
ward to use.

6.2.4 Problem 2: The Diamond Problem

The diamond problem is a classic problem when talking about multiple inheritance. Here, it
is the same when we take state into consideration: two classes B and C inherit from A (with
state), and class D inherits from both B and C. Current languages have not treated this issue
seriously, and some languages cannot manage the issue in a way we want it to be. In C++,
both ordinary inheritance and virtual inheritance are supported. However, neither approach
is enough to solve the problem.

How to solve the diamond problem with state? Let us look at the example in Fig. 6.2. If
the diamond case is represented with ordinary inheritance in C++, the code does not even
compile, with the error message “non-static member ‘check’ found in multiple base-class
subobjects of type ‘Verify”’. Note that if we only declare classes Verify, Verify1, Verify2
and Verify3 but not use them (call site), then C++ would not report any errors.

Next, Fig. 6.3 shows the usefulness of C++ virtual inheritance, which supports the repre-
sentation of diamond problem with fields without any error. FHJ+ also support this func-
tionality. As shown in Fig. 6.4, this solution is similar to C++.

However, there are further issues in C++: the object initialization problem. The semantics
is non-deterministic, it depends on how and when the superclass constructor or initializer is
called [Singh, 1995, Snyder, 1986]. For example, in Fig. 6.5, the code is rejectedwith the error
message “implicit default constructor for ’Verify3’ must explicitly initialize the base class
’Verify’ which does not have a default constructor ”. In our FHJ+ model, the problem does
not exist, because we have a restrictive form of fields with state operations and constructors,
as shown in Section 6.2.2.
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class Verify {
bool check;

};
class Verify1 : Verify {};
class Verify2 : Verify {};
class Verify3 : Verify1, Verify2 {};

int main(int argc, char const *argv[])
{

Verify3 *v = new Verify3();
cout << v -> check << endl; //member found by ambiguous name

lookup
return 0;

}

Figure 6.2: Diamond problem with C++ ordinary inheritance.

In the following section, more details will be given on the calculus, including the syntax,
typing rules, semantics, and proofs.

6.3 Formalization

In this section, we present a formal model called FHJ+ (Featherweight Hierarchical Java
Plus), also following the Featherweight Java [Igarashi et al., 2001] model. Based on FHJ,
FHJ+ makes use of the hierarchical dispatching algorithm and adds the favor of support-
ing unintentional state conflicts, which integrates the ideas from Classless Java to support
state with abstract state operations. The syntax, typing rules, and small-step semantics are
presented. Note that in our current formalization, covariant field type refinement is not sup-
ported yet for two reasons: time limitation and the complexity caused by adding covariant
field type refinement.

6.3.1 Syntax

The abstract syntax of our model FHJ+ is presented in Fig. 6.6. FHJ+ supports features in-
cluding multiple inheritance, default and abstract methods, cast expressions, let expressions,
etc. Fig. 6.6 also presents the syntax for class declarations, method declarations, various
kinds of expressions and values.

Notations The meta-variables I, J, K range over class names; x ranges over variables; m
ranges over method names; e ranges over expressions; M ranges over method declarations;

110



6.3 Formalization

class Verify {
public:

int num;
};
class Verify1 : public virtual Verify {};
class Verify2 : public virtual Verify {};
class Verify3 : public Verify1, public Verify2 {
};
int main(int argc, char const *argv[])
{

Verify3 *v = new Verify3();
cout << v -> num << endl; //0, 0
return 0;

}

Figure 6.3: Diamond problem with C++ virtual inheritance.

class Verify {
Int num() override Verify;

}
class Verify1 extends Verify {}
class Verify2 extends Verify {}
class Verify3 extends Verify1, Verify2 {

new (Int Verify.num);
}

new Verify3(3)

Figure 6.4: Diamond problem in FHJ+

and o ranges over object identifiers (see details in Section 6.3.3). Following Featherweight
Java, we assume that the set of variables includes the special variable this, which cannot be
used as the name of an argument to a method. Following FHJ, we write I as a shorthand for
a possibly empty sequence I1, ..., In, which may be indexed by Ii; and writeM as shorthand
for M1...Mn (with no commas). We also abbreviate operations on pairs of sequences in an
obvious way, writing I x for I1 x1, ..., In xn, where n is the length of I and x.

Classes Just like FHJ, in order to achieve multiple inheritance, a class can have a
set of parent classes, where such a set can be empty. Moreover, as usual in class-
based languages, the extension relation over classes is acyclic. The class declaration
class I extends I {MC? M} introduces a class named I with parent classes I, a con-
structorMC and a suite of methodsM. The methods of Imay either override methods that
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class Verify {
public:

Verify(int check_) {check = check_;};
public:

int check;

};

class Verify1 : public virtual Verify {
public:

Verify1(): Verify(1) {};
};

class Verify2 : public virtual Verify {
public:

Verify2(): Verify(2) {};
};

class Verify3 : public Verify1, public Verify2 {
public:

bool flag;
};

int main(int argc, char const *argv[])
{

Verify3 *v = new Verify3();
cout << v ->flag << ", " << v -> check << endl; //0, 0
return 0;

}

Figure 6.5: C++ constructor initialization problem

are already defined in I or add new functionality special to I, and they could be ordinary
methods or getter/setters. We will illustrate this in more detail later.

Methods The syntax of methods (both default and abstract) follows FHJ. However, the
semantics is different in terms of state operations. Original methods and hierarchically over-
riding methods share the same syntax in our model for simplicity. The concrete method
declaration I m(Ix x) override J {return e; } introduces a method named m with result
type I, parameters x of type Ix and the overriding target J. The body of the method simply
includes the returned expression e. Notably, we have introduced the override keyword
for two cases. Firstly, if the overridden class is exactly the enclosing class itself, then such
a method is seen as originally defined. Note that the case of merging methods from differ-
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Program P ::= IL e

Classes IL ::= class I extends I {MC? M}

Constructors MC ::= new(Ix J.x) ;
Methods M ::= I m(Ix x) override J {return e; } | I m(Ix x) override J ;
Expressions e ::= x | e.m(e) | (I)e | new I(e) | I x = e1; e2
Context Γ ::= x : I
Values v ::= (I)o

Figure 6.6: Syntax of FHJ+

ent branches also counts as originally defined. Secondly, for all other cases, the method is
considered a hierarchical overriding method. Note that in a class J, I m(Ix x) {return e; }
is syntactic sugar for I m(Ix x) override J {return e; }, which is the standard way
to define methods in Java-like languages. The definition of abstract methods is written as
I m(Ix x) override J ;, which is similar to a concrete method but without the method
body. An abstract method without any parameters can represent a getter when the corre-
sponding name appears in the object constructor. Similarly, an abstract method with one
and only one parameter can represent a setter, when the corresponding getter is defined.

Constructors The syntax of object constructor declaration is new(Ix J.x) ;. x are all the
fields declared in the current class or inherited from the parents, with path annotation J.
Putting them together, we use J.x to denotes qualified fields. Ix are the types of fields J.x.
Corresponding to Figure 6.3.1, we will guarantee the coherence by checking all parameters
J.x have the corresponding valid getters/setters.

Expressions Expressions are standard constructs such as variables, method invocation, ob-
ject creation, cast expressions together with let expressions. Object creation is represented
by new I(e), which should conform to the constructor signature of the class. The casts are
merely safe up-casts, just as in FHJ, they can be viewed as annotated expressions, where the
annotation indicates its static type. In FHJ+, it can also be used for fields disambiguation
when there are unintentional state conflicts. For the variable assignment, instead of using
variable assignment directly, the approach we take is let expressions. The reason is that for
modeling the single feature variable assignment, we will have to model statements and also
variable declaration. In this case, let-expressions can achieve the same goal without expand-
ing expressions to statements.
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Values A value (I)o is the result of multiple reduction steps for evaluating an expression.
The notion o is the object reference created during the object creation process, pointing to
a concrete object (address) in the heap, and I is the static type of the object. The static type
I is a possible result of type annotation from programmers for disambiguation or generated
during the reduction process.

A program in FHJ+ consists of a list of class declarations, plus a single expression.

6.3.2 Subtyping and Typing Rules

The subtyping relation of FHJ+ is shown at the top of Figure 6.7. It is traditional and built
from the inheritance in class declarations. Subtyping is both reflexive and transitive.

Details of type-checking rules are shown in Figure 6.7, including expression typing, well-
formedness of constructors, methods, and classes. As a convention, an environment Γ is
maintained to store the types of variables, together with the self-reference this. The typing
rules take the same approach as FHJ. The difference is just the value representation and let
expressions. The simplicity of FHJ+ makes it easy to learn and use.

(T-Invk) is the typing rule for method invocation. Naturally, the receiver and the argu-
ments are required to be well-typed. mbody is our key function for method lookup that im-
plements the hierarchical dispatching algorithm. The formal definition will be introduced in
Section 6.4. Here mbody(m, I0, I0) finds the most specific m above I0. “Above I0” specifies
the search space, namely the supertypes of I0 including itself. For the general case, however,
the hierarchical invocation mbody(m, I, J) finds “the most specific m above I and along the
path/branch J”. “Along the path J” additionally requires the result to relate to J, that is to say,
the most specific class that has a subtyping relationship with J. The result of mbody contains
the class that provides the most specific implementation, the parameters and the return type.
We use the underscore character for the return expression, matching both implemented and
abstract methods.

(T-New) is the typing rule for object creation new I(e). The auxiliary function
mconstr(I0) = Ix J.x (see definition in Section 6.4) retrieves the signature of the construc-
tor and checks whether the arguments conform to the parameters specification. Since fork
inheritance accepts conflicting branches to coexist, the check requires that the most specific
method is concrete for each method on each branch.

(T-Cast) is the typing rule for the cast expressions. The rule checks the expression e to
type I and checks that e is casting to J, which is a supertype of I.

(T-Let) is the typing rule for the let expressions. The rule checks the expression e1 to type
I1, which is a subtype of I. And under the new context (with variable x), the expression e2
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6.3 Formalization

I <: J I <: I

I <: J J <: K

I <: K

class I extends I1, I2, ..., In {...}

I <: I1, I <: I2, ..., I <: In

Γ ⊢ e : I
(T-Var)

Γ ⊢ x : Γ(x)

(T-Invk)
Γ ⊢ e0 : I0 mbody(m, I0, I0) = (K, Ix x, I _) Γ ⊢ e : I I <: Ix

Γ ⊢ e0.m(e) : I

(T-New)
mconstr(I0) = Ix J.x Γ ⊢ e : I I <: Ix

Γ ⊢ new I0(e) : I0

(T-Cast)
Γ ⊢ e : I I <: J

Γ ⊢ (J)e : J
(T-Let)

Γ ⊢ e1 : I1 I1 <: I Γ, x : I ⊢ e2 : I2

Γ ⊢ I x = e1; e2 : I2

(T-MC)
validMC(I, Ix, J.x)

new(Ix J.x) ; OK IN I
(T-Prog)

∀I ∈ IL, I OK Γ ⊢ e : T

IL e OK

(T-Method)

I <: J findOrigin(m, I, J) = {J} mbody(m, J, J) = (K, Ix x, Ie _)
Γ, x : Ix, this : I ⊢ e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

(T-AbsMethod)

I <: J findOrigin(m, I, J) = {J}

mbody(m, J, J) = (K, Ix x, Ie _)
Ie m(Ix x) override J ; OK IN I

(T-Class)

MC OK IN I M OK IN I

∀J >: I and m, mbody(m, J, J) is defined ⇒ mbody(m, I, J) is defined
∀J >: I and m, I[m override I] and J[m override J] defined ⇒ canOverride(m, I, J)

class I extends I {MC? M} OK

Figure 6.7: Typing rules of FHJ+

type checks to I2. The type for the whole expression is determined by the type of e2, which
is I2.

(T-Method) is more interesting since a method can either be an original method or
a hierarchical overriding, though they share the same syntax and method typing rule.
findOrigin(m, I, J) is defined the same as that of FHJ. Then mbody(m, J, J) provides the
type of the original method, so hierarchical overriding has to preserve the type. Finally, the
return expression is type-checked to be a subtype of the declared return type. The typing
rule (T-AbsMethod) is a similar rule but works on abstract method declarations.
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6 FHJ+

The rule (T-MC) defines the typing rule on constructors. The checking process is ab-
stracted away with the auxiliary definition validMC, which is defined in Section 6.4.1. Given
the current class, the fields and their types, validMCwill check whether the constructor dec-
laration is coherent and complete.

(T-Class) defines the typing rule on classes. The first two conditions are obvious, namely,
its constructor declaration and methods need to be well checked. The fourth condition
checks whether the overriding between original methods preserves typing. In this condi-
tion, we again use some helper functions defined in Section 6.4. I[m override I] is de-
fined if I originally definesm, and canOverride(m, I, J) checks whether I.m has the same
type as J.m. Generally the preservation of method type is required for any supertype J and
any method m. The third condition of (T-Class) is more complex and is the key to type
soundness. Unlike C++, which rejects on ambiguous calls, FHJ rejects on the definition of
classes when they form a diamond. Consider the case when the third condition is broken:
mbody(m, J, J) is defined but mbody(m, I, J) is undefined for some J and m. This indicates
that m is available and unambiguous from the perspective of J, but is ambiguous to I on
branch J.

Finally, rule (T-Prog) is the typing rule for the whole program. It checks that all the
declared classes and expression are well type checked.

6.3.3 Small-step Semantics

Figure 6.8 defines the reduction rules of FHJ+. When evaluating an expression, it is invoked
with a heap environment and produces a single value with a final heap in the end. A heap
environment µ maps object identifiers o to object states os:

µ ::= o 7→ os (6.1)

os ::= new I(o) (6.2)

(E-Invk) is an important computation rule we need for method invocation. As a small-
step rule, it assumes that the receiver and the arguments are already values. isField(m, I) is an
auxiliary function to check whetherm is a field of class I (see the definition of isField in Sec-
tion 6.4.1), where I is the type of o. Here the rule (E-Invk) handle the case where themethod
call is not a getter or setter. Specifically, the receiver (J)new I() indicates the dynamic type I
together with the static type J. Therefore mbody(m, I, J) carries out hierarchical dispatching,
acquires the types, the return expression e0 and the class I0 which provides the most specific
method. Here we use e0 to imply that the return expression is forced to be non-empty be-
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6.3 Formalization

µ | e → µ ′ | e ′
(E-Invk)

µ(o) = new I(...)

¬isField(m, I) mbody(m, I, J) = (I0, Ix x, Ie e0)

µ | (J)o.m(v) → µ | (Ie)e0[(J)o/this, (Ix)v/x]

(E-New)
o /∈ dom(µ) µ ′ = µ, o 7→ new I(v)

µ | new I(v) → µ ′ | (I)o

(E-Setter)

µ(o) = new I(o1, ..., on) mconstr(I) = new(Ix J.x) ;
J.f is the i-th element of mconstr(I) isSetterDeclared(J, f)

µ ′ = µ[o 7→ new I(o1, ..., o
′, ..., on)] with µ(o) = new I(o1, ..., oi, ..., on)

µ | (J)o.SET_f((I ′)o ′) → µ ′ | (I)o

(E-Getter)

µ(o) = new I(o1, ..., on)

mconstr(I) = new(Ix J.x) ; IF J.f is the i-th element of new I(...)

µ | (J)o.f() → µ | (IF)oi

(E-Let)
µ | I x = o; e → µ | e[(I)o/x]

(E-Cast)
µ | (J)((I)o) → µ | (J)o

(E-CTX)
µ | e → µ ′ | e ′

µ | ε{e} → µ ′ | ε{e ′}

where ε ::= ∅ | ε.m(e) | (J)o.m(o, ε, e) | new I(o, ε, e) | I x = ε; e | (I)ε

Figure 6.8: Reduction rules of FHJ+

cause it requires a concrete implementation. Now the rule reduces the method invocation to
e ′, which is a substitution of e0. Parameters are substituted with arguments, and the this
reference is substituted with the receiver, and in the meanwhile, the static types are recorded
via annotations. Finally, the return type Ie is put in the front as an annotation.

The rule (E-New) guides the reduction process of object creation. Reducing an expres-
sion new I(v) under the heap environment µ, will produce a fresh object o with static type
annotation (I) on the heap, leading to the new heap environment µ ′.

The rule (E-Getter) retrieves the information of object o from the heap environment µ
and checks that the getter method f() corresponds to a field of I. An expression (J)o.f()

will be reduced to (IF)oi where oi is the value of the field and IF the static type. The heap
environment µ keeps unchanged.

The rule (E-Setter) is similar to (E-Getter) but more complex. It retrieves the infor-
mation of the object o from the heap environment µ and checks that J.f does exit in the
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6 FHJ+

constructor of class I. Then it updates the corresponding field of object owith the new value
specified by the argument (I ′)o ′. Note that the heap environment µ is updated to µ ′.

Under the rule (E-Let), a let-expression I x = o; e will be reduced to e[(I)o/x] with the
heap environment µ unchanged. The rule (E-Cast) is trivial, for an expression of the form
(J)((I)o), it simply drops the inner type annotation (I).

The last rule (E-CtX) is an abstraction over a set of rules, acting as the role of standard
congruence. An expression ε{e} (outer expression) containing a reducible inner expression
e is also reducible. If e reduces to e ′, then ε{e} reduces to ε{e ′}. The heap environment
changes accordingly. The outer expression ε can be: method invocation with reducible re-
ceiver ε.m(e), method invocation with reducible arguments (J)o.m(o, ε, e), object creation
with reducible arguments new I(o, ε, e), a let expression with reducible variable assignment
I x = ε; e, and the cast expression (I)ε.

6.4 Auxiliary Definitions and Properties

In this section, we present the auxiliary definitions used in our formalization and show the
important properties of the calculus. Note that we will omit the definition of mbody since it
reuses the definition from FHJ (see Section 5.4).

6.4.1 Auxiliary Definitions

▷ Constructor Retrieve: mconstr

Definition of mconstr(I) = Ix J.x:

• If new(Ix J.x) defined in class I, mconstr(I) = Ix J.x.

• Otherwise, mconstr(I) = Undefined:

Given a class name I, mconstr retrieves the object constructor signature from the class
declaration. J.x and Ix are the fields and their types, respectively.

▷ Constructor Checker: validMC

Definition of validMC(I, Ix, J.x):
validMC(I, Ix, J.x) = true, if and only if

∀IxJ.x ∈ IxJ.x, J.x is a valid field of I, i.e., method Ix x() override J; is defined in J.
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▷ Field Checker: isField

Definition of isField(m, I):
isField(m, I) = true if and only if:

• mconstr(I) = Ix J.x and m ∈ x.

▷ Is Field Setter Declared: isSetterDeclared

Definition of isSetterDeclared(I,m):
isSetterDeclared(I,m) = true if and only if:

• The setter declaration VoidSETm(...)overrideI; is declared in I.

▷Method Override: I[m override J]

Definition of I[m override J] :

• I[m override J] = Ie m(Ix x) override J {return e0; }

with: class I extends I {Ie m(Ix x) override J {return e0; } . . .}

• I[m override J] = Ie m(Ix x) override J ;

with: class I extends I {Ie m(Ix x) override J ; . . .}

Here I[m override J] is basically a direct lookup for methodm in the body of I, where such
a method overrides J (like static dispatch). The method can be either concrete or abstract,
and the body of definition is returned. Notice that by our syntax, I[m override I] is looking
for the originally-defined method m in I.

▷ Prune Set: prune

Definition of prune(set) :

• prune(set) = {I ∈ set | ∄J ∈ set \ I, J <: I}

The prune function takes a set of types, and filters out those that have subtypes in the
same set. In the returned set, none of them has subtyping relation to one another, since all
supertypes have been removed.
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6.4.2 Properties

In this section, we present the type safety theorem of FHJ+ by a few theorems below, fol-
lowing the standard techniques of subject reduction and progress proposed by Wright and
Felleisen [Wright and Felleisen, 1994]. The detailed proof and related lemmas are presented
in Appendix. Theorem 5 is the subject reduction theorem, and it states that under one-step
reduction following the reduction rules, when a term is reduced to another term, the type
remains the same. Theorem 6 is the progress theorem, it states that if an expression is well-
typed and includes a sub-expression with the method invocation form, then it is guaranteed
that this expression can be further reduced, and it can take the form of either getter, setter
or normal method invocation. Theorem 7 is the type soundness theorem, it states that if an
expression is well-typed, then after many reduction steps it must reduce to a value, and the
type of the value is the same as the original expression. Theorem 8 is the theorem of the de-
terminacy of one-step evaluation. It states that given a heap environment and a term, there
is one and only one possible rule and result for the one-step evaluation.

Theorem 5 (Subject Reduction). If Γ ⊢ e : I and µ|e → µ ′|e ′, then Γ ⊢ e ′ : I.

Proof. See Appendix A.7.

Theorem 6 (Progress). Suppose e is a well-typed expression, if e includes (J)o.m(v) as a
sub-expression, where µ(o) = new I(...), then one of the following conditions holds:

1. # v = 0, validGetter(m, I, J)

2. # v = 1, validSetter(m, I, J)

3. mbody(m, I, J) = (I0, Ix x, Ie e0) and #(x) = #(v) for some I0, Ix, x, Ie and e0.

Proof. See Appendix A.7.

Theorem 7 (Type Soundness). If ⊢ e : I and |e →∗ µ|e ′ with e ′ a normal form, then e ′ is
a value v with ⊢ v : I.

Proof. Immediate from Theorem 5 and Theorem 6.

Theorem 8 (Determinacy of One-Step Evaluation). If µ | t → µ ′ | t ′ and µ | t → µ ′′ | t ′′,
then t ′ = t ′′ and µ ′ = µ ′′.

Proof. See Appendix A.7.
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6.5 Implementation

class A {
new(Int A.x);
Int x() override A;
Void SET_x(Int x) override A;

}

A m = new A(3);
m.SET_x(2);
m.x()

Figure 6.9: FHJ+ program example.

6.5 Implementation

We have a prototype implementation 1 of an FHJ+ interpreter written in Scala. The imple-
mentation validates all the examples presented in this chapter. The prototype is based on
the implementation of FHJ, so it can also show the detailed step-by-step evaluation of the
program, which is convenient for understanding and debugging programs & semantics. For
example, Fig. 6.9 is a simple program example. Fig. 6.10 is the output by our prototype, which
contains rich information: the AST, return type of the expression, and the step-by-step eval-
uation with heap change.

6.6 Discussions & Limitations

The current model of FHJ+ is not the only possible model to implement our requirement for
handling unintentional state conflicts. In this section, we will briefly discuss other possibil-
ities and discuss the thoughts we have about the design space in the process of working on
this project and explain why the reasons for taking the current approach.

6.6.1 Middleweight Java

Middleweight Java (MJ) [Bierman et al., 2003], as a contender for a minimal imperative
core calculus for Java, is proposed by Bierman et al. in 2003. MJ is an extension of FJ that is
big enough to include the essential imperative features of Java. In addition to FJ, they model
language features such as object identity, field assignment, constructor methods and block
structure. Since MJ is intended to be a starting point for the study of Java models, in the

1The implementation is available at https://github.com/YanlinWang/MIM/tree/master/
StateMIM-small
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Program(List(
TypeDef(Void,List(),List(),Some(Constructor(List()))),
TypeDef(Int,List(),List(),None),
TypeDef(String,List(),List(),None),
TypeDef(A,List(),

List(MethDef(Int,x,List(),A,None),
MethDef(Void,SET_x,List(Parameter(Int,x)),A,None)),

Some(Constructor(List(Field(Int,A,x)))))),
LetExpr(A,m,InvkStatic(A,List(Num(3))),
LetExpr(Void,TEMP,InvkSetter(Var(m),x,Num(2)),
Invk(Var(m),x,List()))))

Type check: ==> Int
==> Config(H(Map(),1),LetExpr(A,m,InvkStatic(A,List(Num(3))),

LetExpr(Void,TEMP,InvkSetter(Var(m),x,Num(2)),Invk(Var(m),x,List()))))
==> Config(H(Map(1 -> A),2),LetExpr(A,m,Object(A,1),

LetExpr(Void,TEMP,InvkSetter(Var(m),x,Num(2)),Invk(Var(m),x,List()))))
==> Config(H(Map(1 -> A),2),

LetExpr(Void,TEMP,InvkSetter(Object(A,1),x,Num(2)),Invk(Object(A,1),x,List())))
==> Config(H(Map(1 -> A),2),LetExpr(Void,TEMP,

InvkStatic(Void,List()),Invk(Object(A,1),x,List())))
==> Config(H(Map(1 -> A, 2 -> Void),3),

LetExpr(Void,TEMP,Object(Void,2),Invk(Object(A,1),x,List())))
==> Config(H(Map(1 -> A, 2 -> Void),3),Invk(Object(A,1),x,List()))
==> Config(H(Map(1 -> A, 2 -> Void),3),Num(2))
(type = Int,res = 2)

Figure 6.10: FHJ+ step-by-step evaluation.
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beginning stage of modeling FHJ+, we also did the formalization based on MJ. The details of
that draft formalization can be found in Appendix A.9. In that version, FHJ+ supports state,
void setters, and statements. We make use of the heaps and stacks of MJ to model our state-
related features. A program consists of a list of interface declarations and a list of statements.
A statement can be an expression, variable declaration or variable assignment. We use the
same operational semantics for FHJ+ as in MJ, where operational semantics of MJ is defined
as transitions between configurations. A configuration is defined as a four-tuple, containing
the following information:

1. Heap: A finite partial function that maps oids to heap objects. This is the key to store
state.

2. Variable Stack: It maps variable names to oids.

3. Term: The main term to be evaluated.

4. Frame stack: This is essentially the program context in which the term is currently
being evaluated.

That version of formalization works, however, the model is significantly more complex.
Later on, a more straightforward and concise model came to our attention. Themodel is pro-
posed by Lagorio and Servetto [Lagorio and Servetto, 2011]. Instead of transitions between
four-tuples, the new model only uses heaps, therefore simplifies the model a lot. Now the
transition µ | e → µ ′ | e ′ means “the reduction of expression e, in a heap µ, produces an
expression e ′ and a (possibly) updated heap µ ′”. Actually, the simple model is enough for
achieving our goals, thus, we switch the base model to the later.

6.6.2 Statements

In one version of our model, besides modeling fields, we also model statements. The rea-
son is that normally in object-oriented programming, programmers are used to manipulate
state with state declaration and assignment, which are statements in common programming
languages. We modeled that in the beginning, however, after we apply the simpler model
as we described in Section 6.6.1, we removed variable declaration and assignment feature.
Instead, we now support let expressions, partly to replace statements. The reason is that with
let expressions we can mimic some of the functions of statements, however, we cannot ex-
press assignment, while the model is still simple enough. Therefore, it’s a trade-off between
expressiveness and simplicity. Since the simplemodel does not affect the core of our calculus,
finally we choose to use the simpler model.
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6.6.3 Constructors

The constructor design in object-oriented languages is tricky. In Java-like languages, there
is a default constructor provided which programmers can use for object creation. Also, pro-
grammers can define additional constructors for field initialization and other stuff. In Class-
less Java, our system provides default static methods called of to replace the common con-
structor methods. Of course, programmers have the freedom to define their customized
constructors. FHJ does not touch the difficult state-related issues. Therefore, there is also
no need to care about constructors. For FHJ+, the scenario is harder. The reason is that:
firstly, we need constructors to cater fields; secondly, these fields might be conflicting, a new
representation is needed to take care of conflicts.

There are two possible approaches in our minds, the first is default constructors and the
second is our current approach. If we take the first approach, then we need to provide a
default constructor, which initializes all the fields. And the fields are automatically detected
as valid fields once it satisfies our rules for judging fields (e.g., an abstract method without
arguments). However, this is problematic because sometimes people may define an abstract
method first, and later decide whether he/she wants it to represent a field or method.

Taking all of these thoughts into consideration, the constructors in our current formaliza-
tion take the form of new(Ix J.x) ;. The detailed meaning is explained in Section 6.3. With
this representation, we can achieve both goals:

• Customized constructors.

• Allows unintentionally conflicted fields.

However, compared to constructors for classes in other mature language models (e.g.,
C++), our constructors are still limited. There is a trade-off between flexibility (in terms of
initialization and constraints) and a nice and clean model of multiple inheritance. In terms
of constraints in the constructor design, for example, a class called Employee contains a field
called age, one might want to check whether age is a valid value by checking whether it is
between 0 and 100. In Java, one can check this condition directly and throw an exception if it
does not hold. However, for simplicity, both FHJ+ model and the prototype implementation
do not support such flexibility. One possible way to overcome this limitation is to support
special annotations such as @Range(low = 0, high = 100)Int age(); that specify the
condition which will be integrated in the generated code.
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6.6.4 State Operations and Static methods

As we discussed before, the ideas of FHJ+ partially come from the state operations of Class-
less Java. However, currently in FHJ+, only two state operations are supported, which are
setters and getters. What about others?

InClassless Java, withers take the formof Point2D withX(int val), with the function-
ality of cloning an object and updating the field xwith the value val. FHJ+ could potentially
incorporate this operation without much effort since the wither operation is orthogonal with
the hierarchical dispatching feature. In the future, it could be an extension to FHJ+.

Withers update one field value at a time, if programmers wish to update multiple fields
simultaneously, we may also incorporate the functional updater state operation in Classless
Java into FHJ+. In Classless Java, property updaters take the form of with(Point2D). It
takes a certain type of object and returns a new object, which is a copy of the current object,
however, with all matching fields (with the argument object) updated with the new values. It
can also be easily added to FHJ+.

Remember in Classless Java, static methods are supported, so that customized construc-
tors are possible. In Classless Java, there is a default static ofmethod as the object construc-
tor for the object interface. Meanwhile, programmers may define their own constructors
with static methods. In this way, specifying field constraints and field initialization would be
possible. In principle, this can also be supported in FHJ+. However, in the current version
of FHJ+, this is not available. Only an abstract method for specifying which ones are fields
are allowed to represent object constructors.

As discussed in Section 4.2.4, covariant field type refinement is supported inClassless Java.
For getters, it is supported in by method covariant return types. For setters, it is supported
by the ordinary method overriding and overloading. Incorporate this feature into FHJ+ will
make the fields refinable. However, tangled with the unintentional field conflicts scenario,
we would need to modify this approach a little bit and to add hierarchical overriding in the
signature of the new getters and setters.

6.7 A Larger Example: Office Clerk

In this section, to show that FHJ+ is scalable to real applications, we will present a slightly
larger example: office clerk. The code written in FHJ+ is presented in Appendix A.8.1. The
UML diagram (for the primary classes) is shown in Fig. 6.11.

In this example, classes Manager, Director, and Officer represent for different types
of titles (class Title) in a company. Class Point contains the two coordinates x and y,
modeled as two state operations here inside class Point.
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Located
+ position: Point

Employee
+ position: Title

+ age: Int 

+ name: String 

+ id: Int 

OfficeClerk
+ deskNumber: Int

+: id: Int 

Title

Manager Director Officer

Point
+ x: Int

+ y: Int 

+ id: Int

- moveTo(): OfficeClerk 

Figure 6.11: UML diagram for OfficeClerk

Class Employee contains four features (fields) of an employee, all represented by abstract
state operations:

• age of type Int: the age of an employee.

• name of type String: the name of an employee.

• position of type Title: the position of an employee in the company, could be a
Manager, Director, or Officer.

• id of type Int, the identity number of an employee.

Next is the core component OfficeClerk, which inherits from both Located and
Employee. Note that there are two kinds of conflicts here (of fields position and id):

1. The two position fields inherited from Located and Employee coexist in the class
OfficeClerk. This is what we called the unintentional state conflict, which we would
expect to keep both of the fields in OfficeClerk without any conflicts.

2. Classes Located and Employee both contain the field id and in class OfficeClerk,
we would like tomerge the two fields into one. To achieve this, a simple line of method
overridden Int id()override OfficeClerk; would satisfy the requirement.
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FHJ+ C++
LOC 45 57
Unintentional field conflicts Yes Yes
Field merge Yes No

Field refine
No (Not supported in the current version,
but refer to \cj implementation, it is possible to
incorporate this feature in the future)

No

Table 6.1: OfficeClerk comparison between FHJ+ and C++

Moreover, the function moveTo shows how to do office move of a clerk from one place to
another while keeping his/her title. Note that when calling the setter and getter of the field
position, programmers can disambiguate the position from the Located branch from
the position from the Employee by the prefix annotation Located.

Since programmers are more familiar with assignment statements, it seems like nothing
can be done without assignments because when people write programs, it is very natural to
define variables and assign new values to them. Therefore, for convenience, in the prototype
implementation, we support the assignment statements as syntactic sugar to let expressions.

6.7.1 C++ Comparison

We also provide a C++ implementation of the OfficeClerk example as comparison (see
code in Appendix A.8.2) and provide a simple comparison table (see Table 6.1).

1. In terms of lines of code, FHJ+ reduces the SLOC by 21% (from 57 to 45, excluding
blank lines), which is mainly due to the code required for constructors. For example,
the constructor for class Point in the FHJ+ implementation only requires one line of
code (since it is actually a constructor specification):

new(Int Point.x, Int Point.y);

In contrast, the constructor for class Point in theC++ implementation requires 4 lines
of code:

Point(Int* _x, Int* _y) {
x = _x;
y = _y;

}

2. Another difference is that FHJ+ can do field merge, while in C++, there is no field
merge. For example, to merge the fields id from classes Located and Employee, in
FHJ+:
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class Located {
...
Int id() override Located;

}

class Employee {
...
Int id() override Employee;

}

class OfficeClerk extends Located, Employee {
...
Int id() override OfficeClerk;
...

}

In C++, if we do not declare a new field id in class OfficeClerk then there would
be two separate id fields in OfficeClerk. If we do declare a new field id as we
have presented in Appendix A.8.2, then there would be three separate id fields in
OfficeClerk:

class Located {
...
int id;

};

class Employee {
...
int id;

};

class OfficeClerk : public Located, public Employee {
...
int id;
...

};

This meaning that, one way or another, the fields would never be merged in C++.
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There are lots of related work to this thesis, some of them have been discussed in Chapter 2.
In this chapter, we will discuss additional related work starting with previous solution to the
EP. Then we will describe mainstream popular multiple inheritance models and then some
specific models which are related to solving unintentional method conflicts. At last, we will
talk about other topics including formalization based on Featherweight Java, code generation
techniques, ThisType and MyType.

7.1 Previous Solutions to the Expression Problem

The Expression Problem in Mainstream Languages The solutions to the EP presented in
Chapter 3 only use subtyping. This is in sharp contrast to existing solutions in various widely-
used languages. Essentially all the solutions that we know of rely on various techniques and
a combination of two mechanisms: subtyping and some form of type-parametrization.

Wadler proposed a solution using generics inGeneric Java [Bracha et al., 1998] to solve the
EP. However he later found a subtle typing problem. Torgersen’s [Torgersen, 2004] presents
four solutions that use a combination of Java generics and subtyping. His solutions use ad-
vanced features of generics, such as F-bounds [Canning et al., 1989] or wildcards. The so-
lutions in Sections 3.4 and 3.2 follow the same structure as Torgersen’s first solution. The
difference is that covariant return types are used, instead of F-bounded type parameters, to
type occurrences of recursive types. Similarly to our Java code, where we need some Final
classes, Torgersen’s solution requires a set of classes that close the fixpoint of the F-bounds.
Object algebras [Oliveira and Cook, 2012] are an alternative approach to solving the EP in
Java-like languages. While object algebras do not require advanced features of generics, such
as F-bounds or wildcards, they still require a simple form of generics. Moreover the style in
which code is written with object algebras can be considerably different from conventional
OO style. Nevertheless, the combination of the techniques presented in our paper with ob-
ject algebras is useful to solve problems that go beyond Wadler’s EP.

There have been a few solutions to the EP in Scala. Zenger and Oder-
sky [Zenger and Odersky, 2005] proposed a solution to the Expression Problem in

129



7 Related Work

Scala using virtual types [Bruce et al., 1998]. The approach they present, commonly known
in the Scala community as the “Cake pattern”, is a way to use various Scala features to
emulate some of the benefits of virtual classes [Ernst et al., 2006]. Their approach is closely
related to our solution in Section 3.7. Where we use a type parameter with F-Bounded
quantification, they use virtual type members. Instead of object algebras, they use factory
methods directly in the family traits. In some sense it could be said that Section 3.7 approach
is a poor man’s version of the “Cake pattern”, relying only in the features available in Java.
Oliveira [Oliveira, 2009] presented two variations of the Visitor pattern, which allowed
for extensibility. However this work used advanced features of generics including type
constructor polymorphism, variance annotations, self-type annotations and mixins.

There are also solutions to the EP in languages like Haskell. A popular Haskell so-
lution to the Expression Problem is based on folds (and F-algebras) [Duponcheel, 1995,
Swierstra, 2008]. This solution requires some advanced features of Haskell and it does
not translate well to object-oriented programming because most OO languages do not
have native support for sums-of-products, which are needed in that solution. Another
solution to the Expression Problem in Haskell is to encode fold-algebras with type-
classes [Oliveira et al., 2006]. This solution is closely related to the work on object algebras.

Language-based solutions to the Expression Problem Various approaches, based
on new programming languages or programming language features, can be used to
solve the EP. Examples of these include: multi-methods [Chambers and Leavens, 1995];
open classes [Clifton et al., 2000]; virtual classes [Madsen and Moller-Pedersen, 1989,
Ernst et al., 2006, Nystrom et al., 2006]; virtual types [Bruce et al., 1998];
units [McDirmid et al., 2001]; polymorphic variants [Garrigue, 1998]; and oth-
ers [Zenger and Odersky, 2001, Löh and Hinze, 2006, Wehr and Thiemann, 2011]. Because
these approaches create new language constructs targeted at solving extensibility problems,
solutions to the EP can be expressed quite naturally. However we believe that the Scala
solution in Section 3.2 is comparable in simplicity to language-based approaches. Language-
based approaches still have an advantage at dealing with some of the harder challenges in
extensibility. For example, with virtual classes, expressing the advanced forms of family
polymorphism is still quite natural, whereas with our design-pattern based approach gets
significantly more complex.
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7.2 Lightweight Encodings of Family Polymorphism

There has been some work on encoding family polymorphism [Ernst, 2001] in existing
languages, or lightweight encodings of family polymorphism. We already mentioned
the “Cake Pattern” in Scala [Zenger and Odersky, 2005], which can emulate many of the
features of family polymorphism and virtual classes. Various lightweight encodings of
family polymorphism [Kamina and Tamai, 2007, Saito et al., 2008, Saito and Igarashi, 2008,
Kamina and Tamai, 2008] and related ideas have been proposed as extensions of Feather-
weight Java (FJ) [Igarashi et al., 2001]. Notable among these proposals is the work by Saito
and Igarashi ’s [Saito and Igarashi, 2008] on the essence of family polymorphism. They pro-
posed a lightweight version of family polymorphism, which relies on a simple extension to
Featherweight Generic Java (FGJ) [Igarashi et al., 2001]: self-type variables. Self type vari-
ables allow giving the self references this a more precise type. This is necessary to allow
type-checking certain definitions, which take the self-reference as an argument. Saito and
Igarashi argue that this is the essential difference between their lightweight polymorphism
approach and encodings of family polymorphism using F-bounded polymorphism only. Al-
though self-type variables are not expressible directly in FGJ or Java, Torgersen has shown a
simple way to work around the issue [Torgersen, 2004]. We believe Torgersen’s techniques
could be combined with our approaches to allow type-checking definitions that require such
uses of self-references. However this would add additional complexity to the encoding. Saito
and Igarashi’s approach does not support virtual constructors: instantiation of classes with
self type variables is disallowed. In contrast, the approach in Section 3.7 uses object algebras
to emulate virtual constructors.

7.3 Language-related Techniques and Issues in Multiple
Inheritance

Multiple inheritance is a useful feature in object-oriented programming. It is very ex-
pressive but difficult to model and implement. It can cause various problems (e.g., the
famous diamond problem [Bracha and Cook, 1990, Sakkinen, 1989, Singh, 1995], conflict-
ing methods, etc.) in reasoning about programs. To allow for expressive power and
simplicity, many models have been proposed, including C++ virtual inheritance, traits,
mixins [Bracha and Cook, 1990], traits [Schärli et al., 2003], and hybrid models such as
CZ [Malayeri and Aldrich, 2009]. They provide novel programming architecture models in
the OO paradigm. In terms of restrictions set on these models, C++ virtual inheritance aims
at a relatively general model; the mixin model adds some restrictions; and the trait model is
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the most restricted one (excluding state, instantiation, etc.). In this section, we will discuss
these models in detail and relate to the present work.

7.3.1 C++ Model and the Middleman Approach

C++ has a general solution to multiple inheritance by virtual inheritance, dealing with the
diamond problem by keeping only one copy of the base class [Ellis and Stroustrup, 1990].
However, it suffers from the object initialization problem [Malayeri and Aldrich, 2009]. It
bypasses constructor calls to virtual superclasses, which can cause serious semantic errors.
In our approach in Chapter 4, the @Obj annotation has full control over object initialization,
and the mechanism is transparent to users. If users are not satisfied with the default of
method, customized factory methods can be provided.

C++ allows the existence of unintentional conflicts and users may specify a hierarchi-
cal path via casts for disambiguation, as discussed in Section 5.2. With virtual methods,
dynamic dispatch is used and the method lookup algorithm will find the most specific
method definition. A contribution of our work in Chapter 5 is to provide a minimal for-
mal model of hierarchical dispatching, whereas C++ can be viewed as a real-world imple-
mentation. There are several formalizations [Wasserrab et al., 2006, Ramananandro, 2012,
Ramalingam and Srinivasan, 1997] in the literature modeling various C++ features. How-
ever, as far as we know, there is no formal model that captures this aspect of the C++ method
dispatching model. Apart from this, as discussed in Section 5.5.3, FHJ conservatively rejects
some interface/class definitions that C++ accepts, and upcasts are never rejected since the
ambiguity is prevented beforehand.

Although C++ supports hierarchical dispatching, it does not support hierarchical overrid-
ing. However, there are some possible workarounds that can mimic hierarchical overriding,
including theMiddleMan approach 1, the interface classes pattern as described in Section 25.6
of [Stroustrup, 1995], the LotterySimulation discussion in [Stroustrup, 1994]. Since these
workarounds share the same spirit, we will discuss in detail the MiddleMan approach, with
the code shown in Figure 7.1. In this example, classes A and B are two classes that both define
a method with the same name m unintentionally.

Class MiddleMan, as its name suggests, acts as a middleman between its class C and its
parents A, B. MiddleMan defines a virtual method m that overrides a parent method m and
delegates the implementation to another method m_impl that takes this as a parameter.
C++ supports method overloading so that multiple m_impl methods with different param-
eter types can coexist. When defining class C, we specify the parents to be MiddleMan<A>,

1https://stackoverflow.com/questions/44632250/can-i-do-mimic-things-likes-this-par
tial-override-in-c
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class A { public: virtual void m() {cout << "MA" << endl;}};
class B { public: virtual void m() {cout << "MB" << endl;}};
template<class C>
class MiddleMan : public C {

void m() override final { m_impl(this); }
protected:
virtual void m_impl(MiddleMan*) { return this->C::m(); }

};
class C : public MiddleMan<A>, public MiddleMan<B> {
private:

void m_impl (MiddleMan<A>*) override {cout << "MA2" << endl;}
void m_impl (MiddleMan<B>*) override {cout << "MB2" << endl;}

};
int main()
{

C* c = new C();
((A*)c)->m(); //print "MA2"
return 0;

}

Figure 7.1: The MiddleMan approach.

MiddleMan<B> instead of A, B. In this way, programmers may define new versions of A.m
and B.m in class C by providing the corresponding m_implmethods. Then in the client code,
the method call ((A*)c)->m() will print out the string "MA2", as expected. Although this
workaround can help us defining partial method overrides to a certain extent, the drawbacks
are obvious. Firstly, the approach is complex and requires the programmer to fully under-
stand this approach. Moreover, the lack of direct syntax support makes MiddleMan code
cumbersome to write. Finally, the approach is ad-hoc, meaning that the class MiddleMan
shown in Figure 7.1 is not general enough to be used in other cases: more middlemen are
needed if partial method overrides happen in other classes; and it is even worse when return
types differ.

7.3.2 Traits

Traits and Java’s default methods Simplifying the mixins approach,
traits [Schärli et al., 2003] draw a strong line between units of reuse and object facto-
ries. Traits, as units of reusable code, contain only methods as reusable functionality,
ignoring state and state initialization. Classes, as object factories, require functionality
from (multiple) traits. Java 8 interfaces are closely related to traits: concrete method
implementations are allowed (via the default keyword) inside interfaces. The introduction
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of default methods opens the gate for various flavors of multiple inheritance in Java. Traits
offer an algebra of composition operations like sum, alias, and exclusion, providing explicit
conflict resolution. Former work [Bono et al., 2014] provides details on mimicking the trait
algebra through Java 8 interfaces.

There are also proposals for extending Java with traits. For example, FeatherTrait Java
(FTJ) [Liquori and Spiwack, 2008] extends FJ [Igarashi et al., 2001] with statically-typed
traits, adding trait-based inheritance in Java. Except for few, mostly syntactic details, their
work can be emulated with Java 8 interfaces. There are also extensions to the original trait
model, with operations (e.g., renaming [Reppy and Turon, 2006], which breaks structural
subtyping) that default methods and interfaces cannot model.

Traits vs. object interfaces. We consider object interfaces an alternative to traits or
mixins. In trait model two concepts (traits and classes) coexist and cooperate. Some
authors [Bettini et al., 2013] see this as good language design fostering good software de-
velopment by helping programmers think about the program structures. However, oth-
ers see the need of both concepts and the absence of state as the drawbacks of this
model [Malayeri and Aldrich, 2009]. Object interfaces are units of reuse, and meanwhile
provide factory methods for instantiation and support state. Our approach promotes the
use of interfaces in order to exploit the modular composition offered by interfaces. Since
Java was designed for classes, a direct classless programming style is verbose and unnatural.
However, annotation-driven code generation is enough to overcome this difficulty and the
resulting programming style encourages modularity, composability and reusability. In that
sense, we promote object interfaces as being both units of reuse and object factories. Our
practical experience shows that separating the two notions leads to lots of boilerplate code,
and is quite limiting when multiple inheritance with state is required. Abstract state opera-
tions avoid the key difficulties associated withmultiple inheritance and state, while still being
quite expressive. Moreover, the ability to support constructors adds expressivity, which is not
available in approaches such as Scala’s traits/mixins.

7.3.3 Mixins and the Linearization Problem

In the previous chapter (see Section 2.2.3), we mentioned that mixin composition relies on
linearization and researchers criticize this issue a lot. In this section, We will discuss what is
the linearization and the issue it will cause.

What is Linearization? A mixin can be defined with no or multiple parent mixins, mix-
ins choose an ordering of the composition, for both direct and inherited components. This
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ordering is important because different orderings will cause different behaviors. There are
predefined rules to control the ordering of mixins. For example:

• A mixin itself precedes its parent mixins.

• The local ordering of a mixin is preserved.

• Duplicated mixins are removed from the ordering, keeping the left-most one.

Here is an example of hotpot, illustrating how the linearization is applied in real exam-
ples. A hotpot is made up of meat and vegetable, i.e., mixined from mixins meat and
vegetable. Similarly for meat, vegetable, pork and potato, they are also composed
from other mixins with a certain order.

(def hotpot () (meat vegetable))
(def meat () (pork))
(def vegetable () (potato))
(def pork () (food))
(def potato () (food))
(def food () ())

The result ordering of parent mixins for hotpot is: (hotpot meat pork vegetable
potato food). This ordering satisfies all the three rules mentioned above.

Linearization Issues In the above example, all the orderings are compatible. However,
when programmers try to mix together mixins with incompatible orderings, conflicts hap-
pens. When no ordering of all the mixins can satisfy the constraints, the program is rejected
and requires the programmers to fix. For example:

(def dinner () (pork hotpot))

There is no proper ordering of dinner. Because in the ordering constraint of hotpot,
hotpot precedes pork, however in the ordering constraint of dinner, pork precedes
hotpot.

Mixins are more restricted than the C++ approach. Mixins allow naming components
that can be applied to various classes as reusable functionality units. However, the lineariza-
tion (total ordering) of mixin inheritance cannot provide a satisfactory resolution in some
cases and restricts the flexibility of mixin composition. To fight against this limitation, an
algebra of mixin operators is introduced [Ancona and Zucca, 2002], but this raises the com-
plexity, especially when constructors and fields are considered [Lagorio et al., 2009]. Scala
traits [Odersky et al., 2004] are in fact more like linearized mixins. Scala avoids the object
initialization problem by disallowing constructor parameters, causing no ambiguity in cases
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such as the diamond problem. However, this approach has limited expressiveness and suffers
from all the problems of linearized mixin composition. Java interfaces and default methods
do not use linearization: the semantics of Java extends clause in interfaces is unordered and
symmetric.

7.3.4 The CZ Model

Malayeri and Aldrich proposed a model CZ [Malayeri and Aldrich, 2009] which aims to do
multiple inheritance without the diamond problem. The design of CZ is based on the intu-
ition that there are relationships between classes that are not captured by inheritance, and
that if class hierarchies could express richer interconnections, inheritance diamonds need
not exist. Suppose the concrete class C extends A, as noted by Schärli et al., it is beneficial
to recognize that C serves two roles: (1) it is a generator of instances, and (2) it is a unit
of reuse (through subclassing) [Schärli et al., 2003]. In the first role, inheritance is the im-
plementation strategy and may not be omitted. In the second role, however, it is possible
to transform the class hierarchy to one where an inheritance dependency between C and A
is stated and where subclasses of C inherit from both C and A. Here, inheritance is divided
into two concepts: inheritance dependency and implementation inheritance. The key dis-
tinguishing feature of CZ is this notion of inheritance dependency, because while multiple
inheritance is permitted, inheritance diamonds are forbidden.

Using a combination of requires and extends, a program with diamond inheritance
is transformed into one without diamonds. Moreover, fields and multiple inheritance can
coexist. However untangling inheritance also untangles the class structure. Thus in CZ, one
of the drawbacks is that not only the number of classes, but also the class hierarchy complex-
ity increases. In contrast, IB does not complicate the hierarchical structure, and state also
coexists with multiple inheritance.

7.4 Resolving Unintentional Method Conflicts

The above-mentionedmodels/languages support multiple inheritance, focusing on diamond
inheritance. They handle method conflicts in the same way, by simply disallowing two meth-
ods with the same signature from two different units to coexist. In contrast, our work in
Chapter 5 provides mechanisms that allow methods with the same signatures, but different
parents to coexist in a class. Disambiguation is possible in many cases by using both static
and dynamic type information duringmethod dispatching. In the cases where real ambiguity
exists, FHJ’s type system can reject interface definitions and/or method calls statically.
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A few language implementations have realized the problem of unintentional conflicts and
provided some support for it.

7.4.1 C# Explicit Method Implementations

Explicit method implementations is a special feature supported by C#. As described in C#
documentation [Microsoft, 2003], a class that implements an interface can explicitly imple-
ment a member of that interface. When a member is explicitly implemented, it can only
be accessed through an instance of the interface. Explicit interface implementations allow
an interface to inherit multiple interfaces that share the same member names and give each
interface member a separate implementation.

Explicit interface member implementations have two advantages. Firstly, they allow inter-
face implementations to be excluded from the public interface of a class. This is particularly
useful when a class implements an internal interface that is of no interest to a consumer of
that class or struct. Secondly, they allow disambiguation of interface members with the same
signature. However, there are two critical differences to FHJ: (1) default method implemen-
tations are not allowed in C# interfaces; (2) there is only one level of conflicting method
implementations at the class that implements the multiple parent interfaces. Further over-
riding of those methods is not possible in subclasses.

7.4.2 Languages Using Hygienicity

In NextGen/MixGen [Allen et al., 2003], HygJava [Kusmierek and Bono, 2007] and
Magda [Bono et al., 2012], hygienicity is proposed to deal with unintentional method
conflicts. The idea is to give a method a unique identifier by prefixing the name with
an unambiguous path. As shown in Figure 7.2, the prefix HelloWorld in the method
call (new HelloWorld []).HelloWorld.MainMatter() is mandatory. So writing
programs in these languages is tedious if not supported by a specialized IDE, that aids filling
prefix/method information. The advantage of this approach, compared to ours, is that it
does not require any additional notion for method dispatching. Indeed the compilation
strategy is simple, just by generating conventional code (say in Java or C++) with method
names attached with prefixes. Unfortunately, the disadvantage is that some expressive
power is lost. In particular, merging methods arising from diamond inheritance is not
possible because the methods have different prefixes. As shown in Figure 7.3, two methods
m from different branches A and B cannot be overridden by the method m in C because they
are regarded as unrelated methods, and m in C is just another new method that has nothing
to do with A.m or B.m. The reason is that in these hygienic approaches, path names are
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mixin HelloWorld of Object =
new Object MainMatter()
begin

"Hello world".String.print();
end;

end;
(new HelloWorld []).HelloWorld.MainMatter();

Figure 7.2: Full-qualified name of method calls in Magda.

mixin A of Object =
new String m()
begin

return "A";
end;

end;
mixin B of Object =

new String m()
begin

return "B";
end;

end;
mixin C of A, B =

new String m()
begin

return "C";
end;

end;

Figure 7.3: Code in Magda.

used to distinguish different methods. In contrast, our model can deal with unintentional
conflicts, as well as merged methods because our semantics is not simply based on prefixing.
Instead, our model keeps the names of methods unchanged, and our direct operational
semantics takes static and dynamic type information into account at runtime when doing
method dispatching. Finally, the multiple inheritance model in Magda is based on Mixins,
whereas FHJ is based on traits. Thus, Magda inherits all limitations of Mixins (such as the
linearization problem, etc.).
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7.4.3 Hierarchical Dispatch in Self

As we have discussed before, although the mix of static and dynamic dispatch is particularly
useful under certain circumstances, it has received little research attention. In the prototype-
based language Self [Chambers et al., 1991], inheritance is a basic feature. Self does not in-
clude classes but instead allows individual objects to inherit from (or delegate to) other ob-
jects. Although it is different from class-based languages, the multiple inheritance model is
somewhat similar. The Self language supportsmultiple (object) inheritance in a clever way. It
not only develops the new inheritance relation with prioritized parents but also adopts sender
path tiebreaker rule for method lookup. In Self “if two slots with the same name are defined in
equal-priority parents of the receiver, but only one of the parents is an ancestor or descendant
of the object containing the method that is sending the message, then that parent’s slot takes
precedence over the over parent’s slot.” Similarly to our model, this sender path tiebreaker
rule resolves ambiguities between unrelated slots. However, it is used in a prototype-based
language setting and it does not support method hierarchical overriding as FHJ does.

7.5 Formalization Based on Featherweight Java

Featherweight Java (FJ) [Igarashi et al., 2001] is a minimal core calculus of the Java language,
proposed by Igarashi et. al. There are many models built on Featherweight Java, including
FeatherTrait [Liquori and Spiwack, 2008], Featherweight defenders [Goetz and Field, 2012],
Jx [Nystrom et al., 2004], Featherweight Scala [Cremet et al., 2006], and so on. FJ provides
the standardmodel of formalizing Java-like object-oriented languages and is easily extensible.
In terms of formalization, the key novelty of our model is making use of various types (such
as parameter types, method return types, etc.) to track the static types as well as the dynamic
types during reduction. As far as we know, this technique has not appeared in the literature
before. This notion is of vital importance in our hierarchical dispatch algorithm, and it allows
for a more precise subject-reduction theorem as discussed in Section 5.3.

7.6 Code Generation Techniques

Automatic generation of getters and setters This is an old idea used in languages such
as Self [Ungar and Smith, 1987b], Dart [Dar, 2016] and Newspeak [Bracha et al., 2008]. The
programmers specify field signatures and (critically) the intention of storing such informa-
tion, then the language generates getters and setters. Once state is abstracted away, it is well
known that state access can be replaced with computation, but the type of the field stays the
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same. We do the opposite, the idea of the field is generated starting from signatures of get-
ters and setters. In our approach in Chapter 4, the intention of storing the information is not
expressed by the programmer and set in stone but can vary by inheritance. In this case, the
underlying type of the field can be changed by our fluid state, and with methods provide the
right injection from the old type to the new.

7.7 ThisType and MyType

Object interfaces support automatic type-refinement. Type refinement is part of a big-
ger topic in class-based languages: expressing and preserving type recursion and (nomi-
nal/structural) subtyping at the same time. One famous attempt in this direction is My-
Type [Bruce, 1994], representing the type of this, changing its meaning along with inheri-
tance. However, when invoking a method with MyType in parameter positions, the exact
type of the receiver must be known. This is a big limitation in class-based OO programming
and is exasperated by the interface-based programming we propose: no type is ever going to
be exact since classes are not explicitly used. A recent article [Saito and Igarashi, 2013] pro-
poses two new features: exact statements and nonheritable methods. Both are related to our
work: 1) anymethod generated inside the ofmethod is indeed non-inheritable since there is
no class name to extend from; 2) exact statements (a form of wild-card capture on the exact
run-time type) could capture the “exact type” of an object even in a class-less environment.

Admittedly, MyType greatly enhances the expressivity and extensibility of object-oriented
programming languages. Object interfaces use covariant return types to simulate some uses
of MyType. However, this approach only works for refining return types, whereas MyType is
more general, as it also works for parameter types. Our approach to covariantly refine state
can recover some of the additional expressivity of MyType. As illustrated with our examples,
object interfaces are still very useful in many practical applications, yet they do not require
additional complexity from the type system.
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The previous chapters have discussed the main parts of the thesis. In this chapter, I will
conclude the thesis, discuss potential limitations and discuss possible future work directions.

8.1 Conclusions

In this thesis we have explored the softwaremodularity related issues inObject-Oriented Pro-
gramming. We showed that multiple inheritance improves software modularity and also dis-
cussed the difficulty and problems in realizing multiple inheritance. Especially, we focused
on the problems of extensibility, expressiveness, the diamond problem, and method/state
conflicts. In this thesis, to solve these problems we have gradually introduced the following
works:

EP Trivially After studying the canonical Expression Problem and discussing the impor-
tance of solutions to it, we proposed our simple solution using subtyping in both Scala
and Java. The solution does not require any advanced language features except for co-
variant field type refinement (as in Scala) and covariant method return types (as in
Java).

We believe that the results of our work provide two important insights. Firstly, while it
has beenwidely believed that statically typed functional languages andOOP languages
have equal difficulties in solving the Wadler’s EP, our work shows that this is not true.
Wadler’s EP is in fact simpler to solve in OOP languages due to the native support for
subtyping. Since traditional functional languages, such asHaskell orML, have avoided
native support for subtyping a similar solution does not directly apply. Secondly, our
work shows that, as a benchmark for extensibility, Wadler’s EP is perhaps “too easy”.
The bar can be set higher by requiring, not only consumer methods, but also binary
and producer methods (such as a binary equality operation, or an operation that trans-
forms expressions). We believe that our solution is valuable because of its simplicity
and applicability in real-world applications.
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Classless Java From Java 8, static and default methods are allowed in interfaces, which en-
able implementations inside interfaces. An important positive consequence that was
probably overlooked is that the concept of class (in Java) is now (almost) redundant
and unneeded. We propose a programming style, called Classless Java, where truly
object-oriented programs and (reusable) libraries can be defined and used without
ever defining a single class.

However, using this programming style directly in Java is very verbose. To avoid syn-
tactic boilerplate caused by Java not being originally designed to work without classes,
we introduce the @Obj annotation that provides default implementations for various
methods (e.g., getters, setters, with-methods) and a mechanism to instantiate objects.
We rely on annotation processing and the Lombok library, in this way @Obj is just a
normal Java library. The @Obj annotation helps programmers to write less cumber-
some code while coding in Classless Java. In summary, we believe that Classless Java
with the @Obj annotation is lighter than full Java and it is convenient for programmers
to adopt our proposed OO style without classes in their implementations.

FHJ & FHJ+ In these two chapters we have explored the issues related to conflicts in mul-
tiple inheritance. Previous approaches either do not support unintentional method
conflicts, thus have to compromise between code reuse and type safety, or do not fully
support overriding in the presence of unintentional conflicts. FHJ and FHJ+ are pro-
posed as two formalized multiple inheritance models to solve these issues.

To deal with unintentional method conflicts, we introduce two key mechanisms: hier-
archical dispatching and hierarchical overriding. Hierarchical dispatching is inspired
by the mechanisms in C++. We provide a minimal formal model of hierarchical dis-
patching in FHJ. Such an algorithm makes use of both dynamic type information and
static information from either upcasts or parameters’ information. It not only offers
code reuse and dynamic dispatch but also ensures unambiguity using our hierarchical
dispatching algorithm for method resolution. Additionally, we introduce hierarchical
overriding to allow conflicting methods in different branches to be individually over-
ridden. FHJ allows programmers to freely declare, inherit and update unintentional
conflicted methods.

As an extension to FHJ, FHJ+ aims at solving the problem of state conflicts. In addi-
tion, the way FHJ+ treats the state conflicts can be seen as a general solution to the
diamond problem. For both FHJ and FHJ+, we all provide the corresponding proto-
type implementation (in Scala), soundness properties and formal proofs.
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FHJ and FHJ+ are formalized following the style of Featherweight Java and proved to
be sound. A prototype interpreter is implemented in Scala. We believe that the for-
malization of hierarchical dispatching features is general and can be safely embedded
in other OO models, so as to have support for the fork inheritance.

8.2 Future Work

Although we have explored the software modularity related issues in Object- Oriented Pro-
gramming and proposed several solutions to improve them in this thesis, there is still room
for doing more tests, exploring new proposals, improving our solutions and prototypes, etc.
We will briefly discuss them in the following and provide possible future directions.

8.2.1 Supporting More Scenarios in EP

Although our solution to the EP is a general solution in theory, we have only applied it to two
languages: Java and Scala. In the future, we may apply the solution to more languages and
scale the solution to larger programs/systems, which may in turn help us dive deeper into
the EP, find the limitations, and give us more inspiration on how to improve the solution.

What is more, currently our solution to the EP supports consumermethods well. In terms
of future work, one promising direction is to further support producer methods and binary
methods. The ideal producermethods should be able to transform one expression to another
and the binary methods should have the target (refinable) type in positive positions. To
implement such extensions, one might need to create a new language model or modify the
semantics in the existing languages, for example, using AST modification techniques in Java
or Scala.

Last but not the least, another possible direction is to consider the extensibility in program-
ming, as ASTs of our solution have to be immutable. The approach presented in this thesis
lacks of mutability of the sub- expressions: the Scala solution relies on immutable fields; and
the Java solution relies on getters. Although we present a variant which supports mutability
by allowing the use of generics in Section 3.8, how to supportmutability using only subtyping
remains to be an interesting problem.

8.2.2 Possible Improvements on Classless Java

As discussed in Section 4.3.3, the current implementation for Classless Java has certain lim-
itations. Some possible future work could be:
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• Currently our implementation of the Classless Java annotation in Lombok only sup-
ports the ejc version. In the future, we can also implement the javac version so that
users may choose freely.

• Support for separate compilation may be realized by reimplementing @Obj referring
to @Delegate annotation (though this is an experimental feature), or find another
annotation processing framework which supports separate compilation naturally.

• Better IDE support on the annotation, including code suggestions, error messages, etc.
This would, of course, require much engineering effort.

Although the work of Classless Java is presented in Java, the underlying core idea is
interface-based programming. Therefore, Java is not the only way to present the idea. One
possible future work is to apply IB to more languages to impact users of other languages
and also test the idea of IB. Another interesting avenue for future work would be to design a
new language based on the idea of IB. With a proper language design, we would not need to
restrict ourselves to the limitations of Java and its syntax.

8.2.3 Improving FHJ and FHJ+

Our current model of FHJ is the core calculus that contains only the most necessary features
to support hierarchical dispatching and overriding. Similarly, the current model of FHJ+
contains only the core features to support state-related features in addition to FHJ. However,
to make them realistic languages to use, we should extend the language with more features
and support more syntax sugars to make the language richer. As discussed in Section 5.5,
there could be orthogonal and non-orthogonal extensions to be added. For example, wemay
add new features such as static invocation, assignments and static methods in the future.

Besides addingmore features, as discussed in Section 3.8, there are lots of features that can
be achieved with different designs. For example, in the future we may try to implement the
constructors in different ways. We may support fields natively instead of using abstract state
operations. Moreover, the future work relates to loosening the models without giving up its
soundness, taking some inspirations from the C++ design.

Finally, programming is fun, and exploring the way to better programming is more fun.
Actually, besides the futureworkwementioned above, there is a large gap between the current
programming practice and the ideal way in the future. In this thesis, the problems we have
explored are only a small part of it. However, I hope the techniques proposed in this thesis can
contribute a little to the programming community and inspire other researchers (including
me) for further exploration.
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A.1 Classless Java Translation: Formal Semantics

This section presents a formalization of Classless Java, which models the essence of Java
interfaces with default methods. This formalization is used to define the semantics of object
interfaces.

A.1.1 Syntax

Figure A.1 shows the syntax of Classless Java. The syntax formalizes a minimal subset of Java
8, focusing on interfaces, default methods and object creation literals. There is no syntax
for classes. To help readability we use many metavariables to represent identifiers: C, x, f
and m; however they all map to a single set of identifiers as in Java. Expressions consist of
conventional constructs such as variables (x), method calls (e.m(e)) and static method calls
(I.m(e)). For simplicity the degenerate case of calling a static method over the this receiver
is not considered. A more interesting type of expressions is super calls (I.super.m(e)),
whose semantics is to call the (non-static) method m over the this receiver, but statically
dispatching to the version of the method as visible in the interface I. A simple form of field
updates (x=e;e ′) is also modeled. In the syntax of field updates x is expected to be a field
name. After updating the field x using the value of e, the expression e ′ is executed. To blend
the statement based nature of Java and the expression based nature of our language, we con-
sider a method body of the form return x=e;e ′ to represent x=e;return e ′ in Java. Finally,
there is an object initialization expression from an interface I, where (for simplicity) all the
fields are initialized with a variable present in scope. To be fully compatible with Java, the
concrete syntax for an interface declaration with empty supertype list would also omit the
extends keyword. Following standard practice, we consider a global Interface Table (IT)
mapping from interface names I to interface declarations I.

The environment Γ is a mapping from variables to types. As usual, we allow a func-
tional notation for Γ to do variable lookup. Moreover, to help us define auxiliary func-
tions, a functional notation is also allowed for a set of methods meth, using the method
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name m as a key. That is, we define meth(m) = meth iff there is a unique meth ∈ meth
whose name is m. For convenience, we define meth(m) = None otherwise; moreover
m ∈ dom(meth) iff meth(m) = meth. For simplicity, we do not model overloading, thus
for an interface to be well formed its methods must be uniquely identified by their names.

A.1.2 Typing

Typing statement Γ ⊢ e ∈ I reads “in the environment Γ , expression e has type I.”. Before
discussing the typing rules we discuss some of the used notation. As a shortcut, we write
Γ ⊢ e ∈ I <: I ′ instead of Γ ⊢ e ∈ I and I <: I ′.

We omit the definition of the usual traditional subtyping relation between interfaces, that
is the transitive and reflexive closure of the declared extends relation. The auxiliary notation
Γmh trivially extracts the environment from a method header, by collecting the all types and
names of the method parameters. The notationmmh and Imh denotes respectively, extracting
the method name and the return type from a method header. mbody(m, I), defined in Ap-
pendix A.1.3, returns the full method declaration as seen by I, that is the method m can be
declared in I or inherited from another interface. mtype(m, I) and mtypeS(m, I) return the
type signature from a method (using mbody(m, I) internally). mtype(m, I) is defined only
for non static methods, while mtypeS(m, I) only for static ones. We use dom(I) to denote the
set of methods that are defined for type I, that is: m ∈ dom(I) iff mbody(m, I) = meth.

In Figure A.2 we show the typing rules. We discuss the most interesting rules, that is (t-
Obj) and (t-Intf). Rule (t-Obj) is the most complex typing rule. Firstly, we need to ensure
that all field initializations are type correct, by looking up the type of each variable assigned
to a field in the typing environment and verifying that such type is a subtype of the field type.
Finally, we check that all method bodies are well-typed. To do this the environment used
to check the method body needs to be extended appropriately: we add all fields and their
types; add this : I; and add the arguments (and types) of the respective method. Now we
need to check if the object is a valid extension for that specific interface. This can be logically
divided into two steps. First we check that all method headers are valid with respect to the
corresponding method already present in I:

• sigvalid(mh1 . . .mhn, I)=
∀i ∈ 1..n mhi; <: mbody(mmhi , I)

Here we require that for all newly declared methods, there is a method with the same name
defined in the interface I, and that such method is a supertype of the newly introduced one.
We define subtyping between methods in a general form that will also be useful later.
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• I m(I1x1 . . . Inxn); <:

I ′m(I1x ′1 . . . Inx ′n);
= I <: I ′

• meth <: default mh{return _;} = meth <: mh;
• default mh{return _;} <: meth = mh; <: meth
We allow return type specialization as introduced in Java 5. A method header with return
type I is a subtype of anothermethod header with return type I ′ if all parameter types are the
same, and I <: I ′. A default methodmeth1 is a subtype of another default method meth2 iff
mhmeth1 is a subtype of mhmeth2 . Secondly, we check that all abstract methods (which need
to be explicitly overridden) in the interface have been implemented:

• alldefined(mh1 . . .mhn, I) = ∀m such that
mbody(m, I) = mh;∃i ∈ 1..nmmhi = m

The rule (t-intf) checks that an interface I is correctly typed. First we check that the body
of all default and static methods are well-typed. Then we check that dom(I) is the same as
dom(I1) ∪ . . . ∪ dom(In) ∪ dom(meth). This is not a trivial check, since dom(I) is defined
using mbody, which would be undefined in many cases: notably if a method meth ∈ meth
is not compatible with some method in dom(I1) . . . dom(In) or if there are methods in any
dom(Ii) and dom(Ij) (i, j ∈ 1..n) conflict.

A.1.3 Auxiliary Definitions

Defining mbody is not trivial, and requires quite a lot of attention to the specific model
of Java interfaces, and to how it differs w.r.t. Java Class model. mbody(m, I) denotes
the actual method m (body included) that interface I owns. The method can either
be defined originally in I or in its supertypes, and then passed to I via inheritance.
• mbody(m, I0) = override(meth(m), needed(m, I))

with IT(I0) = ann interface I0 extends I1 . . . In
{meth} and I ∈ I if Ii <: I, i ∈ 1..n

The definition of mbody reconstructs the full set of supertypes I and then delegates the work
to two other auxiliary functions: needed(m, I) and override(meth,meth).

needed recovers from the interface table only the “needed”methods, that is, the non-static
ones that are not reachable by another, less specific superinterface. Since the second param-
eter of needed is a set, we can choose an arbitrary element to be I0. In the definition we
denote by originalMethod(m, I) = meth the non-static method called m defined directly in
I. Formally:
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• originalMethod(m, I0) = meth
with IT(I0) = ann interface I0 extends I{meth} ,

meth ∈ meth not static,m = mmeth

• originalMethod(m, I0) ∈
needed(m, I0 . . . In)

=

̸ ∃i ∈ 1..n such that originalMethod(m, Ii) is defined
and Ii <: I0

override models how a method in an interface can override implementations in its super-
interfaces, even in the case of conflicts. Note how the special value None is used, and how
(the 5th case) overriding can solve a conflict.
• override(None, ∅) = None
• override(meth, ∅) = meth
• override(None,meth) = meth
• override(None,mh;) = mostSpecific(mh;)
• override(meth,meth) = meth

with ∀meth ′ ∈ meth : meth <: meth ′

Thedefinition mostSpecific returns themost specificmethodwhose type is the subtype of all
the others. Since method subtyping is a partial ordering, mostSpecific may not be defined,
this in turn forces us to rely on the last clause of override; otherwise the whole mbody would
not be defined for that specific m. Rule (t-intf) relies on this behavior.
• mostSpecific(meth) = meth

with meth ∈ meth and ∀meth ′ ∈ meth : meth <: meth ′

To illustrate the mechanism of mbody, we present an example. We compute mbody(m, D):
interface A { Object m(); }
interface B extends A { default Object m() {return this.m();} }
interface C extends A {}
interface D extends B, C { String m(); }

• First {A,B,C}, the full set of supertypes of D is obtained.

• Then we compute needed(m, {A,B,C}) = default Object m(){...}, that is B.m.
That is, we do not consider either C.m (since m is not declared directly in C, hence
originalMethod(m, C) is undefined) or B.m (that is a subtype of A, thus B.m hides A.m).

• The final step computes override(D.m, B.m) = D.m, by the last case of override we
get that D.m hides B.m successfully (String is a subtype of Object). Finally we get
mbody(m, D) = D.m.
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e ::= x | e.m(e) | I.m(e) | I.super.m(e) | x=e;e ′ | obj expressions
obj ::= new I(){ field mh1{ return e1;} . . .mhn{ return en;}} object creation
field ::= I f=x; field declaration
I ::= ann interface I extends I{meth} interface declaration
meth ::= staticmh{ return e;} | default mh{ return e;} | mh; method declaration
mh ::= I0 m (I1 x1 . . . In xn) method header
ann ::= @Obj|∅ annotations
Γ ::= x1:I1 . . . xn:In environment

Figure A.1: Grammar of Classless Java

(T-Invk)
Γ ⊢ e ∈ I0

∀i ∈ 1..n Γ ⊢ ei ∈ _ <: Ii
mtype(m, I0)= I1 . . . In→ I
Γ ⊢ e.m(e1 . . . en) ∈ I

(T-StaticInvk)
∀i ∈ 1..n Γ ⊢ ei ∈ _ <: Ii

mtypeS(m, I0)= I1 . . . In→ I
Γ ⊢ I0.m(e1 . . . en) ∈ I

(T-SuperInvk)
Γ(this) <: I0

∀i ∈ 1..n Γ ⊢ ei ∈ _ <: Ii
mtype(m, I0)= I1 . . . In→ I

Γ ⊢ I0.super.m(e1 . . . en) ∈ I

(T-Var)
Γ(x) = I
Γ ⊢ x ∈ I

(T-Obj)
∀i ∈ 1..k Γ(xi) <: Ii

∀i ∈ 1..n Γ, f1:I1, . . . , fk:Ik, this:I, Γmhi ⊢ ei ∈ _ <: Imhi

sigvalid(mh1 . . .mhn, I) alldefined(mh1 . . .mhn, I)
Γ ⊢ new I(){ I1 f1=x1; . . . Ik fk=xk;mh1{ return e1;} . . .mhn{ return en;}} ∈ I

(T-update)
Γ ⊢ e ∈ _ <: Γ(x)

Γ ⊢ e ′ ∈ I
Γ ⊢ x=e;e ′ ∈ I

(T-Intf)
IT(I) = ann interface I extends I1 . . . In{meth}

∀default mh{ return e;} ∈ meth, Γmh, this:I ⊢ e ∈ _ <: Imh

∀staticmh{ return e;} ∈ meth, Γmh ⊢ e ∈ _ <: Imh

dom(I) = dom(I1) ∪ . . . ∪ dom(In) ∪ dom(meth)
I OK

Figure A.2: Typing rules of Classless Java

A.2 Classless Java: What @Obj Generates

This section gives an overview of what @Obj generates, and what formal properties are guar-
anteed in the translation.

We formalize syntax and typing for Classless Java in Appendix A.1, which models the
essence of Java interfaces with default methods. Classless Java is just a proper subset of Java
8, so it is easy to understand the translation presented in this section without the syntax and
typing rules of Classless Java. Since the formalized part of Classless Java does not consider
casts or instanceof, the with method is not included in the formal translation. For the
same reason void returning setters are not included, since they are just a minor variation
over the more interesting fluent setters and they would require special handling just for the
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• [[@Obj interface I0 extends I{meth} ]] = [[@ObjOf interface I0 extends I{meth meth ′} ]]
with meth ′

= refine(I0,meth)
• [[@ObjOf interface I0 extends I{meth} ]]= interface I0 extends I{meth ofMethod(I0)}

with valid(I0), of /∈ dom(I0)

Figure A.3: The translation functions of @Obj and @ObjOf.

• I0 with#m(I _val); ∈ refine(I0,meth) =

isWith(mbody(with#m, I0), I0), with#m /∈ dom(meth)
• I0 _m(I _val); ∈ refine(I0,meth) =

isSetter(mbody(_m, I0), I0), _m /∈ dom(meth)
• valid(I0) = ∀m ∈ dom(I0), if mh; = mbody(m, I0),

one of the following cases is satisfied:
isField(meth), isWith(meth, I0) or isSetter(meth, I0)

• isField(I m();) = not special(m)

• isWith(I ′ with#m(I x);, I0)=
I0 <: I ′,mbody(m, I0) = I m(); and not special(m)

• isSetter(I ′ _m(I x);, I0) =

I0 <: I ′,mbody(m, I0) = I m(); and not special(m)

Figure A.4: The refine and valid functions and auxiliary functions

conventional void type. Since our properties are about preserving typing, we do not need
to formalize Classless Java semantics to prove our statements.

A.2.1 Translation

For the purposes of the formalization, the translation is divided into two parts for more
convenient discussion on formal properties later. To this aim we introduce the annotation
@ObjOf. Its role is only in the translation process, hence is not part of the Classless Java lan-
guage. @ObjOf generates the constructor method of, while @Obj automatically refines the
return types and calls @ObjOf.

Figure A.3 presents the translation. In the first function, @Obj injects refined methods
to interface I0. The second function, @ObjOf invokes ofMethod(I0) and generates the of
method for I0, if such a method does not exist in its domain, and all the abstract methods
are valid for the annotation.

Figure A.4 presents more details on the auxiliary functions. The first two points of Fig-
ure A.4 define function refine. This function generates unimplemented with- and fluent
setters in the interface, where the return types have been refined. To determine whether a
method needs to be generated, we check if such with- or setter methods require an imple-
mentation in I0, but are not declared directly in I0. The third point gives the definition of
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• ofMethod(I0) = static I0 of(I1 _m1, . . . In _mn){
return new I0(){
I1 m1 = _m1; . . . In mn = _mn;
I1 m1(){return m1;} . . . In mn(){return mn;}
withMethod(I1,m1, I0, e1) . . .withMethod(In,mn, I0, en)
setterMethod(I1,m1, I0) . . . setterMethod(In,mn, I0)

};}
with I1 m1();, . . . In mn(); = fields(I0)

and ei = m1, . . . ,mi−1,_val,mi+1, . . . ,mn

• meth ∈ fields(I0) =

isField(meth) and meth = mbody(mmeth, I0)
• withMethod(I,m, I0, e) =

I0 with#m(I _val){ return I0.of(e);}
with mbody(with#m, I0) having the form mh;

• withMethod(I,m, I0, e) = ∅ otherwise
• setterMethod(I,m, I0) =

I0 _m(I _val){m= _val;return this;}
with mbody(_m, I0) having the form mh;

• setterMethod(I,m, I0) = ∅ otherwise

Figure A.5: The generated of method and auxiliary functions.

valid: it is valid to annotate an interface if all abstract methods (that is, all those requiring an
implementation) are valid. That is, we can categorize them in a pattern that we know how
to implement (right column): it is either a field getter (first point), a with method (second
point) or a setter (third point). Note that we write with#m to append m to with, following
the camelCase rule. The first letter of m must be lower-case and is changed to upper-case
upon appending. For example with#foo=withFoo. Special names special(m) are with
and all identifiers of the form with#m.

Figure A.5 defines the ofMethod function, which generates the static method of as an
object factory. It detects all the field methods of I0 and use them to synthesize its arguments.
The return statement instantiates an anonymous class which generates the needed getters,
fluent setters and with-methods. The right column first point collects the getter methods,
the second and third point generate implementations for with-methods if needed; similarly,
the fourth and fifth point generate fluent setters if needed.

Some other features of @Obj, including non-fluent setters and the with method are not
formalized here. Appendix A.3.2 gives a detailed but informal explanation of generation for
those methods.
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A.2.2 Results

Classless Java provides some guarantees regarding the generated code. Essentially, Classless
Java ensures the self coherence and client coherence properties informally introduced in Sec-
tion 4.3. Furthermore, we can show that if there are no type-refinements, then heir coherence
also holds. The result about heir coherence is possible to prove because the translation is split
into two parts. In essence heir coherence is a property of the translation of @ObjOf, but not
of @Obj.

To formally characterize the behavior of our annotation and the two levels of guarantees
that we offer, we provide some notations and two theorems:

• We denote with II and mmeth the name of an interface and of a method.

• An interface table IT is OK if under such interface table, all interfaces are OK, that is,
well typed.

• Since interface tables are just represented as sequences of interfaces we write IT = I IT’
to select a specific interface in a table.

• IT contains an heir of I if there is an interface that extends it, or a new that instantiates
it.

Theorem 1 (@ObjOf). If a given interface table I IT is OK where I has @ObjOf, valid(II) and
of /∈ dom(II), then the interface table [[I]] IT is OK.

Theorem 2 (@Obj). If a given interface table I IT is OK where I has @Obj, valid(II) and
of /∈ dom(II), and there is no heir of II, then the interface table [[I]] IT is OK.

Informally, the theorems mean that for a client program that type-checks before the trans-
lation is applied, if the annotated type has no subtypes and no objects of that type are created,
then type safety of the generated code is guaranteed after the successful translation.

The second step of @Obj, namely what @ObjOf does in the formalization, is guaranteed
to be type-safe for the three kinds of coherence by the @ObjOf theorem. The @Obj theorem
is more interesting: since @Obj does not guarantee heir coherence, we explicitly exclude the
presence of heirs. In this way the @Obj theorem guarantees only self and client coherence.
The formal theorem proofs are available in Appendix A.4.

Type preservation Note that we preferred to introduce self, client and heir coherence in-
stead of referring to conventional type preservation theorems. The reason is to better model
how our approach behaves in a object-oriented software ecosystem with inheritance, where
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only some units may be translated/expanded. Note inheritance’s crucial influence in heir co-
herence. Our formulation of client coherence allows us to discuss intermediate stages where
only some code units are translated/expanded. Conventional type preservation refers only
to completely translated program. Our coherence guarantees mean that developers and de-
signers of Java libraries and frameworks can start using IB (and our @Obj annotation) in the
evolution of their products and still retain backward compatibility with their clients.

A.3 Formal Definition of the Generated Methods by @Obj

This section presents a formal definition of the generated methods by @Obj.

A.3.1 Translation

The translation functions of @Obj and @ObjOf are presented in Figure A.3. Note that it is
necessary to explicitly check if the interface is valid for annotation:
• valid(I0) = ∀m ∈ dom(I0), if mh; = mbody(m, I0),

one of the following cases is satisfied:
isField(meth), isWith(meth, I0) or isSetter(meth, I0)

• isField(I m();) = not special(m)

• isWith(I ′ with#m(I x);, I0)=
I0 <: I ′,mbody(m, I0) = I m(); and not special(m)

• isSetter(I ′ _m(I x);, I0) =

I0 <: I ′,mbody(m, I0) = I m(); and not special(m)

That is, we can categorize all abstract methods in a pattern that we know how to implement:
it is either a field getter, a with method or a setter.

Moreover, we check that the method of is not already defined by the user. In the formal-
ization an existing definition of the ofmethod is an error. However, in the prototype (which
also needs to account for overloading), the check is more complex as it just checks that an
of method with the same signature of the one being generated is not already present.

We write with#m to append m to with, following the camelCase rule. The first let-
ter of m must be lower-case and is changed to upper-case upon appending. For example
with#foo=withFoo. Special names special(m) are with and all identifiers of the form
with#m.

The refine function: refine(I0,meth) is defined as follows:
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• I0 with#m(I _val); ∈
refine(I0,meth)

=

isWith(mbody(with#m, I0), I0), with#m /∈ dom(meth)
• I0 _m(I _val); ∈ refine(I0,meth) =

isSetter(mbody(_m, I0), I0), _m /∈ dom(meth)
The methods generated in the interface are with- and setters. The methods are generated
when they are unimplemented in I0, because the return types need to be refined. To deter-
mine whether the methods need to be generated, we check if such with- or setter methods
are required by I0, but not declared directly in I0.

The ofMethod function: The function ofMethod generates the method of, as an ob-
ject factory. To avoid boring digressions into well-known ways to find unique names,
we assume that all methods with no parameters do not start with an underscore, and
we prefix method names with underscores to obtain valid parameter names for of.
• ofMethod(I0) = static I0 of(I1 _m1, . . . In _mn){

return new I0(){
I1 m1 = _m1; . . . In mn = _mn;
I1 m1(){return m1;} . . . In mn(){return mn;}
withMethod(I1,m1, I0, e1) . . .withMethod(In,mn, I0, en)
setterMethod(I1,m1, I0) . . . setterMethod(In,mn, I0)

};}
with I1 m1();, . . . In mn(); = fields(I0)

and ei = m1, . . . ,mi−1,_val,mi+1, . . . ,mn

Note that, the function fields(I0) denotes all the fields in the current interface:
• meth ∈ fields(I0) =

isField(meth) and meth = mbody(mmeth, I0)
For methods inside the interface with the form Ii mi();

• mi is the field name, and has type Ii.

• mi() is the getter and just returns the current field value.

• if a method with#mi() is required, then it is implemented by calling the of method
using the current value for all the fields except formi. Such new value is provided as a
parameter. This corresponds to the expressions ei.

• _mi(Ii _val) is the setter. In our prototype we use name mi, here we use the under-
score to avoid modeling overloading.
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The auxiliary functions are defined below. Note that we do not need to check if some
header is a subtype of what we would generate, this is ensured by valid(I0).
• withMethod(I,m, I0, e) =

I0 with#m(I _val){ return I0.of(e);}
with mbody(with#m, I0) having the form mh;

• withMethod(I,m, I0, e) = ∅ otherwise
• setterMethod(I,m, I0) =

I0 _m(I _val){m= _val;return this;}
with mbody(_m, I0) having the form mh;

• setterMethod(I,m, I0) = ∅ otherwise

A.3.2 Other Features

Wedo not formallymodel non-fluent setters and the with method. An informal explanation
of how those methods are generated is given next:

• For methods inside the interface with the form void m(I x);:

– Check if method I m(); exists. If not, generate error (that is, valid(I0) is false).

– Generate the implemented setter method inside of:
public void m(I _val){ m=_val;}
There is no need to refine the return type for non-fluent setters, thus we do not
need to generate the method header in the interface body itself.

• For methods with the form I ′ with(I x);:

– I must be an interface type (no classes or primitive types).

– As before, check that I ′ is a supertype of the current interface type I0.

– Generate implemented with method inside of:
public I0 with(I _val){

if(_val instanceof I0){return (I0)_val;}
return I0.of(e1 . . . en);}

with ei =_val.mi() if I has a mi() method where m1 . . .mn are fields of I0;
otherwise ei = mi.

– If needed, as for with- and setters, generate the method headers with refined
return types in the interface.
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A.4 Classless Java Lemmas and Theorems

A.4.1 LEMMA 1 and Proof

Lemma 1 (a). For any expression e under an interface table I IT where Γ ⊢ e ∈ II, I has
@ObjOf annotation and [[I]] = I ′, then under the interface table I ′ IT, Γ ⊢ e ∈ II.

Proof. By induction on the typing rules: by the grammar shown in Figure A.1, there are 6
cases for an arbitrary expression e:

• Variables are typed in the same exact way.

• Field update. The type preservation is ensured by induction.

• A method call (normal, static or super). The corresponding method declaration won’t
be “removed” by the translation, also the types remain unchanged. The only work
@ObjOf does is adding a static method of to the interface, however, a pre-condition of
the translation is of /∈ dom(II), so adding ofmethod has noway to affect any formerly
well typed method call.

• An object creation. Adding the ofmethod doesn’t introduce unimplementedmethods
to an interface, moreover, the static method is not inheritable, hence after translation
such an object creation still type checks and has the right type by induction.

Lemma 1 (b). For any expression e under an interface table I IT where there is no heir of
II, Γ ⊢ e ∈ II, I has @Obj annotation and [[I]] = I ′, then under the interface table I ′ IT,
Γ ⊢ e ∈ _ <: II.

Proof. The proof follows the same scheme of Lemma 1 (a), but for the case of method call
the return type may be refined with a subtype. This is still ok since we require _ <: II. On
the other side, this weaker result still allows the application on the method call typing rules,
since in the premises the types of the actual parameter are required to be a subtype of the
formal one.

A.4.2 LEMMA 2 and Proof

Lemma 2 (a). If I has @ObjOf annotation and II OK in I IT, then [[I]] OK in [[I]] IT.

Proof. By the rule (t-Intf) in Figure A.2, we divide the proof into two parts.
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Part I. For each default or static method in the domain of [[II]], the type of the return value
is compatible with the method’s return type.

Since IOK, and by Lemma 1 (a), all the existing default and static methods are well typed
in [[I]], except for the new method of. It suffices to prove that it still holds for ofMethod(I).

By the definition of ofMethod(I), the return value is an object

return new II(){ ...}

To prove it is of type II, we use the typing rule (t-Obj).

• All field initializations are type correct. By the definition of ofMethod(II) in Ap-
pendix A.3.1, the fields m1, . . . ,mn are initialized by of’s arguments, and types are
compatible.

• All method bodies are well-typed.

– Typing of the i-th getter mi.

Γ,mi : Ii, this : II ⊢ mi ∈ Ii

We know that Ii = Imhi since the i-th getter has its return type the same as the
corresponding field mi.

– Typing of the with- method of an arbitrary field mi. By Appendix A.3.1, if the
with- method of mi is well-defined, it has the form

II with#mi(Ii _val){ return II.of(ei);}

ei is obtained by replacingmi with _val in the list of fields, and since they have
the same type Ii, the arguments ei are compatible with II.of method. Hence

Γ,m1 : I1 . . .mn : In, this : II, _val : Ii ⊢ II.of(ei) ∈ II

We know that II = Imhi by the return type of with#mi shown as above.

– Typing of the i-th setter_mi. If the_mi method is well-defined, it has the form

II _mi(Ii _val){mi= _val;return this;}
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By (t-Update), the assignment “mi= _val;” is correct sincemi and_val have
the same type Ii, and the return type is decided by this.

Γ, this : II, _val : Ii ⊢ this ∈ II

We know that II = Imhi by the return type of _mi shown as above.

• All method headers are valid with respect to the domain of II. Namely

sigvalid(mh1 . . .mhn, I)

For convenience, we use “meth in ofMethod(II)” to denote that meth is one of the
implemented methods in the return expression of ofMethod(II), namely new II()
{...}.

– For the i-th getter mi,

Ii mi(){...} in ofMethod(II)
implies Ii mi(); ∈ fields(II)
implies Ii mi(); = mbody(mi, II)

implies Ii mi(); <: mbody(mi, II)

– For the with#mi method,

II with#mi(Ii _val){...} in ofMethod(II)
implies mbody(with#mi, II) is of form mh;

with valid(II)
implies isWith(mbody(with#mi, II), II)

implies II with#mi(Ii _val); <: mbody(with#mi, II)
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– For the i-th setter _mi,

II _mi(Ii _val){...} in ofMethod(II)
implies mbody(_mi, II) is of form mh;

with valid(II)
implies isSetter(mbody(_mi, II), II)

implies II _mi(Ii _val); <: mbody(_mi, II)

• All abstract methods in the domain of II have been implemented. Namely

alldefined(mh1 . . .mhn, I)

Here we simply refer to valid(II), since it guarantees each abstract method to satisfy
isField, isWith or isSetter. But that object includes all implementations for those cases.
A getter mi is generated if it satisfies isField; a with- method is generated for the
case isWith, by the definition of withMethod; a setter for isSetter, similarly, by the
definition of setterMethod. Hence it is of type II by (t-Obj).

Part II. Next we check that in [[I]],

dom([[I]]) = dom(I1) ∪ . . . ∪ dom(In) ∪ dom(meth) ∪ dom(meth ′)

Since I OK, we have dom(I) = dom(I1) ∪ . . . ∪ dom(In) ∪ dom(meth), and hence it is
equivalent to prove

dom([[I]]) = dom(II) ∪ dom(meth ′)

This is obvious since a pre-condition of the translation is of /∈ dom(II), so meth ′ doesn’t
overlap with dom(II). The definition of dom is based on mbody, and here the new domain
dom([[I]]) is only an extension to dom(I) with the of method, namely meth ′. Also note that
after translation, there are still no methods with conflicted names, since the of method was
previously not in the domain, hence [[I]] is well-formed, which finishes our proof.

Lemma 2 (b). If I has @Obj annotation II OK in I IT and there is no heir of II, then [[I]] OK
in [[I]] IT.

Proof. Part I. Similarly to what already argued for Lemma 2 (a), since IOK, and by Lemma 1
(b), all the existing default and static methods are well typed in [[I]] IT. The translation func-
tion delegates its work to @ObjOf in such way that we can refer to Lemma 2 (a) to complete
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this part. Note that all the methods added (directly) by @Obj are abstract, and thus there is
no body to typecheck.
Part II. Similar to what we already argued for Lemma 2 (a), but we need to notice that the
newly added methods are valid refinements for already present methods in dom(II) before
the translation. Thus by the last clause of the definition of override(_), mbody(_) is defined
on the same method names.

A.4.3 THEOREM and Proof

Theorem 1 (@ObjOf tuning). If a given interface table I IT is OK where I has @ObjOf,
valid(II) and of /∈ dom(II), then the interface table [[I]] IT is OK.

Proof. Lemma 2 (a) already proves that [[I]] is OK. On the other hand, for any I ′ ∈ IT\I, by
Lemma 1 (a), we know that all its methods are still well-typed, and the generated code in
translation of @ObjOf is only a static method of, which has no way to affect the domain of
I ′, so after translation rule (t-Intf) can still be applied, which finishes our proof.

Theorem 2 (@Obj tuning). If a given interface table I IT is OK where I has @Obj, valid(II)
and of /∈ dom(II), and there is no heir of II, then the interface table [[I]] IT is OK.

Proof. Similar to what already argued for Theorem 1, we can apply Lemma 2 (b) and
Lemma 1 (b). Then we finish by Theorem 1.

A.5 Code Excerpts From the Maze Game Case Study

A.5.1 Maze Game Code in Java 8

/* Defines a base-door with no particular features */
interface TDoor {

public boolean getLocked();
public int getDoorMaxCoins();

default boolean isLocked() {
return getLocked();

}
default int open() {

if (!isLocked()) {
out.println("The door has been opened!");
double rnd = Math.random();
int cns = (int) (rnd * getDoorMaxCoins()) + 1;

160



A.5 Code Excerpts From the Maze Game Case Study

out.println("You got " + cns + " coins.");
return cns;

} else {
out.println("This door is locked.");
return -1;

}
}
default int knock() {

out.print("Door says: ");
out.print("How you dare, ");
out.println("I am the one who knocks!");
int c = (Math.random() < 0.8) ? 0 : 1;
if (c > 0)

out.println("Ow! You got a free coin!");
return c;

}
}

/* Provides a counter that after a limit releases coins */
interface TCounter {

public int getCounter();
public void setCounter(int c);
public int getLimit();
public int getCounterMaxCoins();
default void incrementCounter() {

setCounter(getCounter() + 1);
}
default void decrementCounter() {

setCounter(getCounter() - 1);
}
default boolean hasReachedLimit() {

return getCounter() >= getLimit();
}
default int releaseCoins() {

double rnd = Math.random();
int cns = (int) (rnd * getCounterMaxCoins()) + 1;
out.println("You got " + cns + " coins.");
return cns;

}
}

/* Puts together a door and a counter */
interface TKnockDoor extends TDoor, TCounter {

/** Every know makes the counter increment.
* If the limit is reached, more coins are released. **/

default int knock() {
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int coins = TDoor.super.knock();
incrementCounter();
if(hasReachedLimit()) {

out.print("Ohh! A special drop for you!");
coins += releaseCoins();

} else {
//’Lets give a suggestion to the player
out.print("’Dont challenge me... ");
int c = getLimit();
String sug = "never knock a door ";
sug = sug + "more then " + c + " times.";
out.println(sug);

}
return coins;

}
}

class KnockDoor implements TKnockDoor {
/* Fields for the door */
private boolean locked;
/* Fields for the counter */
private int counter;
private int limit;
/* Glue Code for TDoor */
public boolean getLocked()
{

return this.locked;
}
/* Glue code for TCounter */
public int getCounter()
{

return this.counter;
}
public void setCounter(int c)
{

this.counter = c;
}
public int getLimit()
{

return this.limit;
}
/* Glue code for coin management */
public int getDoorMaxCoins()
{

return 120;
}
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public int getCounterMaxCoins()
{

return 500;
}
/* Constructor */
public KnockDoor(boolean l, int li) {

setCounter(0);
setLocked(l);
setLimit(li);

}
/* Other helpful methods */
private void setLocked(boolean l)
{

this.locked = l;
}
private void setLimit(int l)
{

this.limit = l;
}

}

A.5.2 Maze Game Code in Classless Java

/* Defines a base-door with no particular features */
@Obj interface TDoor {

public boolean locked();
public int doorMaxCoins();

default boolean isLocked() {
return locked();

}
default int open() {

if (!isLocked()) {
out.println("The door has been opened!");
double rnd = Math.random();
int cns = (int) (rnd * doorMaxCoins()) + 1;
out.println("You got " + cns + " coins.");
return cns;

} else {
out.println("This door is locked.");
return -1;

}
}
default int knock() {
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out.print("Door says: ");
out.print("How you dare, ");
out.println("I am the one who knocks!");
int c = (Math.random() < 0.8) ? 0 : 1;
if (c > 0)

out.println("Ow! You got a free coin!");
return c;

}
}

/* Provides a counter that after a limit releases coins */
@Obj interface TCounter {

public int counter();
public void counter(int c);
public int limit();
public int counterMaxCoins();
default void incrementCounter() {

counter(counter() + 1);
}
default void decrementCounter() {

counter(counter() - 1);
}
default boolean hasReachedLimit() {

return counter() >= limit();
}
default int releaseCoins() {

double rnd = Math.random();
int cns = (int) (rnd * counterMaxCoins()) + 1;
out.println("You got " + cns + " coins.");
return cns;

}
}

/* Puts together a door and a counter */
@Obj interface TKnockDoor extends TDoor, TCounter {

/** Every know makes the counter increment.
* If the limit is reached, more coins are released. **/

default int knock() {
int coins = TDoor.super.knock();
incrementCounter();
if (hasReachedLimit()) {

out.print("Ohh! A special drop for you!");
coins += releaseCoins();

} else {
//’Lets give a suggestion to the player
out.print("’Dont challenge me... ");
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int c = limit();
String sug = "never knock a door ";
sug = sug + "more then " + c + " times.";
out.println(sug);

}
return coins;

}
}

A.6 Proofs for FHJ (Chapter 5)

Lemma 1. If mbody(m, Id, Is) = (J, Ix x, Ie e0), then x : Ix, this : J ⊢ e0 : I0 for some
I0 <: Ie.

Proof. By the definition of mbody, the target method m is found in J. By the method typing
rule (T-Method), there exists some I0 <: Ie such that x : Ix, this : J ⊢ e0 : I0.

Lemma 2 (Weakening). If Γ ⊢ e : I, then Γ, x : J ⊢ e : I.

Proof. Straightforward induction.

Lemma 3 (Method Type Preservation). If mbody(m, J, J) = (K, Ix _, Ie _), then for any
I <: J, mbody(m, I, J) = (K ′, Ix _, Ie _).

Proof. Since mbody(m, J, J) is defined, by (T-Intf) we derive that mbody(m, I, J) is also
defined. Suppose that

findOrigin(m, J, J) = {I0}

findOverride(m, J, I0) = {K}

findOrigin(m, I, J) = {I ′0}

findOverride(m, I, I ′0) = {K ′}

Below we use I[m ↑ J] to denote the type of method m defined in I that overrides J. We
have to prove that K ′[m ↑ I ′0] = K[m ↑ I0]. Two facts:

• A. By (T-Intf), canOverride ensures that an override between any two originalmeth-
ods preserves the method type. Formally,

I1 <: I2 ⇒ I1[m ↑ I1] = I2[m ↑ I2]
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• B. By (T-Method) and (T-AbsMethod), any partial override also preserves method
type. Formally,

I1 <: I2 ⇒ I1[m ↑ I2] = I2[m ↑ I2]

By definition of findOverride, K <: I0, K
′ <: I ′0. By Fact B,

K[m ↑ I0] = I0[m ↑ I0] K ′[m ↑ I ′0] = I ′0[m ↑ I ′0]

Hence it suffices to prove that I ′0[m ↑ I ′0] = I0[m ↑ I0]. Actually when calculat-
ing findOrigin(m, J, J), by the definition of findOrigin we know that I0 <: J and
I0[m override I0] is defined. So when calculating findOrigin(m, I, J) with I <: J, I0
should also appear in the set before pruned, since the conditions are again satisfied. But after
pruning, only I ′0 is obtained, by definition of prune it implies I ′0 <: I0. By Fact A, the proof
is done.

Lemma 4 (Term Substitution Preserves Typing). If Γ, x : Ix ⊢ e : I, and Γ ⊢ y : Ix, then
Γ ⊢ [y/x]e : I.

Proof. We prove by induction. The expression e has the following cases:
Case Var. Let e = x. If x /∈ x, then the substitution does not change anything. Otherwise,

since y have the same types as x, it immediately finishes the case.
Case Invk. Let e = e0.m(e). By (T-Invk) we can suppose that

Γ, x : Ix ⊢ e0 : I0 mbody(m, I0, I0) = (_, J _, I _)

Γ, x : Ix ⊢ e : Ie Ie <: J Γ, x : Ix ⊢ e : I

By induction hypothesis,

Γ ⊢ [y/x]e0 : I0 Γ ⊢ [y/x]e : Ie

Again by (T-Invk), Γ ⊢ [y/x]e : I.
Case New. Straightforward.
Case Anno. Straightforward by induction hypothesis and (T-Anno).

A.6.1 Proof for Theorem 1

Theorem 1 (Subject Reduction). If Γ ⊢ e : I and e → e ′, then Γ ⊢ e ′ : I.
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Proof.
Case S-Invk. Let

e = ((J)new I()).m(v) Γ ⊢ e : Ie

e ′ = (Ie0
)[(Ix)v/x, (I0)new I()/this]e0

mbody(m, I, J) = (I0, Ix x, Ie0
e0)

Since mbody(m, I, J) is defined, the definition of mbody ensures that I <: J. And since e
is well-typed, by (T-Invk),

Γ ⊢ v : Iv Iv <: Ix

By the rules (T-Anno) and (T-New),

Γ ⊢ (Ix)v : Ix Γ ⊢ (I0)new I() : I0

On the other hand, by Lemma 5,

x : Ix, this : I0 ⊢ e0 : I ′e0
I ′e0

<: Ie0

By Lemma 6,
Γ, x : Ix, this : I0 ⊢ e0 : I ′e0

Hence by Lemma 8, the substitution preserves typing, thus

Γ ⊢ [(Ix)v/x, (I0)new I()/this]e0 : I ′e0

Since I ′e0
<: Ie0

, the conditions of (T-Anno) are satisfied, hence Γ ⊢ e ′ : Ie0
. Now

we only need to prove that Ie0
= Ie. Since Ie0

is from mbody(m, I, J), whereas Ie is from
mbody(m, J, J), by the rule (T-Invk) on e. Since I <: J, by Lemma 7, Ie0

= Ie.

Case C-Receiver. Straightforward induction.

Case C-Args. Straightforward induction.

Case C-StaticType. Immediate by (T-Anno).

Case C-FReduce. Immediate by (T-Anno) and induction.

Case C-AnnoReduce. Immediate by (T-Anno) and transitivity of <:.
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A.6.2 Proof for Theorem 2

Theorem2 (Progress). Suppose e is a well-typed expression, if e includes ((J)new I()).m(v)

as a sub-expression, then mbody(m, I, J) = (I0, Ix x, Ie e0) and #(x) = #(v) for some I0,
Ix, x, Ie and e0.

Proof. Since e is well-typed, by (T-Invk) and (T-Anno) we know that

I <: J, and mbody(m, J, J) is defined

By (T-Intf), mbody(m, I, J) is also defined, and the type checker ensures the expected
number of arguments.

On the other hand, since I <: J, by the definition of findOrigin,

findOrigin(m, I, J) ⊆ findOrigin(m, I, I)

By (T-New), canInstantiate(I) = True. By the definition of canInstantiate, any
J0 ∈ findOrigin(m, I, I) satisfies that findOverride(m, I, J0) contains only one inter-
face, in which the m that overrides J0 is a concrete method. Therefore mbody(m, I, J) also
provides a concrete method, which finishes the proof.

A.6.3 Proof for Theorem 4

Theorem 4 (Determinacy of One-Step Evaluation). If t → t ′ and t → t ′′, then t ′ = t ′′.

Proof. The Proof is done by induction on a derivation of t → t ′, following the book TAPL.

• If the last rule used in the derivation of t → t ′ is (S-Invk), then we know that t has
the form ((J)new I()).m(v) with I, J,m determined. Now it is obvious that the last
rule in the derivation of t → t ′′ should also be (S-Invk) with the same I, J,m. Since
mbody(m, I, J) is a function that given the same input will calculate the same result,
we know the two induction results are the same, thus t ′ = t ′′ is immediately proved.

• If the last rule used in the derivation of t → t ′ is (C-Receiver), then t has the form
e0.m(e) and e0 → e ′0. Since e0 is not a value, the last rule used in t → t ′′ has to
be (C-Receiver) (other rules do not match) too. Assume in the reduction t → t ′′,
e0 → e ′′0 , thus e ′0.m(e) = e ′′0 .m(e). Thus, t ′ = t ′′ proved.

• If the last rule used in the derivation of t → t ′ is (C-StaticType), then t is fixed to
be new I(). The last rule used in t → t ′′ has to be (C-StaticType), and obviously,
t ′ = t ′′ = (I)new I().
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• If the last rule used in the derivation of t → t ′ is (C-FReduce), then t has the form
(I)e and e → e ′. The last rule used in t → t ′′ cannot be (C-StaticType) because it
requires t to be new I(); it can neither be (C-AnnoReduce) because it requires t to be
(I)((J)new K()) where (J)new K() is already a value. So the last rule used in t → t ′′

can only be (C-FReduce) (other rules donotmatch). Assume in the reduction t → t ′′,
e → e ′′, and (I)e → (I)e ′′. By induction hypothesis, e ′ = e ′′, thus t ′ = t ′′ proved.

• If the last rule used in the derivation of t → t ′ is (C-AnnoReduce), then the form
of t is fixed to be (I)((J)new K()). Since (I)((J)new K()) is not reducible, the rule
(C-FReduce) does not apply. The only rule applies in t → t ′′ is (C-AnnoReduce).
Thus t ′ = t ′′ = (I)new K() proved.

• If the last rule used in the derivation of t → t ′ is (C-Args), then t has the form
v.m(..., e, ...) and e → e ′. The last rule used in t → t ′′ cannot be (S-Invk) because
it requires all arguments to be values. Thus only (C-Args) applies to t → t ′′. As-
sume in the reduction t → t ′′, e → e ′′. By induction hypothesis, e ′ = e ′′, thus
v.m(..., e ′, ...) = v.m(..., e ′′, ...), thus t ′ = t ′′ proved.

A.7 Proofs for FHJ+ (Chapter 6)

Lemma 5. If mbody(m, Id, Is) = (J, Ix x, Ie e0), then x : Ix, this : J ⊢ e0 : I0 for some
I0 <: Ie.

Proof. By the definition of mbody, the target method m is found in J. By the method typing
rule (T-Method), there exists some I0 <: Ie such that x : Ix, this : J ⊢ e0 : I0.

Lemma 6 (Weakening). If Γ ⊢ e : I, then Γ, x : J ⊢ e : I.

Proof. Straightforward induction.

Lemma 7 (Method Type Preservation). If mbody(m, J, J) = (K, Ix _, Ie _), then for any
I <: J, mbody(m, I, J) = (K ′, Ix _, Ie _).

Proof. Since mbody(m, J, J) is defined, by (T-Intf) we derive that mbody(m, I, J) is also
defined. Suppose that

findOrigin(m, J, J) = {I0}
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findOverride(m, J, I0) = {K}

findOrigin(m, I, J) = {I ′0}

findOverride(m, I, I ′0) = {K ′}

Below we use I[m ↑ J] to denote the type of method m defined in I that overrides J. We
have to prove that K ′[m ↑ I ′0] = K[m ↑ I0]. Two facts:

• A. By (T-Intf), canOverride ensures that an override between any two originalmeth-
ods preserves the method type. Formally,

I1 <: I2 ⇒ I1[m ↑ I1] = I2[m ↑ I2]

• B. By (T-Method) and (T-AbsMethod), any partial override also preserves method
type. Formally,

I1 <: I2 ⇒ I1[m ↑ I2] = I2[m ↑ I2]

By definition of findOverride, K <: I0, K
′ <: I ′0. By Fact B,

K[m ↑ I0] = I0[m ↑ I0] K ′[m ↑ I ′0] = I ′0[m ↑ I ′0]

Hence it suffices to prove that I ′0[m ↑ I ′0] = I0[m ↑ I0]. Actually when calculat-
ing findOrigin(m, J, J), by the definition of findOrigin we know that I0 <: J and
I0[m override I0] is defined. So when calculating findOrigin(m, I, J) with I <: J, I0
should also appear in the set before pruned, since the conditions are again satisfied. But after
pruning, only I ′0 is obtained, by definition of prune it implies I ′0 <: I0. By Fact A, the proof
is done.

Lemma 8 (Term Substitution Preserves Typing). If Γ, x : Ix ⊢ e : I, and Γ ⊢ y : Ix, then
Γ ⊢ [y/x]e : I.

Proof. We prove by induction. The expression e has the following cases:
Case Var. Let e = x.

• If x /∈ x, then the substitution does not change anything.

• Otherwise, since y have the same types as x, it immediately finishes the case.

Case Invk. Let e = e0.m(e). By (T-Invk) we can suppose that

Γ, x : Ix ⊢ e0 : I0 mbody(m, I0, I0) = (_, J _, I _)
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Γ, x : Ix ⊢ e : Ie Ie <: J Γ, x : Ix ⊢ e : I

By induction hypothesis,

Γ ⊢ [y/x]e0 : I0 Γ ⊢ [y/x]e : Ie

Again by (T-Invk), Γ ⊢ [y/x]e : I.

Case New. Let e = new I0(e). By the rule (T-New), suppose that

mconstr(I0) = Ix J.x

Γ ⊢ e : I

I <: Ix

Γ ⊢ new I0(e) : I0

By induction hypothesis,
Γ ⊢ [y/x]e : I

By the rule (T-New) again, Γ ⊢ new I0([y/x]e) : I0, hence Γ ⊢ [y/x]new I0(e) : I0. Proved.

Case Let. Let e = I x = e1; e2. By the rule (T-Let) we know that

Γ ⊢ e1 : I1

I1 <: I

Γ, x : I ⊢ e2 : I2

Γ ⊢ I x = e1; e2 : I2

By induction hypothesis,
Γ ⊢ [y/x]e1 : I1

Γ, x : I ⊢ [y/x]e2 : I2

Therefore, Γ ⊢ [y/x]I x = e1; e2 : I2, Γ ⊢ [y/x]e : I2. Proved.

Case Cast. Straightforward by induction hypothesis and the rule (T-Cast).

A.7.1 Proof for Theorem 5

Theorem 5 (Subject Reduction). If Γ ⊢ e : I and µ|e → µ ′|e ′, then Γ ⊢ e ′ : I.
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Proof. The proof is done by induction on the reduction relation.
Case E-Invk. Let

e = (J)o.m(v)

e ′ = (Ie0
)[(Ix)v/x, (I0)o/this]e0

Assume
µ(o) = new Ie(...)

mbody(m, Ie, J) = (I0, Ix x, Ie0
e0)

Since mbody(m, Ie, J) is defined, the definition of mbody ensures that Ie <: J. And since
e is well-typed, by (T-Invk), Γ ⊢ v : Iv, where Iv <: Ix.

By the rule (T-Cast), Γ ⊢ (Ix)v : Ix Γ ⊢ (I0)new Ie() : I0. On the other hand, by
Lemma 5, x : Ix, this : I0 ⊢ e0 : I ′e0

, where I ′e0
<: Ie0

.

By Lemma 6, Γ, x : Ix, this : I0 ⊢ e0 : I ′e0

Hence by Lemma 8 (substitution preserves typing), Γ ⊢ [(Ix)v/x, (I0)o/this]e0 : I ′e0

Since I ′e0
<: Ie0

, the conditions of (T-Cast) are satisfied, hence Γ ⊢ e ′ : Ie0
. Now

we only need to prove that Ie0
= I. Since Ie0

is from mbody(m, Ie, J), whereas I is from
mbody(m, J, J), by the rule (T-Invk) on e. Since Ie <: J, by Lemma 7, Ie0

= I. Proved.

Case E-New. Let
e = new I(v)

e ′ = (I)o

By the rule (T-Constructor), Γ ⊢ e : I. And by the rule (T-Cast), Γ ⊢ e ′ : I. Proved.

Case E-Getter. Let
e = (J)o.f()

e ′ = (IF)oi

and
µ(o) = new I(o1, ..., oi, ..., on)

Here, J.f is the i-th element of new I(...) and f() is a getter with the return type IF. And
by the rule (T-Cast), Γ ⊢ (IF)oi : IF. Proved.

Case E-Setter. Similar as Case E-Getter.
Case E-Let. Let

e = I x = o; e1

e ′ = [(I)o/x]e1
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Assume that Γ, x : I ⊢ e1 : I1, then by the rule (T-Let), Γ ⊢ I x = o; e1 : I1. By Lemma 8,
Γ ⊢ [(I)o/x]e1 : I1. Proved.

Case E-Cast. Let e = (J)(I)o and e ′ = (J)o, then Γ ⊢ e : J and Γ ⊢ e ′ : J immediately
from the rule (T-Cast).

Case E-CTX. Let e = ε{e1} and e ′ = ε{e ′1}. By the induction condition µ | e1 → µ ′ | e ′1
and the hypothesis: if Γ ⊢ e1 : J and µ | e1 → µ ′ | e ′1, then Γ ⊢ e ′1 : J. Assume that
Γ ⊢ ε{e1} : I, then by Lemma 8, Γ ⊢ ε{e ′1} : I. Proved.

A.7.2 Proof for Theorem 6

Theorem 6 (Progress). Suppose e is a well-typed expression, if e includes (J)o.m(v) as a
sub-expression, where µ(o) = new I(...), then one of the following conditions holds:

1. # v = 0, validGetter(m, I, J)

2. # v = 1, validSetter(m, I, J)

3. mbody(m, I, J) = (I0, Ix x, Ie e0) and #(x) = #(v) for some I0, Ix, x, Ie and e0.

Proof.
Since e is well-typed and includes (J)o.m(v) as a sub-expression. Then the sub-expression
(J)o.m(v) can be divided into three cases:

1. m is a getter, validGetter(m, I, J) and getters contain no parameter. And by the rule
(T-Invk), the number of arguments is the same to the number of parameters of the
method(getter), which is 0.

2. m is a setter, validSetter(m, I, J) and setters contain one and only one parameter. By
the rule (T-Invk), the number of arguments is the same to the number of parameters
of the method(setter), which is 1.

3. m is neither a getter or setter, by the rule (T-Invk) we know that

I <: J, and mbody(m, J, J) is defined

By (T-Intf), mbody(m, I, J) is also defined, and the type checker ensures the expected
number of arguments.

On the other hand, since I <: J, by the definition of findOrigin,

findOrigin(m, I, J) ⊆ findOrigin(m, I, I)
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By (T-New), assume mconstr(I) = Ix x and MC OK in interface I.
validMC(I, Ix x) = True. By the definition of validMC, any J0 ∈
findOrigin(m, I, I) satisfies that findOverride(m, I, J0) contains only one inter-
face, in which them that overrides J0 is a concrete method. Therefore mbody(m, I, J)

also provides a concrete method, which finishes the proof.

A.7.3 Proof for Theorem 8

Theorem 8 (Determinacy of One-Step Evaluation). If µ | t → µ ′ | t ′ and µ | t → µ ′′ | t ′′,
then t ′ = t ′′ and µ ′ = µ ′′.

Proof. The Proof is done by induction on a derivation of µ | t → µ ′ | t ′, following the book
TAPL.

• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-Invk), then we
know that t has the form (J)o.m(v) with µ(o) = new I(...), I, J,m determined and
¬isField(m, I). Now it is obvious that the last rule in the derivation ofµ | t → µ ′′ | t ′′

should also be (E-Invk) with the same I, J,m. Since mbody(m, I, J) is a function that
given the same input will calculate the same result, we know the two induction results
are the same, thus t ′ = t ′′ is immediately proved. Also from the rule (E-Invk), we
know that µ is unchanged, thus µ ′ = µ ′′ = µ is also proved.

• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-New), then the form of t
is fixed to be new I(v). The only rule applies in µ | t → µ ′′ | t ′′ is also (E-New). From
the rule (E-New) we know that t ′ = t ′′ = (I)o and µ ′ = µ ′′ = µ, o → new I(v)

proved.

• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-Cast), then the form of
t is fixed to be (I)((J)o). Since (J)o is not reducible, the only rule applies in µ | t →
µ ′′ | t ′′ is (E-Cast). Also from the rule (E-Cast) we know that µ is unchanged, thus
t ′ = t ′′ = (I)o and µ ′ = µ ′′ = µ proved.

• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-Let), then the form of t
is fixed to be I x = o; e. And the only rule applies in µ | t → µ ′′ | t ′′ is (E-Let). Also
from the rule (E-Cast) we know that µ is unchanged, thus t ′ = t ′′ = e[(I)o/x] and
µ ′ = µ ′′ = µ proved.
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• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-Getter), then the form
of t is fixed to be (J)o.f(). For the second reduction µ | t → µ ′′ | t ′′, the rule (E-
Setter) does not apply because the number of parameters does not match. Also the
rule (E-Invk) does not match because the precondition !validGetter(m, I, J) is not
satisfied. The only rule applies is the rule (E-Getter). Also from the rule (E-Getter)
we know that µ is unchanged, thus t ′ = t ′′ = (IF)oi and µ ′ = µ ′′ = µ proved.

• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-Setter), then the
form of t is fixed to be (J)o.SETf((I

′)o). Then for the second reduction µ | t →
µ ′′ | t ′′, the rule (E-Getter) does not apply because the number of parameters
does not match. Also the rule (E-Invk) does not match because the precondition
!validSetter(m, I, J) is not satisfied. The only rule applies is the rule (E-Setter).
And from the rule (E-Setter), we know that t ′ = t ′′ = (I)o. Assume in the first
derivation µ | t → µ ′ | t ′, µ = µ0, o → new I(o1, ..., oi, ..., on), µ

′ = µ0, o →
new I(o1, ..., o

′, ..., on), then in the second derivationµ | t → µ ′′ | t ′′, µ = µ0, o →
new I(o1, ..., oi, ..., on), µ

′′ = µ0, o → new I(o1, ..., o
′, ..., on) = µ ′. Proved.

• If the last rule used in the derivation of µ | t → µ ′ | t ′ is (E-CTX), then there are 5
cases (t could take 5 forms):

– If t = I x = ε; e and the precondition is µ | e → µ ′ | e ′. Then t ′ = ε{e ′}

.Then for the second reduction µ | t → µ ′′ | t ′′, the rule (E-Let) does not apply
because ε is reducible and does not conform to the form of I x = o; e in (E-
Let). Thus the only rule applies is the rule (E-CTX). Assume the precondition is
µ | e → µ ′′ | e ′′. By the induction hypothesis, µ ′′ = µ ′ and e ′′ = e ′. Therefore,
t ′′ = ε{e ′′} = ε{e ′} = t ′. Proved.

– The proof for the other cases, where t = ε.m(e), t = (J)o.m(o, ε, e) t =

new I(o, ε, e) or t = (I)ε takes the same approach as the first case.

A.8 Code of Office Clerk Example for Chapter 6

A.8.1 Office Clerk Code in FHJ+

class Title {}
class Manager extends Title { new(); }
class Director extends Title { new(); }
class Officer extends Title { new(); }
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class Point {
new(Int Point.x, Int Point.y);
Int x() override Point;
Void SET_x(Int x) override Point;
Int y() override Point;
Void SET_y(Int y) override Point;

}

class Located {
Point position() override Located;
Void SET_position(Point x) override Located;
Int id() override Located;

}

class Employee {
Title position() override Employee;
Void SET_position(Title x) override Employee;
Int age() override Employee;
Void SET_age(Int age) override Employee;
String name() override Employee;
Void SET_name(String name) override Employee;
Int id() override Employee;

}

class OfficeClerk extends Located, Employee {
new(String Employee.name, Int Employee.age, Title Employee.

position, Int OfficeClerk.deskNumber, Point Located.position,
Int OfficeClerk.id);

Int id() override OfficeClerk;
Int deskNumber() override OfficeClerk;
Void SET_deskNumber(Int x) override OfficeClerk;
OfficeClerk moveTo(OfficeClerk c) override OfficeClerk {

return (
Point p4 = ((Located)c).position();
((Located)this).SET_position(p4);
this.SET_deskNumber(c.deskNumber());
this

);
}

}

OfficeClerk alice = new OfficeClerk("Alice", 27, new Manager(), 1, (
Point p1 = new Point(2, 3);p1), 23343);

OfficeClerk bob = new OfficeClerk("Bob", 45, new Director(), 2, (
Point p2 = new Point(2, 4);p2), 45567);
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Title p3 = new Officer();
OfficeClerk a2b = alice.moveTo(bob);
((Employee)a2b).SET_position(p3);
a2b

A.8.2 Office Clerk Code in C++

#include <iostream>
#include <string>

using namespace std;

class Title {};
class Manager : public Title {};
class Director : public Title {};
class Officer : public Title {};

class Point {
public:

int x;
int y;
Point(int _x, int _y) {

x = _x;
y = _y;

}
};

class Located {
public:

Point* position;
int id;

};

class Employee {
public:

Title* position;
int age;
string name;
int id;

};

class OfficeClerk : public Located, public Employee {
public:

int deskNumber;
int id;
OfficeClerk() {};

177



A Appendix

OfficeClerk(string _name, int _age, Title* _employeePosition, int
_deskNumber, Point* _locatedPosition) {

this->name = _name;
this->age = _age;
this->Employee::position = _employeePosition;
this->deskNumber = _deskNumber;
this->Located::position = _locatedPosition;

}

OfficeClerk* moveTo(OfficeClerk* c) {
Point* p4 = ((Located*)c)->position;
this->Located::position = p4;
this->deskNumber = c->deskNumber;
return this;

}
};

int main(int argc, char const *argv[])
{

OfficeClerk* alice = new OfficeClerk("Alice", 27, new Manager(),
1, new Point(2, 3));

OfficeClerk* bob = new OfficeClerk("Bob", 45, new Director(), 2,
new Point(2, 4));

Title* p3 = new Officer();
OfficeClerk* a2b = alice->moveTo(bob);
a2b->Employee::position = p3;
cout << a2b->id << endl;
return 0;

}

A.9 FHJ+ Formalization in MJ Style

Program P ::= IL e

Interfaces IL ::= class I extends I {MC? M}

Constructors MC ::= static I m(Ix J.x) ;
Methods M ::= I m(Ix x) override J {return e; } | I m(Ix x) override J ;
Expressions e ::= x | e.m(e) | (I)e | I.m(e) | I x = e1; e2
Context Γ ::= x : I
Values v ::= (J)I.m(v)

Figure A.6: Syntax of FHJ+ formalization in MJ style
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Configuration Config ::= (H,VS, e, FS)
Scope VS ::= is a finite partial function from variables to pairs of

expression types and values
Heap H ::= is a finite partial function from oids to heap objects
Heap Objects ho ::= (I, F)
Map Function F ::= is a finite partial function from field names to values
Frame Stack FS ::= F ◦ FS
Frame F ::= CF|OF

Closed Frame CF ::= x | e.m(e) | (I)e | I.m(e) | I x = e1; e2 expressions
Open Frame OF ::= expressions with holes

Figure A.7: Configuration
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(T-Var)
⊢ ∆ OK ∆ ⊢ Γ OK

∆; Γ, x : I ⊢ x : I

(T-Invk)

∆; Γ ⊢ e0 : I0
mbody(m, I0, I0) = (K, Ix x, I _) ∆; Γ ⊢ e : I I <: Ix

∆, Γ ⊢ e0.m(e) : I

(T-StaticInvk)
mbody(m, I0, I0) = (K, Ix x, I _) ∆; Γ ⊢ e : I I <: Ix

∆, Γ ⊢ I0.m(e) : I

(T-Cast)
∆, Γ ⊢ Γe : I I <: J

∆, Γ ⊢ (J)e : J

(T-Method)

I <: J findOrigin(m, I, J) = {J} mbody(m, J, J) = (K, Ix x, Ie _)
∆; Γ, x : Ix, this : I ⊢ e0 : I0 I0 <: Ie

Ie m(Ix x) override J {return e0; } OK IN I

(T-AbsMethod)

I <: J findOrigin(m, I, J) = {J}

mbody(m, J, J) = (K, Ix x, Ie _)
Ie m(Ix x) override J ; OK IN I

(T-MC)
I0 ≡ I validMC(I, Ix, J.x)
static I0 m(Ix x) ; OK IN I

(T-Intf)

MC OK IN I M OK IN I

∀J >: I and m, mbody(m, J, J) is defined ⇒ mbody(m, I, J) is defined
∀J >: I and m, I[m override I] and J[m override J] defined ⇒ canOverride(m, I, J)

class I extends I {MC? M} OK

(T-Prog)
∀I ∈ IL, I OK ∆; Γ ⊢ e : J

IL e OK

(T-Let)
∆; Γ ⊢ e1 : I1 I1 <: I ∆; Γ, x : I ⊢ e2 : I2

∆; Γ ⊢ I x = e1; e2 : I2

Figure A.8: Typing rules of FHJ+ formalization in MJ style
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(E-VarAccess) (H,BS ◦ VS, x, FS) → (H,BS ◦ VS, v, FS)

where BS(x) = v

(EC-Let)(H,VS, I x = e1; e2, FS) → (H,VS, e1, (I x = •; e2) ◦ FS)

(E-Let)(H,BS ◦ VS, I x = v; e, FS) → (H,BS ′ ◦ VS, e, (returnLet e) ◦ FS) where BS ′ = {x → v} ◦ BS

(E-Return)(H,BS ◦ VS, v, (return •) ◦ FS) → (H,VS, v, FS)

(E-ReturnLet)(H,BS ◦ VS, v, (returnLet •) ◦ FS) → (H,BS ′ ◦ VS, v, FS)

where BS ′ = tail(BS)

(E-Invk)(H,VS, (J)o.m(v), FS) → (H,VS ′, (Ie)e0, (return •) ◦ FS)

where m is not a getter (I0.m does not exist in I.of), H(o) = I[o], VS ′ = {this →

(I0)o, x → v} ◦ VS, mbody(m, I, J) = (I0, Ix x, Ie e0)

(E-InvkGetter)(H,VS, (J)o.f(), FS) → (H,VS, (IF)oi, FS)

where H(o) = I[o1, ...., oi, ...], mbody(m, I, J) =

(I0, Ix x, Ie e0), (IF I0.f) is the i-th element of I.of.

(EC-Invk)(H,VS, e.m(e), FS) → (H,VS, e, (•.m(e)) ◦ FS)

(EC-Invk)(H,VS, v.m(v1, ..., vi−1, ei, ..., en), FS) → (H,VS, ei, (v.m(v1, ..., vi−1, •, ..., en)) ◦ FS)

(E-Cast)(H,VS, (J)((I)o), FS) → (H,VS, (J)o, FS)

(EC-Cast)(H,VS, (J)e, FS) → (H,VS, e, ((J)•) ◦ FS)

(EC-of) (H,VS, I.of(v1, ..., vi−1, ei, ..., en), FS) →

(H,VS, ei, I.of(v1, ..., vi − 1, •, ..., en) ◦ FS)

(E-of)(H,VS, I.of(v), FS) → (H ′, VS, (I)o, FS)

where v = (I)o,H ′ = H[o → I[o]], fresh o /∈ dom(H)

Figure A.9: Semantics of FHJ+ formalization in MJ style
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(E-Set)(H,VS, (I)o.SET_f((I ′)o ′), FS) → (H ′, VS, (K)o, FS)

where H(o) = K[o1, ..., on], H
′ = H[o →

K[o1, ..., oi−1, o
′, oi+1, ...on]], f is the ith of K ′s constructor.

(EC-Set)(H,VS, e.SET_f(e ′), FS) → (H,VS, e, (•.SET_f(e ′)) ◦ FS)

(EC-Set)(H,VS, v.SET_f(e ′), FS) → (H,VS, e ′, (v.SET_f(•)) ◦ FS)

(EC-Fill)(H,VS, v, F ◦ FS) → (H,VS, F(v), FS)

Figure A.10: Semantics of FHJ+ formalization in MJ style (continued)
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