Abstract of thesis entitled
 "Iso-Type Systems: Simple Dependent Type Theories for Programming"

Submitted by
Yanpeng Yang
for the degree of Doctor of Philosophy
at The University of Hong Kong in January, 2019

Dependent types have been drawing a lot of attention in programming language designs. A key reason is that they allow unifying types and terms that are usually distinct syntactic levels in traditional language designs. Unified syntax brings some interesting advantages over separate syntax, including added expressiveness and less duplication of concepts. However, it is challenging to combine dependent types with common programming features, such as unrestricted general recursion and object-oriented programming (OOP) features including subtype polymorphism and abstract type members. To address these challenges, we propose three novel dependently typed calculi with both simplicity and expressiveness, namely Pure Iso-Type Systems (PITS), the λI_{\leqslant} calculus and the λI_{Σ} calculus.

PITS is a generic language framework that employs unified syntax, supports general recursion and preserves decidable type checking. It is comparable in simplicity to pure type systems (PTS), and is useful to serve as a foundation for functional languages that stand in-between traditional ML-like languages and full-spectrum dependently typed languages. The key to retain decidable type checking in the presence of general recursion is a generalization of iso-recursive types called iso-types. Iso-types replace the implicit conversion rule typically used in dependently typed calculi and make every computation explicit via cast operators. We study three variants of PITS that differ on the reduction strategy employed by the cast operators and prove type-safety and decidability of type checking for all variants.

The λI_{\leqslant}calculus is a variant of PITS with unified subtyping, a novel technique that unifies typing and subtyping and enables the combination of dependent types and subtyping. In λI_{\leqslant}, there is only one judgment that is akin to a typed version of subtyping. Both the typing relation, as well as type well-formedness are just special cases of the unified subtyping relation. λI_{\leqslant}supports essential features for modeling OOP, such as high-order subtyping, bounded quantification and top types. It can fully subsume System F_{\leqslant}and enjoys several standard and desirable properties, such as type-safety and transitivity of subtyping.

The λI_{Σ} calculus is a variant of λI_{\leqslant}with strong dependent sums. Strong sums are useful to model Scala-like traits with type members. λI_{Σ} adopts a novel treatment of strong sums called iso-strong sums. The destructors of iso-strong sums are typed using intermediate type-level applications instead of standard direct substitutions. The necessary type-level computation can be done by just call-by-value casts. λI_{Σ} supports impredicativity and enjoys the same desirable properties as λI_{\leqslant}, including type-safety and transitivity. (421 words)

Iso－Type Systems：Simple Dependent Type Theories for Programming

Yanpeng Yang
楊彦艺
Department of Computer Science
The University of Hong Kong

This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

January， 2019

Declaration

I hereby declare that the thesis entitled "Iso-Type Systems: Simple Dependent Type Theories for Programming" represents my own work and has not been previously submitted to this or any other institution for a degree, diploma or other qualifications.

Yanpeng Yang
January, 2019

Acknowledgements

My thanks first go to my supervisor, Bruno Oliveira, who has been a great research advisor and mentor. Bruno is so energetic and positive on research. Every meeting with him is just a pleasure. He is very good at guiding students with his great patience and strong expertise. I really appreciate the time he spent on brainstorming new research ideas with me and offering constructive suggestions to me. I am very grateful to all his help and support.

During my time as a PhD student HKU, I am very fortunate to meet so many nice colleagues and friends. The Programming Languages Group is a great place to do research and share laughter. I would like to thank everyone in the group: Haoyuan Zhang, Weixin Zhang, Yanlin Wang, Zhiyuan Shi, Xuan Bi, Ningning Xie, Huang Li, Jinxu Zhao, Xuejing Huang, Tomas Tauber, João Alpuim and other people, just to name a few. I would also like to thank visiting scholars to our group, who patiently listened to my research work and gave me helpful feedback: Prof. Tom Schrijvers, Dr. Marco Servetto, Dr. Vilhelm Sjöberg, Dr. Tomoyuki Aotani (we also met at OOPSLA'17), Dr. Nicholas Ng and Dr. Shin-Cheng Mu (who is also my thesis examiner).

The Department of Computer Science at HKU is a warm place to stay. I would like to thank many professors at the department: my second supervisor Dr. Reynold C. K. Cheng, former Heads of Department Prof. Francis C. M. Lau and Prof. Wenping Wang, Dr. Heming Cui, Dr. Chuan Wu, Dr. Zhiyi Huang and Dr. Hubert Chan. I would also like to thank staffs from the general office and technical support who are kind and always ready to help: Priscilla Chung, Olive Hui, Veronica Yim, Patrick Au and the current and former clean ladies (sorry I forgot your names) who helped me clean my office every week.

HKU is a fantastic place with so many brilliant and kind people. I have met many new friends here who are really kind and helpful. My special thanks go to Luwei Cheng and Dominic Hung Chit-Ho for your encouragement that helped me get over my most difficult time at HKU. I would like to thank Jiancheng Ye from EEE department for showing me around Hong Kong when I was new here. I would like to thank Kan Wu for your professional skills as Soldier: 76 and Mei for covering me. I would like to thank colleagues from the Systems Lab: Huanxin Lin, Hao Wu, Mingzhe Zhang, Weizhi Liu, King Tin Lam and the visiting professor Dr. Dengke Zhang, for the past time when we worked together. I would like to thank other friends I met at HKU and I really enjoy the happy time with you: Zhangquan Wu, Fangying Wang, Shirui Lu, Yong Xu, Gongxian Zeng, Lingjie Liu, Jiatao Gu, Kai Han, Wei Liu, Haofeng Li, Qihang Sun, Yongfei Wang, Yujie Cao, Zhou Xu, Shuang Tong and many names I forgot to mention.

I would also like to thank my old friends, who did not forget me when I was deserted in Hong Kong. I would like to thank my undergraduate roommates and friends, who are just like brothers: Sheng'guo Ren, Fan Gao, Yuxuan Shui and Yuzui Ye. I would like to thank my high school classmates who welcomed me when I first came to Hong Kong, who gathered with me at Hong Kong and who still remembered me and contacted me when I was in Hong Kong: Jiayan

Jiang, Tianyi Yang, Yushang Tang, Yumeng Guo, Xiaoyu Chen, Feng Zhu, Yue Shen, Chen Hang, Xiaozhuo Cheng, Yuxin Chen, Peilu Wang and so many others.

I would like to thank my parents and my family. You are always my powerful and secure backing.

Finally, I especially offer my grateful thanks to my girlfriend Huoru Zhang for your constant support throughout my PhD study. I could never have done this work without your love and encouragement.

Contents

1 Introduction 1
1.1 Type Features of Static Type Systems 1
1.2 The Design Space of Dependently Typed Languages 4
1.3 Motivations and Challenges 6
1.3.1 Unified Syntax, General Recursion and Decidable Type Checking 6
1.3.2 Combining Dependent Types and Subtyping 8
1.3.3 Combining Dependent Types and Strong Sums 9
1.4 Our Proposals 11
1.4.1 Pure Iso-Type Systems and Iso-Types 11
1.4.2 The λI_{\leqslant}Calculus and Unified Subtyping 12
1.4.3 The λI_{Σ} Calculus and Iso-Strong Sums 12
1.5 Contributions and Outline 13
2 Background 15
2.1 Pure Type Systems 15
2.1.1 Basics of PTS 15
2.1.2 Examples of PTS 17
2.1.3 Metatheory of PTS 19
2.2 Dependent Sums 20
2.2.1 Weak Sums 20
2.2.2 Strong Sums 20
2.2.3 Comparison of Weak and Strong Sums 21
2.3 Iso-Recursive Types 21
2.3.1 Iso-Recursive versus Equi-Recursive Types 22
2.3.2 Iso-Recursive Types in Haskell 23
2.4 Subtyping 24
2.4.1 Important Subtyping Rules 24
2.4.2 Bounded Quantification 25
2.5 Path-Dependent Types 27
I Pure Iso-Type Systems 29
3 Overview of Iso-Types 31
3.1 Motivation and Overview 32
3.1.1 Implicit Type Conversion in Pure Type Systems 32
3.1.2 Newtypes: Explicit Type Conversion in Haskell 32
3.1.3 Iso-Types: Explicit Type Conversion in PITS 33
3.1.4 General Recursion 35
3.2 Iso-Types by Example 35
3.2.1 Fun Implementation 36
3.2.2 Combining Algebraic Datatypes with Advanced Features 37
3.2.3 Object Encodings 39
3.2.4 Fun with Full Reduction 40
4 Pure Iso-Type Systems 43
4.1 Call-by-name Pure Iso-Type Systems 44
4.1.1 Syntax 44
4.1.2 Operational Semantics 45
4.1.3 Typing 45
4.1.4 The Two Faces of Recursion 47
4.1.5 Metatheory of Call-by-name PITS 48
4.2 Call-by-value Pure Iso-Type Systems 50
4.2.1 Value Restriction 50
4.2.2 Reduction with Open Terms 52
4.2.3 Metatheory 52
4.3 Iso-Types with Full Casts 54
4.3.1 Full Casts with Parallel Reduction 54
4.3.2 Metatheory 57
4.3.3 Completeness to Pure Type Systems 60
4.4 Discussion 61
4.4.1 Direct Dynamic Semantics 61
4.4.2 Direct Proofs 62
4.4.3 No Mutually Dependent Judgments 63
4.4.4 Implicit Proofs by Reduction 63
4.4.5 Full Type-Level Computation 64
4.4.6 Consistency of Reduction 65
4.4.7 Decidability in the Presence of Recursion 65
II Iso-Types with Subtyping 67
5 Unifying Typing and Subtyping 69
5.1 Overview 69
5.1.1 Unified Syntax versus Stratified Syntax 70
5.1.2 Challenges in Combining Subtyping with Dependent Types 70
5.1.3 Our Solution: Unified Subtyping 71
5.1.4 Iso-Types: Dependent Types without Strong Normalization 72
5.1.5 Example: Object Encodings using λI_{\leqslant} 73
5.2 The λI_{\leqslant}Calculus 76
5.2.1 Syntax 76
5.2.2 Operational Semantics 77
5.2.3 Static Semantics 77
5.3 The Metatheory of Unified Subtyping 80
5.3.1 Basic Lemmas 80
5.3.2 Transitivity 82
5.3.3 Basic Lemmas, Revisited 84
5.3.4 Type Safety 84
5.4 Algorithmic Version 86
5.4.1 Bidirectional Type Checking 87
5.4.2 Soundness and Completeness 88
5.5 Subsumption of System F_{\leqslant} 89
5.5.1 Translating System F_{\leqslant}to λI_{\leqslant} 89
5.5.2 Subsumption of Typing and Subtyping 89
5.6 Discussion 90
6 Iso-Types with Strong Dependent Sums 93
6.1 Overview 94
6.1.1 The Trouble with Impredicativity and Strong Sums 94
6.1.2 Iso-Strong Sums: Typing Strong Sums with Iso-Types 95
6.1.3 Example: Type Members and Traits 97
6.1.4 ML Module Systems and Strong Sums 99
6.2 The λI_{Σ} Calculus 100
6.2.1 Syntax 101
6.2.2 Dynamic Semantics 102
6.2.3 Static Semantics 103
6.3 Metatheory of λI_{Σ} 107
6.3.1 Basic Lemmas 107
6.3.2 Transitivity 108
6.3.3 Type Safety 109
6.4 The Sig Language 112
6.4.1 Syntax 112
6.4.2 Static Semantics 113
6.4.3 Elaboration Semantics 116
6.4.4 Soundness of Translation 119
7 Related Work 121
7.1 Dependently Typed Calculi without Subtyping 121
7.1.1 Core Calculus for Functional Languages 121
7.1.2 Unified Syntax with Decidable Type-checking 121
7.1.3 Unified Syntax with General Recursion and Undecidable Type Checking 122
7.1.4 Casts for Managed Type-level Computation 122
7.1.5 Restricted Recursion with Termination Checking 123
7.2 Calculi with Subtyping and Dependent Types 123
7.2.1 Subtyping with Unified Syntax 123
7.2.2 Stratified Syntax with High-Order Subtyping 124
7.2.3 Stratified Subtyping Systems with Dependent Types 124
7.2.4 Subtyping with Restricted Dependent Types 125
7.3 Strong Sum Types and ML Modules 125
7.3.1 Dependently Typed Calculi with Strong Sigma-types 125
7.3.2 Strong Sigma-types with Subtyping 126
7.3.3 Core Languages for Scala 126
7.3.4 Encoding ML Modules by Dependent Types 127
7.3.5 Encoding ML Modules by F-ing Modules 127
7.3.6 First-class ML Modules 128
7.3.7 Module Systems for Dependently Typed Calculi 128
8 Conclusion and Future Work 129
8.1 Conclusion 129
8.2 Future Work 130
A Manual Proofs 135
A. 1 Encoding Weak Sums in λI_{\leqslant} 135
A. 2 Subsumption of System F_{\leqslant}in λI_{\leqslant} 136
A. 3 Soundness of Translation for Sig 140
References 151

List of Figures

2.1 Typing rules of PTS 17
2.2 The lambda cube 18
2.3 Specification of System F_{\leqslant} 26
4.1 Syntax of call-by-name PITS 45
4.2 Operational semantics of call-by-name PITS 46
4.3 Typing rules of call-by-name PITS 46
4.4 Call-by-value PITS 53
4.5 One-step decidable parallel reduction of erased terms 55
4.6 Erasure of casts 55
$4.7 \mathrm{PTS}_{\mu}$ 56
4.8 Full PITS 57
4.9 Full beta reduction 58
4.10 Typing rules of $\mathrm{PTS}_{\text {step }}$ 60
5.1 Evaluation of $(c \Leftarrow$ bump $) \Leftarrow$ get 75
5.2 Syntax 77
5.3 Operational semantics 78
5.4 Static semantics 79
5.5 Dependency of lemmas for the metatheory of unified subtyping 81
5.6 Erasure of annotations 87
5.7 Algorithmic subtyping 87
5.8 Bidirectional typing 88
5.9 Translation of System F_{\leqslant} 89
6.1 Syntax of λI_{Σ} 102
6.2 Operational semantics of λI_{Σ} 102
6.3 Static semantics of λI_{Σ} 104
6.4 Syntax of Sig 113
6.5 Typing rules of Sig 114
6.6 Other rules of Sig 115
6.7 Translation of terms 117
6.8 Translation of terms (cont.) 118
6.9 Translation of contexts and bindings 119

List of Tables

4.1 Comparison between PTS_{f} and PITS 62
6.1 Properties of dependently typed calculi with beta equality 94
7.1 Comparison between λI_{\leqslant}and related calculi 123

Introduction

1.1 Type Features of Static Type Systems

Type systems describe how types are assigned for terms in programming languages. Static type checking employs rules of type systems to verify types at compile-time. Static type systems help detect errors early before the program actually runs. For example, if the operator "/" performs integer division and one accidentally writes a division by two on the string, i.e. "3"/2, the compiler will detect a type mismatch that the operand " 3 " is not an integer. Such ill-typed term will be rejected by the compiler and prevented from crashing at run-time. From the perspective of engineering, static type systems can be beneficial for code refactoring and optimization by utilizing the extra typing information about programs. There is even a trend of adding static type systems to dynamically typed languages. For example, Python allows type annotations starting from Python 3.5 [van Rossum et al. 2014] and TypeScript [Microsoft Corporation 2016] brings an optional type system to JavaScript through gradual typing [Siek and Taha 2006].

Subtyping. Statically typed languages support various type features through their type systems. For example, object-oriented programming (OOP) languages, such as Java [Gosling et al. 1996] and Scala [Odersky et al. 2004], usually support subtype polymorphism of objects, which is a key feature of OOP. Such mechanism relies on the subtyping relation of type systems. In Scala, we can define classes that implement the same method but behave differently:

```
trait Shape {
    def area(): Double
}
class Square extends Shape {
    var width = 1.0
    def area() = width * width
}
class Circle extends Shape {
    var radius = 1.0
    def area() = Math.PI * radius * radius
}
```

Both Square and Circle classes are subtypes of Shape, meaning that we can pass Square or

Circle objects to the places expecting Shape objects. For example, we can define a generic function PrintArea that prints the area of a Shape object. We can pass a Square or Circle object to PrintArea and get different results:

```
def PrintArea(s: Shape) = println(s.area())
PrintArea(new Square()) // 1.0
PrintArea(new Circle()) // 3.141592653589793
```

Higher-kinded Polymorphism. In contrast to the subtype polymorphism in OOP languages, type systems of functional programming languages, such as Haskell [Marlow et al. 2010] and ML [Milner et al. 1990], usually adopt other forms of polymorphism. For example, Haskell supports higher-kinded polymorphism, which is achieved by higher-kinded types that can take other types and construct a new type. One example are monads, a useful design pattern that can represent sequential computations [Wadler 1995]. Monads in Haskell are defined by a typeclass [Hall et al. 1994] (like an interface in Java) with two functions, bind (\gg) and return:

> class Monad m where
> $\quad(\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b$
> return $:: a \rightarrow m a$

Monad is an example of a higher-kinded type, which has the following kind:

$$
\text { Monad }::(\star \rightarrow \star) \rightarrow \text { Constraint }
$$

It takes a type constructor m of kind $\star \rightarrow \star$ and returns a typeclass constraint. This enables abstraction over not only types but also type constructors, thus obtaining higher-kinded polymorphism. For example, many type constructors in Haskell can be categorized into monads and operated using the bind or return functions, such as list types and Maybe types (also known as option types). With higher-kinded polymorphism, it is possible to write a generic fmap function that performs operations for each element inside a monad:

$$
\begin{aligned}
& \text { fmap }:: \text { Monad } m \Rightarrow(a \rightarrow b) \rightarrow m a \rightarrow m b \\
& \text { fmap } f x=x \gg \lambda y \rightarrow \operatorname{return}(f y)
\end{aligned}
$$

The type constructor m can be a list or option type, which are both monads. For example, we can apply fmap $(+1)$ to a list or option to increase contained elements by one:

$$
\begin{array}{ll}
\text { fmap }(+1)[1,2,3] & --\operatorname{returns}[2,3,4] \\
\text { fmap }(+1)(\text { Just } 2) & \text {-- returns (Just 3) }
\end{array}
$$

Dependent Types. Besides traditional OOP and functional languages, several new programming languages, notably Agda [Norell 2007a] and Idris [Brady 2013], are emerging and employ a different programming paradigm called dependently typed programming. Type systems in these languages support dependent types: types that can depend on terms. For example in Idris, we can define a vector, a special list whose type carries its length:

$$
\begin{aligned}
& \text { data Vec : Nat } \rightarrow \text { Type where } \\
& \text { Nil : Vec } 0 \\
& (::): \text { Int } \rightarrow \text { Vec } n \rightarrow \operatorname{Vec}(1+n)
\end{aligned}
$$

The vector type $V e c$ is a dependent type that depends on a natural number $N a t$, i.e., the length of the list. Dependent types involve type-level computation, i.e., evaluating terms in types. For example, consider an append function that concatenates two vectors:

$$
\begin{aligned}
& \text { append }: \text { Vec } n \rightarrow \text { Vec } m \rightarrow \operatorname{Vec}(n+m) \\
& \text { append Nil ys }=y s \\
& \text { append }(x:: x s) \text { ys }=x:: \text { append } x s \text { ys }
\end{aligned}
$$

The return type contains an addition expression $n+m$ which needs evaluation to get its value. For example, if we append $\langle 1,2\rangle$ of type Vec 2 with $\langle 3\rangle$ of type Vec 1 , the resulting list $\langle 1,2,3\rangle$ will have type $\operatorname{Vec}(2+1)$. We need to further perform the computation $2+1=3$ to eliminate the addition form and obtain the final type Vec 3. In contrast, traditional languages rarely involve computations at the type level and usually have a strong distinction between terms and types.

Benefits of Dependent Types. Dependent types have been drawing a lot of attention in programming language design and research in recent years [Augustsson 1998; Altenkirch et al. 2010; Sjöberg et al. 2012; Stump et al. 2008; Weirich et al. 2013; Gundry 2013; Casinghino et al. 2014; Sjöberg and Weirich 2015; Sjöberg 2015; Eisenberg 2016; Casinghino 2014; Weirich et al. 2017]. A key reason why dependent types are interesting is that they naturally lead to a unification between types and terms, which enables both additional expressiveness and economy of concepts. Dependent type systems are more expressive because types can carry more information about terms. For example, by using vector types Vec, we can statically know the length of lists. In contrast, if using conventional list types, such as List<T> in Java, we can only know their lengths at run-time through the size() method. Thus, the dependent list type provides more refined type information (the exact list length) and is helpful to prevent more errors earlier at compile-time, such as out-of-bounds errors.

The other potential benefit of dependent types comes from the fact that as terms are allowed to occur in types, the strong separation between terms and types is no longer necessary. Once various different levels of syntax (such as terms and types) are unified, the redundancy of language constructs at the various levels can be avoided. For example, Java uses a special syntax for instantiating generics, e.g., List<0bject>, which is different from an ordinary method call such as Arrays.sort (a). The type operator List is essentially a type-level function and its instantiation can be seen as a function application. Supposing that we unify term and type levels in Java, we can instantiate generics just like calling methods, e.g., List(Object). This leads to an economy of concepts: with unified syntax, there can be just one form of functions for both type-level functions (generics) and term-level functions (methods). Moreover, traditional functional languages like Haskell [Marlow et al. 2010] and ML [Milner et al. 1990] that support higher-kinded types have even more levels in the stratified syntax, i.e., terms, types and kinds. Unifying syntactic levels in such languages can result in a significantly more compact metatheory, and can also lead to a reduction of necessary implementation effort.

Benefits of Combining Type Features. Modern programming languages tend to support multiple type features simultaneously. Combining type features enables the possibility of writing programs in different programming paradigms. For example, Scala supports both subtyping and higher-kinded types. Not only can we write Scala programs in the object-oriented style, but also in the functional style, e.g., defining a Monad trait in Scala as follows:

```
trait Monad[M[_]] {
    def ret[A](a: A): M[A]
    def bind[A, B](m: M[A], f: A => M[B]): M[B]
}
```

The Monad trait follows the Monad typeclass definition in Haskell and can also quantify over type constructors, such as the Option [T] type in Scala.

Moreover, with different type features combined, the language becomes more expressive and enables more programming features. For example, combing subtyping and higher kinds enables higher-order subtyping in Scala, which allows subtyping relations between type constructors. We can define a non-empty list type Cons [T], which is a subtype of the general linked list type $L[T]$:

```
trait L[T] {
    def isEmpty: Boolean
    def head: T
    def tail: L[T]
}
class Cons[T](val head: T, val tail: L[T]) extends L[T] {
    def isEmpty = false
}
```


1.2 The Design Space of Dependently Typed Languages

Conventionally, dependent types are used as a logic to implement programming languages aiming at theorem proving, e.g., Twelf [Pfenning and Schürmann 1999] and Coq [The Coq development team 2016]. This is made possible by the Curry-Howard correspondence [Howard 1980] which connects the world of logics and the world of programming languages. The correspondence states that propositions in logic can be viewed as types and proofs can be viewed as program values. The expressiveness of dependent types makes languages like Twelf and Coq suitable as proof assistants. With dependent types, types can mention terms and correspondingly we can illustrate useful propositions containing terms. For example in Coq, we can write equality propositions to describe properties of additions such as $a+b=b+a$ for commutativity and $(a+b)+c=a+(b+c)$ for associativity.

To serve as proof assistants, languages like Twelf and Coq are also required to be consistent when viewed as logics. Logical consistency is critical to proof assistants, which guarantees that proofs will not go wrong, e.g., one can never derive a term of type False or prove an absurd result True $=$ False. Logical consistency is often ensured by strong normalization, a property that evaluating well-formed terms or types always terminates.

Apart from the common logical use, dependent types can also be beneficial to the area of traditional general-purpose programming. Dependently typed languages like Coq, Agda and Idris are designed to be both proof assistants and programming languages. However, the combination of dependent types and traditional programming features may cause problems. Traditional languages allow users to write recursive programs without restrictions. This is not the case in languages like Coq, Agda and Idris.

Otherwise, non-terminating recursive programs would break crucial properties of proofs assistants, such as strong normalization, logical consistency or decidable type checking, i.e. the type
checking algorithm always terminates. At the type level, non-terminating recursive functions can show up in definitions of dependent types. Strong normalization no longer holds since evaluation of such types may not terminate. Type checking may also involve the evaluation of non-terminating types and becomes undecidable. At the term level, non-terminating programs can be used to prove arbitrary theorems. For example, we can build a fixpoint combinator fix using a recursive definition:

$$
\begin{aligned}
& \text { fix }:(A \rightarrow A) \rightarrow A \\
& \text { fix } f=f(\text { fix } f)
\end{aligned}
$$

With fix, we can prove an absurd theorem True $=$ False, i.e., find a term with such type:
fix id: $($ True $=$ False $)$
where $i d=\lambda x:($ True $=$ False $) . x$
This leads to logical inconsistency since we can prove a wrong result True $=$ False.

Termination and Positivity Checking. Generally determining whether a recursive function terminates or not is essentially the halting problem, which is undecidable [Turing 1937]. Dependently typed languages usually take a conservative approach by limiting how recursive programs and types can be written, enforced by various checks including termination checking and positivity checking.

Termination checking requires recursive functions to have specific forms that are known to terminate. For example, Coq employs a restriction called primitive recursion [Bertot and Castran 2010; Chlipala 2013], which only allows recursive calls on syntactic sub-terms of the original arguments. Terminating total functions that are not primitive recursive cannot be directly written in Coq, e.g., the Ackermann function [Ackermann 1928; Bertot and Castran 2010]:

$$
\begin{array}{ll}
\operatorname{Ack}(0, n) & =n+1 \\
\operatorname{Ack}(m+1,0) & =\operatorname{Ack}(m, 1) \\
\operatorname{Ack}(m+1, n+1) & =\operatorname{Ack}(m, \operatorname{Ack}(m+1, n))
\end{array}
$$

Positivity checking forbids recursive datatypes that occur in negative positions since such datatypes allow users to write non-terminating functions. The following datatype definition is a simple example that violates the positivity checking of Coq [Bertot and Castran 2010]:

Inductive T : Set := MkT : (T -> T) -> T.
but can be defined in Haskell without any issue:

$$
\text { data } T=M k T(T \rightarrow T)
$$

Issues of Termination and Positivity Checking. The termination and positivity checkers make these dependently typed languages non-starters for traditional programming styles based on general recursion. Programmers need to struggle with these checkers to let programs compile. Termination checkers are usually not intelligent enough to detect terminating programs, such as the $A c k$ function. Another example is the implementation of merge sort in Coq. The following definition intuitively implements the algorithm of merge sort, which is terminating, but cannot pass the termination checker [Chlipala 2013]:

```
Fixpoint mergeSort (xs : list A) : list A :=
    if leb (length xs) 1
        then xs
        else let xss := split xs in
            merge (mergeSort (fst xss)) (mergeSort (snd xss)).
```

In contrast, Haskell programmers can write a recursive merge sort function more freely without any restriction:

```
mergeSort [] = []
mergeSort \([x]=[x]\)
mergeSort \(x s=\operatorname{let}(a, b)=\) split \(x s\)
    in merge (mergeSort \(a\) ) (mergeSort \(b\) )
```

Our Focus. The design space between traditional languages and full-spectrum dependently typed languages is very large. It would be interesting if there are language designs that employ dependent types and benefit from the added expressiveness and economy of concepts, but also enjoy the liberty of writing recursive functions and types without termination or positivity checking. Previously, researchers have explored such languages designs and proposed dependently typed calculi with general recursion, such as Cayenne [Augustsson 1998] and Zombie [Casinghino et al. 2014; Sjöberg and Weirich 2015]. They showed the feasibility of combining dependent types with general recursion for general-purpose programming.

This thesis mainly focuses on such design space. We explore designs of languages that employ dependent types, but aim at traditional programming instead of theorem proving. In such languages, general recursive programs and types can be freely written. Decidable type checking is a desirable property, while strong normalization or logical consistency are not guaranteed. The termination/positivity checking can be avoided, which makes these languages less restrictive in terms of writing recursive programs and thus more friendly to end users. However, dependent types do not come for free and several challenges may arise when combining dependent types with other programming features, as discussed later in the next section.

1.3 Motivations and Challenges

Our goal of this thesis is to explore how to combine dependent types with traditional programming features in simple yet expressive calculi that are friendly to formalization, implementation and extension. In this section, we discuss the motivations and challenges of combining dependent types with various features, including general recursion, subtyping and strong dependent sums.

1.3.1 Unified Syntax, General Recursion and Decidable Type Checking

Dependent types enable unifying types and terms. By employing unified syntax with dependent types, it is possible to design a calculus that is both simple and expressive. One existing example is the Pure Type Systems (PTS) [Barendregt 1991, 1992] that have only one syntactic level for both terms and types. PTS has a very concise presentation consisting of only 5 language constructs and 7 typing rules. It is also powerful to subsume a wide range of typed lambda calculi, including the calculus of constructions [Coquand and Huet 1988] containing dependent types.

Though PTS does not contain any explicit forms of recursion and is typically used as a framework to study logic systems, the approach of PTS-style unified syntax can be helpful
for traditional language designs. Unifying different syntactic levels removes the duplication of constructs and reduces the effort of formalization and implementation. Not surprisingly, researchers have in the past proposed several dependently typed languages with unified syntax and general recursion. These languages can both model the traditional programs with recursion and allow using dependent types to write expressive and type-safe programs that cannot usually be done in traditional languages. For example, Cayenne [Augustsson 1998] is a Haskell-like dependently typed language with unified syntax. Cayenne allows users to write a type-safe format printing function, i.e., printf, which has the following type:

```
printf :: (fmt :: String) -> PrintfType fmt
```

The type of printf is a dependent type whose return type is determined by the fmt string. A type-level function PrintfType recursively computes the type of printf according to the provided fmt. Thanks to the unified syntax, it is defined just like any other recursive functions:

```
PrintfType :: String -> *
PrintfType "" = String
PrintfType ('%':'d':cs) = Int -> PrintfType cs
PrintfType ('%':'s':cs) = String -> PrintfType cs
PrintfType ('%': _ :cs) = PrintfType cs
PrintfType ( _ : cs ) = PrintfType cs
```

PrintfType ensures that printf only accepts arguments with correct types specified by the format string. For example, when fmt is "\%d", we have

```
printf "%d" :: Int -> String
```

which only accepts an integer and prevents malformed inputs. Note that the type-safe printf example only requires a few, finite steps of type-level computation. It can actually be simulated in Haskell with other existing type-level features such as typeclasses or Template Haskell [Sheard and Jones 2002]. Nonetheless, the simulation is not as convenient or intuitive as programming in Cayenne directly using dependent types.

Challenges. However, in dependently typed calculi with unified syntax, it is non-trivial to simultaneously integrate general (unrestricted) recursion and retain decidable type checking. For example, type checking of Cayenne is undecidable. The reason is that as dependent types involve type-level computation, the type checker may get stuck if trying to evaluate non-terminating terms that show up in types. For example, recall the fixpoint combinator in Section 1.2. If there exists a vector type with $f i x$ as follows:

$$
\operatorname{Vec}(f i x(\lambda x: \text { Nat. } x+1))
$$

The type checker will get stuck when evaluating the parameter of Vec, which is a non-terminating operation that infinitely adds one to the result. Moreover, unified syntax removes the syntactic boundary between terms and types, allowing us to use the same fix combinator to directly construct a recursive type:

```
fix id : *
where \(i d=\lambda x: \star . x\)
```

The type $f i x i d$ can be unfolded indefinitely, which may also block the type checker. For languages with stratified syntax, we can still make syntactic restrictions to prevent recursive terms (e.g. fix)
being directly used as types. But this is usually difficult for languages with unified syntax whose terms can be freely lifted to the type level as types.

Besides Cayenne, there are several other dependently typed calculi supporting unified syntax and general recursion, such as the calculus by Cardelli [1986b] and the $\Pi \Sigma$ calculus by Altenkirch et al. [2010]. But both calculi fail to retain decidable type checking similarly to Cayenne. For pragmatic reasons, some theorem provers with unified syntax, e.g., Idris and Agda, provide an option to turn off the termination checker and allow general recursion, but the type checking becomes undecidable. More recently, several studies have proposed dependently typed calculi with unified syntax and also managed to preserve decidable type checking in the presence of general recursion. Notable examples are the Zombie language from the Trellys Project [Sjöberg et al. 2012; Casinghino et al. 2014; Sjöberg and Weirich 2015; Casinghino 2014; Sjöberg 2015] and System DC from Dependent Haskell [Weirich et al. 2017]. However, these studies have more ambitious goals and require more sophisticated mechanisms, such as logical subsystems and type equality. The resulting calculi are significantly more complex when compared to systems based on PTS.

1.3.2 Combining Dependent Types and Subtyping

Besides functional programming in Haskell and ML, object-oriented programming (OOP) is a popular programming paradigm with "objects" at the core to encapsulate both data and programs. Beyond the concept of objects, type systems for modern OOP languages are becoming more and more complex. For example, Java was initially designed to be a relatively simple OOP language that tried to address many issues of $\mathrm{C}++$ caused by its complexity. The core features of (original) Java can be formalized in a simple calculus called Featherweight Java (FJ) [Igarashi et al. 1999]. The syntax of classes in FJ is simple:

$$
L::=\text { class } C \text { extends } C\{\bar{C} \bar{f} ; K \bar{M}\}
$$

With the growth of the language, many new features were introduced into modern Java. One notable feature is parametric polymorphism, also known as generics, which is introduced in Java 5. To model generics, the original FJ is extended to Featherweight G才 (FGJ) [Bracha et al. 1998]. The syntax of classes in FGJ becomes more complex (\triangleleft is the abbreviation of extends):

$$
L::=\operatorname{class} C\langle\bar{X} \triangleleft \bar{N}\rangle \triangleleft N\{\bar{T} \bar{f} ; K \bar{M}\}
$$

Moreover, Java continues evolving with more features, such as lambda expressions in Java 8 and local type inference in Java 10 [Goetz 2016], thus requires further extensions of core calculi to formalize these features. Another example is Scala, which supports even more advanced features such as higher-order polymorphism [Girard 1972; Moors et al. 2008], type members [Odersky et al. 2003] and path-dependent types [Odersky et al. 2004; Rompf and Amin 2016]. The extra complexity of the type systems is reflected by the significant effort to develop the corresponding formal theory. A notorious example of this is the development of the foundational metatheory for Scala, which has been an ongoing effort that lasted for more than 10 years and recently culminated with the Dependent Object Types (DOT) calculus [Amin et al. 2012a].

Like functional languages, OOP languages can also benefit from dependent types for both added expressiveness and economy of concepts. Given that the complexity of type systems for

OOP languages is so high, techniques for bringing down such complexity, while retaining or even increasing expressiveness are certainly welcome. The economy of concepts afforded by unified syntax typical of dependently typed languages can help here, since it can significantly reduce the number of language constructs and relations needed in a calculus. Unfortunately, there has been less work on dependently typed calculi for OOP. There are mainly two challenges when developing such calculi. One challenge we already mentioned is the interaction between general recursion and dependent types. This applies to programming languages in general, and is not limited to OOP languages.

The other challenge arises from the combination of subtyping and dependent types. OOP supports polymorphism based on the subtyping relation. However, subtyping is also a substantial difference to traditional calculi based on PTS which typically do not support such feature. The issue with subtyping is well summarized by Aspinall and Compagnoni [1996]:

One thing that makes the study of these systems difficult is that with dependent types, the typing and subtyping relations become intimately tangled, which means that tested techniques of examining subtyping in isolation no longer apply.

In essence the big difficulty is that the introduction of dependent types makes typing and subtyping depend on each other. This causes several difficulties in developing the metatheory for calculi that combine dependent types and subtyping. The metatheory becomes quite complex in some calculi [Aspinall and Compagnoni 1996; Castagna and Chen 2001], e.g., the transitivity of subtyping is entangled with strong normalization. Most previous attempts [Aspinall and Compagnoni 1996; Zwanenburg 1999; Castagna and Chen 2001; Chen 1997, 2003] try to address the problem by untangling typing and subtyping, so that the metatheory of subtyping can be developed before the metatheory of typing. One interesting exception is the Pure Subtype Systems (PSS) by Hutchins [2010] which completely eliminate types and only contain the subtyping relation. An unfortunate result of these attempts is that several desirable language features can no longer be supported. For example, several systems [Aspinall and Compagnoni 1996; Zwanenburg 1999] drop the support of top types, which are essential in OOP programs to model the universal base class, e.g. the Object type in Java. PSS does not support contravariance when subtyping functions, and its metatheory is complex and not fully developed yet. No previous calculi have managed to subsume System F_{\leqslant}[Cardelli et al. 1994] which is a canonical calculus capturing the essential OOP features.

1.3.3 Combining Dependent Types and Strong Sums

OOP languages like Scala and Rust [The Rust Project Developers 2011] support traits [Schärli et al. 2003] which are types that contain a set of methods. Scala and Rust also allow type members (also called associated types) in traits, which are abstract types and useful to define generic datatypes in a more modular way. For example, we can define an abstract trait of integer sets using type members in Scala:

```
trait Set {
    type T
    def empty(): T
    def member(x: Int, s: T): Boolean
    def insert(x: Int, s: T): T
}
```

The type member T represents the abstract type of a set implementation and can be mentioned by methods. Alternatively, traits with type members can be formulated as traits with type parameters (i.e. generics):

```
trait Set[T] {
    def empty(): T
    def member(x: Int, s: T): Boolean
    def insert(x: Int, s: T): T
}
```

However, abstract types (i.e. T) need to be exposed out of traits with generics. When referring to Set [T], one needs to provide an actual T in advance to obtain a complete type. In contrast, if formulated as type members, abstract types can be hidden inside traits. Thus, traits carrying with type members can have higher cohesion thus better modularity.

To access abstract type members, one needs certain forms of dependent types. In Scala, this is done by a weaker form of dependency, called path dependency [Amin et al. 2012a], which only allows types to depend on "paths", i.e., a chain of member access. For example, consider a generic function for testing if an element is in an abstract set:

```
def isMember (s: Set)(x: Int, t: s.T) = s.member(x, t)
```

The last parameter has the type s.T, which depends on a term, the first parameter s. The type s.T is called a path-dependent type [Amin et al. 2014]. DOT utilizes path dependent types to model the access of abstract type members. However, DOT contains many features, such as a rich notion of type bounds, aiming at modeling more features of Scala than only type members. It has a complex metatheory that requires several new proof techniques [Rompf and Amin 2016; Rapoport et al. 2017].

If we only focus on encoding type members, we can alternatively use strong dependent sums (or simply strong sums) in traditional dependently typed calculi. Dependent sums are generalized pairs whose second component can depend on the first. For example, we can encode the Set trait using a dependent sum type (i.e. Σ-type) with a record type:

```
Set \(=\Sigma T: \star .\{\)
    empty: \(T\),
    member: Int \(\rightarrow T \rightarrow\) Bool,
    insert: \(\quad\) Int \(\rightarrow T \rightarrow T\)
\}
```

Strong sums allow us to use projections to access the components. Given a term $s: S e t$, the second projection $s .2$ extracts the record and (s.2).member further extracts the function from the record. Moreover, strong sums can be used to model some other modular structures, such as module systems of ML languages [MacQueen 1986; Milner et al. 1990].

However, combining strong sums in dependently typed calculi is also non-trivial. In traditional dependently typed calculi that are impredicative, such as the calculus of constructions [Coquand and Huet 1988], the introduction of strong sums leads to logical inconsistency [Coquand 1986; Hook and Howe 1986] and hence the loss of strong normalization. This makes it hard to preserve desirable properties, especially in dependently typed calculi with subtyping (e.g. λP_{\leqslant}by Aspinall and Compagnoni [1996]), whose properties such as transitivity and subject reduction rely on strong normalization. Previous studies try to address this issue by dropping [Harper and Mitchell 1993]
or partially dropping [Stump 2017; Bowman et al. 2017] the impredicativity, but the expressiveness of these calculi is also reduced.

1.4 Our Proposals

To address the challenges posed by combining dependent types with traditional programming features, we propose three novel calculi, namely Pure Iso-Type Systems, the λI_{\leqslant}calculus and the λI_{Σ} calculus. In these calculi, we manage to combine dependent types with features such as general recursion, subtyping and strong sums by proposing several novel techniques, including iso-types, unified subtyping and iso-strong sums. We mainly focus on traditional programming scenarios that require few type-level computations, which fit well with our treatment of dependent types. The proposed calculi enjoy both expressiveness and simplicity. By employing the unified syntax of dependent types, the calculi are more concise and expressive than traditional nondependent calculi. Several advanced features of traditional languages, such as higher-kinded polymorphism and higher-order subtyping, can be supported with minimal effort. The calculi are also simple enough to enable the full development of formal metatheory and the possibility of extensions. In the rest of this section, we briefly introduce our proposed calculi and techniques.

1.4.1 Pure Iso-Type Systems and Iso-Types

Pure Iso-Type Systems (PITS) are a family of calculi that employ unified syntax, support general recursion and preserve decidable type checking. PITS has a comparable level of simplicity to PTS, consisting of only 8 language constructs and no more than 9 typing rules. The key to retaining decidable type checking in the presence of general recursion is iso-types, a generalization of iso-recursive types [Crary et al. 1999; Pierce 2002]. Iso-types view not only folding and unfolding of recursive types but also any types that are (beta) convertible as isomorphic. Unlike PTS, there is no implicit type-level computation in PITS. Each type-level computation step is explicitly triggered by a term-level type-safe cast operator. Single-step computation is trivially terminating - it stops after one step, thus type checking is decidable even with non-terminating programs at the type level. Meanwhile, term-level programs using general recursion can be non-terminating as in traditional languages. There is no termination checking or positivity checking in PITS.

We emphasize that PITS does sacrifice some convenience when performing type-level computations in order to gain the ability of doing arbitrary general recursion at the term level. The goal of proposing PITS is to show the use of PTS-style unified syntax for benefiting language designs intended for traditional programming that only involves lightweight type-level computations, but not intended for full-spectrum dependently typed programming that requires intensive type-level computations. The design of PITS is suitable to serve as a foundation for languages in-between traditional ones (e.g. ML and Haskell) and full-spectrum dependently typed ones (e.g. Idris and Agda). To illustrate the feasibility of using PITS as such a foundation, we build a simple surface language called Fun. We show several advanced language features such as higher-kinded types can be encoded in PITS by examples written in Fun.

PITS also enjoys the flexibility of choosing different reduction relations for the explicit cast operators. We study three variants of PITS, namely the call-by-name PITS, the call-by-value PITS and the full PITS, which differ on the reduction strategy used by casts. The call-by-name/value PITS uses conventional call-by-name/value reduction rules for casts. This leads to a relatively
simple metatheory that has direct proofs of properties. In contrast, the full PITS uses the more expressive parallel reduction for casts, which can perform full beta-reduction. But the cost is the complex metatheory of full PITS that requires indirect proofs from an auxiliary system erasing all casts. For all variants, we prove important results of metatheory, including type-safety and decidability of type checking.

1.4.2 The λI_{\leqslant}Calculus and Unified Subtyping

The λI_{\leqslant}calculus is a dependently typed calculus with subtyping. To address the issues arising from the combination of dependent types and subtyping, λI_{\leqslant}employs a novel technique called unified subtyping, which unifies both typing and subtyping relations. The unified subtyping relation can be viewed as a typed version of the conventional subtyping relation.

In λI_{\leqslant}, there is only one single form of judgment, i.e., the unified subtyping judgment. There is no separated typing or type well-formedness judgment, both of which are syntactic sugar of the unified subtyping judgment. The issue of mutual dependency between typing and subtyping, which is a major problem in other formalizations [Aspinall and Compagnoni 1996; Castagna and Chen 2001; Zwanenburg 1999] of calculi with dependent types and subtyping, does not exists in λI_{\leqslant}, because the typing relation is essentially the (unified) subtyping relation itself. In contrast to previous work that struggles with untangling typing and subtyping, we propose a different approach that embraces such entanglement. Our approach is also fundamentally different from Hutchins' PSS since λI_{\leqslant}still retains types.

Meanwhile, λI_{\leqslant}is a dependently typed calculus and can be viewed as a variant of PITS. It features the PTS-style unified syntax and employs the iso-type approach to address the issues of combining recursion and dependent types. Moreover, λI_{\leqslant}supports extra OOP features over PITS, including higher-order subtyping [Pierce and Steffen 1997], bounded quantification [Cardelli et al. 1994] and top types. It can fully subsume System F_{\leqslant}and enjoys several standard and desirable properties, such as type-safety and transitivity of subtyping.

1.4.3 The λI_{Σ} Calculus and Iso-Strong Sums

The λI_{Σ} calculus is a dependently typed calculus with strong sums. It is a variant of λI_{\leqslant}and also based on the ideas of unified subtyping and iso-types. To address the challenges posed by combining dependent types and strong sums, we propose iso-strong sums whose strong destructors (e.g. the second projection) are typed using iso-types. In λI_{Σ}, cast operators employ the call-byvalue reduction, similarly to the one of call-by-value PITS. The typing results of the strong sum destructors are intermediate type-level applications instead of standard direct substitutions. With such change, all type-level computation for strong sums can be performed by just call-by-value casts. There is no need of using full casts from the full PITS, which bring extra complexity in the metatheory.

At the same time, iso-types and iso-strong sums in λI_{\leqslant}decouple properties from strong normalization. This makes it possible to support impredicative polymorphism in the presence of iso-strong sums and retain desirable properties. λI_{Σ} enjoys the same desirable properties as λI_{\leqslant}, including type-safety and transitivity, both of which can be proved without requiring strong normalization. For demonstration purposes, we also build a lightweight surface language Sig on top of λI_{Σ}. We show how Scala-like type members and traits can be encoded by strong sums of λI_{Σ} via a type-sound elaboration semantics of Sig.

1.5 Contributions and Outline

Contributions. In summary, the main contributions of this thesis are:

- Pure Iso-Type Systems: A variant of PTS with general recursion, unified syntax and decidable type-checking. We prove type-safety and decidability of type checking for all three variants of PITS.
- Iso-Types: A generalization of iso-recursive types, which makes all type-level computation steps explicit via cast operators. The combination of casts and recursion subsumes isorecursive types.
- Reduction Strategies of PITS: We study PITS with three reduction strategies: call-byname PITS, call-by-value PITS and PITS with parallel reduction at the type-level. We show the trade-offs between the simplicity and expressiveness for different reduction strategies.
- Unified subtyping: A novel technique that unifies typing and subtyping into a single relation. This technique enables the development of expressive dependently typed calculi with subtyping.
- The $\lambda I_{\leqslant \text {calculus: } A \text { dependently typed calculus with subtyping that employs unified }}$ syntax, iso-types and unified subtyping. The calculus supports top types, higher-order polymorphism and bounded quantification and can fully subsume System F_{\leqslant}. We prove transitivity of subtyping and type-safety for this calculus.
- Iso-Strong Sums: A novel treatment of dependent sums whose strong destructors are typed as intermediate type-level applications. This makes it possible to use call-by-value casts for required type-level computations.
- The λI_{Σ} calculus: A dependently typed calculus with unified subtyping and iso-strong sums. This calculus supports impredicative polymorphism and retains desirable properties. We prove transitivity of subtyping and type-safety for this calculus.

Outline of Thesis. The thesis is divided into two parts. The first part presents an informal overview of iso-types by motivating examples (Chapter 3), and the formal theory of Pure Iso-Type Systems (Chapter 4). It is the foundation of the thesis and provides a substantial theory for iso-types. The second part further studies calculi with both iso-types and subtyping. It presents two new calculi, i.e., the λI_{\leqslant}calculus with unified subtyping (Chapter 5) and the λI_{Σ} calculus with iso-strong sums (Chapter 6). In summary, the remaining chapters of this thesis are organized as follows:

Chapter 2 provides several background knowledge for this thesis.
Chapter 3 gives an overview of iso-types. We discuss the motivation for the development of isotypes and informally introduce the basic mechanism of iso-types in PITS. We give examples written in the surface language Fun to illustrate the usefulness and expressiveness of PITS.

Chapter 4 gives a formal presentation of Pure Iso-Type Systems (PITS), including three variants of PITS that differ on the reduction strategy used in explicit casts. We present the formal
syntax, operational semantics and typing judgments. We develop metatheory for all variants and prove both type-safety and decidability of type checking. We provide an extensive comparison of PITS to a closely related calculus called PTS_{f} [van Doorn et al. 2013].

Chapter 5 presents the λI_{\leqslant}calculus. We discuss the motivation of unified subtyping and present an example of object encodings using λI_{\leqslant}. We formally present the specification of λI_{\leqslant}. Two major results of the metatheory, namely transitivity of subtyping and type-safety are proved. We present a bidirectional version of λI_{\leqslant}and show the subsumption of System F_{\leqslant} in λI_{\leqslant}. We discuss several alternative designs of λI_{\leqslant}.

Chapter 6 presents the λI_{Σ} calculus. We discuss the motivation of iso-strong sums and present an example of encoding Scala-like traits using λI_{Σ}. We present the formal specification of λI_{Σ}. We discuss its metatheory and prove major results including transitivity and typesafety. We also show $\mathbf{S i g}$, a lightweight surface language over λI_{Σ} with Scala-like traits for presenting the application of strong dependent sums. We show a type-directed translation from Fun to λI_{Σ} and prove its soundness.

Chapter 7 discusses the related work to PITS, λI_{\leqslant}and λI_{Σ}.
Chapter 8 concludes the thesis and discusses potential directions for future work.

Mechanized Proofs and Prototype Implementation. All proofs in the thesis are machinechecked in Coq theorem prover [The Coq development team 2016], except for the completeness of λI_{Σ} over System F_{\leqslant}and the translation soundness of $\mathbf{S i g}$ which can be found in Appendix A. These proofs are manual due to the difficulties in mechanizing proofs between different type systems [Kaiser et al. 2017]. For lemmas that are proved manually, we add a pencil symbol " " in the title (e.g. Lemma 5.5.1). We also implement a prototype interpreter and compiler of Fun, a simple language which features algebraic datatypes and pattern matching by elaborating to PITS. The mechanized proofs and the Fun implementation are available online at https: //bitbucket.org/ypyang/archive.

Prior Publications. The content of this thesis is partially based on previously published papers as follows:

- Yanpeng Yang, Xuan Bi, and Bruno C. d. S. Oliveira. 2016. Unified Syntax with Iso-types. In Programming Languages and Systems, Atsushi Igarashi (Ed.). Springer International Publishing, Cham, 251-270.

This paper is the basis of Chapter 3 and Chapter 4. The material of the paper is significantly revised and expanded in the thesis. The calculus from the paper is further generalized to a family of calculi with the PTS tradition called PITS. The study of call-by-value PITS and the completeness of full PITS to PTS are new in Chapter 4.

- Yanpeng Yang and Bruno C. d. S. Oliveira. 2017. Unifying Typing and Subtyping. Proc. ACM Program. Lang. 1, OOPSLA, Article 47 (Oct. 2017), 26 pages. https://doi.org/10.1145/ 3133871

This paper is the basis of Chapter 5 . The study of the combination of unified subtyping and strong sums is new in Chapter 6.

Background

In this chapter, we introduce several preliminaries on type theory which are basic concepts for better understanding the thesis, including pure type systems (Section 2.1), dependent sums (Section 2.2), iso-recursive types (Section 2.3), subtyping (Section 2.4) and path-dependent types (Section 2.5). Note that all topics introduced in this chapter are well-established and well-studied concepts of type theory. Readers who are familiar with these topics can quickly go through this chapter. For readers who may not be familiar with notations of type theories, we recommend the book Types and Programming Languages by Benjamin C. Pierce [2002] for a quick introduction.

2.1 Pure Type Systems

Pure Type Systems (PTS) [Barendregt 1991, 1992] are a generic framework to study a family of type systems, including the simply typed lambda calculus ($\lambda \rightarrow$), System F [Reynolds 1974; Girard 1972] ($\lambda 2$) and the calculus of constructions (λC) [Coquand and Huet 1988]. PTS unifies terms and types (also kinds) into a single syntactic category. Thanks to the unified syntax, PTS has a very concise presentation, which consists of only seven typing rules. Two of them are parameterized by the specification of PTS, i.e., the axioms for typing sorts, and the rules for typing Pi-types. By instantiating the specification, we can obtain a wide range of type systems, even logically inconsistent ones. The content of this section is heavily inspired by previous presentations of PTS by Barendregt [1992] and Severi and de Vries [2012].

2.1.1 Basics of PTS

Specification. The specification of PTS is defined as follows [Severi and de Vries 2012]:
Definition 2.1.1 (Specification of PTS). PTS is specified by a triple $S=(\mathcal{S}, \mathcal{A}, \mathcal{R})$ where

1. \mathcal{S} is a set of constants called sorts;
2. $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$ is a set of axioms;
3. $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$ is a set of rules.

We use the metavariable $s \in \mathcal{S}$ to range over sorts. There is a special kind of PTS specification, called the functional or singly-sorted specification:

Definition 2.1.2 (Functional Specification). A PTS specification is functional if

1. If $\left(s_{1}, s_{2}\right)$ and $\left(s_{1}, s_{2}^{\prime}\right)$ are in \mathcal{A}, then $s_{2}=s_{2}^{\prime}$.
2. If $\left(s_{1}, s_{2}, s_{3}\right)$ and $\left(s_{1}, s_{2}, s_{3}^{\prime}\right)$ are in \mathcal{R}, then $s_{3}=s_{3}^{\prime}$.

The functional specification is useful to prove properties such as typing uniqueness and decidability of type checking for PITS, as discussed in Section 4.1.5.

Syntax. In PTS, terms and types are defined in the same syntactic category:
Definition 2.1.3 (Syntax of PTS). The syntax of PTS is defined by

$$
\begin{array}{ll}
a, b, A, B & ::=s|x| a b|\lambda x: A . a| \Pi x: A . B \\
\Gamma & ::=\varnothing \mid \Gamma, x: A
\end{array}
$$

where a, b, A, B denote the pseudo-terms and Γ denotes the pseudo-contexts.
The variables are denoted by x, y, z, etc. Although there is no distinction between terms and types, by convention we still use lower-case meta-variables a, b, c, etc. to denote terms and upper-case meta-variables A, B, C, etc. to denote types. We use $\mathrm{FV}(a)$ for the set of free variables in a. We use syntactic sugar $A \rightarrow B$ to denote $\Pi x: A$. B when $x \notin \mathrm{FV}(B)$, i.e., x does not occur free in B. Given $\Gamma=\left\{x_{1}: A_{1}, \ldots, x_{n}: A_{n}\right\}$, the domain of the context is defined by $\operatorname{dom}(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}$.

Dynamic Semantics. The beta-reduction of PTS is defined as follows [Severi and de Vries 2012]:

Definition 2.1.4 (One-step Beta-reduction). Given the beta rule:

$$
(\lambda x: A . b) a \rightsquigarrow_{\beta} b[x \mapsto a]
$$

The one-step beta-reduction \longrightarrow_{β} is defined as the smallest relations on pseudo-terms that are closed under the beta rule $\left(\rightsquigarrow_{\beta}\right)$ and under contexts.
where the notation $b[x \mapsto a]$ denotes a capture-avoiding substitution that replaces all free occurrences of x in b with a. The relation \longrightarrow_{β} is inductively defined by applying the base case, i.e., the beta rule $\left(\rightsquigarrow_{\beta}\right)$, for every sub-term of a pseudo-term. Thus, we also call \longrightarrow_{β} full beta-reduction, since the beta rule can be applied at any position of a (pseudo) term. Based on \longrightarrow_{β}, we define the multi-step beta-reduction and beta-equivalence:

Definition 2.1.5 (Multi-step Beta-reduction). The multi-step beta-reduction \rightarrow_{β} is the reflexivetransitive closure of \longrightarrow_{β}.

Definition 2.1.6 (Beta-equivalence). The beta-equivalence $={ }_{\beta}$ is the reflexive-symmetric-transitive closure of \longrightarrow_{β}, i.e., the smallest equivalence relation containing \longrightarrow_{β}.

Typing Rules. A PTS determined by the specification $S=(\mathcal{S}, \mathcal{A}, \mathcal{R})$ has the notation λS and is defined by the judgment $\Gamma \vdash_{S} a: A$, or simply $\Gamma \vdash a: A$. The notion of the judgment is defined by typing rules shown in Figure 2.1.

The axiom rule checks the type of sorts, which states that the type of sort s_{1} is sort s_{2} if the relation $\left(s_{1}, s_{2}\right)$ is in the axiom set \mathcal{A}. The start rule types the variable x according to the binding

(axiom)	$\varnothing \vdash s_{1}: s_{2}$	if $\left(s_{1}, s_{2}\right) \in \mathcal{A}$
(start)	$\frac{\Gamma \vdash A: s}{\Gamma, x: A \vdash x: A}$	if x fresh in Γ
(weakening)	$\frac{\Gamma \vdash A: s \quad \Gamma \vdash b: B}{\Gamma, x: A \vdash b: B}$	if x fresh in Γ
(product)	$\frac{\Gamma \vdash A: s_{1} \quad \Gamma, x: A \vdash B: s_{2}}{\Gamma \vdash(\Pi x: A . B): s_{3}}$	if $\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}$
(abstraction)	$\frac{\Gamma, x: A \vdash b: B \quad \Gamma \vdash(\Pi x: A . B): s}{\Gamma \vdash(\lambda x: A \cdot b):(\Pi x: A . B)}$	
(application)	$\frac{\Gamma \vdash b:(\Pi x: A \cdot B) \quad \Gamma \vdash a: A}{\Gamma \vdash b a: B[x \mapsto a]}$	
(conversion)	$\frac{\Gamma \vdash a: A \quad \Gamma \vdash B: s \quad A={ }_{\beta} B}{\Gamma \vdash a: B}$	

Figure 2.1. Typing rules of PTS
$x: A$ from the context. The weakening rule states that a typing judgment $\Gamma \vdash b: B$ still holds if the context is expanded with a well-formed binding $x: A$. Both start and weakening rules require that the new variable x adding to the context Γ should be fresh, i.e., $x \notin \operatorname{dom}(\Gamma)$. The product rule checks Pi-types and allows the binder type A, the body type B and the Pi-type itself to have different sorts. The relation among these sorts, i.e., $\left(s_{1}, s_{2}, s_{3}\right)$, is defined by the rule set \mathcal{R}. The abstraction and application rules type check lambda abstractions and function applications, respectively. Finally, the conversion rule allows converting types that are beta-equivalent.

2.1.2 Examples of PTS

We show several concrete examples of PTS by instantiating different specifications.

The Lambda Cube. The lambda cube [Barendregt 1992] contains eight type systems of typed lambda calculi, as shown in Figure 2.2. The systems can be obtained by PTS specifications where

$$
\mathcal{S}=\{\star, \square\} \quad \mathcal{A}=\{(\star, \square)\}
$$

By convention, we use the abbreviation $\left(s_{1}, s_{2}\right)$ for $\left(s_{1}, s_{2}, s_{2}\right) \in \mathcal{R}$. Ranging s_{1} and s_{2} over $\{\star, \square\}$, there are four possible values of $\left(s_{1}, s_{2}\right)$, denoted by

$$
\mathcal{R}^{\prime}=\{(\star, \star),(\square, \star),(\star, \square),(\square, \square)\}
$$

Recalling the PTS typing rules for abstractions and products, each value represents a dependency pattern of functions:

Figure 2.2. The lambda cube

Rule	Dependency	Example
(\star, \star)	terms depending on terms	ordinary functions
(\square, \star)	terms depending on types	polymorphic functions
(\star, \square)	types depending on terms	dependent types
(\square, \square)	types depending on types	type constructors

Note that there are eight subsets of \mathcal{R}^{\prime} containing the basic rule (\star, \star), i.e., $(\star, \star) \in \mathcal{R} \subseteq \mathcal{R}^{\prime}$, which give us the exactly eight calculi of the lambda cube. Among all eight calculi, we introduce four commonly used typed calculi:

- The simply typed lambda calculus $(\lambda \rightarrow)$ is obtained by the PTS specification with the common \mathcal{S} and \mathcal{A} mentioned above, as well as $\mathcal{R}=\{(\star, \star)\}$ which is the smallest subset of rules.
- The second-order lambda calculus ($\lambda 2$), also known as System F [Reynolds 1974; Girard 1972], has the rule set $\mathcal{R}=\{(\star, \star),(\square, \star)\}$, and additionally allows polymorphic functions over $\lambda \rightarrow$.
- The higher-order polymorphic lambda calculus $(\lambda \omega)$, also known as System F_{ω} [Girard 1972], has the rule set $\mathcal{R}=\{(\star, \star),(\square, \star),(\square, \square)\}$, and further supports type constructors over System F.
- The calculus of constructions (λC) [Coquand and Huet 1988] has the following rule set:

$$
\mathcal{R}=\{(\star, \star),(\square, \star),(\square, \square),(\star, \square)\}
$$

which is the largest subset of \mathcal{R}^{\prime}, i.e., \mathcal{R}^{\prime} itself. λC further supports dependent types over System F_{ω}, which allow types to depend on terms.

Strongly Normalizing PTS. We have introduced the lambda cube that includes eight systems that are specialized PTSs. One common property is that all eight calculi are strongly normalizing [Barendregt 1992]. The definition is as follows:

Definition 2.1.7 (Normalization).

1. A term a is weakly normalizing if there exists a term b in normal form such that $a \rightarrow_{\beta} b$.
2. A term a is strongly normalizing if all beta-reduction sequences starting from a are finite.

Definition 2.1.8 (Normalizing PTS). A PTS λS is strongly (weakly) normalizing iffor all $\Gamma \vdash a: A$ we have that a and A are strongly (weakly) normalizing.
In general, if a type system is strongly normalizing, then it is consistent when viewed as a logic, i.e., it is logically consistent, meaning that there does not exist an absurd term of type False $=\Pi x: \star . x$. On the other side, we say that a system is inconsistent if all types are inhabited [Barendregt 1992; Girard 1972]. One can derive a term of False type in an inconsistent system.

Inconsistent PTS. There are PTS specifications that can generate inconsistent systems. One well-known example is the $\lambda \star$ calculus [Barendregt 1992], which has the following PTS specification:

$$
\mathcal{S}=\{\star\} \quad \mathcal{A}=\{(\star, \star)\} \quad \mathcal{R}=\{(\star, \star)\}
$$

There is only one axiom called the "type-in-type" axiom [Cardelli 1986b] that causes circularity in typing sort, i.e. $\star: \star$. The inconsistency of $\lambda \star$ was first proved by Girard [1972]:

Theorem 2.1.1 (Girard's Paradox). The type False $=\Pi x: \star . x$ is inhabited in $\lambda \star$, i.e. $\varnothing \vdash a$: False for some a.

The calculus is not normalizing, due to the following lemma [Barendregt 1992]:
Lemma 2.1.1 (Absurd Has No Normal Form). Let λS be a PTS extending λ 2. Suppose $\varnothing \vdash a:$ False. Then a has no normal form.

By Girard's theorem, we can find a term a such that $\Gamma \vdash a:$ False in $\lambda \star$. Such a has no normal form and is not even weakly normalizing. Hence, the calculus is not weakly or strongly normalizing.

2.1.3 Metatheory of PTS

We state several important results of PTS. The properties hold for arbitrary PTS, unless otherwise stated. The following lemmas and theorems are from the work by Barendregt [1992] and proofs can be found in Barendregt's work or other related literature [van Benthem Jutting 1993; Barendregt 1991].

Lemma 2.1.2 (Substitution Lemma for PTS). If $\Gamma, x: A, \Gamma^{\prime} \vdash b: B$ and $\Gamma \vdash a: A$, then $\Gamma, \Gamma^{\prime}[x \mapsto a] \vdash b[x \mapsto a]: B[x \mapsto a]$.
Lemma 2.1.3 (Weakening Lemma for PTS). Let Γ and Γ^{\prime} be legal contexts such that $\Gamma \subseteq \Gamma^{\prime}$. If $\Gamma \vdash a: A$, then $\Gamma^{\prime} \vdash a: A$.
Theorem 2.1.2 (Subject Reduction for PTS). If $\Gamma \vdash a: A$ and $a \rightarrow_{\beta} a^{\prime}$, then $\Gamma \vdash a^{\prime}: A$.
Theorem 2.1.3 (Decidability of Type Checking for Normalizing PTS). If $S=(\mathcal{S}, \mathcal{A}, \mathcal{R})$ where \mathcal{S} is finite, let λS be a PTS that is (weakly or strongly) normalizing. Then given Γ and a, it is decidable to check whether there exists an A such that $\Gamma \vdash a: A$ or not.

Lemma 2.1.4 (Uniqueness of Types for Functional PTS). Let λS be a PTS that is functional. If $\Gamma \vdash a: A$ and $\Gamma \vdash a: B$, then $A={ }_{\beta} B$.

Notice that the decidability of type checking (Theorem 2.1.3) requires a PTS to be weakly or strongly normalizing. And the uniqueness of types (Lemma 2.1.4) requires a PTS to be functional (i.e. has a functional specification, see Definition 2.1.2).

2.2 Dependent Sums

A pair type, denoted by $A \times B$, is one of the simplest compound types. A pair of type $A \times B$ consists of two components where the first component has type A and the second has type B. In a dependent type theory, pair types can also be extended with type dependency, similarly to how dependent function types (i.e. Pi-types $\Pi x: A . B$) generalize non-dependent function types (i.e. arrow types $A \rightarrow B$). Such generalized pairs are called dependent sums where the type of the second component can depend on the first. Dependent sum types, denoted by $\Sigma x: A . B$, are also called Sigma-types. The typing rule of dependent sums is as follows:

$$
\frac{\Gamma \vdash e_{1}: A \quad \Gamma \vdash e_{2}: B\left[x \mapsto e_{1}\right]}{\Gamma \vdash \operatorname{pack}\left[e_{1}, e_{2}\right] \mathbf{a s}(\Sigma x: A . B):(\Sigma x: A . B)}
$$

where pack is the constructor of dependent sums. There are two forms of dependent sums, namely weak and strong sums. The two forms are distinguished by their destructors [Schmidt 1994].

2.2.1 Weak Sums

Weak sums are eliminated by weak pattern matching, i.e. the unpack operator, which is conducted within a particular scope and the pattern variables x and y cannot escape this scope. The typing rule for unpack is as follows:

$$
\frac{\Gamma \vdash e_{1}: \Sigma x: A . B \quad \Gamma, x: A, y: B \vdash e_{2}: C \quad \Gamma \vdash C: \star}{\Gamma \vdash \text { unpack } e_{1} \text { as }[x, y] \text { in } e_{2}: C}
$$

Notice that both x and y cannot occur free in C, since C is a well-formed type under the context Γ without x or y. Weak sum types can also be encoded with Pi-types in a similar way to Churchencoding existential types in System F [Pierce 2002]:

$$
\begin{array}{rrr}
\Sigma x: A . B & \triangleq \Pi z: \star \cdot(\Pi x: A . B \rightarrow z) \rightarrow z & z \text { fresh } \\
\text { pack }\left[e_{1}, e_{2}\right] \text { as } \Sigma x: A . B & \triangleq \lambda z: \star \cdot \lambda f:(\Pi x: A \cdot B \rightarrow z) . f e_{1} e_{2} & z \text { fresh } \\
\text { unpack } e \text { as }[x, y] \text { in } e^{\prime} & \triangleq e C\left(\lambda x: A \cdot \lambda y: B \cdot e^{\prime}\right) & x, y \notin \mathrm{FV}(C)
\end{array}
$$

where z is fresh such that $z \notin \mathrm{FV}(\Pi x: A . B)$. Note that C is the type of $e^{\prime} . A$ and B can be derived from the type of e, i.e., $\Sigma x: A . B$.

2.2.2 Strong Sums

Strong sums are eliminated by projections similarly to non-dependent pairs, which directly extract the first or second component without any scoping restriction. In particular, the type of the second projection can refer to the first. The standard typing rules for the first and second projection are as follows:

$$
\frac{\Gamma \vdash e: \Sigma x: A . B}{\Gamma \vdash e .1: A} \quad \frac{\Gamma \vdash e: \Sigma x: A . B}{\Gamma \vdash e .2: B[x \mapsto e .1]}
$$

Note that x does not show (as a free variable) in the typing result of the second projection $e .2$, since all occurrences of x are replaced by the first projection e.1.

2.2.3 Comparison of Weak and Strong Sums

The projection operators of strong sums can be more expressive than the unpack operators of weak sums. For example, recall the encoding of abstract integer sets using dependent sums shown in Section 1.3.3. In Scala, we can write a generic function f on Set:

```
def f(s: Set) = s.member(3, s.insert(3, s.empty()))
```

This function is encodable by the unpack operator:

$$
f=\lambda s: \text { Set. unpack } s \text { as }\left[T, s^{\prime}\right] \text { in } s^{\prime} . \text { member } 3\left(s^{\prime} . \text { insert } 3 s^{\prime} . \text { empty }\right)
$$

It can also be encoded using projections:

$$
f=\lambda s: \text { Set. (s.2).member } 3 \text { ((s.2).insert } 3 \text { (s.2).empty) }
$$

where the pattern variable s^{\prime} is replaced by a direct second projection $s .2$. However, consider another generic function g that simply returns an empty set:

```
def g(s: Set) = s.empty()
```

We cannot encode g using unpack as follows:

$$
g=\lambda s: \text { Set. unpack } s \text { as }\left[T, s^{\prime}\right] \text { in } s^{\prime} . \text { empty } \quad \text {-- ill-typed }
$$

because s^{\prime}.empty has type T which violates the typing rule of unpack. The type of the sub-term in an unpack should not refer to pattern variables. In contrast, we can encode g with the second projection:

$$
g=\lambda s: \text { Set. (s.2).empty }
$$

The type of g is $\Pi(s: S e t) .(s .1)$ which is well-formed by using the first projection to represent the abstract type member.

Nonetheless, weak and strong sums both have their applications. Weak sums are useful for data abstraction [Mitchell and Plotkin 1988; Pierce 2002], while strong sums are suitable for representing modular structures [MacQueen 1986]. It usually takes less effort to support weak sums, since they are essentially polymorphic existential types which are encodable by Pi-types in traditional dependently typed systems, e.g., the calculus of constructions [Coquand and Huet 1988]. On the contrary, strong sums are beyond the expressiveness of the plain calculus of constructions and cannot be Church-encoded with Pi-types [Cardelli 1986b].

2.3 Iso-Recursive Types

Recursive types are types that can refer to themselves. For example in Haskell, an integer list type IntList is recursively defined:

$$
\text { data } \text { IntList }=\text { Nil } \mid \text { Cons Int IntList }
$$

The definition indicates that an IntList can be either an empty list (Nil) or a concatenation of a single integer (Int) and another integer list (IntList). Similarly, IntList can be defined as a class in Java, which can be viewed as a recursive type:

```
class IntList {
        Integer value;
        IntList next;
}
```

In type theory, a recursive type is denoted by $\mu x: A . B$. The μ-operator is an explicit recursion operator. The binder x refers to the whole type itself, i.e., $x=\mu x: A$. B, and can show up in the body type B. The previous IntList example can also be written with μ as follows [Pierce 2002]:

$$
\text { IntList }=\mu x: \star .\{\text { Nil }: \text { Unit, Cons }: \text { Int } \times x\}
$$

The binder x refers to IntList itself, which is a type, i.e., has kind \star. The body is a record type (i.e. a named pair) consisting of two components Nil and Cons. The empty list case Nil is a singleton of Unit type. The concatenation case Cons is a pair consisting of a number and another list whose type is x, equivalently IntList.

2.3.1 Iso-Recursive versus Equi-Recursive Types

Recursive types can represent infinite structures by constantly expanding the body. Given $\mu x: A$. B, one can expand the body type B by unfolding, an operation that replaces all occurrences of x in B by the whole μ-term itself:

$$
\mu x: A . B \longrightarrow B[x \mapsto \mu x: A . B]
$$

Such expansion/unfolding operation of recursive types can be performed either implicitly or explicitly. Accordingly, there are two ways of formalizing recursive types in the literature, namely the equi-recursive and iso-recursive approach [Crary et al. 1999]. Recursive types using such two approaches are called equi-recursive and iso-recursive types.

Equi-Recursive Types. In the equi-recursive approach, the recursive type and its unfolded type are definitionally equal, i.e., both types can be used interchangeably in any context. Thus, we have the following equivalence relation:

$$
\mu x: A . B=B[x \mapsto \mu x: A . B]
$$

The benefit is that the equi-recursive treatment naturally allows type expressions to be infinite as the unfolding operation happens automatically. However, it is difficult to type-check equirecursive types, since the type-checking algorithm usually does not work directly with infinite types [Pierce 2002].

Iso-Recursive Types. Another approach, the iso-recursive approach, treats a recursive type and its unfolding as different types, but isomorphic ones. One cannot replace a recursive type with its unfolded form or vice versa. Instead, the unfolding or folding (the opposite of unfolding) operation is triggered explicitly by two operators, unfold and fold, respectively. For example, assuming that there exist expressions e_{1} and e_{2} such that $e_{1}: \mu x: A . B$ and $e_{2}: B[x \mapsto \mu x:$
A. B], we have the following typing results:

$$
\begin{array}{ll}
\text { unfold } e_{1} & : B[x \mapsto \mu x: A . B] \\
\text { fold }[\mu x: A . B] e_{2} & : \mu x: A . B
\end{array}
$$

where fold and unfold map back and forth between the original and unfolded form. Formally, we have the following standard typing rules of iso-recursive types [Pierce 2002]:

$$
\begin{array}{cc}
\Gamma \vdash e_{1}:(\mu x: A . B) \\
\Gamma \vdash \text { unfold } e_{1}: B[x \mapsto \mu x: A . B] & \Gamma \vdash(\mu x: A . B): \star \\
\Gamma \vdash \text { fold }[\mu x: A . B] e_{2}:(\mu x: A . B)
\end{array}
$$

The isomorphism between types of e_{1} and e_{2} is witnessed by fold and unfold:

$$
\mu x: A . B \underset{\text { fold }[\mu x: A . B]}{\text { unfold }} B[x \mapsto \mu x: A . B]
$$

The iso-recursive treatment makes it somewhat less convenient and intuitive to use recursive types, since one needs to explicitly add unfold and fold instructions whenever conversions of recursive types are involved. On the other hand, type-checking iso-recursive types is much easier than equi-recursive ones since the typing rules of unfold and fold are syntax-directed.

2.3.2 Iso-Recursive Types in Haskell

For practicality reasons, many programming languages implement recursive types using the iso-recursive approach instead of the equi-recursive approach. For example, algebraic datatypes in Haskell [Marlow et al. 2010] and ML [Milner et al. 1990] implicitly use iso-recursive types for recursively defined structures, such as the previous IntList example. Similarly, Java implicitly introduces a recursive type for the class definition and the method call of objects involves an implicit unfold operation [Pierce 2002].

In Haskell, one cannot directly define a recursive type using the type synonym:

$$
\text { type } B a d=I n t \rightarrow B a d
$$

The type synonym treats the types at two sides of = as equal, similarly to the equi-recursive approach, which is however not supported in Haskell. Instead, one needs to use newtype (or data) to wrap the unfolded form (i.e. the right-hand side type) inside a constructor:

$$
\text { newtype Good }=\text { MkGood }(\text { Int } \rightarrow \text { Good })
$$

It is also possible to use newtype to define a generic fixpoint combinator for types:

$$
\text { newtype Fix } f=\text { Fold }\{\text { unfold }:: f(\text { Fix } f)\}
$$

The type Fix is a type-level fixpoint using the iso-recursive approach. Its constructor Fold forms a recursive type from function f and destructor unfold forces the computation to obtain the unfolded form $f($ Fix $f)$. Such combinator can be used to model the recursion in datatypes and define them in a modular fashion, as illustrated in the Data Types à la Carte paper by Swierstra [2008].

2.4 Subtyping

Subtyping plays an important role in object-oriented programming (OOP) languages such Java to model polymorphism. Subtyping is a relation between two types, denoted by $A \leqslant B$, where A is called a subtype of B, and B is called a supertype of A. The relation means that whenever the context requires a term of type B, it can accept a term of type A. For example, in many languages such as $\mathrm{C} / \mathrm{C}++$, the integer type can be considered as a subtype of a floating-point number type, i.e. int $\leqslant f l o a t$. Whenever one needs a float, an int can be used, but not vice versa. Such interpretation of subtyping is often called the principle of safe substitution [Pierce 2002]. To connect typing with the subtyping relation, we need a new typing rule called the subsumption rule:

$$
\frac{\Gamma \vdash e: A \quad A \leqslant B}{\Gamma \vdash e: B}
$$

This rule indicates that any term of type A is also a term of type B, which complies with the interpretation of subtyping.

2.4.1 Important Subtyping Rules

We introduce several important subtyping rules that can be found in many languages.

Reflexivity and Transitivity. First, the subtyping relation should satisfy two basic properties: reflexivity and transitivity, i.e., subtyping should be a reflexive relation by the following rule:

$$
A \leqslant A
$$

and a transitive relation by the following rule:

$$
\frac{A \leqslant B \quad B \leqslant C}{A \leqslant C}
$$

Notice that the transitivity rule is not algorithmic in the sense that one needs to guess the type B when applying the transitivity rule for $A \leqslant C$. When implementing a subtyping algorithm, one usually needs to eliminate the transitivity rule and prove that it is admissible from other subtyping rules [Pierce 2002; Pierce and Steffen 1997].

Function Types. In higher-order languages, functions are first-class values and can be passed as arguments. Thus, we need a subtyping rule between function types:

$$
\frac{B_{1} \leqslant A_{1} \quad A_{2} \leqslant B_{2}}{A_{1} \rightarrow A_{2} \leqslant B_{1} \rightarrow B_{2}}
$$

Note that the subtype relation of the argument types is reversed. We call it contravariant. And the subtype relation has the same order for the result types as the function types. We call such relation covariant. The reason is that if a function has type $A_{1} \rightarrow A_{2}$, it can take any arguments of B_{1} which is a subtype of A_{1} and returns terms of type A_{2} which can be treated as having its supertype B_{2}. Thus, we can treat any function of type $A_{1} \rightarrow A_{2}$ as having type $B_{1} \rightarrow B_{2}$.

Record Types. Many languages support records, which are collections of named fields. The record type is denoted by $\left\{l_{1}: T_{1}, \cdots, l_{n}: T_{n}\right\}$ where l_{i} ranges over names. There are three typing rules for record types [Pierce 2002]:

- The width subtyping rule:

$$
\left\{l_{1}: T_{1}, \cdots, l_{n}: T_{n}, \cdots, l_{n+k}: T_{n+k}\right\} \leqslant\left\{l_{1}: T_{1}, \cdots, l_{n}: T_{n}\right\}
$$

which indicates that record types are subtypes if they have more fields at the end. Since every field showing in the supertype also shows in the subtype, any operation accepted by the supertype can be supported by the subtype.

- The depth subtyping rule:

$$
\frac{S_{i} \leqslant T_{i} \quad \forall i, 1 \leqslant i \leqslant n}{\left\{l_{1}: S_{1}, \cdots, l_{n}: S_{n}\right\} \leqslant\left\{l_{1}: T_{1}, \cdots, l_{n}: T_{n}\right\}}
$$

which indicates types of each corresponding fields are in the subtyping relation.

- The permutation subtyping rule:

$$
\frac{\left\{\overline{l_{i}^{\prime}: T_{i}^{\prime}}\right\} \text { is a permutation of }\left\{\overline{l_{i}: T_{i}}\right\}}{\left\{l_{1}^{\prime}: T_{1}^{\prime}, \cdots, l_{n}^{\prime}: T_{n}^{\prime}\right\} \leqslant\left\{l_{1}: T_{1}, \cdots, l_{n}: T_{n}\right\}}
$$

which indicates that the order of fields does not matter.

Top Types. Finally, in some languages, there exists a type which is a supertype of any type. We call it the top type, denoted by \top. We need the following subtyping rule for the top type:

$$
A \leqslant \top
$$

Many OOP languages have the top type which is usually the universal base class, e.g., object in Java and Any in Scala.

2.4.2 Bounded Quantification

So far we have introduced the subtyping relation as a judgment $A \leqslant B$. Subtyping can also be used with a quantifier to require the binder to be a subtype of a specific upper bound. We call this bounded quantification. For example, System F_{\leqslant}[Cardelli et al. 1994] is an extension to System F with subtyping and bounded quantification. The specification of F_{\leqslant}is shown in Figure 2.3. In F_{\leqslant}, we have one extra type abstraction with an upper bound:

$$
\Lambda X \leqslant T \cdot t
$$

where the binder X needs to be a subtype of type T. Correspondingly, the abstraction has a bounded universal type:

$$
(\Lambda X \leqslant T . t):\left(\forall X \leqslant T . T^{\prime}\right)
$$

Types	T, U	$::=$	$X\|\top\| T_{1} \rightarrow T_{2} \mid \forall X \leqslant U \cdot T$
Terms	t	$::=$	$x\|\lambda x: T . t\| t_{1} t_{2}\|\Lambda X \leqslant T \cdot t\| t[T]$
Contexts	Δ	$::=$	$\varnothing\|\Delta, x: T\| \Delta, X \leqslant T$

$\Delta \vdash T$
(Type Well-formedness)

$$
\begin{array}{lll}
\begin{array}{l}
\text { FWT-Top } \\
\vdash \Delta
\end{array} & \begin{array}{l}
\text { FWT-Var } \\
\Delta \vdash-
\end{array} & \frac{\vdash}{} \quad
\end{array}
$$

$\vdash \Delta$

(Context Well-formedness)
FW-Emptі
$\vdash \varnothing$

$$
\frac{\stackrel{\text { FW-TYPE }}{\vdash \Delta} \Delta \vdash T}{\vdash \Delta, X \leqslant T}
$$

$$
\frac{\stackrel{\text { FW-Term }}{\vdash \Delta} \Delta \vdash T}{\vdash \Delta, X: T}
$$

$$
\begin{array}{lc}
\begin{array}{c}
\text { FS-Top } \\
\Delta \vdash T
\end{array} & \begin{array}{c}
\text { FS-VARREFL } \\
\Delta \vdash T \leqslant \top
\end{array}
\end{array} \frac{\Delta \vdash X}{\Delta \vdash X \leqslant X} \quad \begin{gathered}
\text { FS-VARTRANS } \\
X \leqslant T_{1} \in \Delta
\end{gathered} \quad \Delta \vdash T_{1} \leqslant T_{2}
$$

$$
\begin{aligned}
& \frac{\text { FS-Arrow }}{\Delta \vdash T_{1} \leqslant U_{1} \quad \Delta \vdash U_{2} \leqslant T_{2}} \\
& \Delta \vdash\left(U_{1} \rightarrow U_{2}\right) \leqslant\left(T_{1} \rightarrow T_{2}\right)
\end{aligned}
$$

FS-Forall

$$
\frac{\Delta, X \leqslant U \vdash T_{1} \leqslant T_{2}}{\Delta \vdash\left(\forall X \leqslant U \cdot T_{1}\right) \leqslant\left(\forall X \leqslant U . T_{2}\right)}
$$

$\Delta \vdash t: T$

$$
\begin{gathered}
\stackrel{\substack{\text { FT-VAR } \\
\vdash \Delta}}{\qquad \vdash} x: T \in \Delta
\end{gathered} \quad \begin{gathered}
\text { FT-ABS } \\
\Delta \vdash x: T
\end{gathered} \frac{\Delta, x: T_{1} \vdash t: T_{2}}{\Delta \vdash\left(\lambda x: T_{1} \cdot t\right): T_{1} \rightarrow T_{2}} \quad \begin{aligned}
& \text { FT-App } \\
& \Delta \vdash t_{1}: T_{1} \rightarrow T_{2} \\
& \Delta \vdash t_{1} t_{2}: T_{2}
\end{aligned}
$$

FT-TABS
FT-TAPP

$$
\frac{\Delta, X \leqslant T_{1} \vdash t: T_{2}}{\Delta \vdash\left(\Lambda X \leqslant T_{1} \cdot t\right):\left(\forall X \leqslant T_{1} \cdot T_{2}\right)}
$$

$$
\frac{\Delta \vdash t:\left(\forall X \leqslant U_{1} \cdot U_{2}\right) \quad \Delta \vdash T \leqslant U_{1}}{\Delta \vdash t[T]: U_{2}[X \mapsto T]}
$$

FT-Sub

$$
\frac{\stackrel{\text { FT-SUB }}{\Delta \vdash t: T \quad \Delta \vdash T \leqslant U}}{\Delta \vdash t: U}
$$

Figure 2.3. Specification of System F_{\leqslant}

The original unbounded quantification of System F can be viewed as a special case of top-bounded quantification:

$$
\forall X . T \triangleq \forall X \leqslant \top . T
$$

Variants of System F_{\leqslant}. There are two variants of System F_{\leqslant}, the Kernel Fun variant [Cardelli and Wegner 1985] and the Full variant [Cardelli et al. 1994]. Figure 2.3 shows the Kernel Fun variant. The only difference between two variants is the subtyping rule of bounded universal
types. In the Kernel Fun variant, two bounded universal types can be compared only when their bounds are identical, i.e., invariant:

$$
\frac{\Delta, X \leqslant U \vdash T_{1} \leqslant T_{2}}{\Delta \vdash\left(\forall X \leqslant U . T_{1}\right) \leqslant\left(\forall X \leqslant U . T_{2}\right)}
$$

In the Full variant, the bounds are contravariant, hence not required to be equal:

$$
\frac{\Delta \vdash U_{2} \leqslant U_{1} \quad \Delta, X \leqslant U_{2} \vdash T_{1} \leqslant T_{2}}{\Delta \vdash\left(\forall X \leqslant U_{1} . T_{1}\right) \leqslant\left(\forall X \leqslant U_{2} . T_{2}\right)}
$$

The subtyping rule of the Full variant seems more natural, which follows the treatment of subtyping function types. However, this rule makes Full F_{\leqslant}undecidable [Pierce 1992], meaning that the algorithm implementing subtyping rules of Full F_{\leqslant}does not terminate for certain inputs. On the contrary, Kernel Fun F_{\leqslant}is decidable by using the restricted invariant subtyping rule. Thus, from the perspective of implementation, the Kernel Fun variant is more interesting since it can have a decidable subtyping algorithm.

2.5 Path-Dependent Types

Scala [Odersky et al. 2004] supports path-dependent types [Odersky et al. 2003; Amin et al. 2014], a weaker form of dependent types that only allow types to depend on paths. The syntax of path-dependent types (i.e. paths) can be formally defined as follows [Odersky et al. 2003]:

$$
p::=x \mid p . L
$$

A path p is a variable x followed by a sequence of selections, e.g., $x . L_{1} . \cdots . L_{n}$. In Dependent Object Type (DOT) [Rompf and Amin 2016; Amin et al. 2016], a calculus that captures core features of Scala, paths are further simplified to only allow single selections:

$$
p::=x . L
$$

Meanwhile, paths are valid types:

$$
T::=\cdots \mid p
$$

Thus, paths can appear with other types such as universal types:

$$
\forall(x: T) \cdot(x \cdot L)
$$

A concrete example is the dependent method type of the generic method g from Section 2.2.3:

```
def g(s: Set) = s.empty()
g: (s: Set)s.T
```

where the result type s.T can refer to the parameter s of the method.

Comparison with Full Dependent Types. The need of path-dependent types arises from accessing abstract type members of traits which involves some forms of value dependency (see also Section 1.3.3). Scala takes a conservative approach by only supporting path dependency
and avoids the need of supporting more general forms of dependent types. There are two major differences between path-dependent types and full dependent types from traditional dependently typed calculi (e.g. the calculus of constructions [Coquand and Huet 1988]).

First, Pi-types can support dependency on any terms instead of only path dependency, e.g., a vector type Vec n where n can be any natural number. Such vector types are not expressible with path-dependent types. Moreover, with strong sums, Pi-types along with projections can simulate path-dependent types. For example, in Section 2.2.3, the function g can be encoded with the second projection and its type is a Pi-type with the first-projection: $\Pi(s: S e t) .(s .1)$.

Second, traditional dependent types usually support arbitrary computations at the type level, e.g., Vec $(1+2)=\operatorname{Vec} 3$. In contrast, path-dependent types only support simple forms of type conversions, such as instantiating abstract type members with actual types. Such type conversions can be done with simple type equality relations. For example, if we apply an implementation of Set to g such that $T=$ List [Int], we will have:

```
g(new Set {type T = List[Int]; ... }): List[Int] // excerpted
```

The original result type, i.e., the abstract type s.T, is instantiated with the actual type List[Int] according to the type equality $\mathrm{T}=$ List [Int].

Part I:

Pure Iso-Type Systems

Overview of Iso-Types

In this chapter, we give an overview of iso-types and informally introduce key features of Pure Iso-Type Systems (PITS). PITS enables the combination of unified syntax and general recursion, while retains decidable type checking at the same time. The main source of inspiration for the design of PITS comes from iso-recursive types [Crary et al. 1999; Pierce 2002], which we briefly introduced in Section 1.4.1. Instead of an implicit type conversion (employed by PTS), PITS provides a generalization of iso-recursive types called iso-types. In PITS, not only folding/unfolding of recursive types is explicitly controlled by term level constructs, but also any other type-level computation (including beta reduction/expansion). This is somewhat similar to how datatypes or newtypes are used in (classic) Haskell to explicitly trigger type-level computation for both recursive and non-recursive types.

There is an analogy to language designs with equi-recursive types and iso-recursive types. With equi-recursive types, type-level recursion is implicitly folded/unfolded, which makes establishing decidability of type-checking much more difficult. In iso-recursive designs, the idea is to trade some convenience by a simple way to ensure decidability. Similarly, we view the design of traditional dependently typed calculi, such as PTS, as analogous to systems with equi-recursive types. In PTS, it is the conversion rule that allows type-level computation to by implicitly triggered. However, the proof of decidability of type checking for PTS is non-trivial, as it depends on the normalization property [van Benthem Jutting 1993]. Moreover decidability is lost when adding general recursion. In contrast, the cast operators in PITS have to be used to explicitly trigger each step of type-level computation, but it is easy to ensure decidable type-checking, even in the presence of general recursion.

It is worth emphasizing the goal of PITS is to show the benefits of PTS-style unified syntax in terms of economy of concepts for more traditional programming language designs, but not to use unified syntax to express computationally intensive type-level programs. Traditional functional languages only require basic use of type-level computation to support common features like parametrized algebraic data types, iso-recursive types or purely functional objects [Pierce and Turner 1994]. These features require only one or a small number of finite steps of type reductions/expansions where the iso-type approach fits well. In Section 3.2, we give examples to illustrate how such features of modern functional languages can be encoded with iso-types in PITS.

3.1 Motivation and Overview

3.1.1 Implicit Type Conversion in Pure Type Systems

The typing rules for PTS contain a conversion rule [Barendregt 1991] (see also Section 2.1.1):

$$
\frac{\Gamma \vdash e: A \quad A={ }_{\beta} B}{\Gamma \vdash e: B}
$$

This rule allows one to derive $e: B$ from the derivation of $e: A$ with the beta equality of A and B. This rule is important to automatically allow terms with beta equivalent types to be considered type-compatible. For example, consider the following identity function:

$$
f=\lambda y:(\lambda x: \star . x) \text { Int. } y
$$

The type of y is a type-level identity function applied to Int. Without the conversion rule, f cannot be applied to 3 for example, since the type of 3 (Int) differs from the type of $y((\lambda x: \star$. $x)$ Int $)$. Note that the beta equivalence $(\lambda x: \star . x)$ Int $={ }_{\beta}$ Int holds. Therefore, the conversion rule allows the application of f to 3 by converting the type of y to Int.

Decidability of Type Checking and Strong Normalization. While the conversion rule in PTS brings a lot of convenience, an unfortunate consequence is that it couples decidability of type checking with strong normalization of the calculus [van Benthem Jutting 1993]. Therefore adding general recursion to PTS becomes difficult, since strong normalization is lost. Due to the conversion rule, any non-terminating term would force the type checker to go into an infinite loop (by constantly applying the conversion rule without termination), thus rendering the type system undecidable. For example, assume a term z that has type loop, where loop stands for any diverging computation. If we type check $(\lambda x:$ Int. $x) z$ under the normal typing rules of PTS, the type checker would get stuck as it tries to do beta equality on two terms: Int and loop, where the latter is non-terminating.

3.1.2 Newtypes: Explicit Type Conversion in Haskell

Early designs of functional languages such as Haskell deliberately forbid implicit type conversions. However, although not widely appreciated, since the very beginning Haskell (and other functional languages) has supported explicit type-conversions via algebraic datatypes, or their simpler sibling newtypes. In essence, encapsulated behind algebraic datatypes and newtypes is a language mechanism that supports explicit type conversions. Such language mechanism is closely related to iso-recursive types, as introduced in Section 2.3.2, but also allows for computations that are not recursive.

In early versions of Haskell, such as Haskell 98, there is no real type-level computation as in dependently-typed languages such as Coq [The Coq development team 2016]. In particular, there are no computational type-level lambdas. Indeed Haskell forbids type-level lambdas to avoid higher-order unification that is required in dependently typed languages such as Coq or Agda [Jones 1993]. While modern Haskell is half the way in evolving into a dependently typed language, it still does not support type-level lambdas.

Despite the absence of type-level lambdas, it is still possible to express type-level functions via newtype or data constructs. For example, the type $I d$ defined by

$$
\text { newtype } I d a=M k I d\{\text { runId }:: a\}
$$

can be viewed as a type-level identity function and $I d a$ is isomorphic to type a. To convert the type back and forth between a and $I d a$, one needs to explicitly use the constructor $M k I d$ or the destructor runId:

$$
\begin{aligned}
& \text { MkId }:: a \rightarrow I d a \\
& \text { runId }:: I d a \rightarrow a
\end{aligned}
$$

While the explicit type level computations enabled by newtypes or algebraic datatypes are very simple, they are essential for many of the characterizing programming styles employed in Haskell. For example without such simple explicit type conversions it would not be possible to have the monadic programming style that is available in Haskell, or modular interpreters enabled by approaches such as Datatypes à la Carte [Swierstra 2008].

3.1.3 Iso-Types: Explicit Type Conversion in PITS

PITS iso-types have strong similarities with the explicit conversion mechanism found in languages like Haskell, and iso-recursive types. Differently from Haskell (and similarly to iso-recursive types) iso-types are purely structural, while Haskell datatypes and newtypes are nominal. Because iso-types are structural they can be directly represented with type-level lambdas (and other constructs). Moreover, since in PITS type equality is just alpha-equality, type-level lambdas are not problematic, since they do not trigger computation during type-checking.

Iso-types offer an alternative to the conversion rule of PTS, making it explicit as to when and where to convert one type to another. Type conversions are explicitly controlled by two language constructs: cast ${ }_{\downarrow}$ (one-step reduction) and cast \uparrow_{\uparrow} (one-step expansion). One benefit of this approach is that decidability of type checking is no longer coupled with strong normalization of the calculus. Another potential benefit is that the problem of type-inference may be significantly simpler in a language with iso-types than in a language with a conversion rule. Although we do not explore the later point in this thesis, Jones' work on type-inference for higher-kinded types in Haskell [Jones 1993] seems to back up this idea.

Reduction. The cast ${ }_{\downarrow}$ operator allows a type conversion provided that the resulting type is a reduction of the original type of the term. To explain the use of cast ${ }_{\downarrow}$, assume an identity function g defined by $g=\lambda y:$ Int. y and a term e such that $e:(\lambda x: \star . x)$ Int. In contrast to PTS, we cannot directly apply g to e in PITS since the type of $e((\lambda x: \star . x)$ Int $)$ is not syntactically equal to Int. However, note that the reduction relation $(\lambda x: \star . x)$ Int \hookrightarrow Int holds. Therefore, we can use cast ${ }_{\downarrow}$ for the explicit (type-level) reduction:

$$
\text { cast }_{\downarrow} e: \text { Int }
$$

Then the application $g\left(\right.$ cast $\left._{\downarrow} e\right)$ type checks.

Expansion. The dual operation of cast ${ }_{\downarrow}$ is cast ${ }_{\uparrow}$, which allows a type conversion provided that the resulting type is an expansion of the original type of the term. To explain the use of cast ${ }_{\uparrow}$, let us revisit the example from Section 3.1.1. We cannot apply f to 3 without the conversion rule. Instead, we can use cast \uparrow to expand the type of 3 :

$$
\left(\operatorname{cast}_{\uparrow}[(\lambda x: \star . x) \text { Int }] 3\right):(\lambda x: \star . x) \text { Int }
$$

Thus, the application $f\left(\operatorname{cast}_{\uparrow}[(\lambda x: \star . x)\right.$ Int $\left.] 3\right)$ becomes well-typed. Intuitively, cast ${ }_{\uparrow}$ performs expansion, as the type of 3 is Int, and $(\lambda x: \star . x)$ Int is the expansion of Int witnessed by $(\lambda x: \star . x)$ Int \hookrightarrow Int. Notice that for cast \uparrow to work, we need to provide the resulting type as argument. This is because for the same term, there may be more than one choice for expansion. For example, $1+2$ and $2+1$ are both the expansions of 3 .

One-Step. The cast operators allow only one-step reduction or expansion. If two type-level terms require more than one step of reductions or expansions for normalization, then multiple casts must be used. Consider a variant of the example such that $e:(\lambda x: \star . \lambda y: \star . x)$ Int Bool. Given $g=\lambda y:$ Int. y, the expression $g\left(\right.$ cast $\left._{\downarrow} e\right)$ is ill-typed because cast \downarrow e has type ($\lambda y: \star$. Int) Bool, which is not syntactically equal to Int. Thus, we need another cast ${ }_{\downarrow}$:

$$
\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\downarrow} e\right): \text { Int }
$$

to further reduce the type and allow the program $g\left(\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\downarrow} e\right)\right)$ to type check.

Analogy to Newtypes in Haskell. By using cast operators, we can model the Haskell example shown in Section 3.1.2:

$$
\begin{aligned}
& I d=\lambda x: \star . x \\
& \text { cast }_{\uparrow}\left[\begin{array}{ll}
I d & a
\end{array}\right]: a \rightarrow I d a \\
& \text { cast }_{\downarrow} \quad: I d a \rightarrow a
\end{aligned}
$$

cast $_{\uparrow}$ and cast $\downarrow \downarrow$ are analogous to the datatype constructor $M k I d$ and destructor runId, respectively. The difference is that PITS directly supports type-level lambdas without the need of using newtype, though PITS only has alpha equality without implicit beta conversion. In some sense, type-level lambdas in PITS are non-computational as newtype-style "type functions" in Haskell. Nevertheless, we can still trigger type-level computation by casts, similarly to newtype constructors and destructors in Haskell.

Decidability without Strong Normalization. With explicit type conversion rules the decidability of type checking no longer depends on the strong normalization property. Thus the type system remains decidable even in the presence of non-termination at type level. Consider the same example using the term z from Section 3.1.1. This time the type checker will not get stuck when type checking $(\lambda x:$ Int. $x) z$. This is because, in PITS, the type checker only performs syntactic comparison between Int and loop, instead of beta equality. Thus it rejects the above application as ill-typed. Indeed it is impossible to type check such application even with the use of cast ${ }_{\uparrow}$ and/or cast t_{\downarrow} : one would need to write infinite number of cast ${ }_{\downarrow}$'s to make the type checker loop forever (e.g., $(\lambda x$: Int. $x)\left(\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\downarrow} \ldots z\right)\right)$). But it is impossible to write such program in practice which has an infinite length and cannot be stored with a finite capacity.

Variants of Casts. A reduction relation is used in cast operators to convert types. We study three possible reduction relations: call-by-name reduction, call-by-value reduction and full reduction. Call-by-name and call-by-value reduction cannot reduce sub-terms at certain positions (e.g., inside λ or Π binders), while full reduction can reduce sub-terms at any position. We also create three variants of PITS for each variant of casts. Specifically, full PITS uses a decidable parallel reduction relation with full cast operators cast ${ }_{\Uparrow}$ and cast ${ }_{\Downarrow}$. All variants reflect the idea of iso-types, but have trade-offs between simplicity and expressiveness: call-by-name and call-by-value PITS use the same reduction relation for both casts and evaluation to keep the system and metatheory simple, but lose some expressiveness, e.g. cannot convert $\lambda x:$ Int. $(1+1)$ to $\lambda x:$ Int. 2. Full PITS is more expressive but results in a more complicated metatheory (see Section 4.3). Note that when generally referring to PITS, we do not specify the reduction strategy, which could be any variant.

3.1.4 General Recursion

PITS supports general recursion and allows writing unrestricted recursive programs at term level. The recursive construct is also used to model recursive types at type level. Recursive terms and types are represented by the same μ primitive.

Recursive Terms. The primitive $\mu x: A . e$ can be used to define recursive functions. For example, the factorial function would be written as:

$$
\text { fact }=\mu f: \text { Int } \rightarrow \text { Int. } \lambda x: \text { Int. if } x==0 \text { then } 1 \text { else } x \times f(x-1)
$$

We treat the μ operator as a fixpoint, which evaluates $\mu x: A . e$ to its recursive unfolding $e[x \mapsto \mu x: A . e]$. Term-level recursion in PITS works as in any standard functional language, e.g., fact 3 produces 6 as expected (see Section 4.1.4).

Recursive Types. The same μ primitive is used at the type level to represent iso-recursive types [Crary et al. 1999]. In the iso-recursive approach a recursive type and its unfolding are different, but isomorphic. The isomorphism is witnessed by two operations, typically called fold and unfold (see also Section 2.3.1). In call-by-name PITS, such isomorphism is witnessed by cast \uparrow and cast ${ }_{\downarrow}$. In fact, cast ${ }_{\uparrow}$ and cast ${ }_{\downarrow}$ generalize fold and unfold: they can convert any types, not just recursive types, as we shall see in the example of encoding parametrized datatypes in Section 3.2.

To demonstrate the use of casts with recursive types, we show the formation of the "hungry" type [Pierce 2002] $H=\mu x: \star$. Int $\rightarrow x$. A term z of type H will accept one more integer every time when it is unfolded by a cast ${ }_{\downarrow}$:

$$
\begin{array}{ll}
\left(\operatorname{cast}_{\downarrow} z\right) 3 & : H \\
\operatorname{cast}_{\downarrow}\left(\left(\operatorname{cast}_{\downarrow} z\right) 3\right) 3 & : H \\
\operatorname{cast}_{\downarrow}\left(\ldots\left(\text { cast }_{\downarrow} z\right) 3 \ldots\right) 3 & : H
\end{array}
$$

3.2 Iso-Types by Example

PITS is a simple core calculus, but expressive enough to encode useful language constructs. In order to show how features of modern functional languages can be encoded in PITS, we implemented a simple functional language Fun, a thin layer that is desugared to a specific PITS with only a single
sort \star and "type-in-type" axiom. We focus on common features available in traditional functional languages and some interesting type-level features, but not the full power of dependent types. Fun is not logically consistent due to the "type-in-type" axiom. In this section, we briefly introduce the implementation of Fun and present interesting examples including algebraic datatypes (Section 3.2.1), higher-kinded types (Section 3.2.2), datatype promotion (Section 3.2.2), high-order abstract syntax (Section 3.2.2) and object encodings (Section 3.2.3). All of those examples work in the 3 variants of PITS. We also discuss one final example on dependently typed vectors (Section 3.2.4) that only works with parallel reduction. All examples can run in the prototype interpreter and compiler (see Section 1.5).

3.2.1 Fun Implementation

Fun is built on top of a call-by-name PITS variant called λI [Yang et al. 2016] and provides surface language constructs for algebraic datatypes and pattern matching. λI has the same PTS specification as $\lambda \star$ (see Section 2.1.2), where $\mathcal{S}=\{\star\}, \mathcal{A}=\{(\star, \star)\}$ and $\mathcal{R}=\{(\star, \star, \star)\}$. Algebraic datatypes and pattern matching in Fun are implemented using Scott encodings [Mogensen 1992], which can be later desugared into PITS (λI) terms. For demonstration, we implemented a prototype interpreter and compiler for Fun, both written in GHC Haskell [Marlow 2010]. Fun terms are firstly desugared into λI terms and then type-checked using PITS typing rules. The type-checked λI terms can be evaluated directly by interpreter or compiled to JavaScript or Haskell code.

Encoding Parametrized Algebraic Datatypes. We give an example of encoding parametrized algebraic datatypes in PITS via the μ-operator and call-by-name casts. Importantly we should note that having iso-recursive types alone (and alpha equality) would be insufficient to encode parametrized types: the generalization afforded by iso-types is needed here.

In Fun we can define a polymorphic list as

$$
\text { data List } a=N i l \mid \text { Cons a }(\text { List } a)
$$

This Fun definition is translated into PITS using a Scott encoding [Mogensen 1992] of datatypes:

$$
\begin{aligned}
\text { List }= & \mu L: \star \rightarrow \star . \lambda a: \star . \Pi b: \star . b \rightarrow(a \rightarrow L a \rightarrow b) \rightarrow b \\
\text { Nil }= & \lambda a: \star . \text { cast }_{\uparrow}^{2}[\text { List } a](\lambda b: \star . \lambda n: b . \lambda c:(a \rightarrow \text { List } a \rightarrow b) . n) \\
\text { Cons }= & \lambda a: \star . \lambda x: a . \lambda(x s: \text { List } a) . \\
& \operatorname{cast}_{\uparrow}^{2}[\text { List } a](\lambda b: \star . \lambda n: b . \lambda c:(a \rightarrow \text { List } a \rightarrow b) . c x x s)
\end{aligned}
$$

The type constructor List is encoded as a recursive type. The body is a type-level function that takes a type parameter a and returns a dependent function type, i.e., Π-type. The body of Π-type is universally quantified by a type parameter b, which represents the result type instantiated during pattern matching. Following are the types corresponding to data constructors: b for Nil, and $a \rightarrow L a \rightarrow b$ for Cons, and the result type b at the end. The data constructors Nil and Cons are encoded as functions. Each of them selects a different function from the parameters (n and c). This provides branching in the process flow, based on the constructors. Note that cast \uparrow_{\uparrow} is used twice here (written as cast ${ }_{\uparrow}^{2}$): one for one-step expansion from τ to $(\lambda a: \star . \tau) a$ and the other for folding the recursive type from $(\lambda a: \star . \tau) a$ to List a, where τ is the type of cast ${ }_{\uparrow}^{2}$ body.

We have two notable remarks from the example above. Firstly, iso-types are critical for the encoding and cannot be replaced by iso-recursive types. Since type constructors are parametrized, not only folding/unfolding recursive types, but also type-level reduction/expansion is required, which is only possible with casts. Secondly, although casts using call-by-value and call-by-name reduction are not as powerful as casts using full beta-reduction, they are still capable of encoding many useful constructs, such as algebraic datatypes and records. Nevertheless full-reduction casts enable other important applications. Some applications of full casts are discussed later (see Section 3.2.4).

3.2.2 Combining Algebraic Datatypes with Advanced Features

Languages like Haskell support several advanced type-level features. Such features, when used in combination with algebraic datatypes, have important applications. Next we discuss some of these features and their applications. The purpose is to show all these advanced features are encodable in PITS. For simplicity reasons, we use arrow syntax $(x: A) \rightarrow B$ as syntactic sugar for Π-types $\Pi x: A . B$ in the following text.

Higher-kinded Types. Higher-kinded types are type-level functions. To support higherkinded types, languages like Haskell use core languages that account for kind expressions. The existing core language of Haskell, System FC [Sulzmann et al. 2007], is an extension of System F_{ω} [Girard 1972], which natively supports higher-kinded types. We can similarly construct higher-kinded types in PITS. We show an example of encoding the functor "type-class" as a record:

```
data Functor (f:\star }->\star)
    Func { fmap:(a:\star) ->(b:\star) ->(a->b)->fa->fb};
```

Note that in PITS, records are encoded using algebraic datatypes in a similar way as Haskell's record syntax [Marlow 2010]. Here we use a record to represent a functor, whose only field is a function called fmap. The functor "instance" of the Maybe datatype is:

```
data Maybe \((a: \star)=\) Nothing \(\mid\) Just \(a\);
def maybeInst : Functor Maybe \(=\)
    Func Maybe \((\lambda a: \star . \lambda b: \star . \lambda f: a \rightarrow b . \lambda x: M a y b e ~ a\).
        case \(x\) of
        Nothing \(\Rightarrow\) Nothing \(b\)
        Just \((z: a) \Rightarrow\) Just \(b(f z))\);
```

After the translation process, the Functor record is desugared into a datatype with only one data constructor (Func) that has type:

$$
(f: \star \rightarrow \star) \rightarrow(a: \star) \rightarrow(b: \star) \rightarrow(a \rightarrow b) \rightarrow f a \rightarrow f b
$$

Since Maybe has kind $\star \rightarrow \star$, it is legal to apply Func to Maybe.

Datatype Promotion. Recent versions of Haskell introduced datatype promotion [Yorgey et al. 2012], in order to allow ordinary datatypes as kinds, and data constructors as types. With the power of unified syntax, data promotion is made trivial in Fun. We show a representation of a labeled binary tree, where each node is labeled with its depth in the tree. Below is the definition:

```
data \(N a t=Z \mid S N a t ;\)
data PTree ( \(n:\) Nat) \(=\) Empty
    \(\mid\) Fork \((z:\) Int \()(x:\) PTree \((S n))(y: P T r e e ~(S n))\);
```

Notice how the datatype Nat is "promoted" to be used at the kind level in the definition of PTree. Next we can construct a binary tree that keeps track of its depth statically:

Fork $Z 1($ Empty $(S Z))(E m p t y(S Z))$
If we accidentally write the wrong depth, for example:
Fork $Z 1($ Empty $(S Z))($ Empty $Z)$
The above will fail to pass type checking.

Higher-order Abstract Syntax. Higher-order abstract syntax [Pfenning and Elliott 1988] (HOAS) is a representation of abstract syntax where the function space of the meta-language is used to encode the binders of the object language. We show an example of encoding a simple lambda calculus:

$$
\begin{aligned}
\text { data } \operatorname{Exp}= & \text { Num Int } \\
\mid & \operatorname{Lam}(\operatorname{Exp} \rightarrow \operatorname{Exp}) \\
\mid & \text { App Exp Exp }
\end{aligned}
$$

Note that in the lambda constructor (Lam), the recursive occurrence of Exp appears in a negative position (i.e. in the left side of a function arrow). Systems like Coq [The Coq development team 2016] and Agda [Norell 2007b] would reject such programs since it is well-known that such datatypes can lead to logical inconsistency. Moreover, such logical inconsistency can be exploited to write non-terminating computations, and make type checking undecidable. In contrast, Fun is able to express HOAS in a straightforward way, while preserving decidable type checking.

Using Exp we can write an evaluator for the lambda calculus. As noted by Fegaras and Sheard [Fegaras and Sheard 1996], the evaluation function needs an extra function (reify) to invert the result of evaluation. The code for the evaluator is shown next (we omit most of the unsurprising cases; texts after "--" are comments):

```
data Value \(=\) VI Int \(\mid\) VF \((\) Value \(\rightarrow\) Value \() ;\)
data Eval \(=E v\left\{\right.\) eval \({ }^{\prime}: E x p \rightarrow\) Value, reify \({ }^{\prime}:\) Value \(\left.\rightarrow E x p\right\} ;\)
defrec ev : Eval=
    \(E v(\lambda e: E x p . \quad\) case \(e\) of \(\ldots \quad\)-- excerpted
    \(\mid \operatorname{Lam} f \Rightarrow V F\left(\lambda e^{\prime}:\right.\) Value. eval \({ }^{\prime}\) ev \(\left(f\left(\right.\right.\) reify \(^{\prime}\) ev \(\left.\left.\left.e^{\prime}\right)\right)\right)\)
    ( \(\lambda v\) : Value. case \(v\) of ... -- excerpted
    \(\mid V F f \Rightarrow \operatorname{Lam}\left(\lambda e^{\prime}:\right.\) Exp. reify' \({ }^{\prime}\) ev \(\left(f\left(\right.\right.\) eval \(^{\prime}\) ev \(\left.\left.\left.e^{\prime}\right)\right)\right)\);
def eval \(:\) Exp \(\rightarrow\) Value \(=\) eval \({ }^{\prime}\) ev;
```

The definition of the evaluator is mostly straightforward. Here we create a record Eval, inside which are two name fields eval' and reify'. Similarly to the record syntax of Haskell, both eval ${ }^{\prime}$ and reify ${ }^{\prime}$ are also functions for projections of fields. The eval' function is conventional, dealing with each possible shape of an expression. The tricky part lies in the evaluation of a lambda
abstraction, where we need a second function, called reify', of type Value \rightarrow Exp that lifts values into terms. Thanks to the flexibility of the μ primitive, mutual recursion can be encoded by using records.

Evaluation of a lambda expression proceeds as follows:

```
def show = \lambdav:Value. case v of VI n }=>n\mathrm{ ;
def expr = App (Lam (\lambdaf:Exp.Appf(Num 42))) (Lam (\lambdag:Exp.g));
show (eval expr) -- returns 42
```


3.2.3 Object Encodings

Casts are useful for modeling examples other than algebraic datatypes. For example, we can model a simple form of object encodings with call-by-name cast operators. We present an example of existential object encodings [Pierce and Turner 1994] in Fun, which originally requires System F_{ω}. Note that the example here relies on the facility of algebraic datatypes and records in Fun. It does not involve message passing due to the lack of subtyping in PITS. A more complete example of object encodings will be shown in Section 5.1.5. First, we encode the existential type and its constructor in Fun by standard Church encoding [Pierce 2002] using the universal type (i.e. Π-type):

$$
\begin{aligned}
\operatorname{def} E x= & \lambda P: \star \rightarrow \star \cdot(z: \star) \rightarrow((x: \star) \rightarrow P x \rightarrow z) \rightarrow z \\
\text { def pack }= & \lambda P: \star \rightarrow \star \cdot \lambda e_{1}: \star \cdot \lambda e_{2}: P e_{1} \\
& \operatorname{cast}_{\uparrow}[E x P]\left(\lambda z: \star . \lambda f:(x: \star) \rightarrow P x \rightarrow z . f e_{1} e_{2}\right)
\end{aligned}
$$

where pack is the constructor to build an existential package, which is similar to the encoding of pack operators for weak sums as introduced in Section 2.2.1. Thus, we can encode an existential type $\exists x . A$ as $E x(\lambda x: \star . A)$ in Fun. The object type operator $O b j$ can be encoded as follows:

$$
\begin{aligned}
& \text { data Pair }(A: \star)(B: \star)=\text { MkPair }\{\text { fst }: A, \text { snd }: B\} \\
& \text { def } \operatorname{Obj}=\lambda I: \star \rightarrow \star . E x(\lambda X: \star . \text { Pair } X(X \rightarrow I X)) ;
\end{aligned}
$$

where Pair $A B$ encodes the pair type $A \times B$. In the definition of $O b j$, the binder I denotes the interface. The body is an existential type which packs a pair. The pair consists of a hidden state (with type X) and methods which are functions depending on the state (with type $X \rightarrow I X$). For a concrete example of objects, we use the interface of cell objects [Bruce et al. 1999]:

$$
\text { data Cell }(X: \star)=\text { MkCell }\{\text { get }: \text { Int, set }: \text { Int } \rightarrow X, \text { bump }: X\} ;
$$

The interface indicates that a cell object consists of three methods: a getter get to return the current state, a setter set to return a new cell with a given state, and bump to return a new cell with the state increased by one.

We can define a cell object c as follows:

```
data Var = MkVar {getVar: Int };
def CellT = \lambdaX:\star. Pair X (X C Cell X);
def pair = MkPair Var (Var }->\mathrm{ Cell Var )
    (MkVar 0) -- Initial state
```

$$
\begin{aligned}
& \text { (} \lambda s \text { : Var. MkCell Var -- Methods } \\
& \text { (getVar } s \text {) -- Method get } \\
& \text { (} \lambda n: \text { Int.MkVar } n) \quad \text {-- Method set } \\
& (\operatorname{MkVar}(\operatorname{get} \operatorname{Var} s+1))) ; \quad \text {-- Method bump } \\
& \text { def } p=\text { pack CellT Var (cast } \uparrow \text { [CellT Var] pair }) \text {; } \\
& \text { def } c \quad=\operatorname{cast}_{\uparrow}[\text { Obj Cell }] p \text {; }
\end{aligned}
$$

The body of object c is an existential package p of type ΣX.Pair $X(X \rightarrow$ Cell $X)$ built by the pack operator. The first parameter of pack is CellT that represents the body of the existential type. The second parameter is the integer variable type Var which corresponds to the existential binder X. The third parameter has type CellT Var which can be reduced to a pair type Var $\times($ Var \rightarrow Cell Var $)$ which is defined in the definition pair constructed by MkPair. The first component of the pair is the initial hidden state MkVar 0 . The second component is a function containing three methods that are defined in a record by MkCell and abstracted by the state variable s. The definition of the three methods follows the cell object interface Cell.

Note that we have two cast \uparrow operators here: one over the existential package p and another over the pair. Due to the lack of a conversion rule in PITS, the desired type of the object c (i.e. $O b j C e l l$) is an application, which is different from the type of the existential package (i.e. Ex CellT). Noticing that

$$
\text { Obj Cell } \hookrightarrow \text { Ex }(\lambda X: \star . \text { Pair } X(X \rightarrow \text { Cell } X))=\text { Ex CellT }
$$

We can use cast ${ }_{\uparrow}$ to do one-step type expansion for the package. Similarly, the second $\operatorname{cast}_{\uparrow}$ operator used in the third parameter of pack converts the pair type into CellT Var. We emphasize that the object encoding example exploits fundamental features of PITS, namely higher-kinded types, higher-order polymorphism and explicit casts. The absence of a conversion rule does not prevent the object encoding because the required type-level computation is recovered by explicit casts.

3.2.4 Fun with Full Reduction

So far all the examples can be encoded in Fun with casts using weak-head reduction. However for some applications full reduction is needed at the type level. In this subsection particularly, we show one such application. For brevity, we move types of arguments in def bindings to top-level annotations without repeating them in λ-binders, e.g., we change $\operatorname{def} f=\lambda x:$ Int. 1 into

$$
\operatorname{def} f: \text { Int } \rightarrow \text { Int }=\lambda x .1
$$

Leibniz Equality, Kind Polymorphism and Vectors. One interesting type-level feature of GHC Haskell is generalized algebraic datatypes, or GADTs [Xi et al. 2003; Cheney and Hinze 2003; Peyton Jones et al. 2004]. GADTs require a non-trivial form of explicit type equality, which is built in Haskell's core language (System FC [Sulzmann et al. 2007]), called a coercion. PITS does not have such built-in equality. However a form of equality can be encoded using Leibniz Equality:

$$
\begin{aligned}
& \text { data } E q(k: \star)(a: k)(b: k)= \\
& \quad \text { Proof }\{\text { subst }:(f: k \rightarrow \star) \rightarrow f a \rightarrow f b\}
\end{aligned}
$$

Note that the definition requires kind polymorphism: the kind of types a and b is k, which is polymorphic and not limited to \star. For brevity, we use $a \equiv b$ to denote $E q k a b$ by omitting the kind k. Then we can encode a GADT, for example, length-indexed list (or vector) as follows:

```
data \(\operatorname{Vec}(a: \star)(n: N a t)=\)
    Nil (Eq Nat n Z)
    | Cons (m:Nat) (Eq Nat \(n(S m)) a(V e c a m) ;\)
```

However, it is difficult to use such encoding approach to express the injectivity of constructors [Cheney and Hinze 2003], e.g., deducing $n \equiv m$ from $S n \equiv S m$. It would be challenging to encode the tail function of a vector:

```
def tail:(a:\star) ) (n:Nat) }->(v:\mathrm{ Vec a (S n)) }->\mathrm{ \ Vec a n =
    \lambdaa.\lambdan. \lambdav. case v of
        Cons m р x xs =>xs; -- ill-typed
```

The case expression above is ill-typed: $x s$ has the type Vec a m, but the function requires the case branch to return Vec $a n$. To convert $x s$ to the correct type, we need to show $n \equiv m$. But the equality proof p has type $E q N a t(S n)(S m)$, i.e., $S n \equiv S m$. Thus, the injectivity of constructor S is needed.

Fun incorporates two full cast operators (cast \Uparrow_{\Uparrow} and cast ${ }_{\Downarrow}$) from full PITS. With the power of full casts, we can "prove" the injectivity of S. We first define a partial function predNat to destruct S :

```
def predNat:Nat }->\mathrm{ Nat =
    \lambdan. case n of Sm=>m;
```

 Noticing the reduction predNat $(S n) \hookrightarrow n$ holds, we can use a full cast operator cast ${ }_{\Downarrow}$ to reduce both sides of the equality to obtain $n \equiv m$:

$$
\begin{aligned}
& \operatorname{def} \text { injNat: }(n: N a t) \rightarrow(m: N a t) \rightarrow E q \text { Nat }(S n)(S m) \rightarrow E q \text { Nat } n m= \\
& \quad \lambda n . \lambda m . \lambda p . \text { cast }_{\Downarrow}(\text { lift Nat Nat }(S n)(S m) \text { predNat } p) ;
\end{aligned}
$$

The function lift (definition omitted) lifts the type of equality proof p from $S n \equiv S m$ to $\operatorname{predNat}(S n) \equiv \operatorname{predNat}(S m)$. Then cast ${ }_{\Downarrow}$ converts it to Eq Nat $n m$ (type annotations are omitted for brevity):

```
p :Sn}\equivS
lift predNat p : predNat (S n) \equivpredNat (S m)
cast }\mp@subsup{|}{|}{}(\mp@subsup{\mathrm{ lift predNat p) : n m m}}{}{\prime
```

We can finally write a well-typed version of tail:

$$
\begin{aligned}
& \text { def castVec }:(a: \star) \rightarrow(n: N a t) \rightarrow(m: N a t) \rightarrow \\
& \quad E q N a t n m \rightarrow V e c \text { a } m \rightarrow V e c \text { a } n=\ldots ; \quad \text {-- excerpted } \\
& \text { def tail }:(a: \star) \rightarrow(n: N a t) \rightarrow(v: \text { Vec } a(S n)) \rightarrow \text { Vec a } n= \\
& \lambda a . \lambda n . \lambda v . \text { case } v \text { of } \\
& \quad \text { Cons } m p x x \Rightarrow \text { castVec a } n m(\text { injNat } n m p) x s ;
\end{aligned}
$$

where castVec uses the proof $n \equiv m$ to convert $x s$ from Vec a m to Vec $a n$. Note that Fun is not logically consistent and does not check whether the proof is terminating. However, it is easy to see the injectivity proof injNat from the example above is total - though predNat is a partial function, it is always applied to numbers with the form $S n$.

CHAPTER 4

Pure Iso-Type Systems

This chapter formally presents Pure Iso-Type Systems (PITS), a family of calculi which employs unified syntax, supports general recursion and preserves decidable type-checking. PITS is comparable in simplicity to PTS. The main idea is to recover decidable type-checking through iso-types. In PITS, every type-level computation step is explicit and each type-level reduction or expansion is controlled by a type-safe cast. Since single computation steps are trivially terminating, decidability of type checking is possible even in the presence of non-terminating programs at the type level. At the same time term-level programs using general recursion work as in any conventional functional languages, and can be non-terminating.

Such design choice is useful to serve as a foundation for functional languages that stand in-between traditional ML-like languages and fully-blown dependently typed languages. In PITS, recursion and recursive types are completely unrestricted and type equality is simply based on alpha-equality, just like traditional ML-style languages. However, like most dependently typed languages, PITS uses unified syntax, naturally supporting many advanced type system features (such as higher-kinded types [Girard 1972], or kind polymorphism [Yorgey et al. 2012], see also Section 3.2).

In this chapter, we study three different variants of PITS that differ on term evaluation strategy, as well as the reduction strategy employed by the cast operators. They have different trade-offs in terms of simplicity and expressiveness. Call-by-name PITS (Section 4.1) uses weak-head call-byname reduction, while call-by-value PITS (Section 4.2) enables standard call-by-value reduction by employing a value restriction [Swamy et al. 2011; Sjöberg et al. 2012]. In both designs the key idea is that the same reduction strategy is used for both term evaluation and type casts, ensuring a consistent behavior ${ }^{1}$ of reduction at both type and term level. While such consistency is easily ensured in a strongly normalizable calculus, as a term will always evaluate to the same normal form regardless of the reduction strategy, this it is not true for PITS which enables general recursion and loses strong normalization. For example, given term $(\lambda x: \operatorname{Int} .1) ~ \perp$, where \perp is any diverging computation, such term evaluates to 1 with call-by-name semantics, but diverges with call-by-value semantics. In call-by-name/value PITS, we can trivially guarantee that no invalid reasoning steps can happen due to mismatches with the evaluation strategy.

Unfortunately, both call-by-name and call-by-value reduction are not congruent for type equivalence (e.g. $\lambda x:$ Int. $1+1 \nLeftarrow \lambda x:$ Int. 2), which loses some expressiveness in terms of type level computation. The third variant called full PITS (Section 4.3) uses parallel reduction for

[^0]casts. Full PITS is more expressive than call-by-name/value PITS, and its type-level reduction is complete with respect to full beta-reduction employed by traditional PTS. Full PITS allows equating terms such as Int $\rightarrow V e c(1+1)$ and Int $\rightarrow V e c 2$ as equal, which is not possible in call-by-name/value PITS. The price to pay for this more expressive and congruent design is some additional complexity of the formalization, and the lack of consistency between term and type level reduction ${ }^{2}$ (see Section 4.4.6). For all variants, type soundness and decidability of type-checking are proved.

One key finding is that while using call-by-value or call-by-name reduction in casts loses some expressive power for type-level computation, it allows those variants of PITS to have a simple and direct operational semantics and proofs. In contrast, the variant of PITS with parallel reduction retains the expressive power of PTS conversion, at the cost of a more complex metatheory where type-safety proofs must be shown indirectly by showing soundness/completeness to another variant of PTS. Similarly, many previous calculi including PTS_{f}, a closely related calculus which is also based on PTS and explicit type conversions, rely on other variants of PTS to provide dynamic semantics and type-safety proofs. A detailed discussion of the trade-offs between the variants of PITS, as well as PTS_{f}, is given in Section 4.4.

4.1 Call-by-name Pure Iso-Type Systems

We formally present the first variant of Pure Iso-Type Systems. PITS is very close to Pure Type Systems (PTS) [Barendregt 1992], except for two key differences: the existence of cast operators and general recursion. In this section, we focus on the call-by-name variant of PITS, which uses a call-by-name weak-head reduction strategy in casts. We show type safety for any PITS and decidability of type checking for a particular subset, i.e., functional PITS (see Definition 4.1.1). One important remark is that the dynamic semantics of call-by-name PITS is given by a direct small-step operational semantics, and type-safety is proved using the usual preservation and progress theorems.

4.1.1 Syntax

Fig. 4.1 shows the syntax of PITS, including expressions, values and contexts. Like Pure Type Systems (PTS), PITS uses a unified representation for different syntactic levels. There is no syntactic distinction between terms, types or kinds/sorts. Such unified syntax brings economy for type checking, since one set of typing rules can cover all syntactic levels. As in PTS, PITS contains a set of constants called Sorts, e.g., \star, \square, denoted by metavariable s. By convention, we use metavariables A, B, etc. for an expression on the type-level position and e for one on the term level. We use $A \rightarrow B$ as a syntactic sugar for $\Pi x: A . B$ if x does not occur free in B.

Cast Operators. We introduce two new primitives cast \uparrow_{\uparrow} and cast ${ }_{\downarrow}$ (pronounced as "cast up" and "cast down") to replace the implicit conversion rule of PTS with one-step explicit type conversions. The cast operators perform two directions of conversion: cast ${ }_{\downarrow}$ is for the one-step reduction of types, and cast ${ }_{\uparrow}$ is for the one-step expansion. The cast ${ }_{\uparrow}$ construct needs a type annotation A as

[^1]

Figure 4.1. Syntax of call-by-name PITS
the result type of one-step expansion for disambiguation, while cast \downarrow does not, since the result type of one-step reduction can be uniquely determined as discussed in Section 4.1.5.

We use syntactic sugar cast $\uparrow \uparrow$ and cast ${ }_{\downarrow}^{n}$ to denote n consecutive cast operators (see Fig. 4.1). Alternatively, one can introduce them as built-in operators and treat one-step casts as syntactic sugar instead. Though using built-in n-step casts can reduce the number of individual cast constructs, we do not adopt such alternative design in order to simplify the discussion of metatheory. Note that cast ${ }_{\uparrow}^{n}$ is simplified to take just one type parameter, i.e., the last type A_{1} of the n cast operations. Due to the determinacy of one-step reduction (see Lemma 4.1.2), the intermediate types can be uniquely determined and left out.

General Recursion. We use the μ-operator to uniformly represent recursive terms and types. The expression $\mu x: A$. e can be used on the type level as a recursive type, or on term level as a fixpoint that is possibly non-terminating. For example, A can be a single sort s, as well as a function type such as Int \rightarrow Int or $s_{1} \rightarrow s_{2}$.

4.1.2 Operational Semantics

Fig. 4.2 shows the small-step, call-by-name operational semantics. Three base cases include rule R-Beta for beta reduction, rule R-Mu for recursion unfolding and rule R-CAStElim for cast canceling. Two inductive cases, rule R-App and rule $\mathrm{R}-\mathrm{CAstdn}$, define reduction at the head position of an application, and the inner expression of cast ${ }_{\downarrow}$ terms, respectively. Note that rule R-CAStElim and rule R-CAStDn do not overlap because in the former rule, the inner term of cast $_{\downarrow}$ is a value (see Fig. 4.1), i.e., $\operatorname{cast}_{\uparrow}[A] e$. In rule R-CAstDN, the inner term is reducible and cannot be a value.

The reduction rules are called weak-head since only the head term of an application can be reduced, as indicated by the rule R-App. Reduction is also not allowed inside the λ-term and Π-term which are both defined as values. Weak-head reduction rules are used for both type conversion and term evaluation. To evaluate the value of a term-level expression, we apply the one-step (weak-head) reduction multiple times, i.e., multi-step reduction, the transitive and reflexive closure of the one-step reduction.

4.1.3 Typing

Fig. 4.3 gives the syntax-directed typing rules of PITS, including rules of context well-formedness $\vdash \Gamma$ and expression typing $\Gamma \vdash e: A$. Note that there is only a single set of rules for expression

$$
\begin{array}{ccl}
\begin{array}{ll}
\text { R-BETA } \\
\left(\lambda x: A . e_{1}\right) e_{2} \hookrightarrow e_{1}\left[x \mapsto e_{2}\right]
\end{array} & \begin{array}{c}
\text { R-App } \\
e_{1} e_{2} \hookrightarrow e_{1}^{\prime} e_{2}
\end{array} & \begin{array}{l}
\text { R-Mu } \\
\text { R-CASTDN } \\
\frac{e \hookrightarrow e^{\prime}}{\operatorname{cast}_{\downarrow} e \hookrightarrow \operatorname{cast}_{\downarrow} e^{\prime}}
\end{array} \\
& \frac{\text { R-CASTELIM }^{\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[A] e\right) \hookrightarrow e[x \mapsto \mu x: A \cdot e]}}{}
\end{array}
$$

Figure 4.2. Operational semantics of call-by-name PITS
$\Gamma \vdash e: A \quad$ (Typing of Call-by-name PITS)

(Well-formedness)

$$
\begin{array}{ll}
\text { W-NiL } & \frac{\begin{array}{l}
\text { W-Cons } \\
\Gamma \vdash A: s
\end{array}}{\vdash \vdash \text { fresh in } \Gamma} \\
\vdash \varnothing, x: A
\end{array}
$$

Figure 4.3. Typing rules of call-by-name PITS
typing, as there is no distinction of different syntactic levels. Most typing rules are quite standard. We write $\vdash \Gamma$ if a context Γ is well-formed. We use $\Gamma \vdash A: s$ to check if A is a well-formed type.

PITS is a family of type systems similarly to PTS, parametrized by the axiom set $\mathcal{A} \subseteq(\mathcal{S} \times \mathcal{S})$ for typing sorts and rule set $\mathcal{R} \subseteq(\mathcal{S} \times \mathcal{S} \times \mathcal{S})$ for checking well-formedness of Π-types (see also Section 2.1.1). Rule T-Ax checks whether sort s_{1} can be typed by sort s_{2} if $\left(s_{1}, s_{2}\right) \in \mathcal{A}$ holds. Rule T-VAR checks the type of variable x from the valid context. Rule T-App and rule T-Abs check the validity of application and abstraction respectively. Rule T-Prod checks the type wellformedness of the dependent function type by checking if $\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}$. Rule T-Mu checks the validity of a recursive term. It ensures that the recursion $\mu x: A$. e should have the same type A as the binder x and also the inner term e.

Note that unlike the traditional presentation of PTS (see Figure 2.1), rule T-ABS does not rely on rule T-Prod to check the well-formedness of Pi-types, but directly embeds the premises from rule T-Prod. Several PTS-based calculi in the literature such as PTS_{f} also use such a definition
that can reduce dependencies between rules and simplify proofs of metatheory.

The Cast Rules. We focus on the rule T-Castup and rule T-Castdn that define the semantics of cast operators and replace the conversion rule of PTS. The relation between the original and converted type is defined by one-step call-by-name reduction (see Fig. 4.2). For example, given a judgment $\Gamma \vdash e: A_{2}$ and relation $A_{1} \hookrightarrow A_{2} \hookrightarrow A_{3}$, cast $\uparrow\left[A_{1}\right] e$ expands the type of e from A_{2} to A_{1}, while cast $\downarrow \downarrow$ reduces the type of e from A_{2} to A_{3}. We can formally give the typing derivations of the examples in Section 3.1.3:

$$
\begin{gathered}
\Gamma \vdash e:(\lambda x: \star . x) \text { Int } \\
\frac{(\lambda x: \star \cdot x) \text { Int } \hookrightarrow \text { Int }}{\Gamma \vdash\left(\text { cast }_{\downarrow} e\right): \text { Int }}
\end{gathered} \quad \begin{gathered}
\Gamma \vdash 3: \text { Int } \\
\end{gathered} \begin{gathered}
\Gamma \vdash(\lambda x: \star \cdot x) \text { Int } \hookrightarrow \text { Int } \\
\Gamma \vdash\left(\text { cast }_{\uparrow}[(\lambda x: \star . x) \text { Int }] 3\right):(\lambda x: \star . x) \text { Int }
\end{gathered}
$$

Importantly, in PITS term-level and type-level computation are treated differently. Term-level computation is dealt in the usual way, by using multi-step reduction until a value is finally obtained. Type-level computation, on the other hand, is controlled by the program: each step of the computation is induced by a cast. If a type-level program requires n steps of computation to reach the normal form, then it will require n casts to compute a type-level value.

Syntactic Equality. Finally, the definition of type equality in PITS differs from PTS. Without the conversion rule, the type of a term in PITS cannot be converted freely against beta equality, unless using cast operators. Thus, types of expressions are equal only if they are syntactically equal (up to alpha renaming).

4.1.4 The Two Faces of Recursion

One key difference from PTS is that PITS supports general recursion for both terms and types. We discuss general recursion on two levels and show how iso-types generalize iso-recursive types.

Term-level Recursion. In PITS, the μ-operator works as a fixpoint on the term level. By rule R-Mu, evaluating a term $\mu x: A . e$ will substitute all x 's in e with the whole μ-term itself, resulting in the unfolding $e[x \mapsto \mu x: A . e]$. The μ-term is equivalent to a recursive function that should be allowed to unfold without restriction.

Recall the factorial function example in Section 3.1.4. By rule T-Mu, the type of fact is Int \rightarrow Int. Thus we can apply fact to an integer. Note that by rule R-Mu, fact will be unfolded to a λ-term. Assuming the evaluation of if-then-else construct and arithmetic expressions follows the one-step reduction, we can evaluate the term fact 3 as follows:

$$
\begin{array}{lll}
& \text { fact } 3 & \\
\hookrightarrow & (\lambda x: \text { Int. if } x==0 \text { then } 1 \text { else } x \times \text { fact }(x-1)) 3 & \\
\hookrightarrow & \text { if } 3==0 \text { then } 1 \text { else } 3 \times \operatorname{fact}(3-1) & \text {-- by rule R-APP R-BETA } \\
\hookrightarrow & \ldots \hookrightarrow 6 &
\end{array}
$$

Note that we never check if a μ-term can terminate or not, which is an undecidable problem for general recursive terms. The factorial function example above can stop, while there exist some terms that will loop forever. However, term-level non-termination is only a runtime concern and
does not block the type checker. In Section 4.1 .5 we show type checking PITS is still decidable in the presence of general recursion.

Type-level Recursion. On the type level, $\mu x: A . e$ works as an iso-recursive type [Crary et al. 1999], a kind of recursive type that is not equal but only isomorphic to its unfolding (see also Section 2.3.1). In PITS, we do not need to introduce fold and unfold operators, because with the rule R-Mu, cast ${ }_{\uparrow}$ and cast ${ }_{\downarrow}$ generalize fold and unfold, respectively. Suppose that we have terms e_{1} and e_{2} such that $e_{1}: \mu x: A . B$ and $e_{2}: B[x \mapsto \mu x: A . B]$. The type of e_{2} is the unfolding of e_{1} 's type, which follows the one-step reduction relation by rule R-Mu:

$$
\mu x: A . B \hookrightarrow B[x \mapsto \mu x: A . B]
$$

By applying rule T-CASTUp and rule T-CASTDN, we can obtain the following typing results:

$$
\begin{array}{ll}
\operatorname{cast}_{\downarrow} e_{1} & : B[x \mapsto \mu x: A . B] \\
\operatorname{cast}_{\uparrow}[\mu x: A . B] e_{2} & :(\mu x: A . B)
\end{array}
$$

Thus, cast ${ }_{\uparrow}$ and cast ${ }_{\downarrow}$ witness the isomorphism between the original recursive type and its unfolding, behaving in the same way as fold and unfold in iso-recursive types as in Section 2.3.1.

$$
\mu x: A . B \underset{\operatorname{cast}_{\uparrow}[\mu x: A . B]}{\text { cast }_{\downarrow}} B[x \mapsto \mu x: A . B]
$$

An important remark is that casts are necessary, not only for controlling the unfolding of recursive types, but also for type conversion of other constructs, which is essential for encoding parametrized algebraic datatypes (see Section 3.2.1).

4.1.5 Metatheory of Call-by-name PITS

We now discuss the metatheory of call-by-name PITS. We focus on two properties: the decidability of type checking and the type safety of the language. Firstly, we show that type checking for a functional subset [Siles and Herbelin 2012] of PITS is decidable without requiring strong normalization. Secondly, any PITS is type-safe, proven by subject reduction and progress lemmas [Wright and Felleisen 1994].

Decidability of Type Checking for Functional PITS. We limit the discussion in this paragraph to a subclass of PITS, functional PITS:

Definition 4.1.1. A PITS is functional if:

1. for all $s_{1}, s_{2}, s_{2}^{\prime}$, if $\left(s_{1}, s_{2}\right) \in \mathcal{A}$ and $\left(s_{1}, s_{2}^{\prime}\right) \in \mathcal{A}$, then $s_{2} \equiv s_{2}^{\prime}$.
2. for all $s_{1}, s_{2}, s_{3}, s_{3}^{\prime}$, if $\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}$ and $\left(s_{1}, s_{2}, s_{3}^{\prime}\right) \in \mathcal{R}$, then $s_{3} \equiv s_{3}^{\prime}$.

Such definition is the same as the one of functional PTS [Siles and Herbelin 2012], or singly-sorted PTS [Barendregt 1992] (see also Section 2.1.1). Functional PITS enjoys uniqueness of typing, i.e., typing result is unique up to alpha equality:

Lemma 4.1.1 (Uniqueness of Typing for Functional PITS). In any functional PITS, if $\Gamma \vdash e: A$ and $\Gamma \vdash e: B$, then $A \equiv B$.

For simplicity reasons, we only discuss decidability for functional PITS, where the proof can be significantly simplified by the uniqueness of typing lemma. For non-functional PITS, one may follow the proof strategy similarly used in non-functional PTS [van Benthem Jutting 1993], by proving the "Uniqueness of Domains" lemma instead. We leave the decidability proof for non-functional PITS as future work.

For functional PITS, the proof for decidability of type checking is by induction on the structure of e. The non-trivial case is for cast-terms with typing rule T-CAStUp and rule T-CAstdn. Both rules contain a premise that needs to judge if two types A and B follow the one-step reduction, i.e., if $A \hookrightarrow B$ holds. We show that B is unique with respect to the one-step reduction, or equivalently, reducing A by one step will get only a sole result B. Such property is given by the following lemma:

Lemma 4.1.2 (Determinacy of One-step Call-by-name Reduction). If $e \hookrightarrow e_{1}$ and $e \hookrightarrow e_{2}$, then $e_{1} \equiv e_{2}$.

We use the notation \equiv to denote the alpha equivalence of e_{1} and e_{2}. Note that the presence of recursion does not affect this lemma: given a recursive term $\mu x: A$. e, by rule R-Mu, there always exists a unique term $e^{\prime} \equiv e[x \mapsto \mu x: A . e]$ such that $\mu x: A . e \hookrightarrow e^{\prime}$. With this result, we show that it is decidable to check whether the one-step relation $A \hookrightarrow B$ holds. We first reduce A by one step to obtain A^{\prime} (which is unique by Lemma 4.1.2), and compare if A^{\prime} and B are syntactically equal. Thus, we can further show type checking cast-terms is decidable.

By the definition of functional PITS, checking the type of sorts and well-formedness of Π types are decidable. For other cases, type checking is decidable by the induction hypothesis and uniqueness of typing (see Lemma 4.1.1). Thus, we can conclude the decidability of type checking ${ }^{3}$:

Theorem 4.1.1 (Decidability of Type Checking for Functional PITS). In any functional PITS, given a well-formed context Γ and a term e, it is decidable to determine if there exists A such that $\Gamma \vdash e: A$.

We emphasize that when proving the decidability of type checking, we do not rely on strong normalization. Intuitively, explicit type conversion rules use one-step call-by-name reduction, which already has a decidable checking algorithm according to Lemma 4.1.2. We do not need to further require the normalization of terms. This is different from the proof for PTS which requires the language to be strongly normalizing [van Benthem Jutting 1993]. In PTS the conversion rule needs to examine the beta equivalence of terms, which is decidable only if every term has a normal form.

Type Safety for all PITS. Type safety holds for any PITS, not just functional PITS. The proof of the type safety is by showing subject reduction and progress lemmas [Wright and Felleisen 1994]:

Theorem 4.1.2 (Subject Reduction of Call-by-name PITS). If $\Gamma \vdash e: A$ and $e \hookrightarrow e^{\prime}$ then $\Gamma \vdash e^{\prime}: A$.

Theorem 4.1.3 (Progress of Call-by-name PITS). If $\varnothing \vdash e: A$ then either e is a value v or there exists e^{\prime} such that $e \hookrightarrow e^{\prime}$.

[^2]The proof of subject reduction is straightforward by induction on the derivation of $\Gamma \vdash e: A$ and inversion of $e \hookrightarrow e^{\prime}$. Some cases need supporting lemmas: rule R-CASTELim requires Lemma 4.1.2; rule R-Beta and rule R-Mu require the following substitution lemma:

Lemma 4.1.3 (Substitution of Call-by-name PITS). If $\Gamma_{1}, x: B, \Gamma_{2} \vdash e_{1}: A$ and $\Gamma_{1} \vdash e_{2}: B$, then $\Gamma_{1}, \Gamma_{2}\left[x \mapsto e_{2}\right] \vdash e_{1}\left[x \mapsto e_{2}\right]: A\left[x \mapsto e_{2}\right]$.
The proof of progress is also standard by induction on $\varnothing \vdash e: A$. Notice that cast ${ }_{\uparrow}[A] e$ is a value, while cast ${ }_{\downarrow} e_{1}$ is not: by rule R-CASTDN, e_{1} will be constantly reduced until it becomes a value that could only be in the form cast $\uparrow[A] e$ by typing rule T-Castdn. Then rule R-CastElim can be further applied and the evaluation does not get stuck. Another notable remark is that when proving the case for application $e_{1} e_{2}$, if e_{1} is a value, it could only be a λ-term but not a cast \uparrow_{\uparrow}-term. Otherwise, suppose e_{1} has the form cast ${ }_{\uparrow}[\Pi x: A . B] e_{1}^{\prime}$. By inversion, we have $\varnothing \vdash e_{1}^{\prime}: A^{\prime}$ and $\Pi x: A . B \hookrightarrow A^{\prime}$. But such A^{\prime} does not exist because $\Pi x: A . B$ is a value which is not reducible.

4.2 Call-by-value Pure Iso-Type Systems

Pure Iso-Type Systems enjoy the flexibility of choosing different reduction rules for type conversion or term evaluation. In this section, we present another variant of PITS which uses call-by-value reduction, a more commonly used reduction strategy. All metatheory presented in Section 4.1, including type safety and decidability of typing, still holds for this variant. Call-by-value is interesting because, for applications, the arguments are reduced before beta reduction. Such reduction is problematic for dependent functions types in a setting with iso-types. We address this problem by using a form of value restriction, inspired by previous work [Swamy et al. 2011; Sjöberg et al. 2012].

4.2.1 Value Restriction

Call-by-value reduction $\left(\hookrightarrow_{\mathrm{v}}\right)$ requires the argument of beta reduction to be a value (v). A typical leftmost reduction strategy of an application is that, one first reduces the function part to a value, then further reduces the argument. Such process is witnessed by the following reduction rules:

$$
\begin{array}{ll}
\text { RV-BETA } & \begin{array}{l}
\text { RV-APpL } \\
(\lambda x: A . e) v \hookrightarrow_{\mathrm{V}} e[x \mapsto v]
\end{array}
\end{array} \frac{e_{1} \hookrightarrow_{\mathrm{V}} e_{1}^{\prime}}{e_{1} e_{2} \hookrightarrow_{\mathrm{V}} e_{1}^{\prime} e_{2}} \quad \begin{aligned}
& \text { RV-APpR } \\
& v e \hookrightarrow_{\mathrm{V}} e^{\prime} \\
& v v e^{\prime}
\end{aligned}
$$

A function in PITS can be dependent. That is the function type can depend on the argument. For example, suppose that f is a dependent function generating a length-indexed list with given length n, with the following type:

$$
f:(\Pi n: \text { Int. Vec } n)
$$

By rule RV-AppR, the reduction $f(1+1) \hookrightarrow_{\mathrm{v}} f 2$ holds. However, the types of two sides of the reduction are different:

$$
\begin{array}{ll}
f(1+1) & : \operatorname{Vec}(1+1) \\
f 2 & : \operatorname{Vec} 2
\end{array}
$$

Notice that PITS does not contain an implicit conversion rule. Without an explicit type conversion, subject reduction does not hold. There are at least two possible ways to deal with this issue: 1) introducing a type cast for reduction; 2) requiring the dependent function to be applied to a value only. For simplicity reasons, we choose the second method: a value restriction. The first method entangles types with reduction, which makes the semantics more complicated.

Typing Rules with Value Restriction. Now we have two typing rules for the function application:

$$
\begin{aligned}
& \frac{\Gamma \vdash_{\mathrm{v}} e: \Pi x: A . B \quad \Gamma \vdash_{\mathrm{v}} v: A}{\Gamma \vdash_{\mathrm{v}} e v: B[x \mapsto v]} \quad \frac{\Gamma \vdash_{\mathrm{v}} e_{1}: A \rightarrow B \quad \Gamma \vdash_{\mathrm{v}} e_{2}: A}{\Gamma \vdash_{\mathrm{v}} e_{1} e_{2}: B}
\end{aligned}
$$

If a function is dependent the argument must be a value (v). Otherwise, the function is nondependent and there is no restriction on its argument. Recall that the arrow type is syntactic sugar for the non-dependent Π-type (see Figure 4.1). Note that these two typing rules overlap: the Π-type of e in rule TV-AppV could be non-dependent. In such case, $B=B[x \mapsto v]$ and rule TV-AppV has the same typing result as rule TV-App. Thus, such overlapping does not cause any determinacy issues.

Two Sides of Value Restriction. Imposing such value restriction in PITS has both pros and cons. On one side, type-safety proofs are quite simple (see Section 4.2.3). We can safely rule out the case that breaks type preservation when reducing the argument of a dependent function application. Recalling the example above, a reduction like $f(1+1) \hookrightarrow_{\mathrm{v}} f 2$ is not possible since $f(1+1)$ will be rejected by the type system in the first place. The argument $(1+1)$ of the dependent function f is not a value, so $f(1+1)$ is not a well-typed term. Thus, if a function is applied to a reducible argument it must be a non-dependent function in order to ensure type preservation.

Though users can easily write $f 2$ as a workaround to satisfy the type system instead of $f(1+1)$, there is no alternative way to express terms such as $f(x+y)$ where the argument cannot be reduced to a value. Thus, the value restriction makes the type system become more restrictive on dependent function applications - users can only provide values but not arbitrary arguments to dependent functions. Nonetheless, there is no restriction on applying non-dependent functions to arguments, e.g., $i d(x+y)$ where $i d=\lambda z:$ Int. z. In other words, there is no loss of expressiveness with respect to non-dependently typed programming.

Alternative to the Value Restriction. Instead of the value restriction, one could simultaneously add casts when reducing dependent function applications. Supposing we drop the value restriction, for the same example of f, noticing that $V e c(1+1) \hookrightarrow_{v} V e c 2$, we can obtain

$$
\begin{array}{ll}
f 2 & : \operatorname{Vec} 2 \\
\operatorname{cast}_{\uparrow}[\operatorname{Vec}(1+1)](f 2) & : \operatorname{Vec}(1+1)
\end{array}
$$

Then, $f(1+1) \hookrightarrow_{\vee}$ cast $_{\uparrow}[\operatorname{Vec}(1+1)](f 2)$ preserves the type with an extra cast ${ }_{\uparrow}$. However, such reduction relation involves types due to the annotation of casts. For simplicity reasons, we
leave this extension as future work (see Section 8.2) and stick to value restriction for a simpler meta-theory.

4.2.2 Reduction with Open Terms

In call-by-value PITS, cast operators also use one-step call-by-value reduction to perform type conversions. Open terms that contain free variables may occur during reduction, e.g., $(\lambda x$: Int. x) y, where y is a free variable. Using the rule RV-BETA, the reduction can only be performed if y is a value. To allow beta reduction of such open terms, we allow variables as values. Traditional call-by-value calculi do not have such definitions, since reduction is used for term evaluation but not type conversion. Nevertheless, several call-by-value calculi that involve type conversion allow treating variables as values, such as Fireball Calculus [Paolini and Della Rocca 1999], as well as several open call-by-value calculi [Accattoli and Guerrieri 2016], and Zombie [Sjöberg et al. 2012; Casinghino et al. 2014]. To make such definition work, we need to ensure that a variable is substituted with a value. The rule RV-BETA already ensures such requirement.

Recursion and Recursive Types. For a recursive term $\mu x: A . e$, its unfolding has the form $e[x \mapsto \mu x: A . e]$ such that the substituted term is the term itself. Thus, we need to treat μ-terms as values as in traditional call-by-value settings. One consequence is that a μ-term now is only unfolded when it is placed at the function part of an application, or inside cast ${ }_{\downarrow}$:

RV-Mu

$$
\overline{(\mu x: A . e) v \hookrightarrow_{v}(e[x \mapsto \mu x: A . e]) v}
$$

RV-CAStDN-Mu

$$
\overline{\operatorname{cast}_{\downarrow}(\mu x: A . e) \hookrightarrow_{\vee} \operatorname{cast}_{\downarrow}(e[x \mapsto \mu x: A . e])}
$$

Thus, μ-terms only represents term-level recursive functions, as in most call-by-value languages. They cannot directly represent recursive types at the same time. This is different from the call-byname PITS where μ-terms are both term-level fixpoints and recursive types, since substituted terms are not necessarily values. Nevertheless, one can still recover recursive types in call-byvalue PITS by feeding the type-level recursive function a dummy argument, e.g., the unit value ():

PITS Variant	Recursive Type	Reduction
Call-by-name	$f=\mu y: A \cdot e$	$f \hookrightarrow e[y \mapsto f]$
Call-by-value	$f^{\prime}=\mu x:$ Unit $\rightarrow A \cdot e[y \mapsto x()]$	$f^{\prime}() \hookrightarrow_{\vee}\left(e[y \mapsto x()]\left[x \mapsto f^{\prime}\right]\right)()$

where x does not occur free in e. The recursive type f in call-by-name PITS can be simulated by a type-level recursive function f^{\prime} applied to a dummy argument, i.e., $f^{\prime}()$.

Finally, we show the full definition of call-by-value PITS in Figure 4.4. The changes from the call-by-name variant are highlighted.

4.2.3 Metatheory

All the metatheory of call-by-name PITS still holds in the call-by-value variant, including two key properties: type safety and decidability of type checking. The proofs are almost the same. The only relevant change is the statement of the substitution lemma:

$e_{1} \hookrightarrow_{\mathrm{v}} e_{2}$
(Call-by-value Reduction)
RV-BETA
$(\lambda x: A . e) v \hookrightarrow_{v} e[x \mapsto v]$

RV-Mu
$\overline{(\mu x: A . e) v \hookrightarrow_{v}(e[x \mapsto \mu x: A . e]) v}$
RV-AppL
$\frac{e_{1} \hookrightarrow_{\mathrm{V}} e_{1}^{\prime}}{e_{1} e_{2} \hookrightarrow_{\mathrm{V}} e_{1}^{\prime} e_{2}}$
RV-Castdn

$$
\frac{e \hookrightarrow_{\mathrm{V}} e^{\prime}}{\operatorname{cast}_{\downarrow} e \hookrightarrow_{\mathrm{V}} \operatorname{cast}_{\downarrow} e^{\prime}}
$$

RV-CAstup
$\frac{\mathrm{RV}-\mathrm{AppR}}{}$
$\frac{e \hookrightarrow_{\mathrm{V}} e^{\prime}}{v e \hookrightarrow_{\mathrm{V}} v e^{\prime}}$
RV-Castdn-Mu
$\operatorname{cast}_{\downarrow}(\mu x: A . e) \hookrightarrow_{\vee} \operatorname{cast}_{\downarrow}(e[x \mapsto \mu x: A . e])$

RV-CastElim
$\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[A] \quad v\right) \hookrightarrow_{\vee} v$
$\Gamma \vdash_{\mathrm{v}} e: A$
(Typing of Call-by-value PITS)

$$
\begin{array}{ll}
\text { TV-Prod } \\
\frac{\Gamma \vdash_{\mathrm{v}} A: s_{1}}{} \quad \begin{array}{l}
\text { TV-Mu } \\
\\
\Gamma \vdash_{\mathrm{v}} \Pi x: A . B: s_{3}
\end{array} & \frac{\Gamma \vdash_{\mathrm{v}} A: s \quad \Gamma, x: A \vdash_{\mathrm{v}} e: A}{\Gamma \vdash_{\mathrm{v}} \mu x: A . e: A}
\end{array}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash_{\mathrm{v}} B: s \quad \Gamma \vdash_{\mathrm{v}} e: A \quad B \hookrightarrow_{\mathrm{v}} A}{\Gamma \vdash_{\mathrm{v}} \operatorname{cast}_{\uparrow}[B] e: B} \quad \frac{\Gamma \vdash_{\mathrm{v}} e: A \quad A \hookrightarrow_{\mathrm{v}} B}{\Gamma \vdash_{\mathrm{v}} \operatorname{cast}_{\downarrow} e: B}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { WV-NiL } & \frac{\begin{array}{l}
\text { WV-Cons } \\
\vdash_{\mathrm{v}} \varnothing
\end{array}}{\Gamma \vdash_{\mathrm{v}} A: s \quad x \text { fresh in } \Gamma} \\
\vdash_{\mathrm{v}} \Gamma, x: A
\end{array}
$$

Figure 4.4. Call-by-value PITS

Lemma 4.2.1 (Substitution of Call-by-value PITS). If $\Gamma_{1}, x: B, \Gamma_{2} \vdash_{v} e: A$ and $\Gamma_{1} \vdash_{v} v: B$, then $\Gamma_{1}, \Gamma_{2}[x \mapsto v] \vdash_{v} e[x \mapsto v]: A[x \mapsto v]$.

We now require substituted terms to be values. With such a change, type preservation of reducing open terms is possible, as discussed in Section 4.2.2. Such restricted substitution lemma is sufficient

$$
\begin{aligned}
& \frac{\begin{array}{l}
\text { TV-App } \\
\Gamma \vdash_{v} e_{1}: A \rightarrow B
\end{array} \Gamma \vdash_{\mathrm{v}} e_{2}: A}{\Gamma \vdash_{\mathrm{v}} e_{1} e_{2}: B} \quad \frac{\begin{array}{l}
\text { TV-AppV } \\
\vdash_{\mathrm{v}} e: \Pi x: A . B
\end{array} \Gamma \vdash_{\mathrm{v}} v: A}{\Gamma \vdash_{\mathrm{v}} e v: B[x \mapsto v]}
\end{aligned}
$$

for proving subject reduction, because all substituted terms are values in reduction rules (see Figure 4.4). The subject reduction and progress lemmas can be proved in a similar way to call-by-name PITS:

Theorem 4.2.1 (Subject Reduction of Call-by-value PITS). If $\Gamma \vdash_{v} e: A$ and $e \hookrightarrow_{v} e^{\prime}$ then $\Gamma \vdash_{v} e^{\prime}: A$.

Theorem 4.2.2 (Progress of Call-by-value PITS). If $\varnothing \vdash_{v} e: A$ then either e is a value v or there exists e^{\prime} such that $e \hookrightarrow_{\mathrm{v}} e^{\prime}$.

Like call-by-name reduction, the one-step call-by-value reduction is deterministic:
Lemma 4.2.2 (Determinacy of One-step Call-by-value Reduction). If $e \hookrightarrow_{\mathrm{v}} e_{1}$ and $e \hookrightarrow_{\mathrm{v}} e_{2}$, then $e_{1} \equiv e_{2}$.

Similarly, for functional PITS, we have typing uniqueness and decidable type checking:
Lemma 4.2.3 (Uniqueness of Typing for Functional PITS). In any functional PITS, if $\Gamma \vdash_{\mathrm{v}} e: A$ and $\Gamma \vdash_{\mathrm{v}} e: B$, then $A \equiv B$.

Theorem 4.2.3 (Decidability of Type Checking for Functional PITS). In any functional PITS, given a well-formed context Γ and a term e, it is decidable to determine if there exists A such that $\Gamma \vdash_{v} e: A$.

4.3 Iso-Types with Full Casts

In Sections 4.1 and 4.2, we have introduced two variants of PITS that use one-step call-byname/value reduction for both term evaluation and type conversion. The use of those reduction strategies simplifies the design and metatheory, at the cost of some expressiveness (e.g. cannot encode the vector example in Section 3.2.4). To gain extra expressiveness, we take one step further to generalize casts with full reduction. In this section, we present a third variant of PITS called full PITS, where casts use a decidable parallel reduction relation for type conversion. The trade-off is some extra complexity in the metatheory. We show that full PITS has decidable type checking and type safety that holds up to erasure. The proofs and metatheory design is inspired by approaches used in Zombie [Sjöberg and Weirich 2015] and Guru [Stump et al. 2008].

4.3.1 Full Casts with Parallel Reduction

Cast operators in call-by-name/value PITS use the same one-step reduction as term evaluation for type-level computation. We refer to them as weak casts, because they lack the ability to do full type-level computation where reduction can occur at any position of terms. For example, weak casts cannot convert the type $\operatorname{Vec}(1+1)$ to $\operatorname{Vec} 2$, because 1) for call-by-name reduction, the desired reduction is at the non-head position; 2) for call-by-value reduction, the term is rejected due to the value restriction. Thus, we generalize weak casts to full casts (cast § and $^{\text {anst }}{ }_{\Downarrow}$) utilizing a one-step decidable parallel reduction $\left(\hookrightarrow_{p}\right)$ relation for type conversion. Figure 4.5 shows the definition of $\hookrightarrow_{\mathrm{p}}$. This relation allows reducing terms at any position, including non-head positions or inside binders, e.g., $\lambda x:$ Int. $1+1 \hookrightarrow_{\mathrm{p}} \lambda x:$ Int. 2 . Thus full type-level computation for casts is enabled.

$$
\begin{aligned}
& r_{1} \hookrightarrow_{\mathrm{p}} r_{2} \\
& \text { (Decidable Parallel Reduction) } \\
& \begin{array}{lll}
\text { P-Red } \\
\left(\lambda x: R . r_{1}\right) r_{2} \hookrightarrow_{\mathrm{p}} r_{1}\left[x \mapsto r_{2}\right]
\end{array} \quad \begin{array}{l}
\text { P-VAR } \\
x \hookrightarrow_{\mathrm{p}} x
\end{array} \quad \overline{s-\text { Sort }} \quad \begin{array}{l}
\frac{\text { P-APP }}{r_{\mathrm{p}} s} \quad \frac{r_{\mathrm{p}} r_{1}^{\prime} \quad r_{2} \hookrightarrow_{\mathrm{p}} r_{2}^{\prime}}{r_{1} r_{2} \hookrightarrow_{\mathrm{p}} r_{1}^{\prime} r_{2}^{\prime}}
\end{array} \\
& \frac{\begin{array}{l}
\text { P-Abs } \\
R \hookrightarrow_{\mathrm{p}} R^{\prime}
\end{array} r \hookrightarrow_{\mathrm{p}} r^{\prime}}{\lambda x: R \cdot r \hookrightarrow_{\mathrm{p}} \lambda x: R^{\prime} \cdot r^{\prime}} \quad \begin{array}{l}
\begin{array}{l}
\text { P-Prod } \\
R_{1} \hookrightarrow_{\mathrm{p}} R_{1}^{\prime}
\end{array} R_{2} \hookrightarrow_{\mathrm{p}} R_{2}^{\prime} \\
\Pi x: R_{1} \cdot R_{2} \hookrightarrow_{\mathrm{p}} \Pi x: R_{1}^{\prime} \cdot R_{2}^{\prime}
\end{array} \quad \begin{array}{l}
\text { P-MuRed } \\
\mu x: R \cdot r \hookrightarrow_{\mathrm{p}} r[x \mapsto \mu x: R \cdot r]
\end{array} \\
& \text { P-MU } \\
& \frac{R \hookrightarrow_{\mathrm{p}} R^{\prime} \quad r \hookrightarrow_{\mathrm{p}} r^{\prime}}{\mu x: R . r \hookrightarrow_{\mathrm{p}} \mu x: R^{\prime} \cdot r^{\prime}}
\end{aligned}
$$

Figure 4.5. One-step decidable parallel reduction of erased terms

$$
\begin{array}{ll}
|x| & =x \\
|s| & =s \\
\left|e_{1} e_{2}\right| & =\left|e_{1}\right|\left|e_{2}\right| \\
|\lambda x: A \cdot e| & =\lambda x:|A| \cdot|e| \\
|\Pi x: A . B| & =\Pi x:|A| \cdot|B| \\
|\mu x: A \cdot e| & =\mu x:|A| \cdot|e| \\
\mid \text { cast }_{\Uparrow}[A] e \mid & =|e| \\
\mid \text { cast }_{\Downarrow}[A] e \mid & =|e|
\end{array}
$$

$$
\begin{array}{ll}
|\varnothing| & =\varnothing \\
|\Gamma, x: A| & =|\Gamma|, x:|A|
\end{array}
$$

Figure 4.6. Erasure of casts

There are three remarks for parallel reduction worth mentioning. Firstly, parallel reduction is defined up to erasure denoted by $|e|$ (see Figure 4.6), a process that removes all casts from term e. We also extend erasure to context denoted by $|\Gamma|$. It is feasible to define parallel reduction only for erased terms because casts in full PITS (also call-by-value PITS) are only used to ensure the decidability of type checking and have no effect on dynamic semantics, thus are computationally irrelevant. Note that casts in call-by-name PITS do not have this property, as we define cast ${ }_{\uparrow}[A] e$ to be a value. If we erase the cast operator, e can be further reducible, which changes the dynamic semantics. In full (call-by-value) PITS, cast $\Uparrow[A] v$ (cast $\uparrow_{\uparrow}[A] v$) is a value and becomes v after erasure, which is still a value and does not change the computational behavior.

We use metavariables r and R to range over erased terms and types, respectively. The only syntactic change of erased terms is that there is no cast. The type system after erasure is essentially a variant of PTS with recursion. We call it PTS_{μ}. The syntax and semantics of PTS_{μ} is shown in Figure 4.7.

Expressions	r, R	$::=$	$x\|s\| r_{1} r_{2}\|\lambda x: R . r\| \Pi x: R_{1} . R_{2} \mid \mu x: R . r$
Values	u	$::=$	$s\|\lambda x: R . r\| \Pi x: R_{1} . R_{2}$
Contexts	Δ	$::=$	$\varnothing \mid \Delta, x: R$

$r_{1} \hookrightarrow r_{2}$
(Weak-head Reduction)

RE-App

$$
\frac{r_{1} \hookrightarrow r_{1}^{\prime}}{r_{1} r_{2} \hookrightarrow r_{1}^{\prime} r_{2}} \quad \begin{aligned}
& \text { RE-MU } \\
& \mu x: R . r \hookrightarrow r[x \mapsto \mu x: R . r]
\end{aligned}
$$

RE-Beta
$\overline{\left(\lambda x: R . r_{1}\right) r_{2} \hookrightarrow r_{1}\left[x \mapsto r_{2}\right]}$
$\Delta \vdash r: R \quad$ (Typing of PTS $_{\mu}$)

$$
\begin{aligned}
& \frac{\stackrel{\substack{\text { TE-Ax } \\
\vdash \Delta}}{\qquad \Delta} \quad\left(s_{1}, s_{2}\right) \in \mathcal{A}}{\Delta \vdash s_{1}: s_{2}} \\
& \frac{\stackrel{\text { TE-VAR }}{\vdash \Delta} \quad x: R \in \Delta}{\Delta \vdash x: R} \\
& \text { TE-Abs } \\
& \Delta \vdash R_{1}: s_{1} \quad \Delta, x: R_{1} \vdash r: R_{2} \\
& \frac{\Delta, x: R_{1} \vdash R_{2}: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}}{\Delta \vdash \lambda x: R_{1} . r: \Pi x: R_{1} . R_{2}} \\
& \text { TE-Prod } \\
& \text { TE-App } \\
& \Delta \vdash R_{1}: s_{1} \\
& \frac{\Delta \vdash r_{1}: \Pi x: R_{1} \cdot R_{2} \quad \Delta \vdash r_{2}: R_{1}}{\Delta \vdash r_{1} r_{2}: R_{2}\left[x \mapsto r_{2}\right]} \\
& \text { TE-Mu } \\
& \frac{\Delta \vdash R: s \quad \Delta, x: R \vdash r: R}{\Delta \vdash \mu x: R . r: R} \\
& \text { TE-Conv } \\
& \begin{array}{ccc}
\Delta \vdash r: R_{1} & \Delta \vdash R_{2}: s & R_{1} \equiv{ }_{\beta} R_{2} \\
\Delta \vdash r: R_{2} &
\end{array}
\end{aligned}
$$

(Well-formedness)

$$
\frac{\text { WE-NIL }}{\vdash \varnothing}
$$

Figure 4.7. PTS_{μ}

Secondly, the definition of parallel reduction in Figure 4.5 is slightly different from the standard one for PTS [Adams 2006]. It is partially parallel: rule P-Red and rule P-MuRed do not parallel reduce sub-terms, but only do beta reduction and recursion unfolding, respectively. The confluence property for one-step reduction is lost ${ }^{4}$. Nevertheless, such definition makes the decidability property (see Lemma 4.3.5) easier to prove than the conventional fully parallel version, thus it is called decidable parallel reduction. It also requires fewer reduction steps than the non-parallel version, thus correspondingly needs fewer casts.

Thirdly, parallel reduction does not have the determinacy property like weak-head reduction (Lemma 4.1.2). For example, for the term $(\lambda x:$ Int. $1+1) 3$, we can (parallel) reduce it to either (λx : Int. 2) 3 by rule P-App and rule P-Abs, or $1+1$ by rule P-Red. Thus, to ensure the decidability, we also need to add the type annotation for cast ${ }_{\Downarrow}$ operator to indicate what exact type we want to reduce to. Similarly to cast \Uparrow_{\Uparrow}, $\operatorname{cast}_{\Downarrow}[A] v$ is a value, which is different from the

[^3]| Expressions | e, A, B | $::=$ | $x\|s\| e_{1} e_{2}\|\lambda x: A . e\| \Pi x: A . B$ |
| :--- | ---: | :--- | :--- |
| | | \mid | $\mu x: A . e\left\|\operatorname{cast}_{\Uparrow}[A] e\right\| \operatorname{cast}_{\Downarrow}[A] e$ |

$$
\Gamma \vdash_{\mathrm{f}} e: A
$$

(Typing of Full PITS)

TF-Abs

$$
\frac{\stackrel{\mathrm{TF}-\mathrm{Ax}}{\vdash_{f} \Gamma} \quad\left(s_{1}, s_{2}\right) \in \mathcal{A}}{\Gamma \vdash_{f} s_{1}: s_{2}} \quad \frac{\stackrel{\mathrm{TF}-\mathrm{V} \mathrm{AR}}{\vdash_{f}} \mathrm{\Gamma}}{\Gamma \vdash_{\mathrm{f}} x: A} x: A \in \Gamma
$$

$$
\Gamma \vdash_{\mathrm{f}} A: s_{1} \quad \Gamma, x: A \vdash_{\mathrm{f}} e: B
$$

$$
\frac{\Gamma, x: A \vdash_{\mathrm{f}} B: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}}{\Gamma \vdash_{\mathrm{f}} \lambda x: A \cdot e: \Pi x: A . B}
$$

TF-Prod

$$
\frac{\stackrel{\substack{\text { TF-APp } \\ \Gamma \vdash_{f} e_{1}} \Pi x: A . B \quad \Gamma \vdash_{\mathrm{f}} e_{2}: A}{\Gamma \vdash_{\mathrm{f}} e_{1} e_{2}: B\left[x \mapsto e_{2}\right]}}{\frac{1}{2}}
$$

$$
\frac{\Gamma \Gamma \vdash_{\mathrm{f}} A: s_{1}}{\Gamma, x: A \vdash_{\mathrm{f}} B: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}} \underset{\Gamma \vdash_{\mathrm{f}} \Pi x: A . B: s_{3}}{\Gamma}
$$

$$
\frac{\begin{array}{l}
\text { TF-MU } \\
\Gamma \vdash_{\mathrm{f}} A: s
\end{array} \Gamma, x: A \vdash_{\mathrm{f}} e: A}{\Gamma \vdash_{\mathrm{f}} \mu x: A \cdot e: A} \quad \frac{\begin{array}{l}
\Gamma \vdash_{\mathrm{f}} B: s
\end{array} \quad \Gamma \vdash_{\mathrm{f}} e: A \quad|B| \hookrightarrow_{\mathrm{p}}|A|}{\Gamma \vdash_{\mathrm{f}} \operatorname{cast}_{\Uparrow}[B] e: B}
$$

TF-Castdn

$$
\begin{array}{ll}
\text { WF-NiL } & \frac{\begin{array}{l}
\text { WF-Cons } \\
\vdash_{\mathrm{f}} \varnothing
\end{array}}{\frac{\vdash_{\mathrm{f}} A: s}{\vdash_{\mathrm{f}} \Gamma, x: A}} \mathrm{f} \text { fresh in } \Gamma \\
\hline
\end{array}
$$

Figure 4.8. Full PITS
call-by-name/value variant.
Figure 4.8 shows the specification of full PITS. Changes from call-by-name/value PITS are highlighted. Note that we do not define operational semantics directly but up to erasure. Reduction relations are defined in PTS_{μ} only for terms after erasure. Similarly, syntactic values are not defined in full PITS but defined for erased terms, ranged over by u in PTS_{μ} (see Figure 4.7). This is different from call-by-name/value PITS, where reduction rules for type casting and term evaluation are the same, i.e., the one-step call-by-name/value reduction. In full PITS, parallel reduction is only used by casts, while a separate reduction is used for term evaluation. For simplicity reasons, we choose the call-by-name reduction (\hookrightarrow) for term evaluation for erased terms in PTS_{μ} (see Figure 4.7).

4.3.2 Metatheory

We show that the two key properties, type safety and decidability of type checking, still hold in full PITS.

$$
\begin{aligned}
& \text { B-Abs1 } \\
& \frac{R \longrightarrow_{\beta} R^{\prime}}{\lambda x: R . r \longrightarrow_{\beta} \lambda x: R^{\prime} . r} \\
& \text { B-Abs2 } \\
& \frac{r \longrightarrow_{\beta} r^{\prime}}{\lambda x: R . r \longrightarrow_{\beta} \lambda x: R . r^{\prime}} \\
& \text { B-Prod1 } \\
& \frac{R_{1} \longrightarrow_{\beta} R_{1}^{\prime}}{\Pi x: R_{1} \cdot R_{2} \longrightarrow_{\beta} \Pi x: R_{1}^{\prime} \cdot R_{2}} \\
& \text { B-Prod2 } \\
& \frac{R_{2} \longrightarrow_{\beta} R_{2}^{\prime}}{\Pi x: R_{1} \cdot R_{2} \longrightarrow_{\beta} \Pi x: R_{1} \cdot R_{2}^{\prime}} \\
& \frac{\text { B-MuRed }}{\mu x: R . r \longrightarrow_{\beta} r[x \mapsto \mu x: R . r]} \\
& \text { B-Mu1 } \\
& \frac{R \longrightarrow_{\beta} R^{\prime}}{\mu x: R . r \longrightarrow_{\beta} \mu x: R^{\prime} . r} \\
& \text { B-Mu2 } \\
& \frac{r \longrightarrow_{\beta} r^{\prime}}{\mu x: R . r \longrightarrow_{\beta} \mu x: R . r^{\prime}}
\end{aligned}
$$

Figure 4.9. Full beta reduction

Type Safety. Full casts are more expressive but also complicate the metatheory: term evaluation could get stuck using full casts. For example, the following term,

$$
\left(\text { cast }_{\Downarrow}[\text { Int } \rightarrow \text { Int }](\lambda x:((\lambda y: \star . y) \text { Int }) . x)\right) 3
$$

cannot be further reduced because the head position is already a value but not a λ-term. Note that weak casts do not have such problem because only cast \uparrow_{\uparrow} is annotated and it is not legal to have a Π-type in the annotation (see last paragraph of Section 4.1.5). To avoid getting stuck by full casts, one could introduce several cast push rules similar to System FC [Sulzmann et al. 2007]. For example, the stuck term above can be further evaluated by pushing cast ${ }_{\Downarrow}$ into the λ-term:

$$
\left(\text { cast }_{\Downarrow}[\text { Int } \rightarrow \text { Int }](\lambda x:((\lambda y: \star . y) \text { Int }) . x)\right) 3 \hookrightarrow(\lambda x: \text { Int. } x) 3
$$

However, adding "push rules" significantly complicates the reduction relations and metatheory. Instead, we adopt the erasure approach inspired by Zombie [Sjöberg and Weirich 2015] and Guru [Stump et al. 2008] that removes all casts when proving the type safety. The typing of erased terms follow the type system PTS_{μ} (see Figure 4.7). The typing judgment is $\Delta \vdash r: R$ where Δ ranges over the erased context.
PTS_{μ} is a variant of PTS with recursion. We follow the standard proof steps for PTS [Barendregt 1992]. The substitution and progress lemmas are stated as follows:

Lemma 4.3.1 (Substitution of PTS_{μ}). If $\Delta_{1}, x: R^{\prime}, \Delta_{2} \vdash r_{1}: R$ and $\Delta_{1} \vdash r_{2}: R^{\prime}$, then $\Delta_{1}, \Delta_{2}\left[x \mapsto r_{2}\right] \vdash r_{1}\left[x \mapsto r_{2}\right]: R\left[x \mapsto r_{2}\right]$.

Theorem 4.3.1 (Progress of PTS_{μ}). If $\varnothing \vdash r: R$ then either r is a value u or there exists r^{\prime} such that $r \hookrightarrow r^{\prime}$.

Notice that term evaluation uses the weak-head reduction \hookrightarrow. We only need to prove subject reduction and progress theorems for \hookrightarrow. But we generalize the result for subject reduction, which holds up to the parallel reduction $\hookrightarrow_{\mathrm{p}}$. We first show subject reduction holds for one-step full
beta reduction \longrightarrow_{β} (see Figure 4.9) and multi-step full beta reduction $\longrightarrow_{\beta}^{*}$, i.e., reflexive and transitive closure of \longrightarrow_{β} :

Lemma 4.3.2 (Subject Reduction for Full Beta Reduction). 1. If $\Delta \vdash r: R$ and $r \longrightarrow_{\beta} r^{\prime}$ then $\Delta \vdash r^{\prime}: R$.
2. If $\Delta \vdash r: R$ and $r \longrightarrow_{\beta}^{*} r^{\prime}$ then $\Delta \vdash r^{\prime}: R$.

Then we show $\longrightarrow_{\beta}^{*}$ is equivalent to multi-step parallel reduction \hookrightarrow_{p}, i.e., transitive closure of $\hookrightarrow_{\mathrm{p}}$ (since it is already reflexive):

Lemma 4.3.3 (Equivalence of Parallel Reduction). Given r_{1} and $r_{2}, r_{1} \longrightarrow{ }_{\beta}^{*} r_{2}$ holds if and only if $r_{1} \hookrightarrow_{\mathrm{p}} r_{2}$ holds.

Thus, subject reduction for parallel reduction $\hookrightarrow_{\mathrm{p}}$ is an immediate corollary:
Theorem 4.3.2 (Subject Reduction for Parallel Reduction). If $\Delta \vdash r: R$ and $r \hookrightarrow_{\mathrm{p}} r^{\prime}$ then $\Delta \vdash r^{\prime}: R$.

Finally, given that the PTS_{μ} is type-safe, if we want to show the type-safety of full PITS, it is sufficient to show the typing is preserved after erasure:

Lemma 4.3.4 (Soundness of Erasure). If $\Gamma \vdash_{\mathrm{f}} e:$ A then $|\Gamma| \vdash|e|:|A|$.
Decidability of Type Checking. The proof of decidability of type checking full PITS is similar to call-by-name PITS in Section 4.1.5. We also limit discussion of decidability to functional PITS (see Definition 4.1.1). The only difference is for cast rule TF-Castur and rule TF-Castdn, which use parallel reduction $\left|A_{1}\right| \hookrightarrow_{\mathrm{p}}\left|A_{2}\right|$ as a premise. We first show the decidability of parallel reduction:

Lemma 4.3.5 (Decidability of Parallel Reduction). Given r_{1} and r_{2}, it is decidable to determine whether $r_{1} \hookrightarrow_{\mathrm{p}} r_{2}$ holds.

The proof is by induction on the length of r_{1} and does not rely on the single-step confluence of $\hookrightarrow_{\mathrm{p}}$. The confluence of $\hookrightarrow_{\mathrm{p}}$ is lost due to two base reduction rules P-Red and P-MuREd, which do not simultaneously reduce sub-terms but only do one-step beta reduction and recursive unfolding, respectively (see Section 4.3.1). However, both rules become deterministic, which makes it easier to determine if $\hookrightarrow_{\mathrm{p}}$ in both cases. We can just check if one-step reduction of r_{1} is equal to r_{2}, similarly to the proof for call-by-name PITS (see Section 4.1.5). For example, consider $r_{1}=\left(\lambda x: R_{3} . r_{3}\right) r_{4}$ and $r_{2}=r_{5} r_{6}$. If case P-APP applies, i.e., $\lambda x: R_{3} . r_{3} \hookrightarrow_{\mathrm{p}} r_{5}$ and $r_{4} \hookrightarrow_{\mathrm{p}} r_{6}$ hold, then $r_{1} \hookrightarrow_{\mathrm{p}} r_{2}$ holds trivially. Otherwise, $r_{1} \hookrightarrow_{\mathrm{p}} r_{2}$ holds if and only if P-Red holds. The latter can be determined by testing the equality of $r_{3}\left[x \mapsto r_{4}\right]$ and $r_{5} r_{6}$. By contrast, the proof will be much complicated for the standard parallel reduction. To ensure one-step confluence, the rule P-Red becomes

$$
\frac{r_{1} \hookrightarrow_{\mathrm{p}} r_{1}^{\prime} r_{2} \hookrightarrow_{\mathrm{p}} r_{2}^{\prime}}{\left(\lambda x: R . r_{1}\right) r_{2} \hookrightarrow_{\mathrm{p}} r_{1}^{\prime}\left[x \mapsto r_{2}^{\prime}\right]}
$$

We now need to determine if $r_{3} \hookrightarrow_{\mathrm{p}} r_{3}^{\prime}$ holds or not. This is non-trivial since the induction hypothesis only gives the hint whether $\lambda x: R_{3} . r_{3} \hookrightarrow_{\mathrm{p}} r_{5}$ holds but not directly for r_{3}.

$$
\begin{aligned}
& \frac{\stackrel{\substack{\text { TS-Ax } \\
\vDash \Delta}}{\Delta} \quad\left(s_{1}, s_{2}\right) \in \mathcal{A}}{\Delta \vDash s_{1}: s_{2}} \\
& \frac{\stackrel{\substack{\text { TS-VAR } \\
\vDash \Delta}}{ } \quad x: R \in \Delta}{\Delta \vDash x: R} \\
& \text { TS-Abs } \\
& \Delta \vDash R_{1}: s_{1} \quad \Delta, x: R_{1} \vDash r: R_{2} \\
& \frac{\Delta, x: R_{1} \vDash R_{2}: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}}{\Delta \vDash \lambda x: R_{1} \cdot r: \Pi x: R_{1} \cdot R_{2}} \\
& \text { TS-Prod } \\
& \text { TS-App } \\
& \frac{\Delta \vDash r_{1}: \Pi x: R_{1} . R_{2} \quad \Delta \vDash r_{2}: R_{1}}{\Delta \vDash r_{1} r_{2}: R_{2}\left[x \mapsto r_{2}\right]} \\
& \begin{array}{c}
\Delta \vDash R_{1}: s_{1} \\
\Delta, x: R_{1} \vDash R_{2}: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R} \\
\Delta \vDash \Pi x: R_{1} . R_{2}: s_{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TS-Betadn } \\
& \frac{\Delta \vDash r: R_{1} \quad \Delta \vDash R_{2}: s \quad R_{1} \longrightarrow_{\beta} R_{2}}{\Delta \models r: R_{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { WS-NiL } & \frac{\text { WS-Cons }}{} \begin{array}{l}
\vDash \varnothing
\end{array} \\
\models \vDash, x: R
\end{array}
$$

Figure 4.10. Typing rules of $\mathrm{PTS}_{\text {step }}$

As cast \Uparrow_{\Uparrow} and cast ${ }_{\Downarrow}$ are annotated, both A_{1} and A_{2} can be determined and the well-typedness is checked in the original system. By Lemma 4.3.4, the erased terms keep the well-typedness. By Lemma 4.3.5, it is decidable to check if $\left|A_{1}\right| \hookrightarrow_{\mathrm{p}}\left|A_{2}\right|$. We conclude the decidability of type checking by following lemmas:

Lemma 4.3.6 (Uniqueness of Typing for functional PITS). In any functional PITS, if $\Gamma \vdash_{\mathrm{f}} e: A_{1}$ and $\Gamma \vdash_{\mathrm{f}} e: A_{2}$, then $A_{1} \equiv A_{2}$.

Theorem 4.3.3 (Decidability of Type Checking for functional PITS). In any functional PITS, given a well-formed context Γ and a term e, it is decidable to determine if there exists A such that $\Gamma \vdash_{\mathrm{f}} e: A$.

4.3.3 Completeness to Pure Type Systems

We have shown that full PITS is complete to a variant of PTS_{μ}. Such variant uses an alternative single-step conversion rule [Geuvers 1995]:

$\frac{$| TS-Betaup |
| :--- |
| $\Delta \vDash r: R_{1}$ |$\quad \Delta \vDash R_{2}: s}{\Delta \vDash r: R_{2}} \quad R_{2} \longrightarrow_{\beta} R_{1} \quad \frac{$| TS-Betadn |
| :--- |
| $\Delta \vDash r: R_{1}$ |}{$\Delta \vDash R_{2}: s$}$\quad R_{1} \longrightarrow_{\beta} R_{2}$

where \longrightarrow_{β} denotes full beta reduction (see Figure 4.9). We call this variant PTS $_{\text {step }}$ (see Figure 4.10). Its typing judgment is denoted by $\Delta \vDash r: R$. PITS can be seen as an annotated version of PTS $_{\text {step }}$. We first show that full PITS is complete to $\mathrm{PTS}_{\text {step }}$:

Lemma 4.3.7 (Completeness of Full PITS to $\mathrm{PTS}_{\text {step }}$). If $\Delta \vDash r: R$, then there exists Γ, e and A such that $\Gamma \vdash_{\mathrm{f}} e: A$ where $|\Gamma|=\Delta$, $|e|=r$ and $|A|=R$.

Furthermore, Siles and Herbelin have proved that single-step conversion rule is equivalent to the original conversion rule using beta conversion in PTS (see Corollary 2.9 in [Siles and Herbelin 2012]). We have the following relation between $\mathrm{PTS}_{\text {step }}$ and PTS_{μ} :

Lemma 4.3.8 (Completeness of One-step PTS to PTS). If $\Delta \vdash r: R$, then $\Delta \vDash r: R$ holds.
Thus, we can conclude the full PITS is complete to PTS_{μ} :
Theorem 4.3.4 (Completeness of Full PITS to PTS_{μ}). If $\Delta \vdash r: R$, then there exists Γ, e, A such that $\Gamma \vdash_{\mathrm{f}} e: A$ where $|\Gamma|=\Delta,|e|=r$ and $|A|=R$.

4.4 Discussion

We have developed PITS with the aim of using such family of calculi as foundations to programming languages supporting unified syntax and recursion. PITS trades the convenience of implicit type conversion that is afforded in most dependently typed calculi by a simple meta-theory that allows for decidable type-checking. Closely related to our work is PTS with explicit convertibility proofs $\left(\mathrm{PTS}_{f}\right)$ [van Doorn et al. 2013], which is a variant of PTS that replaces the conversion rule by embedding explicit conversion steps into terms. PTS_{f} has strong connections to PITS in the sense that both systems are based on Pure Type Systems and require explicit type conversions PTS_{f} uses proof-annotated terms, while PITS uses cast operators. Although PTS_{f} was motivated by applications to theorem proving, PTS_{f} (like PTS) can be instantiated to form inconsistent calculi, which can encode fixpoints and general recursion. Therefore PTS_{f} could also, in principle, be used as a foundation for programming languages. However, the underlying mechanisms and foundations of PTS_{f} and PITS are different. Generally speaking, when dealing with programming languages with general recursion it is important to study not only the static semantics, but also the dynamic semantics. Unlike strongly normalizing languages where any choice of reduction leads to termination, in languages that are not strongly normalizing this is not usually the case and the choice of reduction is important. Furthermore the choice of the style of reduction in casts has a profound impact on the properties and metatheory of the language. Our work on PITS puts great emphasis on the study of the dynamic semantics and the trade-offs between different choices, while in PTS_{f} only the static semantics is studied. In the rest of this section, we give a detailed comparison on features between PTS_{f} and the three variants of PITS, summarized in Table 4.1. Other closely related work will be discussed in Section 7.1.

4.4.1 Direct Dynamic Semantics

One important difference between call-by-value and call-by-name PITS and the variant with full reduction is that the former two calculi have a direct small-step operational semantics, while the semantics of the later calculus is indirectly given by elaboration. A direct operational semantics has the advantage that the reduction rules can be used to directly reason about expressions in

Table 4.1. Comparison between PTS_{f} and PITS

Features	PTS_{f}	Call-by-name PITS	Call-by-value PITS	Full PITS
Direct Dynamic Semantics	\bigcirc	\bullet	\bullet	0
Direct Proofs	\bigcirc	\bullet	\bullet	0^{1}
No Mutually Dependent Judgments	\bigcirc	\bullet	\bullet	\bullet
Implicit Proofs by Reduction	\bigcirc	\bullet	\bullet	\bullet
Full Type-Level Computation	\bullet	0	\bigcirc	\bullet
Consistency of Reduction	-	\bullet	\bullet	0
Decidability with Recursion	$\boldsymbol{0}^{2}$	\bullet	\bullet	\bullet
SLOC of Coq proofs	7318	1217	1477	3796
Lemmas of Coq proofs	319	62	66	221

${ }^{1}$ Proofs for typing decidability are direct, but not for type-safety.
${ }^{2}$ We believe that decidability should hold, but no there is no discussion or proofs in the formalization of PTS_{f} [van Doorn et al. 2013].
the calculus. This reasoning can be used to perform, for example, equational reasoning steps or to justify the correctness of some optimizations. In an elaboration-based semantics the lack of reduction rules means that one must first translate the source expression into a corresponding expression in the target calculus, and then do all reasoning there. This is a much more involved process.

As discussed in Section 4.3.2, it is difficult to directly define a type-preserving operational semantics for full PITS. The problem is not intrinsic to PITS, but rather it is a general problem whenever full reduction is used in cast-like operators. Indeed this problem has been identified previously in the literature [Sjöberg et al. 2012; Sulzmann et al. 2007], and two major approaches have been used to address it. One approach is not to use a direct semantics but instead to use an elaboration semantics, which is precisely the approach that we used in our variant of PITS with full reduction. This approach is quite common and it is also the approach used in PTS_{f} as well as several other calculi [Sjöberg et al. 2012; Sjöberg and Weirich 2015; Stump et al. 2008]. Another approach that has been presented in the literature is to use push rules as in System FC [Sulzmann et al. 2007; Yorgey et al. 2012; Weirich et al. 2013] and System DC [Weirich et al. 2017]. However push rules significantly complicate the reduction rules (see Section 4.3.2).

In this work we show a third approach to achieve a simple type-preserving direct dynamic semantics: we can use alternative weaker reduction relations (call-by-value or call-by-name) for type conversion. The weaker reduction relations are straightforward and do not have the extra complication of the push rules (although some expressiveness is lost).

There is no discussion on how to achieve direct dynamic semantics using the proof term approach by PTS_{f}, since they use an elaboration approach. Furthermore this is unlikely to be trivial. We expect that it may be possible to give a direct operational semantics to full PITS or PTS f_{f} using push rules similar to the ones employed in System DC [Weirich et al. 2017], but this would come at the cost of a much more involved set of reduction rules (as well as the corresponding meta-theory) (see Section 8.2).

4.4.2 Direct Proofs

Because of the direct dynamic semantics it is possible to do direct proofs of preservation and progress in call-by-value and call-by-name PITS. The meta-theory of Full PITS is significantly
more involved because we need a target calculus and to prove several lemmas in both the target and the source, as well as showing the correspondence between the two systems. To give a rough idea of the complexity of the different developments, Table 4.1 shows the total number of lines of Coq code used and lemmas used to formalize the three variants of PITS. Roughly speaking the development of full PITS requires twice as many SLOC and nearly four times more lemmas than the other two variants, since we also need to formalize PTS_{μ} along with full PITS.
PTS_{f} is shown to be equivalent to plain PTS and its type-safety then can be guaranteed by showing the correspondence to plain PTS [Barendregt 1991]. However the proof for soundness and completeness between PTS $_{f}$ and PTS is highly non-trivial [van Doorn et al. 2013; Siles and Herbelin 2012]. In PTS $_{f}$ there is no discussion on proving subject reduction directly in PTS $_{f}$. The type-safety of PTS_{f} is indirectly shown by erasure of explicit proofs to generate valid plain PTS terms. This is similar to the proof strategy for type-safety of full PITS, which is shown up to erasure of casts (see Section 4.3.2). The formalization of PTS_{f} requires about 7000 SLOC and 300 lemmas (see Table 4.1), including auxiliary systems such as plain PTS and PTS $_{e}$. These numbers cannot be directly compared to the numbers of the PITS formalizations, since different approaches and libraries are employed to deal with binding and the formalization of PTS $_{f}$ does not include proofs of decidability of type-checking. Nevertheless the numbers are useful to give an idea of the effort in the PTS_{f} formalization.

Ultimately we believe that direct proofs and a direct operational semantics of the call-by-name and call-by-value PITS are quite simple. Furthermore, such simplicity is helpful when trying to extend calculi to study additional features. For example, we will study a non-trivial extension to PITS, i.e. subtyping, in the second part of the thesis. Integrating subtyping and some form of dependent types is a widely acknowledged difficult problem [Aspinall and Compagnoni 1996; Castagna and Chen 2001; Hutchins 2010]. Nevertheless, in Chapter 5 we will show that using the call-by-name instance of PITS extension with subtyping, we can develop a calculus that subsumes System F_{\leqslant}[Cardelli et al. 1994] and has several interesting properties, including subject reduction and transitivity of subtyping. We believe this development would be a lot harder to do by extending full PITS or PTS_{f}.

4.4.3 No Mutually Dependent Judgments

PTS $_{f}$ requires more language mechanisms for type conversions, including proof terms (H) and their typing rules $\left(\Gamma \vdash_{f} H: A=B\right)$ to ensure coercions $(A=B)$ are well-typed. Moreover, the well-formedness checking of coercions depends on typing judgments $\left(\Gamma \vdash_{f} e: A\right)$, which causes mutual dependency of judgments and complicates proofs. Casts in PITS use reduction relations $(A \hookrightarrow B)$, which are untyped and do not depend on typing rules. The well-formedness of types is checked separately in typing rules of cast operators, e.g. TF-CASTUP and TF-Castdn in full PITS. The fact that PITS does not require such mutually dependent judgments means that many proofs can be proved using simple inductions. In PTS_{f} the mutually dependent judgments leads to several lemmas that need to be mutually proved.

4.4.4 Implicit Proofs by Reduction

PTS $_{f}$ uses coercions (i.e. equivalence relations) to explicitly write equality proofs, while PITS uses reduction relations that implicitly construct such proofs. Equality proofs in PTS_{f} are constructed by proof terms. Each language construct requires a corresponding proof term to reason about
equality of sub-terms, which adds to the number of language constructs. On the contrary, PITS does not require proof terms but two extra cast operators, thus has fewer language constructs.

Type conversions in PTS_{f} are more "explicit" than in PITS. One needs to specify which proof terms to be used exactly in PTS_{f}, while he/she just needs casts without specifying which underlying reduction rule to use. This makes it easier to do explicit type conversions in PITS. Assume that we have integer literals and use beta reduction to evaluate addition (1+1 \hookrightarrow):

$$
\begin{aligned}
& e: \Pi x: \text { Int. Vec }(1+1) \\
& e^{\prime}: \Pi x: \text { Int. Vec } 2
\end{aligned}
$$

To obtain e^{\prime} from $e, \operatorname{in} \mathrm{PTS}_{f}, e^{\prime}=e^{H}$ where H is a proof term such that

$$
H=\{\overline{\operatorname{Int}},[x: \operatorname{Int}](\overline{\operatorname{Vec}} \beta(1+1))\}
$$

In full PITS, $e^{\prime}=\operatorname{cast}_{\Downarrow}[\Pi x: \operatorname{Int}$. Vec 2$] e$, which implicitly uses the reduction rules P-Prod, P-App and P-Red in the cast operator. In call-by-name/value PITS, due to the determinacy of reduction used in casts, the cast \downarrow operator even does not require a type annotation. For example, consider a simpler type conversion $(\lambda x: \star . x)$ Int \hookrightarrow Int from Section 3.1.3:

$$
\begin{aligned}
& e:(\lambda x: \star . x) \text { Int } \\
& e^{\prime}: \text { Int }
\end{aligned}
$$

where e^{\prime} can simply be cast ${ }_{\downarrow} e$ without any annotation.
Generally speaking we believe that for programming, and especially more traditional forms of programming that do not involve complex forms of type-level reasoning, having such implicit proofs of conversion is good. We believe that for a practical language design to be based directly on PTS_{f} it would require some degree of inference of the equality proof terms. In some sense full PITS can be thought of a system that implicitly generates proof terms and in principle could be translated to PTS_{f}, but it is one step closer to a source language that infers equality proof terms. Of course if the goal is to do theorem proving and/or heavy uses of type level computation then having explicit control over the equality proof terms can be an advantage. However for PITS our focus is on programming languages with general recursion.

4.4.5 Full Type-Level Computation

PTS_{f} has full type-level computation since type conversion uses equivalence relations which are congruent. It has the same expressive power as Pure Type Systems. Full PITS similarly has full type-level computation, while call-by-name/value PITS do not. Full type-level computation is useful for theorem proving and full-spectrum dependently typed programming as in Coq and Agda, but not necessarily required for traditional programming. As the examples presented in Section 3.2 show, iso-types that just use weak-head call-by-name reductions in casts can encode many advanced type-level features. The extra expressiveness of PTS_{f} and full PITS also comes at the cost of additional complexity in the metatheory and makes it non-trivial to achieve features like direct dynamic semantics and direct type-safety proofs.

4.4.6 Consistency of Reduction

In many strongly normalizing languages a basic assumption is that the order of reduction does not matter. This justifies reasoning that can be done in any order of reduction. Reduction strategies such as parallel reduction embody this principle and enable reductions in terms to occur in multiple orders. However, in languages with general recursion this assumption is broken: i.e. reduction order does matter. For example, term " $(\lambda x:$ Int. 1$) \perp$ " loops in call-by-value reduction, but terminates in call-by-name reduction. If we want to conduct precise reasoning about programs and their behavior we cannot ignore the order of reduction. In particular, if we want the typelevel reduction to respect the run-time semantics/reduction then we need to ensure that the two reductions are in some sense consistent. To (trivially) ensure consistency call-by-name/value PITS uses the same reduction relation for both term evaluation and type conversion. In full PITS, the use of parallel reduction breaks consistency because type-level reduction allows some reductions that are not allowed by term-level reduction. For example, Int $\rightarrow \operatorname{Vec}(1+1)$ can be reduced to Int \rightarrow Vec 2 by type-level parallel reduction but not term-level reduction. We believe that it may be possible to have a variant of PITS that uses call-by-name or call-by-value and has a consistent form of full reduction that respects the reduction order. However we leave this for future work (see Section 8.2).
PTS_{f} has no discussion on reduction rules for term evaluation, since its dynamic semantics is given by elaboration into PTS. Since the focus of PTS_{f} is primarily on the applications to theorem proving the issues of consistency between term and type-level reduction are not relevant, because such for theorem proving calculi are normally strongly normalizing and reduction order does not affect the semantics.

4.4.7 Decidability in the Presence of Recursion

There is no formal discussion or a direct proof on decidability of the type system for PTS_{f}, though this seems to be a plausible property since the typing rules of PTS_{f} are syntax-directed. Only uniqueness of typing is formally discussed and proved for functional PTS_{f}. This is similar to functional PITS which have uniqueness of typing up to only alpha equality due to the absence of implicit beta conversion (see Lemma 4.1.1). Uniqueness of typing is used in the decidability proof of functional PITS (see Section 4.1.5), and we believe that it should be useful to prove decidability of PTS_{f} as well.

Alternatively, note that an indirect proof for decidability of typing can be derived from the plain metatheory of PTS through the equivalence of PTS_{f} and PTS. However, the original decidability proof for PTS relies on the normalization property [van Benthem Jutting 1993]. Thus, non-normalizing PTS_{f} cannot use such indirect approach to prove decidability for variants of PTS_{f} with recursion/fixpoints.

For all three variants of PITS, decidability of type checking has been proved directly in the presence of general recursion without relying on normalization, though the proof is done only for functional PITS for simplicity reasons. We expect that a similar proof would work for PTS_{f} as well, and this would be interesting to prove in future work.

Part II:

Iso-Types with Subtyping

Unifying Typing and Subtyping

In this chapter, we present λI_{\leqslant}, which is a dependently typed generalization of System F_{\leqslant}. The motivation is to design a simple yet expressive calculus that combines dependent types and OOP features. Subtyping is one of the key OOP features but the combination of subtyping and dependent types causes mutual dependency of typing and subtyping judgments and circularity in the metatheory. To address these challenges, λI_{\leqslant}employs a novel technique that unifies typing and subtyping. In λI_{\leqslant}there is only one judgment that is akin to a typed version of subtyping. Both the typing relation, as well as type well-formedness are just special cases of the subtyping relation. Therefore, λI_{\leqslant}takes a significantly different approach compared to previous work. Previous work essentially attempts to fight the entanglement between typing and subtyping. In contrast, what we propose with λI_{\leqslant}is to embrace such tangling, and essentially collapsing the typing and subtyping relations into the same relation. Our approach is also different from the technique of Pure Subtype Systems by Hutchins [2010], which simply eliminates types and typing. λI_{\leqslant}retains types.

The λI_{\leqslant}calculus employs the idea of iso-types in PITS. It follows the PTS-style unified syntax and contains a single unified syntactic sort that accounts for expressions, types and kinds. Iso-types provide a simple form of type casts, and λI_{\leqslant}adopts that idea to address the issues arising from the combination of recursion and dependent types. The novelty over PITS is the support for OOP features such as higher-order subtyping [Pierce and Steffen 1997], bounded quantification [Cardelli et al. 1994] and top types. To illustrate the expressive power of λI_{\leqslant}, we show how object encodings relying on higher-order subtyping can be done in λI_{\leqslant}. The resulting calculus enjoys several standard and desirable properties, such as subject reduction, transitivity of subtyping, narrowing as well as standard substitution lemmas. We also provide an algorithmic version of λI_{\leqslant}based on bi-directional type-checking [Pierce and Turner 2000], which is shown to be sound and complete with respect to the declarative version. Finally we show that λI_{\leqslant} completely subsumes System F_{\leqslant}in expressive power.

5.1 Overview

In this section, we briefly discuss the problem of combining dependent types with subtyping. We informally introduce the key features of λI_{\leqslant}calculus, namely unified subtyping and the support for dependent types by explicit casts. To illustrate the suitability of λI_{\leqslant}to model objects, we adapt the existential object encoding [Bruce et al. 1999; Pierce and Turner 1994] (originally based
on System F_{\leqslant}^{ω}) to λI_{\leqslant}. The formal details of λI_{\leqslant}are further discussed in Sections 5.2 and 5.3.

5.1.1 Unified Syntax versus Stratified Syntax

Calculi with high-order subtyping are usually complex. For example, System F_{\leqslant}^{ω} [Pierce and Steffen 1997] adds higher-order subtyping and bounded quantification to System F_{ω} and is formalized using stratified syntax. Because of the separation of syntax, the subtyping relation in System F_{\leqslant}^{ω} needs to be defined over multiple syntactic forms of abstraction, i.e., abstraction over terms, types and type operators:

Term abstraction	$\lambda x: A \cdot e$
Type abstraction	$\lambda X \leqslant A \cdot e$
Operator abstraction	$\lambda X \leqslant A . B$

This causes duplication and complexity in the metatheory.
It is tempting to adopt the PTS-style unified syntax in System F_{\leqslant}^{ω} to simplify the subtyping relation. Because System F_{ω} (without subtyping) can be modeled with PTS-style unified syntax: it is a special case of PTSs and covered by Barendregt's λ-cube [Barendregt 1992] (see Section 2.1.2). However, there are several difficulties in applying such simplification to a higher-order system with bounded quantification. Recall that there are three different forms of abstraction in System F_{\leqslant}^{ω}. It is hard to unify them because the abstraction can quantify over a variable using two distinct relations, i.e., typing $(x: A)$ and subtyping $(X \leqslant A)$. To obtain a uniform representation of abstraction, we need to unify the typing and subtyping relation in the first place. Moreover, calculi with PTS-style unified syntax usually allow dependent types, e.g., the calculus of constructions [Coquand and Huet 1988]. Combining dependent types and subtyping has its own problems, as discussed in the coming subsection.

5.1.2 Challenges in Combining Subtyping with Dependent Types

Mutual Dependency of Typing and Subtyping. Subtyping and dependent types are wellknown features of programming languages. Individually, each of them is well-studied. However, combining them in the same system is usually difficult. A major reason is that allowing dependent types makes the typing and subtyping relations entangled. The subtyping and typing ${ }^{1}$ judgments become mutually dependent. The typing judgment depends on subtyping because of the subsumption rule (see also Section 2.4.1):

$$
\frac{\Gamma \vdash e: A \quad \Gamma \vdash A \leqslant B}{\Gamma \vdash e: B}
$$

Subtyping relations are defined over well-formed types, which are checked by the typing judgment in a dependently typed system. For example, the subtyping rule for the top type (T), a universal supertype of any well-formed types (i.e. with kind \star), is defined as follows:

$$
\frac{\Gamma \vdash A: \star}{\Gamma \vdash A \leqslant T}
$$

[^4]Circularity in the Metatheory. The mutual dependency causes circularity in the metatheory, since one cannot study properties of subtyping independently from typing. For example, $\lambda P_{\leqslant}[$Aspinall and Compagnoni 1996] is an extension of the second-order dependently typed calculus λP [Barendregt 1992] with subtyping. In λP_{\leqslant}, the substitution lemmas for typing and subtyping depend on each other and require a more complicated proof by simultaneously induction on four different judgments, i.e. subtyping, typing, kinding and formation [Aspinall and Compagnoni 1996]:

$$
\begin{array}{ll}
\Gamma \vdash A \leqslant B & A \text { is a subtype of } B \text { in context } \Gamma \\
\Gamma \vdash M: A & \text { term } M \text { has type } A \text { in context } \Gamma \\
\Gamma \vdash A: K & \text { type } A \text { has kind } K \text { in context } \Gamma \\
\Gamma \vdash K & K \text { is a kind in context } \Gamma
\end{array}
$$

Moreover, λP_{\leqslant}contains the following algorithmic transitivity rule:

$$
\begin{gathered}
\Gamma \vdash\left(\Gamma(\alpha) M_{1} \cdots M_{n}\right)^{\beta_{2}} \leqslant A \\
\frac{\alpha \text { bound in } \Gamma, A \not \equiv \alpha M_{1} \cdots M_{n}}{\Gamma \vdash \alpha M_{1} \cdots M_{n} \leqslant A}
\end{gathered}
$$

The first premise requires to normalize the term $\Gamma(\alpha) M_{1} \cdots M_{n}$ using β_{2}-reduction, a beta reduction relation on types. Thus, the transitivity proof depends on β_{2}-strong normalization. Also, the transitivity property requires types to be well-formed through β_{2}-conversion, i.e., the subject reduction of β_{2}-reduction. As a consequence, the proofs of transitivity, strong normalization and subject reduction depend on each other.

Problems of Existing Solutions. There are several existing options to deal with the circularity. One could carefully prove mutually dependent lemmas together by finding a proper decreasing metric of induction, similar to the proof of substitution lemma in λP_{\leqslant}. But such method is usually too specific and cannot be generally applied to other systems, e.g., the substitution proof in λP_{\leqslant} does not apply to $\lambda \Pi^{\&}$ [Castagna and Chen 2001].

Another approach is to break the mutual dependency simply by forbidding typing from occurring in the subtyping judgments. The subtyping judgments are defined over pre-terms, terms that may not be well-formed. Then one could prove results about subtyping before typing. An obvious limitation is that subtyping rules that must depend on typing are no longer supported, such as the top type rule shown above. Several systems using this method, such as PTS ${ }^{\leqslant}$[Zwanenburg 1999], drop the support of top types because of such limitation.

5.1.3 Our Solution: Unified Subtyping

We propose a new approach to solve the circularity problem, which also simplifies the syntax. The λI_{\leqslant}calculus features a single relation for both typing and subtyping, namely unified subtyping. The relation has the form:

$$
\Gamma \vdash e_{1} \leqslant e_{2}: A
$$

It simultaneously contains the subtyping relation, i.e., e_{1} is a subtype of e_{2}, and the typing relation, i.e., e_{1} and e_{2} have type A. The ordinary typing judgment can be seen as a special case of unified subtyping:

$$
\Gamma \vdash e: A \triangleq \Gamma \vdash e \leqslant e: A
$$

We solve the circularity problem because typing and subtyping cannot be mutually dependent in the first place: they are essentially the same relation. In λI_{\leqslant}, subtyping relations can be defined over well-formed terms. Subtyping rules that depend on typing are allowed without causing mutual dependencies. As a result, top types are supported in λI_{\leqslant}. Moreover, the metatheory of λI_{\leqslant}is significantly simplified, e.g., there is only one form of substitution lemma to be proved, as discussed in Section 5.3.

Bounded quantification in $\lambda I_{\leqslant \cdot} \quad \lambda I_{\leqslant}$adopts a unified syntax and supports bounded quantification. Because of the unified representation of typing and subtyping, instead of three separate forms of abstraction in System $F_{\leqslant}^{\omega}, \lambda I_{\leqslant}$has a single form of abstraction: $\lambda x \leqslant e_{1}: A . e_{2}$. By convention, the ordinary unbounded abstraction can be treated as syntactic sugar of a top-bounded one:

$$
\lambda x: A . e \triangleq \lambda x \leqslant \top: A \cdot e
$$

Notice that the top type (T) is generalized to have any kind A instead of \star. With unified syntax, λI_{\leqslant}has fewer language constructs than System F_{\leqslant}^{ω} and a simpler definition of (unified) subtyping relation (see Section 5.2).

5.1.4 Iso-Types: Dependent Types without Strong Normalization

Most traditional dependently typed languages are strongly normalizing (i.e. all programs terminate). Strong normalization plays a fundamental role in the metatheory of those languages. However, nearly all general-purpose programming languages allow non-terminating programs, so depending on strong normalization is a non-starter if we want to model traditional generalpurpose languages. The root of the dependency on strong normalization is the conversion rule (see Section 3.1.1). For dependently typed languages with subtyping, the conversion rule is usually subsumed by the subsumption rule (see Section 5.1.2), which requires the subtyping relation $\Gamma \vdash A \leqslant B$ to subsume beta-equivalence $A={ }_{\beta} B$. Thus, the transitivity of subtyping may also depend on strong normalization if its proof requires to first normalize the types [Aspinall and Compagnoni 1996].

An alternative to the conversion rule. Several existing studies [Stump et al. 2008; Sjöberg et al. 2012; Kimmell et al. 2012; Sjöberg and Weirich 2015; Yang et al. 2016] provide a way to combine general recursion with dependent types, while preserving important properties (such as decidability of type-checking). The key idea is to replace the implicit conversion rule with explicit type casts. This has the effect that term/type equality becomes weaker: two terms are only equal up to syntactic equality (not beta-equality). To recover type conversion, an explicit cast must be used. The benefit of this design is that it decouples several properties from strong-normalization.
λI_{\leqslant}adopts the iso-type approach [Yang et al. 2016] of PITS introduced in Chapters 3 and 4 . The cast operators of λI_{\leqslant}employ the weak-head call-by-name reduction relation (see Section 5.2.2), similarly to the one used by call-by-name PITS (see Section 4.1). This makes the type conversion by casts less expressive than what is provided by the implicit conversion rule. Nevertheless, we do not consider such loss of expressiveness problematic. The absence of conversion rule significantly simplifies the metatheory of λI_{\leqslant}because typing and subtyping are up to alpha-equality and strong normalization is not a necessity for proofs. Since our goal is to design a calculus for traditional programming, we do not require the ability to do full type-level computation that is
required for dependently typed programming. Call-by-name casts are still expressive enough for our purposes: to model object encodings. Furthermore, there are alternative designs of casts using call-by-value or full reduction rules (see Sections 4.2 and 4.3), but they introduce some extra complications to the metatheory. Alternative approaches are discussed in Section 5.6.

5.1.5 Example: Object Encodings using λI_{\leqslant}

We show an example of object encodings in λI_{\leqslant}using the existential encoding method [Pierce and Turner 1994; Bruce et al. 1999] originally based on System F_{\leqslant}^{ω}. The example in this section has two notable differences from the previous example shown in Section 3.2.3 for PITS. First, the object encodings in this section do not rely on Scott-encodings of algebraic datatypes. Instead, we directly encode pairs, records and existential types by Church-encoding weak dependent sums in λI_{\leqslant}. Second, the example in this section supports generic message passing that requires subtyping, which was missing in Section 3.2.3.

Encoding Existential Types and Pairs using Weak Sums. Existential types and pairs are special cases of dependent sums. Existential types specialize A to kind \star :

$$
\exists x . B \triangleq \Sigma x: \star . B
$$

The constructor and destructor of an existential package are simply pack and unpack operators of dependent sums, respectively. Pairs are non-dependent sums where x is not free in B. The pair type, constructor and destructors can be encoded as follows:

$$
\begin{aligned}
A \times B & \triangleq \Sigma x: A . B & \text { where } x \notin \mathrm{FV}(B) \\
\left(e_{1}, e_{2}\right) & \triangleq \text { pack }\left[e_{1}, e_{2}\right] \text { as } \Sigma x: A . B & \text { where } x \notin \mathrm{FV}(B) \\
\text { fst } e & \triangleq \text { unpack } e \text { as }[x, y] \text { in } x & \\
\text { snd } e & \triangleq \text { unpack } e \text { as }[x, y] \text { in } y &
\end{aligned}
$$

where in the encoding of constructor, A and B are types of e_{1} and e_{2}, respectively.
Notice that here we only need the weak destructor of dependent sums [Schmidt 1994], i.e., the unpack operator that requires x and y are not free in the type C of e_{2} (see Section 2.2.1). We use the same Church-encodings of weak sums from Section 2.2.1 and show that subtyping and typing rules of weak sums are admissible in λI_{\leqslant}. The proof is trivial and available in Appendix A.1. However, it is non-trivial to Church-encode strong dependent sums without restrictions on unpack and using only Pi-types [Cardelli 1986b]. In Chapter 6, we will discuss how to support primitive constructs of strong sums with unified subtyping. For examples in this section, weak dependent sums are sufficient for our purpose to encode existential types and non-dependent pairs and yet more expressive than those constructs. Note that unpack operator allows unrestricted projection of existential witnesses:

$$
\lambda e:(\Sigma x: A . B) . \text { unpack } e \text { as }[x, y] \text { in } x
$$

No such operation is allowed on existential types in System F or F_{\leqslant}[Amin et al. 2016].

Encoding Objects. Now that pairs and existential types can be encoded in λI_{\leqslant}, we present the encoding of objects. Note again that records can be encoded with pairs using standard
techniques [Pierce 2002] and that we assume λI_{\leqslant}is extended with integers, pairs, records and existential types in the following text. We use the same example of cell objects as shown in Section 3.2.3. We first present the existential encoding of objects [Pierce and Turner 1994] in λI_{\leqslant}:

$$
O b j=\lambda I: \star \rightarrow \star . \exists X . X \times(X \rightarrow I X)
$$

The definition of cell objects [Bruce et al. 1999] is as follows:

$$
\text { Cell }=\lambda X: \star .\{\text { get }: \text { Int, set }: \text { Int } \rightarrow X, \text { bump }: X\}
$$

Similarly, a cell object c can be defined as follows:

$$
\begin{aligned}
c=\text { cast }_{\uparrow}[\text { Obj Cell }] \text { pack }[\{x: \text { Int }\}, & \left(\{x=0\}, \lambda s:\{x: \text { Int }\} . \text { cast }_{\uparrow}[\text { Cell }\{x: \text { Int }\}]\right. \\
& \{\text { get }=\text { s.x, set }=\lambda n: \text { Int. }\{x=n\}, \\
& \text { bump }=\{x=s . x+1\}\})]
\end{aligned}
$$

as CellT
We use the pack operator to create an existential package. The type $\{x:$ Int $\}$ corresponds to the existential binder X. The pair afterwards corresponds to the body of the existential type. The first component of the pair is the initial hidden state $\{x=0\}$. The second component is a function containing three methods that are defined in a record and abstracted by the state variable s. The definition of the three methods follows the cell object interface Cell. The result type of the package, i.e., CellT, is the one-step reduction of Obj Cell:

$$
\text { CellT }=\exists X . X \times(X \rightarrow \text { Cell } X)
$$

As in Section 3.2.3, we also use two cast \uparrow operators here: one over the pack operator and another over the record of methods. Note that the desired type of the object c (i.e. Obj Cell) is a type-level application, which is different from CellT. We use cast \uparrow_{\uparrow} to do one-step type expansion for the package: Obj Cell \hookrightarrow CellT. Similarly, we use another cast \uparrow_{\uparrow} operator in the definition of methods to convert the record type into Cell $\{x:$ Int $\}$. We use the following syntactic sugar for consecutive cast ${ }_{\uparrow}$ and pack:

$$
\operatorname{pack}[A, e] \operatorname{up} B \triangleq \operatorname{cast}_{\uparrow}[B]\left(\operatorname{pack}[A, e] \operatorname{as} B^{\prime}\right)
$$

where $B \hookrightarrow B^{\prime}$, i.e., B^{\prime} is the one-step reduction of B.
In addition to the previous example in Section 3.2.3, we can further define message passing to the object by the unpack operator to open a package. For example, sending message get to the cell object c is denoted by $c \Leftarrow$ get, which is syntactic sugar of the generic message function getM:

$$
\begin{aligned}
c \Leftarrow \text { get } \triangleq & \text { get } M \text { Cell } c \\
\text { get } M= & \lambda I \leqslant \text { Cell }: \star \rightarrow \star . \lambda o: \text { Obj } I . \\
& \text { unpack }\left(\operatorname{cast}_{\downarrow} o\right) \text { as }[X,(s, m)] \text { in }\left(\operatorname{cast}_{\downarrow}(m s)\right) . \text { get }
\end{aligned}
$$

get M is parameterized by interface I and object o with such interface, where I can be any sub-interface of Cell. We first use the cast ${ }_{\downarrow}$ operator to convert the type of o from $O b j I$ to the existential type $\exists X . X \times(X \rightarrow I X)$. Note that we extend the syntax of unpack with

```
\((c \Leftarrow\) bump \() \Leftarrow\) get
    \(=\left(\left(\operatorname{cast}_{\uparrow}[\right.\right.\) Obj Cell \(]\) pack \([\{x:\) Int \(\},(\{x=0\}, f)]\) as CellT \() \Leftarrow\) bump \() \Leftarrow\) get
    \(=\left(\operatorname{unpack}\left(\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[\right.\right.\right.\) Obj Cell \(]\) pack \([\{x: \operatorname{Int}\},(\{x=0\}, f)]\) as CellT \(\left.)\right)\) as \([X,(s, m)]\) in
        pack \(\left[X,\left(\left(\right.\right.\right.\) cast \(\left.\left.\left._{\downarrow}(m s)\right) . b u m p, m\right)\right]\) up \((\) Obj Cell \(\left.)\right) \Leftarrow\) get
    \(\hookrightarrow(\operatorname{unpack}(\operatorname{pack}[\{x: \operatorname{Int}\},(\{x=0\}, f)]\) as CellT) as \([X,(s, m)]\) in
        pack \(\left[X,\left(\left(\right.\right.\right.\) cast \(\left.\left.\left._{\downarrow}(m s)\right) . b u m p, m\right)\right] \mathbf{u p}(\) Obj Cell \(\left.)\right) \Leftarrow\) get
    \(\hookrightarrow\left(\operatorname{pack}\left[\{x:\right.\right.\) Int \(\},\left(\left(\right.\right.\) cast \(\left.\left.\left._{\downarrow}(f\{x=0\})\right) . b u m p, f\right)\right] \mathbf{u p}(\) Obj Cell \(\left.)\right) \Leftarrow\) get
    \(=\operatorname{unpack}\left(\operatorname{cast}_{\downarrow}\left(\mathbf{p a c k}\left[\{x:\right.\right.\right.\) Int \(\},\left(\left(\operatorname{cast}_{\downarrow}(f\{x=0\})\right)\right.\).bump,\(\left.\left.f\right)\right] \mathbf{u p}(\) Obj Cell \(\left.\left.)\right)\right)\)
        as \([X,(s, m)]\) in \(\left(\right.\) cast \(\left._{\downarrow}(m s)\right)\).get
    \(=\operatorname{unpack}\left(\operatorname{cast}_{\downarrow} \operatorname{cast}_{\uparrow}[\right.\) Obj Cell \(]\left(\operatorname{pack}\left[\{x:\right.\right.\) Int \(\left.\},\left(\left(\operatorname{cast}_{\downarrow}(f\{x=0\})\right) . b u m p, f\right)\right]\) as CellT \(\left.)\right)\)
        as \([X,(s, m)]\) in (cast \(\downarrow(m s))\).get
    \(\hookrightarrow \operatorname{unpack}\left(\operatorname{pack}\left[\{x:\right.\right.\) Int \(\},\left(\left(\operatorname{cast}_{\downarrow}(f\{x=0\})\right)\right.\).bump,\(\left.\left.f\right)\right]\) as CellT)
        as \([X,(s, m)]\) in (cast \(\downarrow(m s))\).get
    \(\hookrightarrow\left(\operatorname{cast}_{\downarrow}\left(f\left(\left(\operatorname{cast}_{\downarrow}(f\{x=0\})\right)\right.\right.\right.\). bump \(\left.\left.)\right)\right)\).get
    \(\hookrightarrow\left(\operatorname{cast}_{\downarrow}\left(f\left[\left(\operatorname{cast}_{\downarrow}(f\{x=0\})\right)\right.\right.\right.\). bump \(\left.\left.]\right)\right)\). .get
    \(\hookrightarrow\left\{\right.\) get \(=\left(\left(\right.\right.\) cast \(\left._{\downarrow}(f\{x=0\})\right)\). bump \() \cdot x\), set \(=\lambda n:\) Int. \(\{x=n\}\),
        bump \(=\left\{x=\left(\left(\right.\right.\right.\) cast \(\left._{\downarrow}(f\{x=0\})\right)\).bump \(\left.\left.) . x+1\right\}\right\}\).get
    \(\hookrightarrow\left(\left(\right.\right.\) cast \(\left.\left._{\downarrow}(f\{x=0\})\right) . b u m p\right) . x\)
    \(\hookrightarrow\left(\left(\right.\right.\) cast \(\left._{\downarrow} f[\{x=0\}]\right)\). bump \() \cdot x\)
    \(\hookrightarrow(\{\) get \(=\{x=0\} . x\), set \(=\lambda n:\) Int. \(\{x=n\}\),
        bump \(=\{x=\{x=0\} \cdot x+1\}\}\).bump ). \(x\)
    \(\hookrightarrow\{x=\{x=0\} \cdot x+1\} \cdot x \hookrightarrow \cdots \hookrightarrow 1\)
```

Figure 5.1. Evaluation of $(c \Leftarrow b u m p) \Leftarrow$ get
simple pattern matching on pairs for brevity. The hidden state is unpacked as s with type X. The function containing methods is m with type $X \rightarrow I X$. The record of methods can be obtained by applying m to s. Noting that the subtyping relation $I X \leqslant C e l l X$ holds, the type of $m s$ can be converted from $I X$ to $C e l l X$ by subsumption. Another cast ${ }_{\downarrow}$ further reduces $C e l l X$ to record type for accessing the member get. The encoding of message bump is similar but needs to repack the resulting object:

$$
\begin{aligned}
c \Leftarrow \text { bump } \triangleq & \text { bump } M \text { Cell } c \\
\text { bumpM }= & \lambda I \leqslant \text { Cell }: \star \rightarrow \star . \text {. } o: \text { Obj } I . \\
& \text { unpack }\left(\text { cast }_{\downarrow} o\right) \text { as }[X,(s, m)] \text { in } \\
& \text { pack }\left[X,\left(\left(\text { cast }_{\downarrow}(m s)\right) . b u m p, m\right)\right] \text { up }(\text { Obj } I)
\end{aligned}
$$

since the bump method returns a record but not an object. The extra pack here is required to create a new object using the result of bump as the new hidden state.

Similarly to the original example [Bruce et al. 1999], we can examine the encoding by evaluating the expression $(c \Leftarrow b u m p) \Leftarrow$ get using call-by-name reduction (\hookrightarrow). In Figure 5.1, we show the evaluation steps of the expression $(c \Leftarrow b u m p) \Leftarrow$ get using call-by-name reduction (\hookrightarrow). The evaluation result is 1 as expected, where f is the function containing the definition of methods:

$$
\begin{aligned}
f= & \lambda s:\{x: \text { Int }\} . \text { cast }_{\uparrow}[\text { Cell }\{x: \text { Int }\}] \\
& \{\text { get }=s . x, \text { set }=\lambda n: \text { Int. }\{x=n\}, \text { bump }=\{x=s \cdot x+1\}\}
\end{aligned}
$$

and $f[r]$ is one-step reduction of the application $f r$:

$$
\begin{aligned}
f[r]= & \operatorname{cast}_{\uparrow}[\text { Cell }\{x: \text { Int }\}] \\
& \{\text { get }=r . x, \text { set }=\lambda n: \text { Int. }\{x=n\}, \text { bump }=\{x=r . x+1\}\}
\end{aligned}
$$

Note that we assume reduction rules for records, existential packages and integer addition are available in the call-by-name reduction relation (\hookrightarrow). We skip steps for desugaring the message sending operation, e.g., $o \Leftarrow \operatorname{get}=\operatorname{get} M[\operatorname{Cell}][o]$. We emphasize that the object encoding example here requires the additional feature of λI_{\leqslant}over PITS, i.e., higher-order subtyping, which is essential for encoding generic message functions.

5.2 The λI_{\leqslant}Calculus

We present the λI_{\leqslant}calculus in this section. The calculus features a unified syntax with only one syntactic level, and it is based on the λI calculus [Yang et al. 2016], a specific PITS with a single sort \star and the "type-in-type" axiom (see Section 3.2.1). The novelty over $\lambda I /$ PITS is subtyping. To integrate subtyping, typing is unified with the subtyping relation. Thus the typing relation can be viewed as a special case of subtyping. We demonstrate the syntax, operational and static semantics of λI_{\leqslant}in the rest of this section. Notice that λI_{\leqslant}discussed in this section does not contain recursion, which can be supported by following PITS. We leave the discussion of recursion to Section 5.6.

5.2.1 Syntax

Figure 5.2 shows the syntax of expressions in λI_{\leqslant}. It follows the unified syntax of Pure Type Systems [Barendregt 1992] where terms, types and a single kind \star are defined in the same syntactic category. By convention, we still use different metavariables to indicate if expressions are terms (e) or types (A, B, C, etc.).

Cast Operators. As in PITS, cast operators cast \uparrow and cast \downarrow are used for explicit type-level computation in λI_{\leqslant}. In particular, cast ${ }_{\downarrow}$ and cast ${ }_{\uparrow}$ convert the type of an expression by a one-step reduction or expansion, respectively. cast \uparrow needs to be annotated with the result type of one-step expansion, while cast ${ }_{\downarrow}$ does not, since one-step reduction is deterministic (see Section 5.3.4).

Bounded Quantification. Functions are written as $\lambda x \leqslant e_{1}: A$. e_{2}, which support bounded quantification as in System F_{\leqslant}[Cardelli et al. 1994]. The bound term e_{1} is annotated with a type A. Correspondingly, function types written as $\Pi x \leqslant e: A . B$ also contain a bound term e. Function types can be dependent if x occurs free in B. The top type T is a supertype of any well-formed term, e.g., $3 \leqslant T$. The top type generalizes the conventional top type in System F_{\leqslant}, which is only a supertype of well-formed types, e.g., Int $\leqslant T$.

Syntactic Sugar. Unbounded functions ($\lambda x: A . e$) and function types $(\Pi x: A . B)$ are not defined as primitives in the syntax. With the generalized top type, we can define them as syntactic sugar of top-bounded ones, i.e., $\lambda x \leqslant \top: A . e$ and $\Pi x \leqslant \top: A . B$ as shown in Figure 5.2. We also treat arrow types $A \rightarrow B$ as syntactic sugar of $\Pi x: A$. B if x does not occur free in B.

Expressions	e, A, B	$::=$	$x\|\star\| \top\left\|e_{1} e_{2}\right\|$ cast $_{\uparrow}[A] e \mid$ cast $_{\downarrow} e$	
		\mid	$\lambda x \leqslant e_{1}: A \cdot e_{2} \mid \Pi x \leqslant e: A . B$	
Contexts	Γ	$::=$	$\varnothing \mid \Gamma, x \leqslant e: A$	
Inert Terms	u	$::=$	$x\|\top\| u e \mid$ cast $_{\downarrow} u$	
Values	v	$:=$	$\star\left\|\lambda x \leqslant e_{1}: A \cdot e_{2}\right\| \Pi x \leqslant e: A . B\left\|\operatorname{cast}_{\uparrow}[A] e\right\| u$	
Syntactic Sugar	$\lambda x: A . e$	\triangleq	$\lambda x \leqslant \top: A . e$	
	$\Pi x: A . B$	\triangleq	$\Pi x \leqslant \top: A . B$	
	$A \rightarrow B$	\triangleq	$\Pi x: A . B \quad$ where $x \notin \operatorname{FV}(B)$	

Figure 5.2. Syntax

Context. The syntax of context Γ is defined in Figure 5.2. The variable binding only has the bounded form $x \leqslant e: A$ where the bound term e has type A. Similar to the treatment of unbounded functions above, we can treat an unbounded variable binding as the syntactic sugar of a top-bounded binding, i.e., $\Gamma, x: A \triangleq \Gamma, x \leqslant \top: A$.

5.2.2 Operational Semantics

Figure 5.3 shows the definition of one-step reduction (\hookrightarrow), which is used for both evaluation and type conversion (via cast operators). It follows the call-by-name style and is weak-head. R-Beta performs the beta reduction and does not require the argument to be a value. R-CAStElim cancels consecutive cast ${ }_{\downarrow}$ and cast ${ }_{\uparrow}$. R-App and R-CAStDn perform reduction at the head term of an application and the inner term of cast \downarrow, respectively.

Since the reduction relation (\hookrightarrow) is also used for type conversion, we may encounter open terms during reduction. However, some open terms are stuck terms that are not reducible by \hookrightarrow. For example, an application starting with a variable: $x e_{1} e_{2} \ldots e_{n}$. Also, as the top type is generalized, assuming it is a supertype of an n-ary function, we can have a well-formed but stuck term such as $T e_{1} e_{2} \ldots e_{n}$. Furthermore, if we replace x and T in both stuck terms by cast ${ }_{\downarrow} x$ and cast ${ }_{\downarrow} \top$ respectively, they still cannot be reduced.

We introduce a syntactic category called inert terms to cover such stuck terms. The terminology is inspired by the fireball calculus [Paolini and Della Rocca 1999; Accattoli and Guerrieri 2016]. Figure 5.2 shows the definition of inert terms, ranged over by metavariable u. Two base inert terms are variables and the top type. Compound inert terms are either an application leading with an inert term, i.e., $u e$, or down-cast inert term, i.e., cast ${ }_{\downarrow} u$. We treat inert terms as values. Figure 5.2 shows the syntax of values, ranged over by metavariable v, as shown in Figure 5.2. A value can either be the kind \star, a function, a function type, a cast \uparrow_{\uparrow} term or an inert term.

There are several alternative designs on reduction rules and syntax of values, e.g., beta-top $(\beta \top)$ reduction [Pierce and Steffen 1997] and cast $\uparrow \uparrow A] v$ as a value [Pierce 2002; Yang et al. 2016]. We will discuss these designs and their trade-offs later in Section 5.6.

5.2.3 Static Semantics

Figure 5.4 shows the rules of static semantics, including two judgment forms: context wellformedness $\vdash \Gamma$ and unified subtyping $\Gamma \vdash e_{1} \leqslant e_{2}: A$. The unified subtyping judgment $\Gamma \vdash e_{1} \leqslant e_{2}: A$ serves as both subtyping and typing judgment. It can be interpreted as " e_{1} is a subtype of e_{2} and both of them have type A ". The inference rules are developed to satisfy such interpretation. For brevity, if e_{1} and e_{2} are the same (i.e. $e_{1}=e_{2}=e$), we use the syntactic

$$
\begin{aligned}
& \overline{\left(\lambda x: A \cdot e_{1}\right) e_{2} \hookrightarrow e_{1}\left[x \mapsto e_{2}\right]} \\
& \\
& \frac{\text { R-CASTDN }}{\text { Rast }_{\downarrow} e \hookrightarrow \text { cast }_{\downarrow} e^{\prime}}
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { R-App } \\
e_{1} \hookrightarrow e_{1}^{\prime} \\
e_{1} e_{2} \hookrightarrow e_{1}^{\prime} e_{2}
\end{array} & \begin{array}{l}
\mathrm{R}-\mathrm{Mu} \\
\mu x: A \cdot e \hookrightarrow e[x \mapsto \mu x: A \cdot e]
\end{array}
\end{array}
$$

R-CAStElim

$$
\overline{\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[A] e\right) \hookrightarrow e}
$$

Figure 5.3. Operational semantics
sugar $\Gamma \vdash e: A$ (see Figure 5.4), which also has the same form of typing judgment in traditional systems. We also use $\Gamma \vdash A: \star$ to check if type A is well-formed, i.e., has the kind \star. Thus in λI_{\leqslant}, subtyping, typing and well-formedness of types are all unified by the unified subtyping judgment:

Unified Subtyping		$\Gamma \vdash e_{1} \leqslant e_{2}: A$
Typing	$\Gamma \vdash e: A \triangleq \Gamma \vdash e \leqslant e: A$	
Well-formed Types	$\Gamma \vdash A: \star \triangleq \Gamma \vdash A \leqslant A: \star$	

A key benefit of unified subtyping is that the mutual dependency issue between typing and subtyping found in many traditional higher-order subtyping systems can be avoided since typing is just a special case of subtyping.

The context well-formedness judgment $\vdash \Gamma$ is defined inductively on the structure of Γ. Whenever adding a fresh binding $x \leqslant e: A$ to the context Γ, the judgment ensures e has a well-formed type A.

We briefly introduce the basic rules and discuss the rest in detail. S-Ax defines the reflexivity of the kind \star and follows the "type-in-type" axiom [Cardelli 1986b] for the typing of \star. S-VARRefl defines the reflexivity of a variable and its typing by looking up the context. S-VarTrans defines the variable lookup followed by transitivity, which follows the algorithmic version of System F_{\leqslant}[Curien and Ghelli 1992].

Generalized Top Type. S-Top defines subtyping for the generalized top type: a supertype of any term e which has the same type A as e. A special case is when e is also a top type. For this case we need to define the reflexivity of top type as in the rule S-TopRefl, which indicates that the top type can have any well-formed type A. In other words, any well-formed type can be inhabited by the generalized top type, which causes logical inconsistency. Note that allowing "type-in-type" axiom in S-Ax already brings logical inconsistency [Barendregt 1992]. Our goal is to investigate the calculus for traditional programming that allows general recursion, which is logically inconsistent any way. Thus, we do not consider generalized top type or "type-in-type" axiom problematic. With top type generalized, bounded and unbounded quantification are unified, which significantly simplifies the system.

Functions and Function Types. S-Abs defines the subtyping relation between functions, which follows the invariant rule for type operators in System F_{\leqslant}^{ω} [Pierce and Steffen 1997]. It requires the bounds and argument types being compared to be identical. The first line of premises in S-Abs checks the well-formedness of binding. The second line of premises checks if the function bodies are covariant and their type is well-formed.

$\vdash \Gamma$ Context Well-formedness

$$
\begin{array}{ll}
\text { WU-Empty } & \frac{\text { WU-Cons }}{\Gamma \vdash e: A \quad \Gamma \vdash A: \star} \\
\vdash \varnothing & \vdash \Gamma, x \leqslant e: A
\end{array}
$$

$\Gamma \vdash e_{1} \leqslant e_{2}: A$
(Unified Subtyping)

$$
\frac{\stackrel{\text { S-Ax }}{\vdash \Gamma}}{\Gamma \vdash \star \leqslant \star: \star} \quad \frac{\stackrel{\text { S-VarRefl }}{\vdash} \quad x \leqslant e: A \in \Gamma}{\Gamma \vdash x \leqslant x: A}
$$

S-VarTrans

$$
\frac{x \leqslant e_{1}: A \in \Gamma \quad \Gamma \vdash e_{1} \leqslant e_{2}: A}{\Gamma \vdash x \leqslant e_{2}: A}
$$

$$
\Gamma \vdash e_{1}: A
$$

$$
\begin{array}{llc}
\begin{array}{l}
\text { S-Top } \\
\Gamma \vdash e: A
\end{array} & \begin{array}{c}
\text { S-TopREfL } \\
\Gamma \vdash e \leqslant \top: A
\end{array} & \frac{\Gamma \vdash A: \star}{\Gamma \vdash T \leqslant \top: A} \quad \begin{array}{c}
\Gamma \leqslant e_{1}: A \vdash e_{2} \leqslant e_{2}^{\prime}: B \\
\Gamma \vdash\left(\lambda x \leqslant e_{1}: A . e_{2}\right) \leqslant\left(\lambda x \leqslant e_{1}: A \cdot e_{2}^{\prime}\right): \Pi x \leqslant e_{1}: A . B
\end{array}, ~
\end{array}
$$

S-App
$\frac{\Gamma \vdash e_{1} \leqslant e_{2}: \Pi x \leqslant e_{3}: B . C \quad \Gamma \vdash A \leqslant e_{3}: B}{\Gamma \vdash e_{1} A \leqslant e_{2} A: C[x \mapsto A]}$
S-Prod

$$
\Gamma \vdash A^{\prime} \leqslant A: \star
$$

$$
\Gamma \vdash e: A^{\prime} \quad \Gamma \vdash A: \star \quad \Gamma, x \leqslant e: A \vdash B: \star
$$

S-CastUp

$$
\Gamma, x \leqslant e: A^{\prime} \vdash B \leqslant B^{\prime}: \star
$$

$$
\Gamma \vdash(\Pi x \leqslant e: A . B) \leqslant\left(\Pi x \leqslant e: A^{\prime} . B^{\prime}\right): \star
$$

$$
\frac{\Gamma \vdash B: \star \quad \Gamma \vdash e_{1} \leqslant e_{2}: A \quad B \hookrightarrow A}{\Gamma \vdash \operatorname{cast}_{\uparrow}[B] e_{1} \leqslant \operatorname{cast}_{\uparrow}[B] e_{2}: B}
$$

$$
\frac{\begin{array}{l}
\text { S-CASTDN } \\
\Gamma \vdash B: \star \\
\\
\Gamma \vdash \operatorname{cast}_{\downarrow} e_{1} \leqslant \operatorname{cast}_{\downarrow} e_{2}: B
\end{array} \quad A \hookrightarrow B}{}
$$

$$
\frac{\stackrel{\text { S-SUB }}{\Gamma \vdash e_{1} \leqslant e_{2}: A \quad \Gamma \vdash A \leqslant B: \star}}{\Gamma \vdash e_{1} \leqslant e_{2}: B}
$$

Syntactic Sugar
$\Gamma \vdash e: A \triangleq \Gamma \vdash e \leqslant e: A$
Figure 5.4. Static semantics

S-Prod defines the relation between function types. Unlike S-Abs, it only requires the bounds to be identical. The argument types can vary and are contravariant. Such design follows the Kernel Fun variant [Cardelli and Wegner 1985] of System F_{\leqslant}. S-Prod can be viewed as a combination of the subtyping rules for arrow types and universal types of System F_{\leqslant}:

$$
\begin{aligned}
& \substack{\text { FS-ARrow } \\
\Delta \vdash T_{1} \leqslant U_{1} \\
\Delta \vdash\left(U_{1} \rightarrow U_{2}\right) \leqslant\left(T_{1} \rightarrow T_{2}\right)}
\end{aligned} \quad \frac{\text { FS-Forall }}{\Delta \vdash X \leqslant U \vdash T_{1} \leqslant T_{2}}
$$

The first premise of S-Prod checks the contravariance of argument types, similar to the rule for arrow types. The last premise checks the covariance of co-domains of function types with bound fixed, similar to the rule for universal types. Other premises check the well-formedness.

Pointwise Subtyping. S-App defines subtyping between applications and uses a pointwise subtyping rule originated from System F_{\leqslant}^{ω} [Pierce and Steffen 1997], which is also used in many systems with higher order subtyping [Hutchins 2010; Aspinall and Compagnoni 1996; Zwanenburg 1999]. When comparing two applications, we require the arguments to be identical and only compare the head terms, equivalently to type operators in F_{\leqslant}^{ω}. The first premise of S-App ensures the head term to have a function type, e.g., $\Pi x \leqslant e_{3}: B . C$. The second premise checks the bound and typing requirements: if the argument A is a subtype of e_{3} and A has the type B.

Explicit Casts and Syntactic Equality. S-CastUp and S-CastDn are rules for explicit cast operators. They can be seen as a generalization of typing rules of fold and unfold from isorecursive types (see Section 4.1.4). Weak-head reduction (\hookrightarrow) is used for type-level conversion. Note that when comparing cast \uparrow terms, we require the annotations to be the same. S-Sub is the subsumption rule. The second premise checks the subtyping relation between well-formed types by reusing the unified subtyping judgment. Note that S-Sub does not subsume the implicit conversion rule, which can be found in F_{\leqslant}^{ω} and Pure Type Systems. Because the unified subtyping judgment does not subsume beta conversion, i.e., ($\lambda x: \star$. $x)$ Int \leqslant Int does not hold. As a consequence, types of expressions are equal only up to syntactic equality (i.e. alpha equality), but not beta equality. Nevertheless, we can recover type-level computation through explicit cast operators.

Algorithmic up to Subtyping. The unified subtyping rules shown in Figure 5.4 are declarative because of the subsumption rule S-Sub. But the system is almost algorithmic: if we ignore the typing result and only consider the subtyping part, the system becomes algorithmic. Like the algorithmic version of System F_{\leqslant}, there is no built-in transitivity rule defined in λI_{\leqslant}. Actually, transitivity can be proved from other rules (see Section 5.3.2).

5.3 The Metatheory of Unified Subtyping

In this section, we discuss the metatheory of λI_{\leqslant}by focusing on two main targets: transitivity and type safety. We emphasize here that in previous work the metatheory for the combination between dependent types and subtyping was a key difficulty, greatly due to the entanglement between the metatheory of subtyping and typing. With unified subtyping we develop a single metatheory for the new relation instead. Traditional theorems related to the metatheory of typing and subtyping can then be viewed as particular instantiations of the unified subtyping theorems. Because the unified subtyping relation is new, working out the metatheory for our system actually required figuring out which theorems to prove (i.e. what form should they have); and in which order to prove them. It is crucial (and non-trivial) to prove the right theorems in the correct order. Nevertheless, once the form of the theorems and the order in which they should be proved are set, then the proofs can actually be done with simple techniques similar to those used in more traditional systems. The dependency diagram of main lemmas in this section is shown in Figure 5.5.

5.3.1 Basic Lemmas

Before going to the proof of transitivity, we first discuss several important basic lemmas including reflexivity, weakening, consistency of typing and narrowing.

Reflexivity. The subtyping relation in System F_{\leqslant}is reflexive, i.e., $\Delta \vdash T \leqslant T$ holds for any well-formed type T and context Δ. Since unified subtyping in λI_{\leqslant}tracks typing results, the relation in reflexive form, i.e., $\Gamma \vdash e \leqslant e: A$, works like a typing judgment $\Gamma \vdash e: A$ (recall the syntactic sugar in Figure 5.4). Reflexivity does not hold for arbitrary e and A. However reflexivity does hold for any well-(sub)typed terms. That is:

Lemma 5.3.1 (Reflexivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, then both $\Gamma \vdash e_{1}: A$ and $\Gamma \vdash e_{2}: A$ hold.

Figure 5.5. Dependency of lemmas for the metatheory of unified subtyping

This lemma is also called validity in some literature [Abel and Rodriguez 2008]. Here we call it "reflexivity" because conclusions are still (unified) subtyping relations in reflexive form. It also meets the interpretation of unified subtyping mentioned in Section 5.2.3. We separate the reflexivity lemma into two sub-lemmas by dividing the conclusion:

Lemma 5.3.2 (Left Reflexivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, then $\Gamma \vdash e_{1}: A$ holds.
Lemma 5.3.3 (Right Reflexivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, then $\Gamma \vdash e_{2}: A$ holds.
Left reflexivity can be proved by induction on the derivation of $\Gamma \vdash e_{1} \leqslant e_{2}: A$. However, right reflexivity is difficult to prove due to the generalized top type. Consider the case of S-Top, i.e., $\Gamma \vdash e \leqslant \top: A$. We know $\Gamma \vdash e: A$ from the premise. The target $\Gamma \vdash \top: A$ requires A to be well-formed, i.e., $\Gamma \vdash A: \star$, as indicated by the premise of S-TopRefl. To prove $\Gamma \vdash A: \star$ from $\Gamma \vdash e: A$, we need a lemma called correctness of types (Lemma 5.3.11), which is not available currently. We will show the full proof later in Section 5.3.3. Currently without right reflexivity, we add redundant premises in typing rules to simplify the proofs. For example, in rule S-Prod, the third premise $\Gamma \vdash A: \star$ is derivable from the first premise $\Gamma \vdash A^{\prime} \leqslant A: \star$ by right reflexivity. Once right reflexivity is shown, such additional premises can be removed without changing the type system.

Weakening. The weakening lemma is standard:
Lemma 5.3.4 (Weakening). If $\Gamma_{1}, \Gamma_{3} \vdash e_{1} \leqslant e_{2}: A$ and $\vdash \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, then $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \vdash e_{1} \leqslant e_{2}$: A.

The proof is by induction on the derivation of $\Gamma_{1}, \Gamma_{3} \vdash e_{1} \leqslant e_{2}: A$. The only interesting case is when S-Prod is the last derivation. The last premise of S-Prod adds binding $x \leqslant e: A^{\prime}$ into the context Γ. We need to ensure A^{\prime} is well-formed, i.e., $\Gamma \vdash A^{\prime}: \star$, as required by context well-formedness. Though not included in the premise, it can be derived by applying left reflexivity (Lemma 5.3.2) to the first premise, i.e., $\Gamma \vdash A^{\prime} \leqslant A: \star$.

Consistency of Typing. We prove a simple yet important lemma, called consistency of typing:

Lemma 5.3.5 (Consistency of Typing). If $\Gamma \vdash e_{1}: A$ and $\Gamma \vdash e_{1} \leqslant e_{2}: B$, then $\Gamma \vdash e_{1} \leqslant e_{2}: A$.
The proof is by induction on the derivation of $\Gamma \vdash e_{1} \leqslant e_{2}: B$. This lemma is the key to decoupling typing from unified subtyping. To prove $\Gamma \vdash e_{1} \leqslant e_{2}: A$, we can individually show 1) e_{1} has the type A and 2) e_{1} is a subtype of e_{2} regardless of typing, as long as there is some type B such that $\Gamma \vdash e_{1} \leqslant e_{2}: B$.

Narrowing. We have two narrowing lemmas in λI_{\leqslant}, type narrowing and bound narrowing:
Lemma 5.3.6 (Type Narrowing). Given $\Gamma_{1}, x \leqslant e: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$, if $\Gamma_{1} \vdash A \leqslant B: \star$ and $\Gamma_{1} \vdash e: A$, then $\Gamma_{1}, x \leqslant e: A, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$.

Lemma 5.3.7 (Bound Narrowing). If $\Gamma_{1}, x \leqslant e: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$ and $\Gamma_{1} \vdash e^{\prime} \leqslant e: B$, then $\Gamma_{1}, x \leqslant e^{\prime}: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$.

As indicated by the name, for a binding $x \leqslant e: B$ in the context, type narrowing changes its type from B to a subtype A, while bound narrowing changes its bound from e to a subtype e^{\prime}. We only prove type narrowing here, since bound narrowing depends on transitivity, as will be discussed later in Section 5.3.3. The type narrowing lemma is proved by induction on the derivation of $\Gamma_{1}, x \leqslant e: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$. The only interesting case is when the last derivation uses S-VarTrans, i.e., e_{1} is a variable. It is easy to prove by the induction hypothesis when e_{1} is not x. When $e_{1}=x$, we know $B=C$ and our target is to show $\Gamma_{1}, x \leqslant e: A, \Gamma_{2} \vdash x \leqslant e_{2}: B$. By applying the subsumption rule S-Sub and S-VarTrans, our target becomes $\Gamma_{1}, x \leqslant e: A, \Gamma_{2} \vdash$ $e \leqslant e_{2}: A$. Note that we have $\Gamma_{1}, x \leqslant e: A, \Gamma_{2} \vdash e \leqslant e_{2}: B$ by the induction hypothesis. The only gap is the typing result, which should be A but not B. Thus, we can apply the consistency of typing lemma (Lemma 5.3.5) and prove $\Gamma_{1}, x \leqslant e: A, \Gamma_{2} \vdash e: A$ instead, which is immediate by weakening (Lemma 5.3.4).

5.3.2 Transitivity

Transitivity is a desirable property of systems with subtyping. Declarative presentations of calculi often include a built-in transitivity rule:

$$
\frac{\Gamma \vdash e_{1} \leqslant e_{2}: A \quad \Gamma \vdash e_{2} \leqslant e_{3}: A}{\Gamma \vdash e_{1} \leqslant e_{3}: A} \text { S-TrANS }
$$

This simplifies the proof of lemmas such as narrowing and substitution. However, noticing that e_{1} and e_{3} can be in any form, the rule can be applied any time during derivation, which complicates the inversion of subtyping judgments. A process called transitivity elimination [Pierce 2002; Pierce and Steffen 1997; Compagnoni 1995] can be used to avoid such complexity brought by the transitivity rule. The declarative system is reformulated into an algorithmic one without a transitivity rule. The transitivity property is then proved against the algorithmic system. Similarly, we formulate λI_{\leqslant}without a built-in transitivity rule but only with a base case for variables (i.e. S-VARTrANS), as mentioned in Section 5.2.3. Next we show the proof of transitivity in λI_{\leqslant}.

First, we need to generalize the form of transitivity. The form of rule S-Trans is too restricted: conditions are required to have the same type. This causes issues when both conditions are
derived from S-SUB:

$$
\begin{aligned}
& \text { S-Sub S-Sub } \\
& \frac{\frac{\Gamma \vdash e_{1} \leqslant e_{2}: B_{1} \quad \Gamma \vdash B_{1} \leqslant A: \star}{\Gamma \vdash e_{1} \leqslant e_{2}: A} \quad \frac{\Gamma \vdash e_{2} \leqslant e_{3}: B_{2} \Gamma \vdash B_{2} \leqslant A: \star}{\Gamma \vdash e_{2} \leqslant e_{3}: A}}{\Gamma \vdash e_{1} \leqslant e_{3}: A} \text { S-TRANS }
\end{aligned}
$$

We only know B_{1} and B_{2} are both subtypes of A but cannot determine the relation between them. The induction hypothesis cannot be applied since it requires B_{1} and B_{2} to be the same. Thus, we generalize the property into

$$
\frac{\Gamma \vdash e_{1} \leqslant e_{2}: A \quad \Gamma \vdash e_{2} \leqslant e_{3}: B}{\Gamma \vdash e_{1} \leqslant e_{3}: A} \text { S-TRANS2 }
$$

where the conditions are allowed to have different types and the conclusion needs to have the same type as the first condition. The proof of the generalized transitivity is standard [Pierce 2002] by induction on the size of e_{2} and an inner induction on the derivation of the first condition $\Gamma \vdash e_{1} \leqslant e_{2}: A$. We only discuss the interesting case when both derivations end with S-Prod. We have $e_{1}=\Pi x \leqslant e: A_{1} . B_{1}, e_{2}=\Pi x \leqslant e: A_{2} . B_{2}$, and $e_{3}=\Pi x \leqslant e: A_{3}$. B_{3}, with

$$
\begin{align*}
& \Gamma \vdash A_{2} \leqslant A_{1}: \star \quad \text { (1) } \quad \Gamma, x \leqslant e: A_{2} \vdash B_{1} \leqslant B_{2}: \star \tag{2}\\
& \Gamma \vdash A_{3} \leqslant A_{2}: \star \quad \text { (3) } \quad \Gamma, x \leqslant e: A_{3} \vdash B_{2} \leqslant B_{3}: \star \tag{4}
\end{align*}
$$

For clarity, we omit all derivations for well-formedness checking in the discussion, which can be trivially proved by the induction hypothesis. Our target is to prove $\Gamma \vdash A_{3} \leqslant A_{1}: \star$ and $\Gamma, x \leqslant e: A_{3} \vdash B_{1} \leqslant B_{3}: \star$. The first target can be obtained by combining (1) and (3) using the outer induction hypothesis since A_{2} has smaller size than e_{2}. Noting that the context of the (2) is different from (4) and the second target, we use Lemma 5.3.6 to narrow the type of the binding to obtain $\Gamma, x \leqslant e: A_{3} \vdash B_{1} \leqslant B_{2}: \star$. Then we can similarly obtain the second target by the outer induction hypothesis since the size of B_{2} is smaller than e_{2}. We conclude the generalized transitivity by the following lemma:

Lemma 5.3.8 (Generalized Transitivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma \vdash e_{2} \leqslant e_{3}: B$, then $\Gamma \vdash e_{1} \leqslant e_{3}: A$.

Thus, the original transitivity is an immediate corollary:
Lemma 5.3.9 (Transitivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma \vdash e_{2} \leqslant e_{3}: A$, then $\Gamma \vdash e_{1} \leqslant e_{3}: A$.
As shown in Figure 5.5, the proof of generalized transitivity depends on type narrowing (Lemma 5.3.6) and type narrowing depends on consistency of typing (Lemma 5.3.5). Actually, we can view consistency of typing as a special case of generalized transitivity by letting $e_{1}=e_{2}=e_{1}^{\prime}$ and $e_{3}=e_{2}^{\prime}$. This indicates that type narrowing can also be proved using generalized transitivity. Thus, an alternative approach is to prove generalized transitivity and type narrowing simultaneously. A potential issue is that this approach makes these two lemmas mutually dependent. We choose to first prove a weaker version of generalized transitivity, i.e., consistency of typing, which has a much simpler proof. Then we can show type narrowing before transitivity without causing circularity.

5.3.3 Basic Lemmas, Revisited

Recall that in Section 5.3.1 we leave two lemmas unproved, i.e., right reflexivity (Lemma 5.3.3) and bound narrowing (Lemma 5.3.7), which depend on other lemmas that were not available yet. As we have proved transitivity in Section 5.3.2, we can recover the proof of these two lemmas.

Bound Narrowing. Similar to type narrowing (Lemma 5.3.6), bound narrowing (Lemma 5.3.7) is proved by induction on the derivation of $\Gamma_{1}, x \leqslant e: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$. We consider the interesting case when the derivation ends with S-VARTrans. If e_{1} is not x, it is trivial to prove by the induction hypothesis. If $e_{1}=x$, we have $B=C$ and our target is to show $\Gamma_{1}, x \leqslant e^{\prime}$: $B, \Gamma_{2} \vdash x \leqslant e_{2}: B$. By the induction hypothesis, we have $\Gamma_{1}, x \leqslant e^{\prime}: B, \Gamma_{2} \vdash e \leqslant e_{2}: B$. Noticing that by weakening (Lemma 5.3.4), we can obtain $\Gamma_{1}, x \leqslant e^{\prime}: B, \Gamma_{2} \vdash e^{\prime} \leqslant e: B$ from the second condition. By transitivity (Lemma 5.3.9), we have $\Gamma_{1}, x \leqslant e^{\prime}: B, \Gamma_{2} \vdash e^{\prime} \leqslant e_{2}: B$. Also noticing that $x \leqslant e^{\prime}: B \in \Gamma_{1}, x \leqslant e^{\prime}: B, \Gamma_{2}$, we obtain the target by the rule S-VarTrans.

Substitution. We show that the substitution lemma holds in λI_{\leqslant}:
Lemma 5.3.10 (Substitution). If $\Gamma_{1}, x \leqslant e: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma_{1} \vdash e^{\prime} \leqslant e: B$, then $\Gamma_{1}, \Gamma_{2}\left[x \mapsto e^{\prime}\right] \vdash e_{1}\left[x \mapsto e^{\prime}\right] \leqslant e_{2}\left[x \mapsto e^{\prime}\right]: A\left[x \mapsto e^{\prime}\right]$.

The proof is standard by induction on the derivation of the first condition. It is similar to the proof of bound narrowing. Transitivity and weakening are also required for the case when S-TransVar is the last derivation. Note that the second condition $\Gamma_{1} \vdash e^{\prime} \leqslant e: B$ contains both subtyping requirement (e^{\prime} is a subtype of e) and typing requirement (e^{\prime} has type B). Thus, the substitution lemma in λI_{\leqslant}has only one form.

Right Reflexivity. As mentioned in Section 5.3.1, right reflexivity (Lemma 5.3.3) depends on correctness of types:

Lemma 5.3.11 (Correctness of Types). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, then $\Gamma \vdash A: \star$.
But correctness of types also depends on right reflexivity. Consider the last derivation of $\Gamma \vdash$ $e_{1} \leqslant e_{2}: A$ is S-SUB, where the premises are $\Gamma \vdash e_{1} \leqslant e_{2}: B$ and $\Gamma \vdash B \leqslant A: \star$. The conclusion $\Gamma \vdash A: \star$ holds if we apply right reflexivity to the second premise. Thus, we prove these two lemmas simultaneously by induction on the derivation of $\Gamma \vdash e_{1} \leqslant e_{2}: A$. Note that the proof of correctness of types also depends on the substitution lemma (Lemma 5.3.10) when the derivation ends with S-App.

With both left and right reflexivity proved, we conclude the reflexivity (Lemma 5.3.1) holds and the interpretation of unified subtyping in Section 5.2 .3 is correct. One key insight here is that we do not prove the full reflexivity lemma first. Otherwise, it will cause circular dependency in the metatheory (imagine merging two nodes of left and right reflexivity in Figure 5.5).

5.3.4 Type Safety

We prove type safety by showing type preservation and progress lemmas [Wright and Felleisen 1994]. Though both lemmas have the same form as traditional systems, the typing judgment is just syntactic sugar of unified subtyping, as mentioned in Section 5.2.3.

Determinacy of Reduction. We first show that the one-step reduction relation is deterministic:
Lemma 5.3.12 (Determinacy of Reduction). If $e \hookrightarrow e_{1}$ and $e \hookrightarrow e_{2}$, then $e_{1}=e_{2}$.
The proof is straightforward by induction on the derivation of $e \hookrightarrow e_{1}$. Note that the equality used in the conclusion is syntactic equality. The result of type-level reduction in the rule S-CASTDN (i.e. type B) is unique. Thus, the cast ${ }_{\downarrow}$ term is not required to be annotated with the result type.

Type Preservation. Type preservation, also known as subject reduction [Wright and Felleisen 1994], states that reducing a term does not change its type:

Lemma 5.3.13 (Type Preservation). If $\Gamma \vdash e: A$ and $e \hookrightarrow e^{\prime}$, then $\Gamma \vdash e^{\prime}: A$.
However, if we try to directly prove this lemma by induction on the derivation of $\Gamma \vdash e \leqslant e: A$ (i.e. $\Gamma \vdash e: A$), the proof will get stuck. Consider the last derivation is S-CASTDN and $e \hookrightarrow e^{\prime}$ is an instance of R-CAStElim with $e=\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}\left[B^{\prime}\right] e\right)$ and $e^{\prime}=e$. We have $\Gamma \vdash \operatorname{cast}_{\uparrow}\left[B^{\prime}\right] e: B$ and $B \hookrightarrow A$. By inversion of S-CAstUp, we can obtain $\Gamma \vdash e: A^{\prime}, B^{\prime} \hookrightarrow A^{\prime}$ and $\Gamma \vdash B^{\prime} \leqslant B: \star$. Our target is to show $\Gamma \vdash e: A$. If we can prove $\Gamma \vdash A^{\prime} \leqslant A: \star$, then the target can be obtained immediately by the subsumption rule S-Sub. The relation is shown as follows:

$$
{\underset{A}{B^{\prime}}}_{A^{\prime}} \leqslant{ }^{B}
$$

The subtyping relation in the second line requires a proof, which can be shown by the following lemma with a more general typing result other than the kind \star :

Lemma 5.3.14 (Subtype Preservation). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, $e_{1} \hookrightarrow e_{1}^{\prime}, e_{2} \hookrightarrow e_{2}^{\prime}$, then $\Gamma \vdash e_{1}^{\prime} \leqslant$ $e_{2}^{\prime}: A$.

We call this lemma subtype preservation indicating that the unified subtyping relation is preserved by reduction. Type preservation is just a special case of it when $e_{1}=e_{2}=e$ and $e_{1}^{\prime}=e_{2}^{\prime}=$ e^{\prime}. A naïve proof is by induction on the derivation of $\Gamma \vdash e_{1} \leqslant e_{2}: A$. The substitution lemma (Lemma 5.3.10) is required for the case when the derivation ends with S-App and both reductions are instances of R-Beta. However, the proof gets stuck when the derivation ends with S-CASTDN, and both reductions are instances of R-CASTElim with $e_{1}=\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[B] e_{1}^{\prime}\right)$ and $e_{2}=\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[B] e_{2}^{\prime}\right)$. The induction hypothesis does not work as it requires cast ${ }_{\uparrow}[B] e_{1}^{\prime}$ and cast $\uparrow_{\uparrow}[B] e_{2}^{\prime}$ to be reducible, while both of them are values (see Figure 5.2). To solve this issue, we need to generalize the subtype preservation lemma into the following one:

Lemma 5.3.15 (Generalized Subtype Preservation). Given that $\Gamma \vdash e_{1} \leqslant e_{2}:$ A holds,

1. if both e_{1} and e_{2} are cast \uparrow_{\uparrow} terms, i.e., $e_{1}=\operatorname{cast}_{\uparrow}[B] e_{1}^{\prime}$ and $e_{2}=\operatorname{cast}_{\uparrow}[B] e_{2}^{\prime}$, and $A \hookrightarrow A^{\prime}$, $B \hookrightarrow B^{\prime}$, then $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}: A^{\prime} ;$
2. otherwise, if $e_{1} \hookrightarrow e_{1}^{\prime}$ and $e_{2} \hookrightarrow e_{2}^{\prime}$, then $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}: A$.

Now the proof by induction can proceed with the generalized lemma. For the case which was stuck in the previous attempt, the conclusion is exactly the induction hypothesis that follows the case (1) of the lemma. The non-trivial case is when the derivation ends with the subsumption rule

S-Sub. When e_{1} and e_{2} are not both cast \uparrow_{\uparrow} terms, the proof is trivial by the induction hypothesis. Otherwise, we have $e_{1}=\operatorname{cast}_{\uparrow}[C] e_{1}^{\prime}$ and $e_{2}=\operatorname{cast}_{\uparrow}[C] e_{2}^{\prime}$ such that

$$
\begin{array}{ll}
\Gamma \vdash \operatorname{cast}_{\uparrow}[C] e_{1}^{\prime} \leqslant \operatorname{cast}_{\uparrow}[C] e_{2}^{\prime}: B & \text { (1) } \Gamma \vdash B \leqslant A: \star \\
A \hookrightarrow A^{\prime} & \text { (3) } C \hookrightarrow C^{\prime}
\end{array}
$$

Our target is to show $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}: A^{\prime}$. Note that the annotations of cast ${ }_{\uparrow}$ in both terms must be the same (i.e. C) by S-CastUp. By inversion of (1), we have $\Gamma \vdash C \leqslant B: \star$. We first show there exists some B^{\prime} such that $B \hookrightarrow B^{\prime}$ by proving the following lemma:

Lemma 5.3.16 (Reduction Exists in the Middle). Given that $\Gamma \vdash C \leqslant B: D$ and $\Gamma \vdash B \leqslant A: D$, if $C \hookrightarrow C^{\prime}$ and $A \hookrightarrow A^{\prime}$, then there exists B^{\prime} such that $B \hookrightarrow B^{\prime}$.

Then by induction hypothesis, we have $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}: B^{\prime}$ from (1) by the first case of lemma and $\Gamma \vdash B^{\prime} \leqslant A^{\prime}: \star$ from (2) by the second (1st case impossible). Thus, we can prove the target by SSub and conclude Lemma 5.3.15. Finally, it is trivial to show that the original subtype preservation lemma is a corollary of the generalized one. Thus, we can conclude the type preservation lemma which is an immediate corollary of subtype preservation.

Progress. Progress states that well-formed terms do not get stuck:
Lemma 5.3.17 (Progress). If $\varnothing \vdash e: A$ then either e is a value v or there exists e^{\prime} such that $e \hookrightarrow e^{\prime}$.

As we mentioned in Section 5.2.2, the type-level reduction in cast operators may encounter open terms. We prove a stronger progress lemma with a non-empty context:

Lemma 5.3.18 (Generalized Progress). If $\Gamma \vdash e: A$ then either e is a value v or there exists e^{\prime} such that $e \hookrightarrow e^{\prime}$.

Then the original progress lemma is an immediate corollary of the stronger version. The proof is straightforward by induction on the derivation of $\Gamma \vdash e: A$. The definition of values is critical to the proof as it covers many stuck terms with variables and the top type (see also the discussion of inert terms in Section 5.2.2).

5.4 Algorithmic Version

As we mentioned in Section 5.2.3, the unified subtyping judgment presented in Figure 5.4 is declarative but almost algorithmic. The typing part is declarative because of the subsumption rule, while the subtyping part is algorithmic. If we separately check the typing part and subtyping part, we just need to develop an algorithm for type checking. We use bidirectional type checking [Pierce and Turner 2000], a standard technique to develop the type checking algorithm for type systems with subtyping. We show the soundness and completeness of the type and subtype checking algorithm with respect to the original unified subtyping judgment. Developing a unified algorithmic system is left as future work, as will be discussed in Section 8.2.
$|e|$ Erasure of Annotations

$$
\begin{aligned}
|x| & =x \\
|\star| & =\star \\
|\top| & =\top \\
\left|e_{1} e_{2}\right| & =\left|e_{1}\right|\left|e_{2}\right| \\
\left|\lambda x \leqslant e_{1}: A \cdot e_{2}\right| & =\lambda x \leqslant\left|e_{1}\right|:|A| \cdot\left|e_{2}\right| \\
|\Pi x \leqslant e: A . B| & =\Pi x \leqslant|e|:|A| \cdot|B| \\
\mid \text { cast }_{\uparrow}[A] e \mid & =\operatorname{cast}_{\uparrow}[|A|]|e| \\
\mid \text { cast }_{\downarrow} e \mid & =\operatorname{cast}_{\downarrow}|e| \\
|(e: A)| & =|e|
\end{aligned}
$$

$|\Gamma|$ Erasure of Annotations in Contexts

$$
\begin{aligned}
|\varnothing| & =\varnothing \\
|\Gamma, x \leqslant e: A| & =|\Gamma|, x \leqslant|e|:|A|
\end{aligned}
$$

Figure 5.6. Erasure of annotations

$$
\begin{aligned}
& \Gamma \vdash e_{1} \leqslant e_{2} \\
& \text { (Algorithmic Subtyping) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { AS-Prod } \\
\Gamma \vdash C \leqslant A \quad \Gamma, x \leqslant|e|:|C| \vdash B \leqslant D \\
\Gamma \vdash(\Pi x \leqslant e: A . B) \leqslant(\Pi x \leqslant e: C . D)
\end{array} \quad \frac{\text { AS-CAStUp }}{\Gamma \vdash e_{1} \leqslant e_{2}} \\
\Gamma \vdash \operatorname{cast}_{\uparrow}[A] e_{1} \leqslant \operatorname{cast}_{\uparrow}[A] e_{2}
\end{array} \\
& \begin{array}{l}
\stackrel{\text { AS-CAsTDN }}{\Gamma \vdash e_{1} \leqslant e_{2}} \\
\Gamma \vdash \text { cast }_{\downarrow} e_{1} \leqslant \text { cast }_{\downarrow} e_{2}
\end{array}
\end{aligned}
$$

Figure 5.7. Algorithmic subtyping

5.4.1 Bidirectional Type Checking

We extend the syntax of λI_{\leqslant}with annotations, denoted by $(e: A)$ (parentheses are required). We use $|e|$ to denote the erasure of all annotation from a term and $|\Gamma|$ for the erasure of a context (see Figure 5.6). The algorithmic subtyping judgment is denoted by $\Gamma \vdash e_{1} \leqslant e_{2}$ in Figure 5.7. It is developed by removing the typing part of unified subtyping rules in Figure 5.4.

The algorithmic typing judgment has two directions: the checking judgment $\Gamma \vdash e \Leftarrow A$ and the synthesis judgment $\Gamma \vdash e \Rightarrow A$, as shown in Figure 5.8. For brevity, we omit the context well-formedness in all algorithmic typing judgments. Typing rules are developed by following the typing part of unified subtyping. Most syntactic forms are typed by the synthesis judgment, including functions and function types since both binders are annotated. Two syntactic forms that are not annotated require the checking judgment, namely the top type (T) and cast ${ }_{\downarrow}$ term. The subsumption rule from the unified subtyping is adapted to the checking direction.

$$
\begin{aligned}
& \quad \frac{\Gamma \vdash A \Leftarrow \star \quad \Gamma, x \leqslant\left|e_{1}\right|:|A| \vdash e_{2} \Rightarrow B}{\Gamma \vdash \lambda x \leqslant e_{1}: A \cdot e_{2} \Rightarrow \Pi x \leqslant\left|e_{1}\right|:|A| . B} \\
& \begin{array}{l}
\text { AT-App } \\
\Gamma \vdash e \Rightarrow \Pi x \leqslant e_{3}: B . C
\end{array} \\
& \frac{\Gamma \vdash A \Leftarrow B \quad \Gamma \vdash|A| \leqslant e_{3}}{\Gamma \vdash e A \Rightarrow C[x \mapsto|A|]} \\
& \text { AT-Prod }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\stackrel{\substack{\text { AT-CASTUp } \\
\Gamma \vdash B \Leftarrow \star \quad}}{\Gamma \vdash e \Rightarrow A \quad|B| \hookrightarrow|A|}}{\Gamma \vdash \operatorname{cast}_{\uparrow}[B] e \Rightarrow|B|} \\
& \frac{\stackrel{\text { AT-Anno }}{\Gamma \vdash e} \Leftarrow A \quad \Gamma \vdash A \Leftarrow \star}{\Gamma \vdash(e: A) \Rightarrow|A|}
\end{aligned}
$$

$$
\begin{array}{lcl}
\begin{array}{c}
\text { AT-Top } \\
\Gamma \vdash A \Leftarrow \star \\
\Gamma \vdash \top \Leftarrow A
\end{array} & \begin{array}{c}
\text { AT-CAssDn } \\
\Gamma \vdash B \Leftarrow \star
\end{array} \Gamma \vdash e \Rightarrow A & |A| \hookrightarrow|B| \\
\Gamma \vdash \text { cast }_{\downarrow} e \Leftarrow B
\end{array}
$$

Figure 5.8. Bidirectional typing

We use erasure in the typing judgment to ensure there are no annotations in 1) the typing result and the context, 2) the terms being compared by the algorithmic subtyping judgment, and 3) the terms checked by the reduction relation (\hookrightarrow). However, if erasure is used in the typing result of a premise using synthesis, i.e., $\Gamma \vdash e \Rightarrow|A|$, the original form of A requires guessing. Referring to the original A in other premises renders the typing rule not algorithmic. Thus, we make sure there is no such form of synthesis in the premises of typing rules. Note that the typing rule is still algorithmic if the erased typing result appears in the conclusion of a synthesis rule or a premise using checking judgment.

5.4.2 Soundness and Completeness

We show that the algorithmic subtyping and typing are both sound and complete to the original unified subtyping. We use $\Gamma \vdash e \Leftrightarrow A$ to denote a judgment which can either be the checking judgment $\Gamma \vdash e \Leftarrow A$ or the synthesis judgment $\Gamma \vdash e \Rightarrow A$. The main theorems are stated as follows:

Theorem 5.4.1 (Soundness of Algorithm). If $\Gamma \vdash e_{1} \Leftrightarrow A$, $\Gamma \vdash e_{2} \Leftrightarrow A$ and $\Gamma \vdash e_{1} \leqslant e_{2}$, then $|\Gamma| \vdash\left|e_{1}\right| \leqslant\left|e_{2}\right|:|A|$.

Theorem 5.4.2 (Completeness of Algorithm). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, then $\Gamma \vdash e_{1} \leqslant e_{2}$ and there exists e_{1}^{\prime} and e_{2}^{\prime} such that $\Gamma \vdash e_{1}^{\prime} \Rightarrow A$ and $\Gamma \vdash e_{2}^{\prime} \Rightarrow A$ with $\left|e_{1}^{\prime}\right|=e_{1}$ and $\left|e_{2}^{\prime}\right|=e_{2}$.
$T^{*}=A$ Mapping of Type
$\top^{*}=\top$
$X^{*}=X$
$\left(T_{1} \rightarrow T_{2}\right)^{*}=\Pi x \leqslant \top: T_{1}{ }^{*} \cdot T_{2}{ }^{*}$
(x Fresh)
$\left(\forall X \leqslant T_{1}, T_{2}\right)^{*}=\Pi X \leqslant T_{1}{ }^{*}: \star . T_{2}{ }^{*}$
$t^{*}=e$ Mapping of Term

$$
\begin{aligned}
x^{*} & =x \\
(\lambda x: T \cdot t)^{*} & =\lambda x \leqslant \top: T^{*} \cdot t^{*} \\
\left(t_{1} t_{2}\right)^{*} & =t_{1}{ }^{*} t_{2}{ }^{*} \\
(\Lambda X \leqslant T \cdot t)^{*} & =\lambda X \leqslant T^{*}: \star \cdot t^{*} \\
(t[T])^{*} & =t^{*} T^{*}
\end{aligned}
$$

$\Delta^{*}=\Gamma$ Mapping of Context
$\varnothing^{*}=\varnothing$
$(\Delta, x: T)^{*}=\Delta^{*}, x \leqslant \top: T^{*}$
$(\Delta, X \leqslant T)^{*}=\Delta^{*}, X \leqslant T^{*}: \star$

Figure 5.9. Translation of System F_{\leqslant}

5.5 Subsumption of System F_{\leqslant}

λI_{\leqslant}is a generalization of System F_{\leqslant}with dependent types. In this section, we show that λI_{\leqslant}can completely subsume the Kernel Fun variant [Cardelli and Wegner 1985] of System F_{\leqslant}. We first show the translation from System F_{\leqslant}to λI_{\leqslant}and prove that the typing and subtyping judgments of System F_{\leqslant}still hold in λI_{\leqslant}up to mapping. The full specification of System F_{\leqslant}was presented in Section 2.4.2 (see Figure 2.3). The full proofs are available in Appendix A.2.

5.5.1 Translating System F_{\leqslant}to λI_{\leqslant}

We show the mapping (denoted by ${ }^{*}$) of types, terms and contexts from System F_{\leqslant}to λI_{\leqslant}in Figure 5.9. We use the metavariable T for types, t for terms and Δ for contexts in System F_{\leqslant}. The arrow type is non-dependent and unbounded and therefore mapped to a top-bounded function type, similar to the treatment of syntactic sugar in Figure 5.2. The universal type is mapped to the dependent function type since X can appear in T_{2}. The bound T_{1} is a proper type and mapped to T_{1}^{*} with kind \star. The term and type abstraction, as well as term and type binding of the context, are treated similarly. Other mappings hold few surprises.

5.5.2 Subsumption of Typing and Subtyping

We prove that the mapped typing and subtyping relations still hold in λI_{\leqslant}. The type system of System F_{\leqslant}we used here is the algorithmic [Curien and Ghelli 1992] and Kernel Fun variant [Cardelli and Wegner 1985]. We first show the well-formedness of types and contexts still hold after mapping:

Lemma 5.5.1 (Mapping of Well-formedness *). (1) If $\Delta \vdash T$, then $\Delta^{*} \vdash T^{*}: \star$; (2) If $\vdash \Delta$, then $\vdash \Delta^{*}$.

The proof is by simultaneous induction on the derivation of well-formedness of types $\Delta \vdash T$ and contexts $\vdash \Delta$. Then we show the mapped subtyping and typing still hold:

Theorem 5.5.1 (Subsumption of Subtyping). If $\Delta \vdash T_{1} \leqslant T_{2}$, then $\Delta^{*} \vdash T_{1}{ }^{*} \leqslant T_{2}{ }^{*}: \star$.
Theorem 5.5.2 (Subsumption of Typing \&). If $\Delta \vdash t: T$, then $\Delta^{*} \vdash t^{*}: T^{*}$.

The proof is straightforward by induction on the derivation of subtyping relation $\Delta \vdash T_{1} \leqslant T_{2}$ and typing relation $\Delta \vdash t: T$, respectively. Note that the mapped typing relation $\Delta^{*} \vdash t^{*}: T^{*}$ is syntactic sugar of unified subtyping relation, i.e., $\Delta^{*} \vdash t^{*} \leqslant t^{*}: T^{*}$ (see Figure 5.2).

5.6 Discussion

In this section, we discuss alternative designs for λI_{\leqslant}and justify their trade-offs to the current design.

Recursion and Recursive Types. The current syntax of λI_{\leqslant}does not contain any form of recursion. Adding recursion and recursive types is easy by simply following the treatment of recursion in PITS. We have an alternative formulation of our system (including full proofs) with those features. However subtyping recursive types reveals an interesting problem. The typical Amber rule [Cardelli 1986a], or even the following restricted invariant rule

$$
\frac{\Gamma, x \leqslant \top: A \vdash e_{1} \leqslant e_{2}: A \quad \Gamma \vdash A: \star}{\Gamma \vdash\left(\mu x: A \cdot e_{1}\right) \leqslant\left(\mu x: A \cdot e_{2}\right): A} \text { S-MuI }
$$

does not work well with λI_{\leqslant}. Here $\mu x: A . e_{1}$ is a recursive type with the recursive binder x that can appear in the body e_{1}. The rule requires the types of recursive binders to be the same. We add a new reduction rule to unfold a recursive type: $\mu x: A . e \hookrightarrow e[x \mapsto \mu x: A . e]$. In order to keep type soundness, we need to ensure subtype preservation (Lemma 5.3.14) still holds. If $f=\lambda y: \star . y$ is an identity type operator with type $\star \rightarrow \star$, consider

$$
\mu x: \star . f x \leqslant \mu x: \star . \top x
$$

This relation holds by the rule S-MuI because we have $f \leqslant \top: \star \rightarrow \star$ by S-Top and then $x: \star \vdash f x \leqslant \top x: \star$ by S-App. Subtype preservation requires that the subtyping relation still holds with both sides reduced by one step:

$$
\begin{equation*}
f(\mu x: \star . f x) \leqslant \top(\mu x: \star . \top x) \tag{5.1}
\end{equation*}
$$

However, (5.1) does not hold because the pointwise subtyping rule S-App requires arguments of two applications should be the same. Thus, types are not preserved using the invariant rule for subtyping recursive types. This issue appears to be common to most systems with higher-order subtyping [Pierce and Steffen 1997; Aspinall and Compagnoni 1996; Zwanenburg 1999], as it arises from the interaction between the rules for recursive types and rules that use pointwise subtyping.

To solve this issue, we either change the S-App rule to be polarized [Steffen 1998], or only allow subtyping two identical recursive types. The former approach is interesting, but requires a major modification to the system. We leave that approach for future work (see Section 8.2). The latter approach is relatively simple by using the following rule:

$$
\frac{\Gamma, x \leqslant \top: A \vdash e: A \quad \Gamma \vdash A: \star}{\Gamma \vdash(\mu x: A \cdot e) \leqslant(\mu x: A . e): A} \mathrm{~S}-\mathrm{Mu}
$$

Due to the unified syntax, $\mu x: A . e$ can serve as both the term-level fixpoint and recursive type. Though full subtyping of recursive types is not possible in λI_{\leqslant}currently, we are still able to
introduce general recursion and recursive types to the system with S-Mu. This is precisely the approach used in our alternative formulation.

Operational Semantics. $\quad \lambda I_{\leqslant}$uses the same call-by-name (CBN) operational semantics that call-by-name PITS uses (see Section 4.1). However most OO languages use call-by-value (CBV). CBV semantics is more complicated because of the existence of dependent types and explicit casts in λI_{\leqslant}. We also treat cast $\uparrow_{\uparrow}[A] e$ as a value (see Section 5.2.2), which follows the standard call-by-name semantics of iso-recursive types [Harper 2013]. Such design makes the cast ${ }_{\uparrow}$ operator computationally relevant (see Section 4.3.1). Alternatively, we can take the approach from call-by-value PITS (see Section 4.2), which treats $\operatorname{cast}_{\uparrow}[A] v$ as a value and adds a reduction rule to further reduce the inner term of cast t_{\uparrow}. However, the alternative semantics of cast ${ }_{\uparrow}$ leads to more complex reduction rules and metatheory. The cast canceling rule R-CastElim (See Figure 5.3) now needs to check if the inner term of $\operatorname{cast}_{\uparrow}$ is a value, which requires some non-trivial changes to current proofs of the metatheory. We will later discuss the use of call-by-value casts for typing strong dependent sums in the next chapter (see Section 6.1.2).

Top Types. For top types, we can alternatively treat only \top as a value but not $\top e_{1} \ldots e_{n}$, which is an inert term (see Figure 5.2). In such design additional reduction rules similar to the $\beta \top$-reduction rules of System F_{\leqslant}^{ω} [Pierce and Steffen 1997] are needed to further reduce "stuck" terms to values, i.e., $\top e \hookrightarrow \top$. However, the approach of using $\beta \top$-reduction needs to define reduction rules for each form of stuck terms, e.g., $\top e$ and cast ${ }_{\downarrow} \top$, while the definition of inert terms deals with stuck terms in a more uniform way.

Weak vs Full Casts. Cast operators in λI_{\leqslant}use the same weak-head reduction for type-level computation. As mentioned in Section 5.1.4, certain type conversions cannot be performed by weak-head reduction/expansion if they require reduction at non-head position, e.g., converting $\operatorname{Vec}(1+1)$ to Vec 2 . To address this limitation we can use an alternative design from the full PITS (see Section 4.3). Full PITS uses full parallel reduction is used in cast operators, which allows reduction at any position of a term. However the metatheory of full PITS is significantly more complicated than call-by-name/value PITS. Since weak-head reduction was simpler and sufficient for our purposes (to model object encodings) we opted for that variant. It would be interesting to study the full-cast variant of PITS with subtyping as well in future work.

Full Contravariance of Function Types. As mentioned in Section 5.2.3, the unified subtyping rule of function types is partially contravariant in the sense that bounds of function types are identical, which follows the treatment of universal types in the Kernel Fun variant [Cardelli and Wegner 1985] of System F_{\leqslant}. An alternative is to follow the full System F_{\leqslant}that allows bounds to be contravariant:

$$
\begin{gathered}
\Gamma \vdash A^{\prime} \leqslant A: \star \quad \Gamma \vdash e^{\prime} \leqslant e: A \quad \Gamma, x \leqslant e^{\prime}: A^{\prime} \vdash B \leqslant B^{\prime}: \star \\
\Gamma \vdash e: A \quad \Gamma \vdash e^{\prime}: A^{\prime} \quad \Gamma \vdash A: \star \quad \Gamma, x \leqslant e: A \vdash B: \star \\
\Gamma \vdash(\Pi x \leqslant e: A . B) \leqslant\left(\Pi x \leqslant e^{\prime}: A^{\prime} . B^{\prime}\right): \star
\end{gathered}
$$

We formulated an alternative system with such full contravariant rule and proved all lemmas in Section 5.3 still hold. The corresponding Coq formalization can be found with the companion materials of this thesis available online (See Section 1.5). However, full System F_{\leqslant}is proved to be
undecidable [Pierce 1992]. With contravariance of bounds, λI_{\leqslant}using rule S-ProdF can subsume full System F_{\leqslant}, rendering the system undecidable. Though we have not proved the decidability of λI_{\leqslant}yet, we adopt the Kernel-Fun rule in λI_{\leqslant}and can at least rule out the undecidability caused by the full contravariance.

Iso-Types with Strong Dependent Sums

In this chapter, we present the λI_{Σ} calculus. The motivation of proposing λI_{Σ} is to model OOP structures with abstract type members using dependent types and strong dependent sums. The λI_{Σ} calculus is a variant of λI_{\leqslant}and enables the combination of strong sums and dependent types. It is based on the ideas of iso-types and unified subtyping. λI_{Σ} employs the PTS-style unified syntax and contains the single sort \star and the "type-in-type" axiom as in λI_{\leqslant}. Moreover, λI_{Σ} supports impredicative polymorphism with strong sums, which usually cannot be supported simultaneously by previous work [Harper and Mitchell 1993; Stump 2017; Bowman et al. 2017]. Impredicativity and strong sums together lead to logical inconsistency [Coquand 1986; Hook and Howe 1986] and breaks strong normalization. Moreover, some dependently typed calculi with subtyping, such as λP_{\leqslant}[Aspinall and Compagnoni 1996] and $\lambda \Pi_{\leqslant}$[Chen 1998], rely on strong normalization to prove many desirable properties, such as transitivity and subject reduction, which will be lost if both impredicativity and strong sums are allowed. In contrast λI_{Σ} uses the iso-type approach that decouples proofs from strong normalization. It enjoys the same desirable properties as λI_{\leqslant}, e.g., transitivity of subtyping and type-safety, which can be proved in the absence of strong normalization.

Iso-types are used in λI_{Σ} to type destructors of strong sums. We call this form of strong sums iso-strong sums. Unlike the call-by-name casts in λI_{\leqslant}, call-by-value casts are used in λI_{Σ} for type conversions of strong sums. The typing results of strong destructors (i.e. the second projection and strong opening) are intermediate type-level applications instead of standard direct substitutions. This makes it possible to solely use call-by-value casts for the required type-level computation instead of full casts. Using call-by-value casts also makes it easy to combine unified subtyping and avoids the complex metatheory of full casts.

Notice that for simplicity reasons, several features are dropped in λI_{Σ} so as to focus on the development of dependent sums, such as generalized top type and bounded quantification. Nevertheless, λI_{Σ} is still expressive enough to encode Scala-like type members and traits. Finally, for demonstration purposes, we create a lightweight surface language $\mathbf{S i g}$ built on top of λI_{Σ}. Sig supports Scala-like type members, path-dependent types and traits by a type-directed elaboration that produces type-sound λI_{Σ} terms.

Table 6.1. Properties of dependently typed calculi with beta equality

Features	Example Calculi	Properties
$\Pi+$ Impredicativity	λC	Subject Reduction does not depend on Strong Nor- malization.
$\Pi+\Sigma+$ Impredicativity	λC with strong sums	No Strong Normalization or Logical Consistency, but Subject Reduction holds.
$\Pi+$ Subtyping	λP_{\leqslant}and $\lambda \Pi_{\leqslant}$	Transitivity \& Subject Reduction depend on Strong $\Pi+\Sigma+$ Subtyping+
No known calculus	Normalization. Strong Normalization, Transitivity \& Subject Reduction may not hold.	
Impredicativity		

6.1 Overview

In this section, we informally present features of λI_{Σ}. The motivation of developing the λI_{Σ} calculus is to support various features of strong dependent sums, which are useful to model many language constructs, including type members and traits in Scala [Odersky et al. 2004], as well as various features of module systems in ML [MacQueen 1986]. However, it is non-trivial to combine strong sums, dependent types and subtyping in a single system. We briefly discuss such problem and present our solution in λI_{Σ}, i.e. iso-strong sums that utilize call-by-value casts without the need of full casts. We show how to encode modular structures with strong sums by examples written in Sig, a lightweight surface language built on top of λI_{Σ}. The formal presentation of λI_{Σ} and Sig will be in Sections 6.2 and 6.4, respectively.

6.1.1 The Trouble with Impredicativity and Strong Sums

Strong sum types (Sigma-types) bring extra expressiveness over dependent function types (Pitypes). However, it is non-trivial to combine strong sums with dependent type systems and keep desirable properties. For example, the calculus of constructions (λC) with strong sums is logically inconsistent [Coquand 1986; Hook and Howe 1986], since the inclusion of strong sums leads to the subsumption of the "type-in-type" axiom. The subsumption of "type-in-type" is enabled by the combination of strong sums and impredicativity. A system is impredicative if it contains an impredicative sort s where certain types of sort s have quantifiers of the sort s itself [Adams 2008]. For example, the sort \star in λC is an impredicative sort since $\Pi x: \star . x$ has type \star. As a result, strong normalization does not hold in such system and some other properties may also be lost, e.g., the decidability of type checking, which is entangled with the normalization property in λC (also other PTS) [van Benthem Jutting 1993].

The Problem of Adding Subtyping. Subtyping is a desirable language feature to support, which is crucial for modeling parametric polymorphism in OOP or information hiding in ML modules [Dreyer 2005; Leroy 1994]. However, combining subtyping and dependent types is already difficult (see Section 5.1.2), resulting in a more complex metatheory. In certain calculi that support both dependent types and subtyping, several important metatheory results depend on strong normalization. For example, in λP_{\leqslant}[Aspinall and Compagnoni 1996] and $\lambda \Pi_{\leqslant}$[Castagna and Chen 2001; Chen 1998], both subject reduction and transitivity of subtyping rely on strong normalization. In contrast, λC and also PTS do not require strong normalization to prove subject reduction. We summarize the properties of previously mentioned calculi in Table 6.1 where Π
stands for dependent function types and Σ stands for strong sum types. The situation becomes more complex when further considering to combine subtyping and strong sums. If we add strong sums to calculi such as λP_{\leqslant}and $\lambda \Pi_{\leqslant}$, allowing impredicativity will break strong normalization and eventually break subject reduction and transitivity, as indicated by the last row of Table 6.1. Thus, it becomes rather difficult to simultaneously allow impredicativity, subtyping and strong sums and keep all desirable properties in such calculi.

Previous Solution: Abandoning Impredicativity. One approach to supporting strong sums without breaking logical consistency and strong normalization is to abandon impredicativity. For example, Harper and Mitchell [1993] proposed XML, an extension of Standard ML with strong sums, which supports only predicative polymorphism by stratifying types into different universes. Dropping impredicativity is reasonable in the context of an ML-like language, since predicativity is crucial for other language features, e.g., let-polymorphism and type inference. However, such restriction still significantly limits the expressiveness of the language, making it unable to fully subsume System F or F_{\leqslant}which both supports impredicative polymorphism.

6.1.2 Iso-Strong Sums: Typing Strong Sums with Iso-Types

Unlike the previous work, λI_{Σ} features iso-strong sums, which employs the iso-type approach and uses explicit call-by-value cast operators for type-level computation with strong sums. By using iso-types, the metatheory proofs are decoupled from strong normalization (see Sections 3.1.3 and 5.1.4). In λI_{Σ}, we can prove transitivity of (unified) subtyping and subject reduction without requiring normalization (see Section 6.3). Thus, impredicative polymorphism, (iso-type style) strong sums and (unified) subtyping can coexist in λI_{Σ} without breaking desirable properties. In the rest of this subsection, we show how iso-strong sums are typed in λI_{Σ} through call-by-value casts.

Standard Typing of Second Projection. The typing of strong dependent sums involves typelevel computation. Specifically, the type of the second projection of a term depends on its first projection. It is the key complication over weak sums which do not support second projection but only weak existential opening. Given a term e that has a Sigma-type, the standard typing of its second projection $e .2$ is shown as follows:

$$
\frac{\Gamma \vdash e: \Sigma x: A . B}{\Gamma \vdash e .2: B[x \mapsto e .1]}
$$

where the type of $e .2$ is a substitution and depends on $e .1$. Consider an expression e which is exactly a dependent sum, i.e.,

$$
\begin{aligned}
& e=\left\langle e_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle \\
& e_{1} \quad: A \\
& e_{2} \quad: B\left[x \mapsto e_{1}\right]
\end{aligned}
$$

where the type of the second component depends on the first. Noting that the first projection e. 1 can be reduced to the first component e_{1}, we need type-level computation to convert $e .1$ into e_{1} :

$$
\begin{aligned}
& \left\langle e_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .1 \hookrightarrow e_{1} \\
& e .2: B\left[x \mapsto\left\langle e_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .1\right] \\
& e .2 \quad: B\left[x \mapsto e_{1}\right]
\end{aligned}
$$

After conversion, the type of $e .2$ matches the type of e_{2} and the reduction $\left\langle e_{1}, e_{2}\right.$ as Σx : A. $B\rangle .2 \hookrightarrow e_{2}$ preserves the type.

Second Projections and Alpha Equality. In λI_{Σ}, there is no implicit type conversion and we need to add cast operators explicitly for such conversion:

$$
\begin{array}{ll}
e .2 & : B\left[x \mapsto\left\langle e_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .1\right] \\
\operatorname{cast}_{\Downarrow}(e .2) & : B\left[x \mapsto e_{1}\right]
\end{array}
$$

The full cast ${ }_{\Downarrow}$ operator ${ }^{1}$ from the full PITS (see Section 4.3) is required here, which utilizes parallel reduction. The call-by-name/value reduction is not congruent and not strong enough to convert such types inside the substitution. For example, consider $e=\langle$ Int, ($\lambda y:$ Int. $y)$ as $\Sigma x: \star$. $(x \rightarrow$ $x)\rangle$. Then we have $e .1 \hookrightarrow$ Int and

$$
\begin{array}{ll}
e & : \Sigma x: \star .(x \rightarrow x) \\
e .2 & :(e .1) \rightarrow(e .1) \\
\text { cast }_{\Downarrow}(e .2) & : \text { Int } \rightarrow \text { Int }
\end{array}
$$

Notice that the type of $e .2$ is a Pi-type (i.e. $\Pi y:(e .1) .(e .1))$ which is not reducible by call-by-name/value reduction. However, as discussed in Section 4.3, using full casts significantly complicates the metatheory and makes it difficult to support subtyping. With full casts, one relies on a separate system that erases all casts for proving type soundness. The technique of unified subtyping that uses iso-types does not apply in such erased system, making it hard to prove relevant properties, such as transitivity and subject reduction. We still prefer call-by-name/value reduction for explicit casts, which is compatible with the existing method of unified subtyping.

Typing Second Projection with CBV Casts. Alternatively to full casts, we can slightly weaken the type of second projection and make it convertible with call-by-value casts. The approach is to "take one step back" by changing the type substitution back into an application form as follows ${ }^{2}$:

$$
\frac{\Gamma \vdash e: \Sigma x: A . B}{\vdash e .2:(\lambda x: A . B)(e .1)}
$$

The original standard type " $B[x \mapsto e .1]$ " can be imagined as a reduced term of the current type. The new typing result of $e .2$ can be seen as an intermediate step where $e .1$ is not yet substituted into B and remains as an argument. Thus, we can use call-by-value reduction to further reduce e. 1

[^5]until it becomes a value. For example, suppose that e is a dependent sum whose first component is a value:
\[

$$
\begin{aligned}
& e=\left\langle v_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle \\
& e .2 \quad:(\lambda x: A . B)\left(\left\langle v_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .1\right)
\end{aligned}
$$
\]

Note that a dependent sum is already a value. We can use two consecutive call-by-value cast ${ }_{\downarrow}$ operators to obtain the desired type:

$$
\begin{array}{ll}
e .2 & :(\lambda x: A . B)\left(\left\langle v_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .1\right) \\
\operatorname{cast}_{\downarrow}(e .2) & :(\lambda x: A . B) v_{1} \\
\operatorname{cast}_{\downarrow}^{2}(e .2) & : B\left[x \mapsto v_{1}\right]
\end{array}
$$

Specifically, we use one cast for reducing the first projection and the other cast for beta reduction, i.e.,

$$
\begin{array}{lll}
\left\langle v_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .1 & \hookrightarrow & v_{1} \\
(\lambda x: A . B) v_{1} & \hookrightarrow & B\left[x \mapsto v_{1}\right]
\end{array}
$$

The type of cast ${ }_{\downarrow}^{2}(e .2)$ matches the type of e_{2}. In the reduction rule for $\left\langle v_{1}, e_{2}\right.$ as $\left.\Sigma x: A . B\right\rangle .2$, we need to correspondingly add two extra cast ${ }_{\uparrow}$ operators for the reduced term needs to balance the type:

$$
\left\langle e_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .2 \hookrightarrow \operatorname{cast}_{\uparrow}^{2} e_{2}
$$

Then the whole reduction process preserves the types:

$$
\operatorname{cast}_{\downarrow}^{2}\left(\left\langle v_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle .2\right) \hookrightarrow \operatorname{cast}_{\downarrow}^{2}\left(\operatorname{cast}_{\uparrow}^{2} e_{2}\right) \hookrightarrow \ldots \hookrightarrow e_{2}
$$

Thus by weakening the substitution form into a type-level application, we can now convert the type of second projection using non-congruent call-by-value reduction without the need of full parallel reduction. The trade-off is that we need more type conversion steps with CBV cast than full casts, e.g., two call-by-value cast ${ }_{\downarrow}$ operators but only one cast ${ }_{\Downarrow}$ in the example above. Nevertheless, CBV casts are still able to perform necessary type conversions for strong sums. Also, subtyping in λI_{Σ} can be supported by applying the technique of unified subtyping which is compatible with CBV casts.

6.1.3 Example: Type Members and Traits

In Sections 1.3.3 and 2.2.3, we showed that Scala-like traits with type members can be encoded using dependent sums. Recall the example of an abstract integer set trait. We can write the same example in $\mathbf{S i g}$, a simple surface language over λI_{Σ}, as follows:

```
Set = trait {
    type T: Type;
    val empty: T;
    val member: Int -> T -> Bool;
    val insert: Int -> T -> T;
}
```

We use monospaced font for Sig programs. We can translate Set to a Sigma-type in λI_{Σ} (assuming that we have records and primitive types such as integers and booleans):

$$
\text { Set }=\Sigma T: \star .\{
$$

```
    empty:T,
    member: Int }->T->\mathrm{ Bool,
    insert: Int }->T->T
}
```

The type member T corresponds to the type binder of the Sigma-type. The methods of the trait are encoded as record members of the record type: empty returns an empty set; member checks if an element is in the set; and insert adds an element into the set. We can also write the generic function f from Section 2.2.3 in Sig:

```
f = \lambda(s:Set) => s.member 3 (s.insert 3 s.empty)
```

which is encoded in λI_{Σ} by the open operator, a stronger version of the unpack operator of weak sums:

$$
f=\lambda s: \text { Set. open } s \text { as }\left\langle T, s^{\prime}\right\rangle \text { in } s^{\prime} . \text { member } 3\left(s^{\prime} . \text { insert } 3 s^{\prime} . \text { empty }\right)
$$

Limitations of Weak Sums. The examples by far can be encoded using only weak sums. However, weak sums are not sufficient to encode all type member features in Scala, such as path-dependent types. The function f is encodable by weak sums because the type of the whole function body is Bool and does not contain the abstract type member T. Recall the same function g from Section 2.2.3, a simple function that returns an empty set:

$$
\mathrm{g}=\lambda(\mathrm{s}: \text { Set })=>\text { s.empty }
$$

Note that the type of the function body now refers to the abstract type member. In Scala, the type of s.empty is s.T, which is a path-dependent type. We cannot translate s.empty with weak sums, such as "unpack s as $\left[T, s^{\prime}\right]$ in s^{\prime}.empty", because s^{\prime}.empty has type T which is out of the scope of the unpack-term.

Encoding with Iso-Strong Sums. In λI_{Σ}, we can encode g with open:

$$
g=\lambda s: \text { Set. open } s \text { as }\left\langle T, s^{\prime}\right\rangle \text { in } s^{\prime} . \text { empty }
$$

Unlike unpack, the open operator permits the body to refer to the abstract type member T. In λI_{Σ}, the type of g is as follows:

$$
g: \Pi s: \operatorname{Set} .(\lambda T: \star . T)(s .1)
$$

where $s .1$ is the projection of the first component of s. Similarly to the treatment of typing second projection (see Section 6.1.2), the type of strong open is a type-level application: $(\lambda T: \star . T)(s .1)$. Essentially, we know that the type of the open-term should be the same as the actual type member of s, i.e. $s .1$, the first component of s. But s is abstract and we do not know what the actual type member is yet. The type-level application can be viewed as an intermediate step, which is waiting for the actual implementation of s. Once s is given, we can continue the type-level computation with explicit casts to obtain the final type. Consider s is instantiated by ListSet, a set implementation using a list. We borrow the syntax of Haskell's list type and functions in the following Sig pseudo-code:

```
ListSet = obj {
    type T = [Int];
    val empty = [];
    val member = elem;
    val insert = (:);
}
```

which is translated to a dependent sum in λI_{Σ} :

$$
\text { ListSet }=\langle[\text { Int }],\{\text { empty }=[], \text { member }=\text { elem, insert }=(:)\} \text { as Set }\rangle
$$

Two components of the dependent sum are wrapped by angle brackets and separated by a comma. The type annotation Set is put after the keyword as. Then the first projection of ListSet is its first component [Int], i.e., ListSet. $1 \hookrightarrow$ [Int]. We can eliminate the type-level application as follows:

$$
\begin{array}{ll}
g \text { ListSet } & :(\lambda T: \star . T)(\text { ListSet. } 1) \\
\operatorname{cast}_{\downarrow}(g \text { ListSet }):(\lambda T: \star . T)[\text { Int }] \\
\text { cast }_{\downarrow}^{2}(g \text { ListSet }):[\text { Int }]
\end{array}
$$

which needs two consecutive cast ${ }_{\downarrow}$ operators to obtain the target type: one for reducing the first projection, and the other one for reducing the application.

We emphasize three points from the translation of g :

- First, the encoding of g relies on the exclusive features of strong sums in λI_{Σ}, thus cannot be encoded with weak sums in λI_{\leqslant}.
- Second, the reduction relation used in cast ${ }_{\downarrow}$ is call-by-value, which reduces the argument into a value before beta-reduction. Using call-by-value casts is more appropriate here because call-by-name reduction cannot reduce the argument and does not meet the purpose. The full cast with parallel reduction is over powerful and complicates the metatheory (see Section 4.3), which makes it difficult to combine with other features, such as subtyping.
- Third, we use a strong open operator here instead of the second projection (see Section 2.2.3) due to the typing of iso-strong sums. Otherwise, the typing result of the second projection of a iso-strong sum is a type-level application but not directly a record type. This forbids us to do further record projection to obtain the field empty. We will later discuss this issue in Section 6.2.3.

6.1.4 ML Module Systems and Strong Sums

The ML family of languages, such as Standard ML [Milner et al. 1990] and OCaml [Leroy et al. 2018], usually contains an advanced module system. The basic constructs are signatures, structures and functors. A structure is a module that consists of types and values. A signature is the type of a structure, containing the specification for each component of the structure. A functor is a function from structures to structures. Many languages have similar constructs to ML modules. For example in Scala (also Sig), traits correspond to signatures and objects correspond to structures. The Sig examples in Section 6.1.3, i.e., Set trait and ListSet object, can be easily adapted to constructs of the module system in OCaml:

```
module type Set = sig
    type t
    val empty: t
    val member: int -> t -> bool
    val insert: int -> t -> t
end
```

Functions of objects correspond to functors. For example, the function g can be modeled as a functor G that takes a Set parameter and returns a new structure wrapping the actual function g :

```
module G(S:Set) = struct
    let g = S.empty
end
```

The function application g ListSet can be simulated by a functor application G (ListSet) :

```
let module M = G(ListSet) in M.g
```

First-class Modules. In a certain sense, we can treat Sig as a very simple ML-like module system, though many features are missing in Sig, such as transparent types [Lillibridge 1997; Leroy 1994; Harper and Lillibridge 1994; Harper and Mitchell 1993]. It is not a coincidence since ML modules can also be modeled by strong dependent sums [MacQueen 1986]. Specifically, "modules" (objects indeed) are first-class values in Sig. Usually, ML modules are second-class and separated from terms and types. The core language of ML cannot freely manipulate modules, e.g., choosing modules at run-time:

```
module FastSet = if size > 20 then HashSet else ListSet
```

In Sig, there is no such restriction and modules/objects can be even more expressive due to dependent types. It is possible to define a trait such that the type of trait members can depend on values, for example:

```
BitMap = trait {
    type Dim: {m:Int, n:Int};
    val pixels: Array<Dim.m, Dim.n>;
}
```

The dimension type Dim is a record with two integers, which represents maximum rows and columns of a bitmap. The member pixels is a two-dimensional bit array that stores the data. The array type is a dependent type: it depends on the numbers m and n given by Dim. The BitMap trait encapsulates the information of dimensions. All BitMap objects have the same type, even if their dimensions are different. This makes it easier to define generic functions on the trait than the dependently-typed array type, i.e., Array<m, $n>$, since arrays have different types if their dimensions are not the same.

6.2 The λI_{Σ} Calculus

In this section, we formally introduce the λI_{Σ} calculus, a variant to λI_{\leqslant}with iso-strong sums. λI_{Σ} keeps core features of λI_{\leqslant}, including iso-types, unified syntax and unified subtyping. To focus on the support of dependent sums and simplify the metatheory, several features are dropped, such as bounded quantification and generalized top type. λI_{Σ} also features a call-by-value semantics
for type casts, which enables the typing of second projection on dependent sums. The value restriction is employed similarly to call-by-value PITS. We present the syntax, dynamic and static semantics of λI_{Σ} in the rest of this section.

6.2.1 Syntax

The syntax of λI_{Σ} is shown in Figure 6.1. Similarly to λI_{\leqslant}, there is no distinction between terms and types. The novelties over λI_{\leqslant}are language constructs for dependent sums. We follow the similar convention that metavariables are lowercase for terms and uppercase for types.

Dependent Sums. The dependent sum type, i.e., Sigma-type, is denoted by $\Sigma x: A . B$. Dependent sums are denoted by $\left\langle e_{1}, e_{2}\right.$ as $\Sigma x: A$. $\left.B\right\rangle$ with the dependent sum type annotated after the as keyword. The type annotation is provided to simplify typing and reduction rules. As mentioned in Section 5.1.5, only weak dependent sums can be encoded. To obtain native support for strong dependent sums, we treat both constructs as primitives in λI_{Σ}.

Projection and Opening. $\quad \lambda I_{\Sigma}$ supports two kinds of operations on dependent sums: projection and opening. Dependent sum types can be seen as a generalization to both product type $A \times B$ and existential type $\exists x . B$. The projection operator follows the dot syntax commonly used for pairs. The first (second) projection $e .1$ (e.2) extracts the first (second) component of the dependent sum e. The unrestricted second projection $e .2$ can only be supported with strong dependent sums. The opening expression open e_{1} as $\langle x, y\rangle$ in e_{2} follows the semantics of existential opening, which is similar to a pattern-matching binding. Expression e_{1} is destructed into first and second components, which are bound to pattern variables x and y, respectively. The pattern variables can be used in another expression e_{2}. The opening operation is strong in the sense that x can show in the type of e_{2}, which is prohibited by the scoping restriction of weak existential opening. Both projection and opening are destructors of dependent sums and their usage may overlap. For example, we will show the second projection can actually be expressed by strong opening (see Section 6.2.3). We keep an individual form of the second projection for better presenting the system. However, we cannot leave out the form of the first projection, which is used in the typing result of second projection and opening (see Figure 6.3).

Other Changes to λI_{\leqslant}. There are several simplifications in λI_{Σ} for focusing on discussion of dependent sums. We drop bounded quantification, which is an orthogonal feature to dependent sums. This significantly simplifies the syntax since the binder does not need to contain subtyping constraints. The definition of the context Γ only contains type bindings $x: A$. Without the demand to unify two forms of binders in λI_{\leqslant}(i.e. $\lambda x: A . e$ and $\lambda x \leqslant e^{\prime}: A . e$), we also drop the generalized top type that allows \top to have any type. In $\lambda I_{\Sigma}, \top$ is only a type and has kind \star. The ordinary top type also makes type-safety proofs easier (see Section 6.3.3). Finally, we drop the annotation in the cast ${ }_{\uparrow}$ operator for simplifying reduction rules (see Section 6.2.2). Though type checking an unannotated $\operatorname{cast}_{\uparrow}$ expression is not algorithmic, the unified subtyping judgment is declarative anyway due to the subsumption rule (see Section 6.2.3).

Expressions	e, A, B	$\begin{aligned} & ::= \\ & \mid \\ & \mid \\ & \mid \end{aligned}$	$\begin{aligned} & x\|\star\| \top\left\|e_{1} e_{2}\right\| \text { cast }_{\uparrow} e \mid \text { cast }_{\downarrow} e \\ & \lambda x: A . e \mid \Pi x: A . B \\ & \Sigma x: A . B \mid\left\langle e_{1}, e_{2} \text { as } \Sigma x: A . B\right\rangle \\ & e .1\|e .2\| \text { open } e_{1} \text { as }\langle x, y\rangle \text { in } e_{2} \end{aligned}$
Contexts	Γ	::=	$\varnothing \mid \Gamma, x: A$
Values	v	$\begin{gathered} ::= \\ \mid \end{gathered}$	$\begin{aligned} & \star\|x\| \top\|\lambda x: A . e\| \Pi x: A . B \\ & \text { cast }_{\uparrow} e\|\Sigma x: A . B\|\langle v, e \text { as } \Sigma x: A . B\rangle \end{aligned}$
Syntactic Sugar	$A \rightarrow B$	\triangleq	$\Pi x: A . B \quad$ where $x \notin \mathrm{FV}(B)$

Figure 6.1. Syntax of λI_{Σ}

Figure 6.2. Operational semantics of λI_{Σ}

6.2.2 Dynamic Semantics

The reduction relation \hookrightarrow is shown in Figure 6.2. Similarly to $\lambda I_{\leqslant}, \hookrightarrow$ is used for both type conversion in casts and term evaluation. The difference is that \hookrightarrow in λI_{Σ} is partially call-by-value, which is mostly call-by-value along with several call-by-name rules. The reduction rules related to function applications are rightmost call-by-value, also called right-to-left call-by-value [Leroy 1990]. RP-Beta requires the argument to be a value. Arguments are reduced first in RP-AppR and functions can be further reduced in RP-AppL when arguments are values. Note that we use the metavariable v to range over values. The syntax of values is defined in Figure 6.1. As in call-by-value PITS, variables are values, which enables reduction with open terms (see Section 4.2.2).

Other reduction rules related to casts and dependent sums are call-by-name, which do not reduce sub-terms to values as in λI_{\leqslant}. RP-ProJ1 only accepts a dependent sum that is a value where its first component is a value. RP-Fst reduces sub-terms of first projections but there is no such rule for second projections. This is due to a value restriction [Swamy et al. 2011; Sjöberg et al. 2012]: we only treat $\langle v, e$ as $\Sigma x: A . B\rangle$ and $v .2$ as well-typed terms. RP-Proj 2 and RP-Open both add two consecutive cast \uparrow_{\uparrow} operators (also written as cast $_{\uparrow}{ }^{2}$) in reduced terms to preserve types. We will discuss value restriction and typing related issues later in Section 6.2.3.

The major reason of using the non-standard partially call-by-value semantics is to ensure type-safety, especially the subtype preservation lemma (see Lemma 6.3.9). Using the rightmost
style of call-by-value semantics is not a necessity but simplifies the proof for subtype preservation. The common leftmost/left-to-right call-by-value semantics can also be used in λI_{Σ} but at the expense of more complex proofs and incompatibility with other language features such as bounded quantification. Moreover, there are other useful applications of the rightmost variant, e.g., for an efficient implementation of multiple application in ML [Leroy 1990]. We will discuss these issues later in Section 6.3.3.

6.2.3 Static Semantics

Figure 6.3 shows the static semantics of λI_{Σ}, i.e., unified subtyping $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and context well-formedness $\vdash \Gamma$. Similarly to λI_{\leqslant}, unified subtyping is a single judgment that combines both typing and subtyping. The typing judgment $\Gamma \vdash e: A$ is syntactic sugar for $\Gamma \vdash e \leqslant e: A$. The context well-formedness judgment $\vdash \Gamma$ ensures every newly added type binding $x: A$ is fresh and A is a well-formed type. Note that there is no bounded quantification in λI_{Σ} and only type binding is supported in Γ. For the unified subtyping judgment, we focus on the discussion of new rules about dependent sums and other differences to λI_{\leqslant}, e.g., value restriction.

Variables and Top Types. As bounded quantification is not supported in λI_{Σ}, assumptions about subtyping cannot be added into the context. Thus, there is no subtyping of variables as indicated by SP-VAR, i.e., the subtype of a variable is itself. As mentioned in Section 6.2.1, top types in λI_{Σ} are now just ordinary types with kind \star as in SP-Top and SP-TopRefl. The simplification of rules for variables and top types also eases the metatheory proof, as discussed in Section 6.3.1.

Value Restriction. Unlike the call-by-name semantics of λI_{\leqslant}, we use a (partially) call-by-value semantics in λI_{Σ} and employ value restriction as in call-by-value PITS to ensure type preservation in a simple way (see Section 4.2.1). There are two rules for function applications, SP-App for non-dependent ones and SP-AppV for dependent ones. Dependent functions can only be applied to value arguments, while there is no restriction for non-dependent functions. Also, variables are treated as values (see Figure 6.1) as in call-by-value PITS, which enables reduction of open terms (e.g. $(\lambda x:$ Int. $x) y$) in call-by-value semantics. As a result, when doing substitutions, substitutes must be values in order to maintain the computational behavior of variables.

Dependent Sums. SP-Sigma checks the well-formedness of dependent sum types (i.e. Sigmatypes). The binder x can show in the body B_{1} or B_{2}. Like rule SP-Abs for subtyping functions, we limit the subtyping of Sigma-types to be pointwise, which requires the types of binders to be identical. This is different from subtyping Pi-types in rule SP-Prod, where the argument types are contravariant.

SP-PAIR defines the constructor of dependent sums, which also uses pointwise subtyping that fixes the first component. A dependent sum allows the first component (v) to show in the type of the second component (e_{1} and e_{2}). The type of the second component is a substitution $B[x \mapsto v]$ and the substitute v, i.e., the first component, must be a value since variables are values (see Figure 6.1).

Projections. SP-Fst and SP-SND are the rules for first and second projection, respectively. Allowing the typing of second projection indicates dependent sums in λI_{Σ} are strong. In rule SPSND, we follow the design of pointwise subtyping and disable the subtyping of second projection
$\Gamma \vdash e_{1} \leqslant e_{2}: A \quad$ (Unified Subtyping)

$$
\frac{\stackrel{\text { SP-VAR }}{\vdash \Gamma} \quad x: A \in \Gamma}{\Gamma \vdash x \leqslant x: A}
$$

SP-ABS
$\Gamma \vdash A: \star$
$\frac{\Gamma, x: A \vdash e_{1} \leqslant e_{2}: B \quad \Gamma, x: A \vdash B: \star}{\Gamma \vdash\left(\lambda x: A . e_{1}\right) \leqslant\left(\lambda x: A . e_{2}\right): \Pi x: A . B}$
SP-App

$$
\Gamma \vdash e_{1} \leqslant e_{2}: A \rightarrow B
$$

$$
\frac{\Gamma \vdash e_{3}: A \quad \Gamma \vdash B: \star}{\Gamma \vdash e_{1} e_{3} \leqslant e_{2} e_{3}: B}
$$

$\Gamma \vdash A_{2} \leqslant A_{1}: \star$
$\frac{\Gamma, x: A_{1} \vdash B_{1}: \star \quad \Gamma, x: A_{2} \vdash B_{1} \leqslant B_{2}: \star}{\Gamma \vdash\left(\Pi x: A_{1} . B_{1}\right) \leqslant\left(\Pi x: A_{2} . B_{2}\right): \star}$
$\frac{\Gamma \vdash e_{1} \leqslant e_{2}: A \quad A \hookrightarrow B}{\Gamma \vdash \operatorname{cast}_{\downarrow} e_{1} \leqslant \operatorname{cast}_{\downarrow} e_{2}: B}$
$\Gamma \vdash v: A \quad \Gamma \vdash e_{1} \leqslant e_{2}: B[x \mapsto v]$
$\frac{\stackrel{\text { SP-SIGMA }}{\Gamma \vdash A: \star} \quad \Gamma, x: A \vdash B_{1} \leqslant B_{2}: \star}{\Gamma \vdash\left(\Sigma x: A . B_{1}\right) \leqslant\left(\Sigma x: A . B_{2}\right): \star}$

$$
\begin{aligned}
& \text { SP-FsT } \\
& \Gamma \vdash e_{1} \leqslant e_{2}: \Sigma x: A . B \\
& \Gamma \vdash e_{1} .1 \leqslant e_{2} .1: A
\end{aligned}
$$

SP-Open
$\Gamma \vdash v: \Sigma x: A . B$
$\Gamma, x: A, y: B \vdash e: C \quad \Gamma \vdash A: \star$
$\Gamma, x: A \vdash B: \star \quad \Gamma, x: A \vdash C: \star$
$\overline{\Gamma \vdash \text { open } v \text { as }\langle x, y\rangle \text { in } e \leqslant \text { open } v \text { as }\langle x, y\rangle \text { in } e:(\lambda x: A . C)(v .1)}$
SP-Sub
$\frac{\Gamma \vdash e_{1} \leqslant e_{2}: A \quad \Gamma \vdash A \leqslant B: \star}{\Gamma \vdash e_{1} \leqslant e_{2}: B}$
(Well-formedness)

$$
\begin{array}{ll}
\text { WP-NiL } & \frac{\begin{array}{l}
\text { WP-Cons } \\
\vdash \vdash \\
\vdash \varnothing
\end{array}}{\vdash \Gamma, \star} \quad x \text { fresh in } \Gamma \\
\vdash \Gamma, x: A
\end{array}
$$

Syntactic Sugar $\Gamma \vdash e: A \triangleq \Gamma \vdash e \leqslant e: A$

Figure 6.3. Static semantics of λI_{Σ}
by requiring both sides of the relation to be the same. We also employ value restriction and require the dependent sum to be a value. The reason is similar to rule $\mathrm{SP}-\mathrm{AppV}$. The typing result of SP-SND is dependent on the form of input terms. Pointwise subtyping simplifies the rule definition (see Section 5.2.3). Restricting input terms as values forbids the reduction of sub-terms in second projection, which ensures type preservation (see Section 4.2.1).

Assume that we drop the value restriction for typing second projections and allow reducing
the sub-terms of second projections as follows:

$$
\frac{e \hookrightarrow e^{\prime}}{e .2 \hookrightarrow e^{\prime} .2}
$$

Then $e .2$ and $e^{\prime} .2$ have different types due to lack of beta-equivalence, since their types contain e and e^{\prime}, respectively, which breaks type preservation.

Iso-strong sums use a different typing rule for the second projection. The typing of second projection is different from the standard definition:

$$
\frac{\Gamma \vdash v: \Sigma x: A . B}{\Gamma \vdash v .2: B[x \mapsto v .1]}
$$

where the typing result is a substitution $B[x \mapsto v .1]$. As mentioned in Section 6.1.2, in order to avoid the use of full casts with parallel reduction, we do not use the standard typing rule above that involves direct type substitution. In SP-SND, the typing result is a type-level application, i.e., $(\lambda x: A . B)(v .1)$. Note that the typing result is well-formed since $\lambda x: A . B$ is a nondependent function where B has type \star with no x. The type-level application can be viewed as an intermediate step before substitution. We can use explicit type casts to obtain the final substituted type. For example, consider v is a dependent sum $v=\left\langle v^{\prime}, e^{\prime}\right.$ as $\left.\Sigma x: A . B\right\rangle$. Notice that the following reduction steps hold:

$$
\begin{array}{rll}
\left\langle v^{\prime}, e^{\prime} \text { as } \Sigma x: A . B\right\rangle .1 & \hookrightarrow & v^{\prime} \\
(\lambda x: A . B) v^{\prime} & \hookrightarrow & B\left[x \mapsto v^{\prime}\right]
\end{array}
$$

We can add two consecutive cast ${ }_{\downarrow}$ operators to obtain the substituted type:

$$
\begin{aligned}
v .2 & :(\lambda x: A . B)\left(\left\langle v^{\prime}, e^{\prime} \text { as } \Sigma x: A . B\right\rangle .1\right) \\
\text { cast }_{\downarrow}^{2} v .2 & : B\left[x \mapsto v^{\prime}\right]
\end{aligned}
$$

The type of cast ${ }_{\downarrow}{ }^{2}$ v. 2 follows the premise in SP-Pair for typing second component. Recall that the reduction rule for second projection, i.e., RP-Proj 2 , adds two cast \uparrow s, which exactly balance the manually added two cast ${ }_{\downarrow}$ s:

$$
\begin{aligned}
& v .2 \hookrightarrow \\
& \operatorname{cast}_{\uparrow}^{2} v^{\prime} \\
& \operatorname{cast}_{\downarrow}^{2} v .2 \hookrightarrow \\
& \operatorname{cast}_{\downarrow}^{2}\left(\operatorname{cast}_{\uparrow}^{2} v^{\prime}\right) \hookrightarrow v^{\prime}
\end{aligned}
$$

Thus, we can achieve type-preserving reduction for the second projection through explicit casts.

Openings. SP-Open is the rule for the opening operation, an alternative to projection for destructing a dependent sum. It has the same restrictions as SP-SND: value restriction and no subtyping. The typing result is also similar, which adopts the approach of iso-strong sums and is a type-level application. Two pattern variables x and y correspond to the first and second component of a dependent $\operatorname{sum} v$, respectively. The inner term e is typed as C against pattern variables with typing $x: A$ and $y: B$. Note that we only allow x to show in C but not y, which is checked by the last premise. Such restriction ensures the typing result, i.e., $(\lambda x: A . C)(v .1)$, will not be out of scope. Despite of such restriction, the opening operation is still more expressive
than the ordinary existential opening that even does not allow x to show in C. Opening operation can be seen as a generalization of second projection:

$$
v .2=\text { open } v \text { as }\langle x, y\rangle \text { in } y
$$

where both sides have the same typing result. Opening allows directly using the type of the second component as a pattern variable y inside e, while the type of second projection is an application that cannot be directly used. For example, imagine that v is a dependent sum whose second component is a function that takes an integer:

$$
v: \Sigma x: \star . \text { Int } \rightarrow x
$$

The second projection of v has type

$$
v .2:(\lambda x: \star . \text { Int } \rightarrow x)(v .1)
$$

which cannot take an integer, say $(v .2) 3$. In λI_{Σ}, we use opening instead:

$$
\text { open } v \text { as }\langle x, y\rangle \text { in }(y 3):(\lambda x: \star . x)(v .1)
$$

where the pattern y can take an integer since $y:$ Int $\rightarrow x$.

No Nested Second Projections. The value restriction simplifies the metatheory but unfortunately limits the ability of nesting second projections in λI_{Σ}. For example, (v.2). 2 is not a well-formed term since $v .2$ is not a value. Furthermore, we cannot use openings to simulate nested second projections either. Consider the following example:

$$
\begin{array}{lll}
v & : & \Sigma x_{1}: A_{1} \cdot\left(\Sigma x_{2}: A_{2} . B\right) \\
\text { open } v \text { as }\left\langle x_{1}, \boldsymbol{y}\right\rangle \text { in } & : & \left(\lambda x_{1}: A_{1} .\right. \\
\text { open } \boldsymbol{y} \text { as }\left\langle x_{2}, z\right\rangle \text { in } z & : & \left.\left(\lambda x_{2}: A_{2} . B\right)(\boldsymbol{y} \cdot 1)\right)(v .1)
\end{array}
$$

We simulate nested second projections (v.2). 2 by two consecutive openings. However, the typing result is not well-formed since the pattern variable y leaks out of the scope. This violates the restriction imposed by the last premise of SP-OpEN, which requires that the second pattern variables (e.g. y) should not show in the result type.

Notice that nested first projections are still allowed. Iso-strong sums are still more expressive than weak sums and sufficient for our purposes to encode interesting examples such as traits with type members (see Section 6.1.3). Restricting nested projections is also used by other calculi to simplify the presentation and metatheory. For example, DOT [Rompf and Amin 2016; Amin et al. 2016] only supports a single level of type selection on variables such as $x . A$. Removing value restriction and supporting nested second projections are left as future work (see Section 8.2).

No Direct Subsumption of Non-dependent Pairs. Finally, due to the non-standard typing in SP-Snd and SP-Open, iso-strong sums in λI_{Σ} cannot directly subsume non-dependent pairs or ordinary weak existentials. Consider a non-dependent pair $v=\langle 1,2$ as Σx : Int. Int \rangle. By the standard typing rule, the type of $v .2$ is $\operatorname{Int}[x \mapsto v .1]=\operatorname{Int}$ where the substitution has no effect and the typing result is the same as non-dependent pairs. In contrast, by SP-SND we have
$v .2:(\lambda x:$ Int. Int $) v .1$, where the typing result is still a type-level application but not Int. Nonetheless, we can add explicit casts to recover the standard typing results as examples above (see also Sections 6.1.2 and 6.1.3). Alternatively, we can just encode typing rules for non-dependent pairs and weak existentials using standard Church encodings [Pierce 2002].

6.3 Metatheory of λI_{Σ}

We discuss the metatheory of the λI_{Σ} calculus, mainly on two results: transitivity and type-safety. The proof process is mostly similar to the one of λI_{\leqslant}(see Section 5.3). However, due to differences of dynamic and static semantic, especially call-by-value reduction and dependent sums, λI_{Σ} requires additional lemmas and some changes in proof strategies. We will focus on discussion of such changes from the metatheory of λI_{\leqslant}. Note that we have not proved the decidability of λI_{Σ} yet, though we believe the property should hold and leave it as future work (see Section 8.2).

6.3.1 Basic Lemmas

We first discuss the changes to basic lemmas compared to λI_{\leqslant}. Due to the absence of bounded quantification, some basic lemmas now can be proved independently, such as reflexivity and type narrowing.

Reflexivity. The reflexivity lemma of unified subtyping is defined as follows:
Lemma 6.3.1 (Reflexivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, then both $\Gamma \vdash e_{1}: A$ and $\Gamma \vdash e_{2}: A$ hold.
In λI_{\leqslant}, reflexivity is proved by splitting into two sub-lemmas, left and right reflexivity (Lemma 5.3.2 and 5.3.3). Such proof strategy is necessary because right reflexivity has a mutual dependency on another lemma, correctness of types (Lemma 5.3.11). The mutual dependency is caused by generalized top type (see discussion in Section 5.3.1). In λI_{Σ}, such mutual dependency does not exist because top type is an ordinary type but not generalized:

For cases SP-Top and SP-TopRefl, reflexivity can be shown immediately from the induction hypothesis. Thus, we can prove the reflexivity lemma first without relying on other results.

Weakening, Narrowing and Substitution. The weakening lemma can be proved similarly as in λI_{\leqslant}by induction on the derivation of $\Gamma_{1}, \Gamma_{3} \vdash e_{1} \leqslant e_{2}: A$:

Lemma 6.3.2 (Weakening). If $\Gamma_{1}, \Gamma_{3} \vdash e_{1} \leqslant e_{2}: A$ and $\vdash \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, then $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \vdash e_{1} \leqslant e_{2}$: A.

Due to the absence of bounded quantification, there is no subtyping binding in the context. The narrowing lemma in λI_{Σ} has just one form, type narrowing:

Lemma 6.3.3 (Type Narrowing). Given $\Gamma_{1}, x: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$, if $\Gamma_{1} \vdash A \leqslant B: \star$ and $\Gamma_{1} \vdash e: A$, then $\Gamma_{1}, x: A, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$.

The proof is by induction on the derivation of $\Gamma_{1}, x: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: C$. Also notice that the subtyping of variables in λI_{Σ} is only a reflexive relation (see Section 6.2.3). There is no transitivity rule for variables, such as S-VarTrans in λI_{\leqslant}. The proof does not rely on the transitivity lemma or consistency of typing lemma (Lemma 5.3.5), a special case of transitivity. Finally, the substitution lemma in λI_{Σ} has a different form:

Lemma 6.3.4 (Substitution). If $\Gamma_{1}, x: B, \Gamma_{2} \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma_{1} \vdash v: B$, then $\Gamma_{1}, \Gamma_{2}[x \mapsto$ $v] \vdash e_{1}[x \mapsto v] \leqslant e_{2}[x \mapsto v]: A[x \mapsto v]$.
where the substitute should be a value v, since we treat variables as values and allow reduction of open terms, as mentioned in Section 6.2.3. Such form is similar to the one in call-by-value PITS (see Lemma 4.2.1). The proof relies on transitivity as in λI_{\leqslant}, as well as two additional lemmas, value substitution and reduction substitution due to value restriction in rules:

Lemma 6.3.5 (Value Substitution).
If v_{1} and v_{2} are values, then $v_{1}\left[x \mapsto v_{2}\right]$ is still a value.
Lemma 6.3.6 (Reduction Substitution).
If v is a value and $e_{1} \hookrightarrow e_{2}$ holds, then $e_{1}[x \mapsto v] \hookrightarrow e_{2}[x \mapsto v]$ still holds.
Proofs of two lemmas are straightforward by induction on the structure of v_{1} and derivation of $e_{1} \hookrightarrow e_{2}$, respectively. Note that although the proof of substitution lemma still depends on transitivity, this is only one-way dependency. Thus, we can similarly show substitution later after proving transitivity as in λI_{\leqslant}.

6.3.2 Transitivity

The unified subtyping rules in λI_{Σ} do not contain a built-in transitivity rule. We need to prove the transitivity property. Due to the presence of the subsumption rule (RP-Sub), we need to prove a generalized transitivity property as in λI_{\leqslant}(see Section 5.3.2). However, we use a slightly different generalization:

Lemma 6.3.7 (Generalized Transitivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma \vdash e_{2} \leqslant e_{3}: B$, then $\Gamma \vdash e_{1} \leqslant e_{3}: B$.
which is a rightmost generalization. The difference is the type of the conclusion judgment: we use $\Gamma \vdash e_{1} \leqslant e_{3}: B$ in λI_{Σ}, while $\Gamma \vdash e_{1} \leqslant e_{3}: A$ in λI_{\leqslant}which is a leftmost generalization. The reason is that the typing of the top type (T) is different. In λI_{\leqslant}, the top type is generalized to be any type by rule S-Top, while it is an ordinary type of kind \star in λI_{Σ} by rule SP-Top:

Consider the case that $e_{3}=\top$ and we have $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma \vdash e_{2} \leqslant \top: B$. For the generalized top type, we know $\Gamma \vdash e_{1}: A$ by reflexivity from the former judgment. By S-Top, we obtain the target judgment $\Gamma \vdash e_{1} \leqslant \top: A$, which has the same type as the leftmost term e_{1}. For the ordinary top type, we know $B=\star$ by inversion of SP-Top. Note that the target is the subtyping relation between e_{1} and T, which requires the type to be \star by SP-Top. It is natural
to set the target as $\Gamma \vdash e_{1} \leqslant \top: B$ which uses the rightmost type of \top. Otherwise, if we set the target type to be the leftmost one, i.e., $\Gamma \vdash e_{1} \leqslant \top: A$, we ought to show $A=\star$ which is unknown to be true. Thus, using rightmost generalized transitivity in λI_{Σ} simplifies the proof for the case of ordinary top type.

We prove the rightmost generalized transitivity by the same approach used in the leftmost one (see Section 5.3.2). The proof is by induction on the size of e_{2} and an inner induction on the derivation of the first judgment $\Gamma \vdash e_{1} \leqslant e_{2}: A$. The case for Pi-types (SP-Prod) also needs the type narrowing lemma (Lemma 6.3.3). Then we can immediately show the original transitivity lemma which is a direct corollary:

Lemma 6.3.8 (Transitivity). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and $\Gamma \vdash e_{2} \leqslant e_{3}: A$, then $\Gamma \vdash e_{1} \leqslant e_{3}: A$.

6.3.3 Type Safety

Type-safety of λI_{Σ} is shown by the standard type preservation and progress lemmas [Wright and Felleisen 1994]. We discuss the design choices of one-step reduction for keeping subtype preservation and focus on the change of proofs due to the call-by-value semantics used in λI_{Σ}.

Partially Call-by-value. As in λI_{\leqslant}, we need to show a generalized preservation lemma for the unified subtyping judgment, i.e., subtype preservation:

Lemma 6.3.9 (Subtype Preservation). If $\Gamma \vdash e_{1} \leqslant e_{2}: A$, $e_{1} \hookrightarrow e_{1}^{\prime}$, $e_{2} \hookrightarrow e_{2}^{\prime}$, then $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}$: A.

To ensure that such property holds, we need to restrict the call-by-value semantics to be partial (see Section 6.2.2). We only allow call-by-value semantics for function applications, but call-by-name rules for other constructs, e.g., no reduction of sub-terms in casts or dependent sums. Otherwise, call-by-value rules for casts and dependent sums would break subtype preservation. We show two counter-examples.

Counter-examples for Full Call-by-value. Assume that we treat cast $\uparrow v$ as a value and allow reducing the sub-term in cast \uparrow by the following rule:

$$
\frac{e \hookrightarrow e^{\prime}}{\operatorname{cast}_{\uparrow} e \hookrightarrow \operatorname{cast}_{\uparrow} e^{\prime}}
$$

Let $e_{1}=\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}\left(\operatorname{cast}_{\uparrow} e\right)\right)$ and $e_{2}=\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}\left(\operatorname{cast}_{\uparrow} \top\right)\right)$ and assume there exists e^{\prime} such that $e \hookrightarrow e^{\prime}$. Note that cast $\uparrow e$ is reducible and cast $\uparrow \top$ is a value. Relations in the subtype preservation lemma are as follows:

The target subtyping relation would not hold because the outer most constructs of both sides are different, i.e., left side is cast ${ }_{\downarrow}$ left, while right side is cast ${ }_{\uparrow}$.

Assume that we treat $\left\langle v_{1}, v_{2}\right.$ as $\left.\Sigma x: A . B\right\rangle$ as a value and allow reducing the second component of a dependent sum by the following rule:

$$
\frac{e \hookrightarrow e^{\prime}}{\langle v, e \text { as } \Sigma x: A . B\rangle \hookrightarrow\left\langle v, e^{\prime} \text { as } \Sigma x: A . B\right\rangle}
$$

Let $e_{1}=\langle\star, e$ as $\Sigma x: \star . \star\rangle .1$ and $e_{2}=\langle\star, \top$ as $\Sigma x: \star . \star\rangle .1$ and assume there exists e^{\prime} such that $e \hookrightarrow e^{\prime}$. Note that $\langle\star, e$ as $\Sigma x: \star . \star\rangle$ is reducible, while $\langle\star, \top$ as $\Sigma x: \star . \star\rangle$ is a value. The following diagram show the relations in the subtype preservation lemma:

$$
\begin{array}{ccc}
\langle\star, e \text { as } \Sigma x: \star . \star\rangle .1 & \leqslant & \langle\star, \top \text { as } \Sigma x: \star . \star\rangle .1 \\
\mathcal{L} & & \mathcal{L} \\
\left\langle\star, e^{\prime} \text { as } \Sigma x: \star . \star\right\rangle .1 & \nless & \star
\end{array}
$$

Apparently, the target subtyping relation does not hold, since the only subtype of \star is itself.

The Problem of Leftmost Call-by-value. Another unusual design of one-step reduction (\hookrightarrow) is the adoption of rightmost call-by-value semantics (see Section 6.2.2). In function applications, we first reduce all arguments to values and then reduce the functions, as indicated by the following reduction rules:

$$
\begin{array}{ll}
\begin{array}{l}
\text { RP-APPR } \\
e_{2} \hookrightarrow e_{2}^{\prime} \\
e_{1} e_{2} \hookrightarrow e_{1} e_{2}^{\prime}
\end{array} & \begin{array}{r}
\text { RP-APPL } \\
e v \hookrightarrow e^{\prime} v
\end{array}
\end{array}
$$

Alternatively, one can use the following the leftmost variant of reduction rules that reduce the functions first:

$$
\frac{e_{1} \hookrightarrow e_{1}^{\prime}}{e_{1} e_{2} \hookrightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \hookrightarrow e_{2}^{\prime}}{v e_{2} \hookrightarrow v e_{2}^{\prime}}
$$

The two variants have different impact on the proof of subtype preservation lemma, especially when disproving two diverging cases. Unlike the weak-head call-by-name reduction in λI_{\leqslant}that only reduces the function part, it is possible in λI_{Σ} that the reduction happens on different positions within an application and diverges on two sides of a subtyping relation. We need to rule out such cases, which would break the subtype preservation.

For the leftmost variant, the diverging cases can be illustrated by the following diagram:

(1)

(2)
where we assume $e_{1} \hookrightarrow e_{1}^{\prime}$ and $e_{2} \hookrightarrow e_{2}^{\prime}$. Note that $e_{2}^{\prime} \neq e_{2}$ and subtyping of applications is pointwise in rules SP-App and SP-AppV. Both targets in (1) and (2) do not hold.

In case (1), the function part e_{1} on the left-hand side is still reducible, while the right-hand side term $v e_{2}$ only has the reducible argument e_{2}. Thus, the reduction happens in different places: the function position on the left-hand side and the argument position on the right-hand side. Case (2) is simply the mirror of case (1), which exchanges the sides of the subtyping relation.

By inversion of the condition, we know $e_{1} \leqslant v$ and $v \leqslant e_{1}$ from case (1) and (2), respectively. We can disprove case (1) and (2) by show that e_{1} is a value which is not reducible:

Lemma 6.3.10 (Value Preservation).

1. If $\Gamma \vdash e_{1} \leqslant e_{2}:(\Pi x: A . B)$ and e_{2} is a value, then e_{1} is also a value.
2. If $\Gamma \vdash e_{1} \leqslant e_{2}: A$ and e_{1} is a value, then e_{2} is also a value.

Thus, both diverging cases are impossible and will not break the subtype preservation lemma. Notice that the proof depends on several specific rules of λI_{Σ}. The first sub-lemma relies on the fact that T has kind \star by SP-Top. The second sub-lemma relies on the subtyping rule SP-VAR which limits subtyping of variables to be reflexive only. For the first sub-lemma, if we use the generalized top type that can have a Pi-type, when $e_{2}=T$, e_{1} can be any well-typed function that may not be a value. For the second sub-lemma, if bounded quantification is allowed, when $e_{1}=x$, e_{2} is not necessarily a value but can be any term as long as $x \leqslant e_{2}: A \in \Gamma$. If we want to extend λI_{Σ} with generalized top type or bounded quantification like λI_{\leqslant}, the value preservation lemma will not hold and we may not be able to disprove the diverging cases of subtype preservation for the leftmost variant.

Rightmost Call-by-value to the Rescue. For the rightmost variant, the diverging cases are simply not possible. If we try to follow the diagram of the leftmost variant, assuming that $e_{1} \hookrightarrow e_{1}^{\prime}$, $e_{2} \hookrightarrow e_{2}^{\prime}$, we have

(3)

(4)

In (3) and (4), the arguments are already values due to the rightmost reduction strategy. They also should be the same due to the pointwise subtyping rules. Then, the reduction of the argument part, i.e., $v \hookrightarrow e$, is contradictory, since values are not reducible.

Thus, the rightmost call-by-value strategy is more suitable for meta-theoretical development in λI_{Σ}. It naïvely rules out the diverging cases and simplifies the proof of subtype preservation. It is also less restrictive and does not rely on the value preservation lemma, which makes it possible to extend λI_{Σ} with features such as bounded quantification and generalized top type without breaking subtype preservation.

Determinacy of Reduction. Though the one-step reduction is changed to use the (partially) call-by-value semantics, it still has the same determinacy property as the call-by-name variant in $\lambda I_{\leqslant}:$

Lemma 6.3.11 (Determinacy of Reduction). If $e \hookrightarrow e_{1}$ and $e \hookrightarrow e_{2}$, then $e_{1}=e_{2}$.
The proof holds few surprises, which is done by induction on the derivation of $e \hookrightarrow e_{1}$ and inversion on $e \hookrightarrow e_{2}$.

Preservation and Progress. Similarly to λI_{\leqslant}, we prove a generalized subtype preservation lemma to avoid induction hypothesis issues in the cast ${ }_{\uparrow}$ case:

Lemma 6.3.12 (Generalized Subtype Preservation). Given that $\Gamma \vdash e_{1} \leqslant e_{2}: A$ holds,

1. if $A \hookrightarrow A^{\prime}$ and both e_{1} and e_{2} are cast $_{\uparrow}$ terms, i.e., $e_{1}=\operatorname{cast}_{\uparrow} e_{1}^{\prime}$ and $e_{2}=\operatorname{cast}_{\uparrow} e_{2}^{\prime}$, then $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}: A^{\prime} ;$
2. otherwise, if $e_{1} \hookrightarrow e_{1}^{\prime}$ and $e_{2} \hookrightarrow e_{2}^{\prime}$, then $\Gamma \vdash e_{1}^{\prime} \leqslant e_{2}^{\prime}: A$.

The first case is slightly changed since we drop the annotation of cast \uparrow_{\uparrow}. The proof is by induction on the derivation of $\Gamma \vdash e_{1} \leqslant e_{2}: A$, which is similar to the one of λI_{\leqslant}. The diverging cases can be trivially disproved due to the choice of rightmost call-by-value reduction. The proof similarly depends on the "reduction in the middle" lemma, which holds for one-step call-by-value reduction:

Lemma 6.3.13 (Reduction Exists in the Middle). Given that $\Gamma \vdash C \leqslant B: D$ and $\Gamma \vdash B \leqslant A: D$, if $C \hookrightarrow C^{\prime}$ and $A \hookrightarrow A^{\prime}$, then there exists B^{\prime} such that $B \hookrightarrow B^{\prime}$.

Finally, we can conclude the type preservation lemma, which is simply a corollary of subtype preservation:

Lemma 6.3.14 (Type Preservation). If $\Gamma \vdash e: A$ and $e \hookrightarrow e^{\prime}$, then $\Gamma \vdash e^{\prime}: A$.
We prove the progress lemma that has the judgment with an empty context:
Lemma 6.3.15 (Progress). If $\varnothing \vdash e: A$ then either e is a value v or there exists e^{\prime} such that $e \hookrightarrow e^{\prime}$.

Unlike λI_{\leqslant}, we do not prove a generalized progress lemma (Lemma 5.3.18) since the inert terms (see Section 5.2.2), which cover all stuck open terms, are not defined for the call-by-value semantics in λI_{Σ}.

6.4 The Sig Language

We formally present the surface language namely $\mathbf{S i g}$, which supports Scala-like first-class traits with type members. Sig is a lightweight layer built on top of λI_{Σ} for presenting how iso-strong sums in λI_{Σ} can encode complex constructs such as traits. Expressions of Sig will be elaborated into λI_{Σ} terms through a type-directed translation. Sig does not expose explicit cast operators. The translation process will automatically insert necessary casts to keep terms well-typed. In spite of many language limitations in Sig, the main purpose of Sig is to show the application of iso-strong sums and the inference of casts via the elaboration semantics. In the rest of this section, we will show the syntax, static semantics, type-directed translation and translation soundness of Sig.

6.4.1 Syntax

Figure 6.4 shows the syntax of $\mathbf{S i g}$, which is unified as λI_{Σ}. Terms (E) and types (T) are in the same syntactic category. Basic language constructs can be directly mapped to λI_{Σ} terms, e.g., Type corresponds to \star and the function type corresponds to a Pi-type, etc. We use the syntactic sugar $T_{1} \rightarrow T_{2}$ for non-dependent function types. Note that there are no explicit type cast operators in Sig.

Figure 6.4. Syntax of Sig

Traits and Objects. A trait has the syntax trait $\{$ type $L: T ; S\}$ which is a compound type that has one type member L and multiple value members. The bindings of value members S have the form val $l_{i}: T_{i}$, which means the label l_{i} has type T_{i}. Only the type member L but not value members l_{i} can show in T_{i}. We use the upper-case metavariable L for the label of type member, and the lower-case l for the label of value members. Objects are instances of traits. The syntax of objects is $\mathbf{o b j}\{$ type $L=E ; M\}$ as T where E is the actual type member implementation for the abstract label $L . M$ is the object bindings with the form val $l_{i}=E_{i}$ where E_{i} is the implementation of the member l_{i}. Type T after the keyword as is the type annotation. The member access of objects is denoted by $x . L$ and $x . l$, which are for the type member and value member, respectively.

Restrictions on Traits. For simplicity reasons, we have several restrictions related to traits:

- There is only one type member in traits, so that traits can be directly mapped to Sigma-types of λI_{Σ} which have just one binder. Nonetheless, we can simulate multiple type members. For example, noting that the type T of the type member is polymorphic, which is not limited to Type, we can specify T as a compound type such as records to represent multiple type members.
- The member access operations are bound only to variables (e.g. $x . L$) but not paths (e.g. $x . y . L)$. This is due to the value restriction in the target language λI_{Σ}. The restriction of member access is also commonly used in other calculi for a simpler formalization of traits, such as Dependent Object Types (DOT) [Rompf and Amin 2016; Amin et al. 2016].
- We do not support subtyping of type members in Sig because there is no bounded quantification in the target language.

6.4.2 Static Semantics

The static semantics of Sig is shown in Figure 6.5 and 6.6. The typing context Δ has two kinds of bindings, namely the type binding $x: T$ and trait binding $x=\left\langle x_{1}, x_{2}\right\rangle: T$ (see Figure 6.4). Typing rules only use the typing binding. The trait binding is used only for translation and will be discussed later in Section 6.4.3. The well-formedness of context is checked by the judgment $\vdash \Delta$. Object typing $\Delta \vdash M: S$ and trait well-formedness $\Delta \vdash S$ reuse the typing judgment for inferring the type of object bindings and checking if types of value members are well-formed, respectively. The typing judgment is denoted by $\Delta \vdash E: T$. Typing rules for basic constructs
(Term Typing)

	ST-Pi $\Delta \vdash T_{1}$: Type $\quad \Delta, x: T_{1} \vdash T_{2}:$ Type T_{2} is x. L-only-projection if T_{1} is a trait
$\Delta \vdash$ Type : Type $\quad \Delta \vdash x: T$	$\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}:$ Type
ST-App	ST-AppV $\Delta \vdash E:\left(x: T_{1}\right) \rightarrow T_{2}$
$\Delta \vdash E_{1}: T_{1} \rightarrow T_{2} \quad \Delta \vdash E_{2}: T_{1}$	$\Delta \vdash V: T_{1} \quad V$ is not an object
$\Delta \vdash E_{1} E_{2}: T_{2}$	$\Delta \vdash E V: T_{2}[x \mapsto V]$
ST-APPM	
$\Delta \vdash E:\left(x: T_{1}\right) \rightarrow T_{2}$	ST-Lam
$\Delta \vdash V_{1}: T_{1} \quad T_{1}=$ trait $\{$ type $L: T ; S\}$	$\Delta \vdash T_{1}:$ Type $\quad \Delta, x: T_{1} \vdash E: T_{2}$
$V_{1}=\mathbf{o b j}\{$ type $L=V ; M\}$ as T_{1}	T_{2} is $x . L$-only-projection if T_{1} is a trait
$\Delta \vdash E V_{1}: T_{2}[x . L \mapsto V]$	$\Delta \vdash\left(\lambda\left(x: T_{1}\right) \Rightarrow E\right):\left(x: T_{1}\right) \rightarrow T_{2}$

ST-Mod

Figure 6.5. Typing rules of Sig
are similar to ones in λI_{Σ}. There is no explicit or implicit type conversion rule. Also, there is no subtyping relation in Sig and thus no subsumption rule in the typing judgment. In the following text, we focus on typing rules related to traits.

Applications. Due to the value restriction of the target language, we have multiple application rules in Sig, namely ST-App, ST-AppV and ST-AppM. Similarly to λI_{Σ}, rules ST-App and STAppV are for non-dependent and dependent function application, respectively. The arguments to dependent functions need to be values V (see definitions in Figure 6.4). The case when arguments are objects is specifically handled by rule ST-AppM. We rule out such case in ST-AppV by requiring V not to be an object.

Rule ST-AppM checks if the argument V_{1} is an object and T_{1} in the function type is a trait type. The conclusion type is obtained by replacing all type member access $x . L$ in T_{2} by the actual type member V. We use a special form of substitution $T_{2}[x . L \mapsto V]$, called projection substitution. It pattern-matches the member access form $x . L$ which contains two variables.

Additionally, to ensure the substitution result is well-formed, we need to restrict how x occurs in T_{2}, namely if x shows free in T_{2}, it must be in the form $x . L$. Then after projection substitution, we can guarantee that x will not be out of scope in the conclusion type. We formally define such restriction and call T_{2} a x.L-only-projection term:

Definition 6.4.1 (Projection-Only Terms). We call Ex.L-only-projection if x and L are free variables in E and $x \notin \mathrm{FV}(E[x . L \mapsto y])$ for any fresh variable $y \neq x$.
(Context Well-formedness)

$$
\begin{array}{lll}
\text { SW-NiL } & \stackrel{\text { SW-Cons }}{\vdash} \quad \Delta \vdash T: \text { Type } & x \text { fresh in } \Delta \\
\hline \vdash \varnothing & \frac{\vdash \Delta, x: T}{}
\end{array}
$$

$\Delta \vdash M: S$
(Object Typing)

$$
\frac{\overline{\Delta M-B I N D ~}_{\Delta \vdash E_{i}: T_{i}}{ }^{i}}{\Delta \vdash{\overline{\operatorname{val} l_{i}=E_{i}}}^{i}:{\overline{\operatorname{val} l_{i}: T_{i}}}^{i}}
$$

$\Delta \vdash S$
(Trait Well-formedness)

$$
\frac{{\frac{\text { SG-SIG }}{\Delta \vdash T_{i}: \text { Type }}}^{i}}{\Delta \vdash{\overline{\mathrm{val} l_{i}: T_{i}}}^{i}}
$$

Figure 6.6. Other rules of Sig

We check if T_{2} satisfies such restriction when the argument type T_{1} is a trait in rules ST-LAM and ST-PI, i.e., rules for type-checking functions and function types.

Handling the object case separately and using projection substitution in ST-AppM is due to value restrictions on member access and lack of explicit or implicit type conversion in Sig. Otherwise, consider using ST-AppV for the object case. Since only member access on variables is supported, after substitution, all $x . L$ in T_{2} will become $V_{1} . L$ which is not well-formed. Furthermore, there is no type conversion to transform $V_{1} . L$ into V. We directly replace all $x . L$ with V, without the need of an individual type conversion rule or operator.

Objects and Traits. Objects and traits are type-checked by ST-Mod and ST-SIG, respectively. The actual type member V is limited to a value. The reason is that an object will be mapped to a dependent sum in λI_{Σ} and the actual type member corresponds to the first component, which is required to be a value (see SP-PAIR). The type of object bindings M is obtained by replacing all abstract type member L with the actual one V. And we use the trait binding S from the annotation T_{1} to check if the type of M is $S[L \mapsto V]$. We also require T, the type of V, not to be a trait. Otherwise, there could exists the form $L . l_{i}$ in object bindings M. Then $M[L \mapsto V]$ contains $V . l_{i}$, which is an ill-formed member access. Correspondingly, in the typing rule of traits ST-Sig, the type T of abstract type member L should not be a trait.

Member Access. ST-ProjT and ST-Proj are typing rules for type and value member access, respectively. For a certain value member l, its type T_{2} is extracted from S by its label and may contain the abstract type member L. We replace all L in T_{2} with member access $x . L$ to prevent L being out of scope. Sig only supports object member access of variables. Because member access will be translated to projection and opening operations in λI_{Σ}. Both projection and opening have value restrictions which only take values as input. Variables are values both in λI_{Σ} and $\mathbf{S i g}$,
which satisfies the restriction. Member access on other values, such as objects is not allowed. Otherwise, type conversion will be needed. If $V . l$ is allowed in ST-Proj where V is an object, its type would be $T_{2}[x \mapsto V . L]$ which needs to further convert the type $V . L$ to the actual type member.

No Subsumption Rule or Subtyping Relation. Finally, for simplicity reasons, we exclude the subsumption rule and subtyping relation in Sig. The subsumption rule would make the system declarative and harden the development of metatheory. Moreover, we focus on presenting the typing of Sig, as well as the type-directed elaboration which involves the inferences of casts (see Section 6.4.3). The elaboration of subtyping is less interesting because subtyping relations between traits can be directly mapped to record subtyping in λI_{Σ}. We leave adding subtyping in Sig as future work (see Section 8.2).

6.4.3 Elaboration Semantics

The semantics of $\mathbf{S i g}$ is given by elaboration to λI_{Σ}. The elaboration is a type-directed translation of the surface language Sig to the target language. For simplicity reasons, we assume the target language is λI_{Σ} extended with multi-field records. Records can be encoded using top types with standard techniques [Pierce 2002]. Typing and subtyping rules of records are admissible in λI_{Σ}.

The main purpose of presenting the elaboration semantics is to illustrate how necessary type-safe casts can be automatically added to target terms. The translation process of Sig is particularly for the inference of casts with traits and objects. For encoding other constructs with casts, we may need different elaboration approaches. For example, in Section 3.2.1 we use Scott-encodings for elaborating algebraic datatypes of Fun into PITS terms with casts.

The judgment for term translation is denoted by $\Delta \vdash E: T \rightsquigarrow e$, shown in Figure 6.7 and 6.8. If we ignore the target term e and trait binding $x=\left\langle x_{1}, x_{2}\right\rangle: T$ in Δ, the translation judgment becomes exactly the typing judgment $\Delta \vdash E: T$ (see Figure 6.5). Most translation rules are straightforward mappings to λI_{Σ} terms. We distinguish the translation for terms with or without objects/traits. The name of rules related to traits has a suffix letter " M ". We focus on such rules in the following text.

Other translation judgments are shown in Figure 6.9, which reuse the term translation judgment. The context translation judgment $\vdash \Delta \rightsquigarrow \Gamma$ translates a surface context to a target one. In rule TRW-Mod, the trait binding $x=\left\langle x_{1}, x_{2}\right\rangle: T$ is used to save the translation result of an object variable x. We decompose x as fresh variables x_{1} and x_{2}, which represent the first and second components of a dependent sum translated from an object. The object and trait binding translation judgments, i.e., $\Delta \vdash M: S \rightsquigarrow e$ and $\Delta \vdash S \rightsquigarrow e$, translate bindings in objects and traits to records and record types, respectively.

Object Variables. Rule TR-VARM in Figure 6.7 translates a variable x when it is a trait binding $x=\left\langle x_{1}, x_{2}\right\rangle: T$ from the context. Its type T is a trait and translated into a Sigma-type $\Sigma x_{1}: A . B$. The object variable x is then translated to a dependent sum $\left\langle x_{1}, x_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle$. Note that x does not show in the translated term. One can only refer to x by its component variables x_{1} or x_{2}, which are both already in the translated context by TRW-Mod. This rule follows the form of the translation of object definitions in rule TR-Mod. Thus, we can translate an object value V in a unified form $\Delta \vdash V: T \rightsquigarrow\left\langle e_{1}, e_{2}\right.$ as $\left.\Sigma x: A . B\right\rangle$.

$$
\begin{aligned}
& \text { TR-Ax TR-VAR } \quad \text { TR-VARM } \quad x=\left\langle x_{1}, x_{2}\right\rangle: T \in \Delta \\
& \frac{\vdash \Delta \rightsquigarrow \Gamma}{\Delta \vdash \text { Type : Type } \rightsquigarrow \star} \quad \frac{x: T \in \Delta \quad \vdash \Delta \rightsquigarrow \Gamma}{\Delta \vdash x: T \rightsquigarrow x} \quad \frac{\vdash \Delta \rightsquigarrow \Gamma}{\Delta \vdash x: T \rightsquigarrow\left\langle x_{1}, x_{2} \text { as } \Sigma x_{1}: A . B\right\rangle} \\
& \text { TR-Pi } \\
& \Delta \vdash T_{1} \text { : Type } \rightsquigarrow A_{1} \\
& \frac{\Delta, x: T_{1} \vdash T_{2}: \text { Type } \rightsquigarrow A_{2} \quad T_{1} \text { is not a trait }}{\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}: \text { Type } \rightsquigarrow \Pi x: A_{1} \cdot A_{2}} \\
& \text { TR-Lam } \\
& \Delta \vdash T_{1} \text { : Type } \rightsquigarrow A \\
& \Delta, x: T_{1} \vdash E: T_{2} \rightsquigarrow e \quad T_{1} \text { is not a trait } \\
& \overline{\Delta \vdash\left(\lambda\left(x: T_{1}\right) \Rightarrow E\right):\left(x: T_{1}\right) \rightarrow T_{2} \rightsquigarrow \lambda x: A \cdot e} \\
& \text { TR-PIM } \\
& \Delta \vdash T_{1}: \text { Type } \rightsquigarrow \Sigma x_{1}: A . B \\
& \Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash T_{2}: \text { Type } \rightsquigarrow C \\
& T_{1}=\text { trait }\{\text { type } L: T ; S\} \\
& \frac{T_{2} \text { is } x . L \text {-only-projection }}{\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}: \text { Type } \rightsquigarrow \Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1)}
\end{aligned}
$$

$$
\begin{array}{lc}
\text { TR-LamM } & \Delta \vdash T_{1}: \text { Type } \rightsquigarrow \Sigma x_{1}: A . B \\
\Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash E: T_{2} \rightsquigarrow e \\
T_{1}=\text { trait }\{\text { type } L: T ; S\} \\
T_{2} \text { is } x . L \text {-only-projection }
\end{array}
$$

Figure 6.7. Translation of terms

Functions with Traits. Rules TR-PIM and TR-LAMM in Figure 6.7 translate function types and functions where the argument type T_{1} is a trait. The trait T_{1} is translated to a Sigma-type $\Sigma x_{1}: A$. B. The formal parameter x is added into the context as a trait binding $x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}$ correspondingly. Recall that in TR-VARM and TRW-Mod, x does not exist in the translated context and can only be referred by component variables x_{1} or x_{2}. In TR-LAMM, the function body E will be translated to e. The member access operations in E will be directly mapped to operations on component variables in e (see TR-ProjT and TR-ProJ). Such behavior can be mapped to the opening operation in λI_{Σ}, which replaces the input variable x with two pattern variables x_{1} and x_{2}. The whole function $\lambda\left(x: T_{1}\right) \Rightarrow E$ is then translated into a lambda term with opening. We explicitly replace x with a fresh variable y in the translated term to distinguish from x_{1} and x_{2}. Rule TR-PIM matches the type of the translated term in TR-LamM. The whole translated type is a Pi-type, parametrized by the fresh variable y. The body is exactly the type of the open-term in TR-LAMM, which follows SP-Open of the target language.

Applications with Traits. Functions with traits as input are translated to lambdas with openterms in TR-LAMM separately from ordinary functions. Thus, applications with such functions also need a special treatment. Rules TR-ApPX and TR-AppM in Figure 6.8 translate dependent functions applied to object values, which cover two cases: variables x or obj definitions, respectively.

TR-App

$$
\Delta \vdash E_{1}: T_{1} \rightarrow T_{2} \rightsquigarrow e_{1}
$$

$$
\frac{\Delta \vdash E_{2}: T_{1} \rightsquigarrow e_{2} \quad T_{1} \text { is not a trait }}{\Delta \vdash E_{1} E_{2}: T_{2} \rightsquigarrow e_{1} e_{2}}
$$

TR-AppV
$\Delta \vdash E:\left(x: T_{1}\right) \rightarrow T_{2} \rightsquigarrow e_{1}$
$\frac{\Delta \vdash V: T_{1} \rightsquigarrow e_{2} \quad T_{1} \text { is not a trait }}{\Delta \vdash E V: T_{2}[x \mapsto V] \rightsquigarrow e_{1} e_{2}}$

TR-AppX

$$
\Delta \vdash E:\left(x: T_{1}\right) \rightarrow T_{2} \rightsquigarrow e
$$

$$
\Delta \vdash y: T_{1} \rightsquigarrow\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle
$$

$$
T_{1}=\operatorname{trait}\{\operatorname{type} L: T ; S\}
$$

$$
\overline{\Delta \vdash E y: T_{2}[x \mapsto y] \rightsquigarrow \operatorname{cast}_{\downarrow}^{2}\left(e\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle\right)}
$$

TR-AppM

$$
\begin{gathered}
\Delta \vdash E:\left(x: T_{1}\right) \rightarrow T_{2} \rightsquigarrow e \\
\Delta \vdash V_{1}: T_{1} \rightsquigarrow\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle \\
T_{1}=\operatorname{trait}\{\operatorname{type} L: T ; S\} \\
V_{1}=\mathbf{o b j}\{\text { type } L=V ; M\} \text { as } T_{1} \\
\Delta \vdash E V_{1}: T_{2}[x . L \mapsto V] \rightsquigarrow \operatorname{cast}_{\downarrow}^{2}\left(e\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle\right)
\end{gathered}
$$

TR-Mod

$$
\Delta \vdash M[L \mapsto V]: S[L \mapsto V] \rightsquigarrow e_{2}
$$

$$
\Delta \vdash T_{1}: \text { Type } \rightsquigarrow \Sigma x_{1}: A . B
$$

$$
\frac{T_{1}=\operatorname{trait}\{\text { type } L: T ; S\} \quad T \text { is not a trait }}{\Delta \vdash \mathbf{o b j}\{\text { type } L=V ; M\} \text { as } T_{1}: \operatorname{trait}\{\text { type } L: T ; S\} \rightsquigarrow\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle}
$$

TR-SIG

$$
\Delta \vdash T: \text { Type } \rightsquigarrow A
$$

$\Delta, L: T \vdash S \rightsquigarrow B \quad T$ is not a trait
$\bar{\Delta} \vdash$ trait $\{$ type $L: T ; S\}:$ Type $\rightsquigarrow \Sigma x_{1}: A . B\left[L \mapsto x_{1}\right]$ TR-Proj
$\Delta \vdash x: T_{1} \rightsquigarrow\left\langle x_{1}, x_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle$

$$
\frac{T_{1}=\operatorname{trait}\{\operatorname{type} L: T ; S\} \quad \text { val } l: T_{2} \in S}{\Delta \vdash x . l: T_{2}[L \mapsto x . L] \rightsquigarrow x_{2} . l}
$$

Figure 6.8. Translation of terms (cont.)

Note that the type of a translated trait function, i.e., a open-term, is a type-level application $\left(\lambda x_{1}: A . C\right)(y .1)$ in TR-PIM. We need two consecutive cast ${ }_{\downarrow} s$ in the target term to reduce the first projection and lambda application, similarly to the treatment of second projections (see Section 6.2.3). The function part E is translated to e by TR-LAMM. The argument part is translated to a dependent sum. In TR-AppX, the object variable is translated to a dependent sum with component variables by TR-VARM. In TR-AppM, the object definition V_{1} is translated to a dependent sum by TR-Mod.

Other Translations with Traits. TR-Mod translates an object definition into a dependent sum. The actual type member V is mapped to the first component e_{1}. The object bindings M are mapped to the second component e_{2}, which is a record by object binding translation $\Delta \vdash M: S \rightsquigarrow e$. The members in M have the same labels as in e_{1}, which can be extracted directly by record projections. TR-Sig translates a trait into a Sigma-type. The type of abstract type member T is translated to the binder type A. The trait binding S is translated to a record

$$
\frac{\overline{\Delta \vdash E_{i}: T_{i} \rightsquigarrow e_{i}}}{}{ }^{i}
$$

(Trait Binding Translation)

$$
\frac{\overline{\text { TRS-SIG }}_{\Delta \vdash T_{i}: \text { Type } \rightsquigarrow A_{i}}}{}{ }^{\Delta \vdash{\overline{\operatorname{val} l_{i}: T_{i}}}^{i} \rightsquigarrow\left\{{\overline{l_{i}: A_{i}}}^{i}\right\}}
$$

Figure 6.9. Translation of contexts and bindings
type B by trait binding translation $\Delta \vdash S \rightsquigarrow e$. The type and value member access operations are translated by TR-ProjT and TR-ProJ, respectively. Type member access is directly mapped to the first component. Value member access is mapped to record projection of the second component.

6.4.4 Soundness of Translation

We show that the type-direct translation of $\mathbf{S i g}$ is sound, i.e., the translated target terms are well-typed. The main lemma is stated as follows:

Lemma 6.4.1 (Soundness of Translation).
Given $\vdash \Delta \rightsquigarrow \Gamma$, if $\Delta \vdash E: T \rightsquigarrow e$ and $\Delta \vdash T:$ Type $\rightsquigarrow A$, then $\Gamma \vdash e: A$.
The proof is straightforward by induction on the derivation of the term translation judgment $\Delta \vdash E: T \rightsquigarrow e$.

Substitution Lemmas. The soundness proof depends on special substitution lemmas. As mentioned in Section 6.4.2, rule ST-AppM involves the projection substitution with form $T_{2}[x . L \mapsto$ $V]$ that replaces a type member access with a value. Also, value substitution such as $E[x \mapsto V]$ for an arbitrary term E may fail since E may contain member access operations $x . L$ and $x . l$, which are only for variables and become malformed after substitution with V. If terms do not have member access on variables to substitute, the terms should keep well-formedness after substitution. We define such terms formally as non-projection terms:

Definition 6.4.2 (Non-projection Terms). We call E x-non-projection if it does not contain any projection form of x (i.e. $x . L$ or $x . l$ where x occurs free in E). Similarly, bindings Δ, M and S are x-non-projection if they only contain x-non-projection terms.

It is easy to see that all sub-terms of a x-non-projection term are still x-non-projection. Thus, a substitution " $x \mapsto V$ " on x-non-projection terms is safe. We can show the following value, typing and projection substitution lemmas:

Lemma 6.4.2 (Value Substitution). If V_{1} is a x-non-projection value and V_{2} is a value, then $V_{1}\left[x \mapsto V_{2}\right]$ is still a value.

Lemma 6.4.3 (Typing Substitution). If $\Delta_{1}, z: T_{1}, \Delta_{2} \vdash E: T \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{1} \rightsquigarrow v$, where E and Δ_{2} are z-non-projection, then $\Delta_{1}, \Delta_{2}\left[z \mapsto V_{2}\right] \vdash E\left[z \mapsto V_{2}\right]: T\left[z \mapsto V_{2}\right] \rightsquigarrow$ $e[z \mapsto v]$.

Lemma 6.4.4 (Projection Substitution \otimes). Given $T^{\prime}=\operatorname{trait}\left\{\right.$ type $\left.L_{1}: T_{3} ; S_{1}\right\}$, if $\Delta_{1}, z=$ $\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \vdash E: T \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{3} \rightsquigarrow v$, where E and Δ_{2} are z.LL-only-projection, then $\Delta_{1}, \Delta_{2}\left[z . L_{1} \mapsto V_{2}\right] \vdash E\left[z . L_{1} \mapsto V_{2}\right]: T\left[z . L_{1} \mapsto V_{2}\right] \rightsquigarrow e\left[z_{1} \mapsto v\right]$.

Proofs are straightforward by induction. Notice that for value substitution lemma, when V_{1} is a type member access, it cannot be $x . L$ since it is x-non-projection. Thus, $V_{1}=y . L$ for some $y \neq x$, then $V_{1}\left[x \mapsto V_{2}\right]=V_{1}=y . L$ is still a value.

Related Work

7.1 Dependently Typed Calculi without Subtyping

7.1.1 Core Calculus for Functional Languages

Girard's System F_{ω} [Girard 1972] is a typed lambda calculus with higher-kinded polymorphism. For the well-formedness of type expressions, an extra level of kinds is added to the system. In comparison, because of unified syntax, PITS is considerably simpler than System F_{ω}, both in terms of language constructs and complexity of proofs. As for type-level computation, System F_{ω} differs from PITS in that it uses a conversion rule, while PITS uses explicit casts. PITS is also inspired by the treatment of datatype constructors in Haskell [Jones 1993]. Iso-types have similarities to newtypes and datatypes which involve explicit type-level computations. The current core language for GHC Haskell, System FC [Sulzmann et al. 2007] is a significant extension of System F, which supports GADTs [Peyton Jones et al. 2004], functional dependencies [Jones 2000], type families [Eisenberg et al. 2014], and kind equality [Weirich et al. 2013]. System DC [Weirich et al. 2017] is a further extension to FC and foundation of Dependently Typed Haskell (DTH) that extends Haskell with full-spectrum dependent types. System FC and its extensions require a non-trivial form of type equality, which is currently missing from PITS. One possible direction for future work is to investigate the addition of such forms of non-trivial type-equality. On the other hand, PITS uses unified syntax and has only 8 language constructs, whereas the original System FC uses multiple levels of syntax and currently has over 30 language constructs, making it significantly more complex. The simplicity of PITS makes it suitable to be combined with other language features, such as subtyping and strong sums, which seem hard to support in FC and its extensions. For example, we have presented the λI_{\leqslant}calculus that extends a variant of PITS (i.e. λI) with subtyping in Chapter 5 , and the λI_{Σ} calculus which is a variant of λI_{\leqslant}with strong sums in Chapter 6.

7.1.2 Unified Syntax with Decidable Type-checking

Pure Type Systems [Barendregt 1991] show how a whole family of type systems can be implemented using just a single syntactic form. PTSs are an obvious source of inspiration for our work. An early attempt of using a PTS-like syntax for an intermediate language for functional programming was Henk [Peyton Jones and Meijer 1997]. The Henk proposal was to use the lambda cube as a typed intermediate language, unifying all three levels, i.e., terms, types and
kinds. However the authors have not studied the addition of general recursion, full dependent types or the meta-theory.

Zombie [Casinghino et al. 2014] is a dependently typed language using a single syntactic category. It is composed of two fragments: a logical fragment where every expression is known to terminate, and a programmatic fragment that allows general recursion. Though Zombie has one syntactic category, it is still fairly complicated (with around 24 language constructs) as it tries to be both consistent as a logic and pragmatic as a programming language. Even if one is only interested in modeling a programmatic fragment, additional mechanisms are required to ensure the validity of proofs [Sjöberg et al. 2012; Sjöberg and Weirich 2015]. In contrast to Zombie, PITS takes another point of the design space, giving up logical consistency and reasoning about proofs for simplicity in the language design.

7.1.3 Unified Syntax with General Recursion and Undecidable Type Checking

Cayenne [Augustsson 1998] integrates the full power of dependent types with general recursion, which bears some similarities with PITS. It uses one syntactic form for both terms and types, allows arbitrary computation at type level and is logically inconsistent because of the presence of unrestricted recursion. However, the most crucial difference from PITS is that type checking in Cayenne is undecidable. From a pragmatic point of view, this design choice simplifies the implementation, but the desirable property of decidable type checking is lost. Cardelli's Type:Type language [Cardelli 1986b] also features general recursion to implement equi-recursive types. Recursion and recursive types are unified in a single construct. However, both equi-recursive types and the Type:Type axiom make the type system undecidable. $\Pi \Sigma$ [Altenkirch et al. 2010] is another example of a language that uses one recursion mechanism for both types and functions. The type-level recursion is controlled by lifted types and boxes since definitions are not unfolded inside boxes. However, $\Pi \Sigma$ does not have decidable type checking due to the "type-in-type" axiom, and its metatheory is not formally developed.

7.1.4 Casts for Managed Type-level Computation

Type-level computation in PITS is controlled by explicit casts. Several studies [Stump et al. 2008; Sjöberg et al. 2012; Kimmell et al. 2012; Sjöberg and Weirich 2015; Sulzmann et al. 2007; Gundry 2013; Weirich et al. 2017] also attempt to use explicit casts for managed type-level computation. However, casts in those approaches are not inspired by iso-recursive types. Instead they require equality proof terms, while casts in PITS do not. The need for equality proof terms complicates the language design because: 1) building equality proofs requires various other language constructs, adding to the complexity of the language design and metatheory; 2) It is desirable to ensure that the equality proofs are valid. Otherwise, one can easily build bogus equality proofs with nontermination, which could endanger type safety. Guru [Stump et al. 2008] and Sep3 [Kimmell et al. 2012] make syntactic separation between proofs and programs to prevent certain programmatic terms turning into invalid proofs. System DC [Weirich et al. 2017] and other FC variants [Sulzmann et al. 2007; Yorgey et al. 2012] similarly distinguish coercions (i.e. equality proofs) and programs syntactically. The programmatic part of Zombie [Sjöberg et al. 2012; Sjöberg and Weirich 2015], which has no such separation, employs a value restriction that restricts proofs to be syntactic values to avoid non-terminating terms. Gundry's evidence language [Gundry 2013] also unifies all syntactic levels including coercions, but uses different phases for separating programs and proofs.

Table 7.1. Comparison between λI_{\leqslant}and related calculi

Features	λI_{\leqslant}	F_{\leqslant}	PTS \leqslant	PSS	λP_{\leqslant}	$\lambda \Pi_{\leqslant}$	λC_{\leqslant}
Dependent types	\bullet	0	\bullet	\bullet	\bullet	\bullet	\bullet
Beta equality	\bullet	0	\bullet	\bullet	\bullet	\bullet	\bullet
Unified syntax	\bullet	0	\bullet	\bullet	0	0	\bullet
Contravariance	\bullet	\bullet	\bullet	0	\bullet	\bullet	\bullet
Bounded quantification	\bullet	\bullet	\bullet^{1}	\bullet	0	0	0
Top type	\bullet	\bullet	0	\bullet	0	0	0
Transitivity not rely on normalization	\bullet	\bullet	\bullet	$-^{2}$	0	0	\bullet

${ }^{1}$ No subtyping relation for lambdas with bounded quantification.
${ }^{2}$ Metatheory not fully developed.

The typing rules contain an access policy relation to determine the conversion of phases. Such mechanism is finer-grained yet more complicated. Note that our treatment of full casts in full PITS, using a separate erased system for developing metatheory, is similar to the approach of Zombie or Guru which uses an unannotated system.

7.1.5 Restricted Recursion with Termination Checking

As proof assistants, dependently typed languages such as Coq [The Coq development team 2016] and Agda [Norell 2007b] are conservative as to what kind of computation is allowed. They require all programs to terminate by means of a termination checker, ensuring that recursive calls are decreasing. Decidable type checking and logical consistency are preserved. But the conservative, syntactic criteria is insufficient to support a variety of important programming styles. Agda offers an option to disable the termination checker to allow writing arbitrary functions. However, this may endanger both decidable type checking and logical consistency. Idris [Brady 2011] is a dependently typed language that allows writing unrestricted functions. However, to achieve decidable type checking, it also requires termination checker to ensure only terminating functions are evaluated by the type checker. While logical consistency is an appealing property, it is not a goal of PITS. Instead PITS aims at retaining (term-level) general recursion as found in languages like Haskell or ML, while benefiting from a unified syntax to simplify the implementation and the meta-theory of the core language.

7.2 Calculi with Subtyping and Dependent Types

In this section, we discuss several related calculi that support subtyping and dependent types (except System F_{\leqslant}^{ω} and $F_{. .}^{\omega}$). The comparison of features between several closely related calculi and λI_{\leqslant}is summarized in Table 7.1. One quick observation from the table is that only λI_{\leqslant}can support all language features of F_{\leqslant}, while other calculi cannot fully subsume F_{\leqslant}.

7.2.1 Subtyping with Unified Syntax

It is appealing to combine subtyping with the unified syntax of Pure Type Systems [Barendregt 1991] (PTS) for obtaining a concise and expressive system. Chen proposed λC_{\leqslant}[Chen 1997], an extension of the calculus of constructions (λC) with subtyping. λC_{\leqslant}supports neither top types nor bounded quantification in order to simplify the metatheory. The proof of transitivity in λC_{\leqslant} is simpler and does not depend on strong normalization, though decidability still depends on
strong normalization as in λC. Zwanenburg proposed $P T S^{\leqslant}$[Zwanenburg 1999] by extending PTS with subtyping and bounded quantification. It has the PTS-style unified syntax but with two distinct forms of abstraction for type and bound. In $P T S^{\leqslant}$, the subtyping rules do not depend on the typing rules, which allows proving subtyping properties independently from typing properties. However, such design makes it difficult to extend the framework with two desirable features: 1) subtyping on bounded abstractions, since subtyping rules are defined only for pre-terms; 2) top types, since the subtyping rule of top types depends on typing. Neither of those features are supported by $P T S^{\leqslant}$.

Hutchins proposed another framework called Pure Subtype Systems [Hutchins 2010] (PSS) which also adopts the unified syntax based on PTS. The design is simplified by making the system solely based on subtyping without the typing relation. The simplicity of the system comes at the cost of the complexity of metatheory. The proof of transitivity elimination is partial, and therefore subject reduction cannot be proved. Note that although λI_{\leqslant}shares the similar idea of being based on the subtyping relation, it has two major differences from PSS. First, λI_{\leqslant}unifies subtyping with typing in a more conservative way. The unified subtyping relation still tracks types and it intuitively subsumes the traditional typing relation. In contrast, PSS takes a more aggressive approach to make the typing relation completely absent from the system. In PSS there are no types or typing. Second, PSS eliminates the distinction of function and function types, which are unified into the same syntax of abstraction. In contrast, λI_{\leqslant}still distinguishes these two concepts as in PTSs. Since the subtyping rule of abstractions in PSS is pointwise, any form of contravariance is not supported. An unfortunate consequence is that PSS cannot subsume System F_{\leqslant}with contravariant arrow types, including the Kernel Fun variant [Cardelli and Wegner 1985].

7.2.2 Stratified Syntax with High-Order Subtyping

System F_{\leqslant}^{ω} is a lambda calculus with stratified syntax by extending System F_{ω} [Girard 1972] with higher-order subtyping. To simplify the metatheory, early formalizations of System F_{\leqslant}^{ω} [Pierce and Steffen 1997; Compagnoni 1995] do not allow a bounded type operator. Compagnoni and Goguen later proposed a technique called typed operational semantics [Compagnoni and Goguen 2003] to fully enable bounded quantification in System F_{s}^{ω}. But its metatheory becomes quite complicated and relies on strong normalization, making it hard to apply such technique to systems with general recursion. Note that Compagnoni and Goguen's presentation of System F_{\leqslant}^{ω} contains a kinded subtyping judgment $\Gamma \vdash A \leqslant B: K$ which has a similar shape to the unified subtyping relation in λI_{\leqslant}. But the typing relation is separately defined in their system and not subsumed by the kinded subtyping judgment. System $F_{. .}^{\omega}$ [Stucki 2017] is an extension of F_{\leqslant}^{ω} with type intervals. $F_{\text {.. }}^{\omega}$ supports higher-order subtyping with both lower and upper bounded quantifications but its metatheory is complex due to the stratified syntax. The canonical/algorithmic system of $F_{. .}^{\omega}$ relies on normalization. The transitivity rule cannot be fully eliminated but partially eliminated for top-level uses.

7.2.3 Stratified Subtyping Systems with Dependent Types

System λP_{\leqslant}[Aspinall and Compagnoni 1996] is a stratified system with dependent types and higher-order subtyping. The metatheory becomes more complex than System F_{\leqslant}^{ω} due to the circular dependency of typing, kinding and subtyping. A novel proof technique that splits beta reduction on terms and types is proposed to break such dependency. However, System λP_{\leqslant}does
not support polymorphism (i.e. abstraction over types), bounded quantification or top types. System $\lambda \Pi_{\leqslant}$[Castagna and Chen 2001; Chen 1998] is an improvement of λP_{\leqslant}. It has the property of complete type-level transitivity elimination, while System λP_{\leqslant}has transitivity elimination only for normalized types. However, $\lambda \Pi_{\leqslant}$is proved to be equivalent to λP_{\leqslant}in typing and subtyping, meaning that it has no increased expressiveness. Both $\lambda \Pi_{\leqslant}$and λP_{\leqslant}require strong normalization to prove the transitivity of subtyping. In contrast, λI_{\leqslant}employs iso-types for explicit type-level computations and decouples strong normalization from the proofs of metatheory.

7.2.4 Subtyping with Restricted Dependent Types

There have been several studies focusing on exploring subtyping with restricted forms of dependent types but not full dependent types in the context of object-oriented (OO) programming. The Dependent Object-Oriented Language [Campos and Vasconcelos 2015, 2018] (DOL) is an imperative OO programming language with subtyping and index refinements, a restricted notion of dependent types originated from Dependent ML [Xi and Pfenning 1999], which allows types to depend on static indices of natural numbers. DOL supports the verification of mutable objects and unrestricted use of shared objects. The type checking of DOL is decidable. Compared to λI_{\leqslant}, DOL does not support full dependent types or general bounded quantification. In DOL, Pi-types are denoted by $\Pi a: I . T$ and can be quantified only by index types I. Quantifiers in Pi-types only support propositions on indexes, such as comparing natural numbers $a \leqslant b$.
$\nu O b j$ [Odersky et al. 2003] is a dependently typed calculus for objects with type members. It is developed as a theoretic foundation for Scala [Odersky et al. 2004] and features a weaker form of dependent types called path-dependent types. In $\nu O b j$, types can depend on paths which are type selections on variables, i.e., $x . L$. Compared to traditional dependent types used in λI_{\leqslant}, it is difficult to use path-dependent types to model dependency on non-path values, e.g., $\Pi n:$ Int. Vec n. The richness of the type system makes the metatheory of $\nu O b j$ complex and type checking is not decidable. Another recent effort of developing a core calculus for Scala is the Dependent Object Types (DOT) calculus [Amin et al. 2012b, 2014; Rompf and Amin 2016; Amin et al. 2016]. DOT is also based on path-dependent types. It is simpler and has fewer type forms than $\nu O b j$, e.g., no class types, but still expressive to model many features of Scala. Similarly to λI_{\leqslant}, DOT subsumes System $F \leqslant$ but has a richer notion of bounds. Type variables can be quantified by both lower bounds and upper bounds, as opposed to the traditional bounded quantification used in λI_{\leqslant}that only supports upper bounds. The metatheory of DOT is well-developed [Rompf and Amin 2016], though the soundness proof requires many non-standard techniques. Transitivity of subtyping needs to be treated as an axiom and transitivity elimination is not possible [Rompf and Amin 2016]. Both $\nu O b j$ and DOT use the stratified syntax in contrast to the unified syntax of λI_{\leqslant}.

7.3 Strong Sum Types and ML Modules

7.3.1 Dependently Typed Calculi with Strong Sigma-types

It is challenging to combine strong dependent sums with traditional dependently typed systems. If both impredicative polymorphism and strong sums are allowed, Girard's paradox can be derived and logical consistency is lost [Coquand 1986; Hook and Howe 1986]. Previous studies usually drop impredicativity to obtain a consistent system with strong sums. XML [Harper and Mitchell

1993] extends Standard ML with a module system encoded by strong dependent sums. XML uses implicit type conversions by equality relations and utilizes stratified universes to abandon impredicative polymorphism.

Instead of completely dropping impredicativity, another feasible approach [Harper and Mitchell 1993] is to limit predicativity only in strong Sigma-types and allow impredicativity in Pi-types. However, such predicative Sigma-types are more restricted and less expressive, since both the binder type and body should be at the same small kind level, i.e., for $\Sigma x: A . B$, both $A: \star$ and $B: \star$ are required. For example, $\Sigma x: \star . x$ is not predicative with stratified universes where \star : \square. The Calculus of Dependent Lambda Eliminations (CDLE) [Stump 2017] supports impredicativity and encoding strong sums without treating them as built-in constructs, though the encoded Sigma-types are predicative. Bowman et al. [2017] proposed an extension of the Calculus of Constructions with strong dependent sums for type-preserving CPS translation. Similarly, in their system Pi-types are impredicative but strong sum types are predicative so as to prevent the inconsistency issue.

The λI_{Σ} calculus supports impredicativity both in Pi-types and strong Sigma-types by using a single unified universe (i.e. \star) and the "type-in-type" axiom. Thus, the calculus is logically inconsistent. Nonetheless, we do not consider inconsistency problematic for λI_{Σ}. We focus more on the traditional programming patterns, while the related studies mentioned above mostly focus on logical uses such as proof assistant. The loss of strong normalization does not cause problems either, since iso-types untangles normalization from other properties of λI_{Σ}.

7.3.2 Strong Sigma-types with Subtyping

It is even more challenging to allow subtyping with Sigma-types. There is not so much existing work due to the complexity of combining subtyping and dependent sum types. On exception is the work by Luo et al. [2004] on coherent subtyping rules of strong Sigma-types. They propose a new subtyping rule for the first projection of Sigma-types and achieve both coherence and admissibility of transitivity. Their system only supports predicative strong sums, similarly to the calculi by Stump [2017] and Bowman et al. [2017]. Several other work, such as dependent records by Pollack [2002], is based on Luo et al.'s rules. One fundamental difference is that they use coercive subtyping, while we use structural subtyping based on the approach of unified subtyping [Yang and Oliveira 2017]. Coercive subtyping allows more flexible subtyping rules in their system, however also requires the additional relation, i.e., coercion, and needs to ensure its coherence. The unified subtyping approach used in λI_{Σ} directly reasons on the structures of types.

7.3.3 Core Languages for Scala

As shown in the surface language $\mathbf{S i g}$, dependent sums in λI_{Σ} can model several Object-oriented Programming (OOP) structures in Scala [Odersky et al. 2004], e.g., traits and type members. There are several calculi which aim to serve as theoretical foundations of Scala as mentioned in Section 5.6, including $\nu O b j$ [Odersky et al. 2003] and Dependent Object Types (DOT) calculus [Amin et al. 2012b, 2014; Rompf and Amin 2016; Amin et al. 2016]. The key feature is path-dependent types for modeling member access of traits. $\nu O b j$ supports full paths $p . L$, while DOT supports short paths on variables only, i.e., $x . L$, similarly to the restriction in Sig. Both calculi can model more complete Scala features, including both lower and upper bounds for type members, which is missing in λI_{Σ}. Nonetheless, λI_{Σ} is not intended for modeling full Scala features, though it can
support some features of type members as shown in Sig. Traditional full dependent types, such as Πn : Int. Vec n, are not expressible in $\nu O b j$ or DOT. Higher-kinded types are not currently available in DOT but supported by $F_{. .}^{\omega}$ [Stucki 2017], a F_{ω} variant of DOT with upper and lower bounds but without type members or path-dependent types. λI_{Σ} supports both dependent types and high-kinded types. Both transitivity elimination and type-safety are proved for λI_{Σ}. In contrast, $\nu O b j$ does not have fully-developed metatheory. DOT has a relatively more complex soundness proof [Rompf and Amin 2016; Rapoport et al. 2017]. DOT needs a built-in transitivity rule and does not support transitivity elimination.

7.3.4 Encoding ML Modules by Dependent Types

Dependent sums are the key novelty of λI_{Σ} over λI_{\leqslant}. Besides OOP language constructs, dependent sums can also model ML-like model systems. MacQueen [1986] proposed such an idea to model functors and signatures using dependent types and strong existential types, i.e., strong sum types. Several other work also tries to encode modules with strong sums, e.g., XML by Harper and Mitchell [1993], as well as Leroy's calculus that employs both strong sums and weak manifest sums [Leroy 1994]. For a proper module system, one needs the strong existential opening and second projection from strong sums, because traditional existential opening is too restrictive. It does not allow free access to the witness and interpretation components of an existential package.

Notice that all these previous studies use an implicit conversion rule with equality judgments, while λI_{Σ} employs the iso-type approach with explicit type casts. Instead of using the standard typing rule for the second projection, in λI_{Σ}, we slightly weaken the typing rule of the second projection and strong opening to make them compatible with call-by-value casts. Alternatively, strong sums can be typed using full casts with parallel reduction. But the cost is the complexity of metatheory and the difficulty to combine with other features, such as subtyping.

7.3.5 Encoding ML Modules by F-ing Modules

Instead of directly using dependent sums, ML module systems can be encoded through indirect semantics by second-order type systems and ordinary existential types. Rossberg et al. [2010] proposed F-ing modules which elaborate ML modules into System F_{ω}. The target language does not need dependent types or dependent sums. But such encoding requires a complex elaboration process. The semantics of modules is indirect, which is represented differently in the surface and target language. For example, an abstract signature is an existential type $\exists \bar{\alpha} . \Sigma$ in the surface ML language that binds abstract types $\bar{\alpha}$. It will be instantiated into a concrete signature Σ in F_{ω} which is a record type. Thus, member access of a module can be done internally in an existential package, because the semantics signature is "virtual", i.e., an existential package with abstract binders. There is no actual existential opening and thus the encoding does not require strong existentials, i.e., strong dependent sums.

Type members and traits encoded in Sig share some similarities to ML-like modules: traits are like signatures and objects are like structures. We use a type-directed translation from Sig to λI_{Σ}, similarly to the elaboration used in F-ing modules. However, our translation process is much simpler. The surface structures of Sig have direct mappings in the target language. With dependent sums, we can directly use existential openings. Note that the opening operation in λI_{Σ} has an intermediate type which is a type-level application. The actual type is delayed until the actual implementation is provided, and then can be obtained by cast ${ }_{\downarrow} s$. This is similar to the
treatment of obtaining concrete signatures in F-ing modules. However, λI_{Σ} uses dependent types and does not need "virtual" signatures that always carry existential binders.

7.3.6 First-class ML Modules

Traditionally, ML modules are treated as a separate system from the core language. Modules cannot be freely mixed with terms. 1ML [Rossberg 2015] is such an attempt to unify the core and modules, which features F-ing modules to elaborate both predicative ML core and module systems into a well-studied target language, i.e., System F_{ω}. Another earlier work by Harper and Lillibridge is translucent sums [Harper and Lillibridge 1994; Lillibridge 1997] that support transparent type definitions (i.e. type $L=T$) in signatures. Modules encoded by translucent sums are first-class values. Essentially, translucent sums are weak sums extended with type equality. Similarly to 1ML, Harper and Lillibridge's calculus is based on System F_{ω} but not a dependent type theory.

Thanks to unified syntax in λI_{Σ}, objects of traits are encoded as first-class values in Sig. Considering the similarities between traits and modules, Sig can also be viewed as a language with lightweight support of first-class ML modules. Though Sig lacks many features of ML module systems, such as translucent type members [Leroy 1994; Lillibridge 1997], it still shows the potential of encoding first-class modules with unified syntax and strong dependent sums. Moreover, Sig can support signature types that depend on values, e.g., trait \{ type L : Int; val l : $V e c L\}$. Such type is not supported by 1ML or translucent sums, which depend on System F_{ω} that do not have full dependent types.

7.3.7 Module Systems for Dependently Typed Calculi

So far we have discussed module systems for core languages which are non-dependent. Several dependently typed languages, such as Coq [The Coq development team 2016], also employ MLlike module systems. One attempt to formalize such module systems is $\mathcal{M} \mathcal{C}_{2}$ [Courant 2007, 1997] that extends Pure Type Systems with a ML-like module system. The approach of $\mathcal{M C} \mathcal{C}_{2}$ is more traditional. Modules in $\mathcal{M C} \mathcal{C}_{2}$ are second-class, which are distinct syntactic levels separated from core terms of PTS and require duplicated constructs, such as functors and signatures. In contrast modules/objects in Sig are first-class and unified with core terms. Modules/objects are encoded by strong sums but not treated as built-in primitives in λI_{Σ}. Moreover, $\mathcal{M} \mathcal{C}_{2}$ aims at modularizing proofs for proof assistants, while λI_{Σ} and $\mathbf{S i g}$ focus on modeling modular constructs for traditional programming.

Conclusion and Future Work

8．1 Conclusion

In this thesis，we explored the design space of dependently typed languages for general－purpose programming that stand in－between traditional languages and full－spectrum dependently typed languages．We showed how the advantages of dependent types，especially the economy of concepts and added expressiveness，can benefit the designs of traditional languages．In particular， we developed three dependently typed calculi that combine features for traditional programming：
－We developed Pure Iso－Type Systems（PITS），a family of dependently typed calculi with general recursion．PITS employs unified syntax and has comparable simplicity to Pure Type Systems（PTS）．To retain decidable type checking in the presence of general recursion， we proposed iso－types．Iso－types make every type－level computation steps explicit by cast operators and decouple properties such as decidability of type checking from strong normalization．We studied three variants of PITS that differ on reduction strategies of casts and have trade－offs in terms of expressiveness and simplicity of metatheory．We proved type－safety and decidability of type checking for all variants．
－We developed the λI_{\leqslant}calculus，a dependently typed calculus with subtyping．λI_{\leqslant}is a variant of PITS with extra features for object－oriented programming，including higher－ order subtyping，bounded quantification and top types．To address the issues arising from combining dependent types and subtyping，we proposed unified subtyping．Unified subtyping combines typing and subtyping into a single relation and eliminates the circularity of typing and subtyping．We developed the metatheory of λI_{\leqslant}and proved transitivity of subtyping and type－safety．We also showed that λI_{\leqslant}can fully subsume System F_{\leqslant}．
－We developed the λI_{Σ} calculus，a dependently typed calculus with subtyping and strong dependent sums．λI_{Σ} employs the approach of unified subtyping and is a variant of λI_{\leqslant}． λI_{Σ} also features iso－strong sums whose destructors are typed as intermediate type－level applications instead of direct substitutions．Call－by－value casts are capable of performing necessary type－level computation without the need of full casts．We proved transitivity and type－safety for λI_{Σ} in the presence of impredicativity．We also showed an application of strong sums for encoding Scala－like traits by elaborating surface constructs of Sig into λI_{Σ} terms．

8.2 Future Work

In this section, we discuss several interesting avenues for future work.

Modeling Functional Languages with PITS. We believe that PITS is suitable to serve as a core language for functional languages with expressiveness in-between traditional languages and full-spectrum dependently typed languages. For future work, we would like to employ PITS for modeling traditional functional languages like (older versions of) Haskell and ML with some extra features that come "for free" from the use of dependent types and unified syntax. We have already shown such possibility in Section 3.2 that PITS can model many type-level features which are language extensions to classic Haskell or ML. However, writing a new compiler for full Haskell or ML requires a lot of engineering efforts, even if only considering the classic Haskell 98. We would like to take a more pragmatic approach by modifying existing compilers and replacing the core language with PITS. For example, JHC [Meacham 2006] is a Haskell compiler that implements Haskell 98 and has a much smaller code base than the de facto standard Haskell compiler GHC [The GHC Team 2018]. JHC uses the PTS-style core language Henk [Peyton Jones and Meijer 1997] for implementing type classes. Based on the work of JHC, we hope to replace Henk with PITS and implement more language extensions from modern Haskell such as datatype promotion [Yorgey et al. 2012].

Relax the Value Restriction for Call-by-value PITS. We employ a value restriction in call-by-value PITS to retain subject reduction with a simple proof. As discussed in Section 4.2.1, we will consider an alternative approach by adding cast operators during dynamic semantics for future work. The proposal is to add two special constructs. The syntax of expressions and values is extended as follows:

$$
\begin{aligned}
e, A & ::=\cdots\left|\left(e_{1} ; e_{2}\right)\right| \operatorname{cast}_{\uparrow}\left[e_{3}\right]\left(e_{1} ; e_{2}\right) \\
v & \left.::=\cdots\left|\left(v_{1} ; v_{2}\right)\right| \operatorname{cast}_{\uparrow} \uparrow e_{3}\right]\left(e_{1} ; e_{2}\right)
\end{aligned}
$$

We use the syntax $\left(e_{1} ; e_{2}\right)$ to denote dependent function applications whose arguments are not values. A special cast-up operator denoted by cast $\uparrow_{\uparrow}\left[e_{3}\right]\left(e_{1} ; e_{2}\right)$ is used to expand types of such applications. The typing rules of new constructs are as follows:

$$
\begin{gathered}
\frac{\Gamma \vdash e_{1}: \Pi x: A . B \quad \Gamma \vdash e_{2}: A \quad x \in \mathrm{FV}(B)}{\Gamma \vdash\left(e_{1} ; e_{2}\right):(\lambda x: A . B) e_{2}} \\
\frac{\Gamma \vdash e_{1}: \Pi x: A . B \quad \Gamma \vdash e_{2}: A \quad \Gamma \vdash e_{3}: A \quad e_{3} \hookrightarrow e_{2} \quad x \in \mathrm{FV}(B)}{\Gamma \vdash \operatorname{cast}_{\uparrow}\left[e_{3}\right]\left(e_{1} ; e_{2}\right):(\lambda x: A . B) e_{3}}
\end{gathered}
$$

We use the same approach as iso-strong sums (see Section 6.1.2) for the typing of dependent applications. The typing result is a type-level application that carries the argument e_{2}. The type annotation of the special cast-up operator saves an argument e_{3} which is a beta-expansion of the original argument e_{2}. The special cast-up operator makes it possible to track the types through
reductions. We have the following new reduction rules:

$$
\begin{array}{cc}
\frac{e_{1} \hookrightarrow e_{1}^{\prime}}{\left(e_{1} ; e_{2}\right) \hookrightarrow\left(e_{1}^{\prime} ; e_{2}\right)} & \frac{e \hookrightarrow e^{\prime}}{(v ; e) \hookrightarrow \operatorname{cast}_{\uparrow}[e]\left(v ; e^{\prime}\right)} \\
\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}\left[e_{3}\right]\left(e_{1} ; e_{2}\right)\right) \hookrightarrow\left(e_{1} ; e_{2}\right) & \frac{\operatorname{cast}_{\downarrow}\left(v_{1} ; v_{2}\right) \hookrightarrow v_{1} v_{2}}{}
\end{array}
$$

When trying to reduce $(v ; e)$, we will add a cast-up operator to save the original argument and retain the type for the reduced term: $\operatorname{cast}_{\uparrow}[e]\left(v ; e^{\prime}\right)$. We can use cast ${ }_{\downarrow}$ operators to eliminate the cast-up operators and the special form of dependent applications. Our preliminary experiment shows that with this approach we can prove type-safety, namely subject reduction and progress lemmas. Although the typing and reduction rules become complex, we hope that this approach will help recover some missing expressiveness due to the value restriction.

Push Rules for Full PITS. In Section 4.3.2, we discuss an alternative design of full PITS that we can use "push rules" as in System FC [Sulzmann et al. 2007] instead of erasing all casts like Zombie [Sjöberg and Weirich 2015] or Guru [Stump et al. 2008]. For example, we can define a push rule for the case when the function is wrapped by a cast \Uparrow_{\Uparrow} operator:

$$
\overline{\left(\operatorname{cast}_{\Downarrow}\left[A^{\prime} \rightarrow B^{\prime}\right](\lambda x: A . y)\right) e \hookrightarrow \operatorname{cast}_{\Downarrow}\left[B^{\prime}\right]\left((\lambda x: A . y)\left(\operatorname{cast}_{\Uparrow}[A] e\right)\right)}
$$

The example from Section 4.3.2 can be reduced as follows:

$$
\begin{aligned}
& \left(\text { cast }_{\Downarrow}[\text { Int } \rightarrow \text { Int }](\lambda x: \text { Id Int. } x)\right) 3 \\
\hookrightarrow & \text { cast }_{\Downarrow}[\text { Int }]\left((\lambda x: \text { Id Int. } x)\left(\text { cast }_{\Uparrow}[\text { Id Int }] 3\right)\right) \\
\hookrightarrow & \text { cast }_{\Downarrow}[\text { Int }]\left(\text { cast }_{\Uparrow}[\text { Id Int }] 3\right) \\
\hookrightarrow & 3
\end{aligned}
$$

where $I d=\lambda y: \star . y$. However, this rule is still limited since it only works when the function is non-dependent, i.e., with an arrow type and needs to be exactly a lambda term. For future work, we hope to work out more push rules that can cover all possible cases, so that we can directly prove type-safety with such rules. We also believe that a direct operational semantics of full PITS will be helpful to simplify the metatheory and enable the combination of other techniques, such as unified subtyping.

Consistent Full Reduction for Casts. Full PITS employs two different reduction strategies: a parallel reduction for casts and a call-by-name reduction for term evaluation (see Section 4.3.1). This causes some inconsistency in the calculus, e.g. $\lambda x:$ Int. $1+1$ is a value but reducible by full casts, and complicates the design. For future work, we would like to explore a consistent full reduction for both type casts and term evaluation. One possible approach is to use the one-step full beta reduction rules (as in Figure 4.9) with a particular order. We have already proved that the current parallel reduction used by full casts has the same expressive power as full beta reduction (see Lemma 4.3.3). This alternative design will not reduce the expressiveness of the calculus.

Surface Mechanisms for Iso-Types. We would like to explore mechanisms in surface languages that make iso-types more convenient to use. One possible direction is the lightweight inference of casts. The end users will be not aware of casts at the surface level and the underlying compiler will help generating necessary casts for keeping type-safety. Note that we do not expect a general full inference of casts, which is difficult or even impossible. A more realistic approach is to infer casts for specific constructs. For example, we have shown how to automatically generate casts in the target language by an elaboration of surface constructs, such as algebraic datatypes using Scott encodings (Section 3.2.1) and Scala-like traits using strong sums (Section 6.4.3).

Algorithmic Unified Subtyping. The current algorithmic version of λI_{\leqslant}has a notable difference from the declarative system: the typing and subtyping relations are defined separately (see Section 5.4). This causes complexity in developing metatheory for the algorithmic system. For example, if we want to prove the decidability, we need cover both subtyping and typing judgments. The algorithmic system also heavily relies on the erasure of annotations, making it difficult to prove inversion lemmas. For future work, we hope to develop new algorithmic unified subtyping judgments for both λI_{\leqslant}and λI_{Σ} calculi. Instead of separated typing and subtyping judgments, there will be only unified subtyping judgments with two directions: the checking judgment $\Gamma \vdash e_{1} \leqslant e_{2} \Leftarrow A$ and the synthesis judgment $\Gamma \vdash e_{1} \leqslant e_{2} \Rightarrow A$. We would like to prove the soundness and completeness of the new judgments to the original declarative unified subtyping judgment.

Decidability of Unified Subtyping. We discussed the impact of using the Pi-type rule with full contravariance in λI_{\leqslant}, which makes the unified subtyping relation undecidable (see Section 5.6). However, we did not answer whether the calculus is decidable with the Kernel Fun rule. Like System F_{\leqslant}, we need to first create an algorithmic presentation of the calculus. In Section 5.4, we presented a sound and complete algorithmic version of λI_{\leqslant}but did not prove its decidability due to the complexity of its judgments. For future work, we would like to develop sound and complete algorithmic versions of λI_{\leqslant}and λI_{Σ} based on the algorithmic unified subtyping judgments and prove their decidability.

More Features for Unified Subtyping. We would like to explore more features for the unified subtyping relation. For example, as discussed in Section 5.6, the full subtyping of recursion is not yet supported with unified subtyping due to the pointwise subtyping rules. Similarly, subtyping applications is not complete, e.g., in rules S-APP and SP-APP, since the arguments are required to be fixed. We hope to remove such restrictions by the polarized subtyping approach [Steffen 1998], which provides a mechanism called polarities for a finer-grained control of covariance and contravariance.

Another example is to extend the bounded quantification with both lower and upper bounds as in DOT [Amin et al. 2012a]. Currently, only upper bound is supported in λI_{\leqslant}, which follows the treatment of System F_{\leqslant}. However, the metatheory of DOT is significantly more complex than λI_{\leqslant}. If only considering to add bounds, we could adopt the method by Stucki [2017] that extends F_{ω} with type intervals (i.e. both upper and lower bounds), which hopefully will not complicate the metatheory too much. We would also like to take the same approach to add bounds for λI_{Σ} that currently drops bound quantification for simplicity reasons. One long-term goal is to add
more features in λI_{Σ}, making it be able to subsume DOT [Amin et al. 2012a] and model more Scala-like programming idioms.

Relax the Value Restriction in λI_{Σ}. Similarly to call-by-value PITS, λI_{Σ} uses call-by-value casts and imposes value restrictions. For future work, we would like to relax value restrictions of λI_{Σ} and introduce a special cast \uparrow_{\uparrow} operator, similarly to the previously mentioned proposal for call-by-value PITS:

$$
\frac{\Gamma \vdash e: \Sigma x: A . B}{\Gamma \vdash e .2:(\lambda x: A . B)(e .1)} \quad \frac{\Gamma \vdash e: \Sigma x: A . B \quad \Gamma \vdash e^{\prime}: \Sigma x: A . B \quad e \hookrightarrow e^{\prime}}{\Gamma \vdash \operatorname{cast}_{\uparrow}[e]\left(e^{\prime} .2\right):(\lambda x: A . B)(e .1)}
$$

Cast-up operators will be automatically inserted in the reduction rule of the second projections and can also be canceled by cast \downarrow operators:

$$
\frac{e \hookrightarrow e^{\prime}}{e .2 \hookrightarrow \operatorname{cast}_{\uparrow}[e]\left(e^{\prime} .2\right)} \quad \overline{\operatorname{cast}_{\downarrow}\left(\operatorname{cast}_{\uparrow}[e]\left(e^{\prime} .2\right)\right) \hookrightarrow e^{\prime} .2}
$$

To allow nested second projections, we can use a full cast ${ }_{\Downarrow}$ operator to eliminate the intermediate type-level application:

$$
\begin{array}{ll}
e & : \Sigma x: A . B \\
e .2 & :(\lambda x: A . B)(e .1) \\
\text { cast }_{\Downarrow}(e .2) & : B[x \mapsto e .1]
\end{array}
$$

Then we can further perform another second projection such as (cast $\left.{ }_{\Downarrow}(e .2)\right) .2$ if B is also a Sigma-type.

Extensions to Sig. The Sig language presented in Section 6.4 is a very simple language built directly based on λI_{Σ}. It has several language restrictions to keep the design simple and focus on presenting the application of iso-strong sums. For future work, we would like to support more surface-level features in Sig. One important missing feature in Sig is subtyping. Since the core language λI_{Σ} already supports (unified) subtyping, we can develop the surface subtyping rules based subtyping rules in λI_{Σ}. For example, the subtyping rule for traits can be defined as follows:

$$
\frac{\Delta \vdash T_{j} \leqslant T_{i}^{\prime} \quad \forall i \in 1 . . n, \exists j \in 1 . . m, l_{j}=l_{i}^{\prime}}{\qquad \Delta \vdash \operatorname{trait}\left\{\operatorname{type} L: T ; \text { val } l_{1}: T_{1} ; . . ; \text { val } l_{m}: T_{m}\right\} \leqslant}
$$

This rule follows record subtyping (see Section 2.4.1). Thus, the subtyping relation of traits still holds for the translated terms in the core since traits are translated to Sigma-types with record types.

Another example is to support transparent types, which are useful constructs in the ML module systems. We would like to follow the approach proposed by Leroy [1994] and Lillibridge [1997] to support translucent sum types, i.e., dependent sum types containing equality quantifiers, denoted by $\Sigma x=e: A$. B. Transparent type definitions in Sig can be encoded as follows:

$$
\text { trait }\{\operatorname{type} L: T=E ; \cdots\} \rightsquigarrow \Sigma L=e: A . \cdots
$$

Translucent sums can be modeled as weak sums using weak opening operations [Lillibridge 1997], which will (hopefully) have a relatively simple metatheory.

appendix A

Manual Proofs

A. 1 Encoding Weak Sums in λI_{\leqslant}

We show the subtyping and typing rules of weak dependent sums are admissible in λI_{\leqslant}.
Lemma A.1.1. The following unified subtyping rule is admissible:

$$
\frac{\Gamma \vdash A_{1} \leqslant A_{2}: \star \quad \Gamma, x: A_{1} \vdash B_{1} \leqslant B_{2}: \star}{\Gamma \vdash\left(\Sigma x: A_{1} . B_{1}\right) \leqslant\left(\Sigma x: A_{2} \cdot B_{2}\right): \star}
$$

Proof. By encoding in Section 2.2.1, the conclusion is equivalent to

$$
\Gamma \vdash\left(\Pi z: \star .\left(\Pi x: A_{1} \cdot B_{1} \rightarrow z\right) \rightarrow z\right) \leqslant\left(\Pi z: \star .\left(\Pi x: A_{2} \cdot B_{2} \rightarrow z\right) \rightarrow z\right): \star
$$

We show this relation holds:

```
\(\Gamma, z: \star \vdash A_{1} \leqslant A_{2}: \star\)
                                    by Lemma 5.3.4
\(\Gamma, z: \star, x: A_{1} \vdash B_{1} \leqslant B_{2}: \star\)
\(\Gamma, z: \star, x: A_{1} \vdash\left(B_{2} \rightarrow z\right) \leqslant\left(B_{1} \rightarrow z\right): \star\)
\(\Gamma, z: \star \vdash\left(\Pi x: A_{2} . B_{2} \rightarrow z\right) \leqslant\left(\Pi x: A_{1} . B_{1} \rightarrow z\right): \star\)
\(\Gamma, z: \star \vdash\left(\left(\Pi x: A_{1} . B_{1} \rightarrow z\right) \rightarrow z\right) \leqslant\left(\left(\Pi x: A_{2} . B_{2} \rightarrow z\right) \rightarrow z\right): \star\)
\(\Gamma \vdash\left(\Pi z: \star .\left(\Pi x: A_{1} \cdot B_{1} \rightarrow z\right) \rightarrow z\right) \leqslant\left(\Pi z: \star .\left(\Pi x: A_{2} \cdot B_{2} \rightarrow z\right) \rightarrow z\right): \star \quad\) by rule S-Prod
```

Note that $\Gamma, x: A$ is syntactic sugar of $\Gamma, x \leqslant \top: A$.
Lemma A.1.2. The typing rules for pack and unpack [Schmidt 1994] are admissible.
Proof. The typing rule for pack is

$$
\frac{\Gamma \vdash e_{1}: A \quad \Gamma \vdash e_{2}: B\left[x \mapsto e_{1}\right]}{\Gamma \vdash \operatorname{pack}\left[e_{1}, e_{2}\right] \mathbf{a s}(\Sigma x: A . B):(\Sigma x: A . B)}
$$

By encoding in Section 2.2.1, the conclusion is equivalent to

$$
\Gamma \vdash\left(\lambda z: \star . \lambda f:(\Pi x: A . B \rightarrow z) . f e_{1} e_{2}\right):(\Pi z: \star .(\Pi x: A . B \rightarrow z) \rightarrow z)
$$

We show this relation holds:

$\Gamma, z: \star, f: \Pi x: A . B \rightarrow z \vdash e_{1}: A$	by Lemma 5.3 .4
$\Gamma, z: \star, f: \Pi x: A . B \rightarrow z \vdash e_{2}: B\left[x \mapsto e_{1}\right]$	by Lemma 5.3.4
$\Gamma, z: \star, f: \Pi x: A . B \rightarrow z \vdash f e_{1}: B\left[x \mapsto e_{1}\right] \rightarrow z$	by rule S-App
$\Gamma, z: \star, f: \Pi x: A . B \rightarrow z \vdash f e_{1} e_{2}: z$	by rule S-App
$\Gamma \vdash\left(\lambda z: \star . \lambda f:(\Pi x: A . B \rightarrow z) . f e_{1} e_{2}\right):(\Pi z: \star .(\Pi x: A . B \rightarrow z) \rightarrow z)$	by rule S-ABS

The typing rule for unpack is

$$
\frac{\Gamma \vdash e_{1}:(\Sigma x: A . B) \quad \Gamma, x: A, y: B \vdash e_{2}: C \quad \Gamma \vdash C: \star}{\Gamma \vdash \text { unpack } e_{1} \text { as }[x, y] \operatorname{in} e_{2}: C}
$$

By encoding in Section 2.2.1, the typing of e_{1} and the conclusion are equivalent to

$$
\begin{aligned}
& \Gamma \vdash e_{1}:(\Pi z: \star .(\Pi x: A . B \rightarrow z) \rightarrow z) \\
& \Gamma \vdash e_{1} C\left(\lambda x: A . \lambda y: B . e_{2}\right): C
\end{aligned}
$$

where $z \notin \mathrm{FV}(\Pi x: A . B)$ and $x, y \notin \mathrm{FV}(C)$. We show the conclusion holds:

$$
\begin{array}{ll}
\Gamma \vdash e_{1} C:(\Pi x: A . B \rightarrow C) \rightarrow C & \text { by rule S-App and } z \text { fresh } \\
\Gamma \vdash\left(\lambda x: A \cdot \lambda y: B \cdot e_{2}\right):(\Pi x: A . B \rightarrow C) & \text { by rule S-Abs and } y \notin \mathrm{FV}(C) \\
\Gamma \vdash e_{1} C\left(\lambda x: A . \lambda y: B \cdot e_{2}\right): C & \text { by rule S-App }
\end{array}
$$

A. 2 Subsumption of System F_{\leqslant}in λI_{\leqslant}

Lemma A.2.1 (Commutativity of Type Substitution). $\left(T_{1}\left[X \mapsto T_{2}\right]\right)^{*}=T_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]$ holds.
Proof. By induction on the structure of T_{1} :

- Case $T_{1}=\mathrm{T}$:

$$
\begin{aligned}
& \left(\mathrm{T}\left[X \mapsto T_{2}\right]\right)^{*}=\mathrm{T}^{*}=\mathrm{T} \\
& \mathrm{~T}^{*}\left[X \mapsto T_{2}^{*}\right]=\mathrm{T}\left[X \mapsto T_{2}{ }^{*}\right]=\mathrm{T}
\end{aligned}
$$

- Case $T_{1}=Y$:

$$
\begin{array}{ll}
\text { - Case } X=Y: & \left(X\left[X \mapsto T_{2}\right]\right)^{*}=T_{2}{ }^{*} \\
& X^{*}\left[X \mapsto T_{2}{ }^{*}\right]=X\left[X \mapsto T_{2}{ }^{*}\right]=T_{2}{ }^{*} \\
\text { - Case } X \neq Y: & \left(Y\left[X \mapsto T_{2}\right]\right)^{*}=Y \\
& Y^{*}\left[X \mapsto T_{2}{ }^{*}\right]=Y\left[X \mapsto T_{2}{ }^{*}\right]=Y
\end{array}
$$

- Case $T_{1}=U_{1} \rightarrow U_{2}:$

IH: $\begin{gathered}\left(U_{1}\left[X \mapsto T_{2}\right]\right)^{*}=U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right] \\ \left(U_{2}\left[X \mapsto T_{2}\right]\right)^{*}=U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\end{gathered}$

$$
\begin{aligned}
\left(\left(U_{1} \rightarrow U_{2}\right)\left[X \mapsto T_{2}\right]\right)^{*} & =\left(U_{1}\left[X \mapsto T_{2}\right] \rightarrow U_{2}\left[X \mapsto T_{2}\right]\right)^{*} \\
& =\Pi x \leqslant \top:\left(U_{1}\left[X \mapsto T_{2}\right]\right)^{*} \cdot\left(U_{2}\left[X \mapsto T_{2}\right]\right)^{*} \quad(x \text { Fresh }) \\
& =\Pi x \leqslant \top:\left(U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \cdot\left(U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \\
& \\
\left(U_{1} \rightarrow U_{2}\right)^{*}\left[X \mapsto T_{2}{ }^{*}\right] & =\left(\Pi x \leqslant \top: U_{1}{ }^{*} \cdot U_{2}{ }^{*}\right)\left[X \mapsto T_{2}{ }^{*}\right] \quad(x \text { Fresh }) \\
& =\Pi x \leqslant \top\left[X \mapsto T_{2}{ }^{*}\right]:\left(U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \cdot\left(U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \\
& =\Pi x \leqslant \top:\left(U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \cdot\left(U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right)
\end{aligned}
$$

- Case $T_{1}=\forall Y \leqslant U_{1} . U_{2}$ and $X \neq Y$:
A.2. Subsumption of System F_{\leqslant}in λI_{\leqslant}

$$
\text { IH: } \begin{aligned}
&\left(U_{1}\left[X \mapsto T_{2}\right]\right)^{*}=U_{1}{ }^{*}[X\left.\mapsto T_{2}{ }^{*}\right] \\
&\left(U_{2}\left[X \mapsto T_{2}\right]\right)^{*}=U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right] \\
&\left(\left(\forall Y \leqslant U_{1} \cdot U_{2}\right)\left[X \mapsto T_{2}\right]\right)^{*}=\left(\forall Y \leqslant U_{1}\left[X \mapsto T_{2}\right] . U_{2}\left[X \mapsto T_{2}\right]\right)^{*} \\
&=\Pi Y \leqslant\left(U_{1}\left[X \mapsto T_{2}\right]\right)^{*}: \star .\left(U_{2}\left[X \mapsto T_{2}\right]\right)^{*} \\
&=\Pi Y \leqslant\left(U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right): \star \cdot\left(U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \\
& \\
&\left(\forall Y \leqslant U_{1} \cdot U_{2}\right)^{*}\left[X \mapsto T_{2}{ }^{*}\right]=\left(\Pi Y \leqslant U_{1}{ }^{*}: \star \cdot U_{2}{ }^{*}\right)\left[X \mapsto T_{2}{ }^{*}\right] \\
&=\Pi Y \leqslant\left(U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right): \star\left[X \mapsto T_{2}{ }^{*}\right] .\left(U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right) \\
&=\Pi Y \leqslant\left(U_{1}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right): \star .\left(U_{2}{ }^{*}\left[X \mapsto T_{2}{ }^{*}\right]\right)
\end{aligned}
$$

Lemma A.2.2 (Well-formedness).

1. If $\Delta \vdash T$, then $\Delta^{*} \vdash T^{*}: \star$.
2. If $\vdash \Delta$, then $\vdash \Delta^{*}$.

Proof. By mutual induction on the derivation of $\Delta \vdash T$ and $\vdash \Delta$:

- Case $\frac{\vdash \Delta}{\Delta \vdash T}$:
$\vdash \Delta^{*} \quad$ by IH
$\Delta^{*} \vdash \star$: \quad by rule S-Ax
$\Delta^{*} \vdash \mathrm{~T}: \star \quad$ by rule S-TopRefl
$\Delta^{*} \vdash \mathrm{~T}^{*}: \star \quad$ by definition of T^{*}
- Case $\frac{\vdash \Delta \quad X \leqslant U \in \Delta}{\Delta \vdash X}$:
$\vdash \Delta^{*}$
by IH
$X \leqslant U^{*}: \star \in \Delta^{*} \quad$ by definition of Δ^{*}
$\Delta^{*} \vdash X: \star \quad$ by rule S-VarRefl
$\Delta^{*} \vdash X^{*}: \star \quad$ by definition of T^{*}
- Case $\frac{\Delta \vdash U_{1} \quad \Delta \vdash U_{2}}{\Delta \vdash U_{1} \rightarrow U_{2}}$:

$\Delta^{*} \vdash U_{1}{ }^{*}: \star$	by IH
$\Delta^{*} \vdash U_{2}{ }^{*}: \star$	by IH
$\Delta^{*} \vdash \mathrm{~T}: U_{1}{ }^{*}$	by rule S-TopRefL
$\Delta^{*}, x \leqslant \top: U_{1}{ }^{*} \vdash U_{2}{ }^{*}: \star$	by Lemma $5.3 .4(x$ Fresh $)$
$\Delta^{*} \vdash \Pi x \leqslant \top: U_{1}{ }^{*} \cdot U_{2}{ }^{*}: \star$	by rule S-Prod
$\Delta^{*} \vdash\left(U_{1} \rightarrow U_{2}\right)^{*}: \star$	by definition of T^{*}

- Case $\frac{\Delta \vdash U_{1} \quad \Delta, X \leqslant U_{1} \vdash U_{2}}{\Delta \vdash \forall X \leqslant U_{1} . U_{2}}:$
$\Delta^{*} \vdash U_{1}{ }^{*}: \star$
by IH
$\left(\Delta, X \leqslant U_{1}\right)^{*} \vdash U_{2}{ }^{*}: \star \quad$ by IH
$\Delta^{*}, X \leqslant U_{1}{ }^{*}: \star \vdash U_{2}{ }^{*}: \star \quad$ by definition of Δ^{*}
$\Delta^{*} \vdash \Pi X \leqslant U_{1}{ }^{*}: \star . U_{2}{ }^{*}: \star \quad$ by rule S-Prod
$\Delta^{*} \vdash\left(\forall X \leqslant U_{1} \cdot U_{2}\right)^{*}: \star \quad$ by definition of T^{*}
- Case $\frac{-\varnothing}{\vdash}$:

Trivial.

- Case $\frac{\vdash \Delta \quad \Delta \vdash U}{\vdash \Delta, X \leqslant U}$:

$$
\begin{array}{ll}
\vdash \Delta^{*} & \text { by IH } \\
\Delta^{*} \vdash U^{*}: \star & \text { by IH } \\
\Delta^{*} \vdash \star: \star & \text { by rule S-Ax } \\
\vdash \Delta^{*}, X \leqslant U^{*}: \star & \text { by rule W-Cons } \\
\vdash(\Delta, X \leqslant U)^{*} & \text { by definition of } \Delta^{*}
\end{array}
$$

- Case $\frac{\vdash \Delta \quad \Delta \vdash U}{\vdash \Delta, x: U}$:
$\vdash \Delta^{*} \quad$ by IH
$\Delta^{*} \vdash U^{*}: \star \quad$ by IH
$\Delta^{*} \vdash \mathrm{\top}: U^{*} \quad$ by rule S-TopRefl
$\vdash \Delta^{*}, x \leqslant \top: U^{*} \quad$ by rule W-Cons
$\vdash(\Delta, x: U)^{*} \quad$ by definition of Δ^{*}

Lemma A.2.3 (Subtyping). If $\Delta \vdash T_{1} \leqslant T_{2}$, then $\Delta^{*} \vdash T_{1}{ }^{*} \leqslant T_{2}{ }^{*}: \star$.
Proof. By induction on the derivation of $\Delta \vdash T_{1} \leqslant T_{2}$:

- Case $\frac{\Delta \vdash U}{\Delta \vdash U \leqslant T}$:

$$
\begin{array}{ll}
\Delta^{*} \vdash U^{*}: \star & \text { by Lemma A.2.2 } \\
\Delta^{*} \vdash U^{*} \leqslant T: \star & \text { by rule S-Top } \\
\Delta^{*} \vdash U^{*} \leqslant T^{*}: \star & \text { by definition of } T^{*}
\end{array}
$$

- Case $\frac{\Delta \vdash X}{\Delta \vdash X \leqslant X}$:
$\Delta^{*} \vdash X^{*}: \star \quad$ by Lemma A.2.2
$\Delta^{*} \vdash X^{*} \leqslant X^{*}: \star \quad$ i.e.
- Case $\frac{X \leqslant U_{1} \in \Delta \quad \Delta \vdash U_{1} \leqslant U_{2}}{\Delta \vdash X \leqslant U_{2}}$:
$X \leqslant U_{1}{ }^{*}: \star \in \Delta^{*} \quad$ by definition of Δ^{*}
$\Delta^{*} \vdash U_{1}{ }^{*} \leqslant U_{2}{ }^{*}: \star$ by IH
$\Delta^{*} \vdash X \leqslant U_{2}{ }^{*}: \star \quad$ by rule $S-V a r T r a n s$
$\Delta^{*} \vdash X^{*} \leqslant U_{2}{ }^{*}: \star \quad$ i.e.
- Case $\frac{\Delta \vdash T_{1} \leqslant U_{1} \quad \Delta \vdash U_{2} \leqslant T_{2}}{\Delta \vdash U_{1} \rightarrow U_{2} \leqslant T_{1} \rightarrow T_{2}}$:
$\Delta^{*} \vdash T_{1}{ }^{*} \leqslant U_{1}{ }^{*}: \star$
$\Delta^{*} \vdash U_{1}{ }^{*}: \star$
by IH
$\Delta^{*} \vdash T_{1}{ }^{*}: \star$
by Lemma 5.3.1
$\Delta^{*} \vdash \mathrm{~T}: T_{1}{ }^{*}$
$\Delta^{*} \vdash U_{2}{ }^{*} \leqslant T_{2}{ }^{*}: \star$
$\Delta^{*}, x \leqslant \top: T_{1}{ }^{*} \vdash U_{2}{ }^{*} \leqslant T_{2}{ }^{*}: \star$
$\Delta^{*} \vdash \mathrm{~T}: U_{1}{ }^{*}$
$\Delta^{*} \vdash U_{2}{ }^{*}: \star$
by Lemma 5.3.1
by rule S-Top
by IH
by Lemma 5.3.4 (x Fresh)
by rule S-Top
by Lemma 5.3.1
$\Delta^{*}, x \leqslant \top: U_{1}{ }^{*} \vdash U_{2}{ }^{*}: \star$
by Lemma 5.3.4
$\Delta^{*} \vdash\left(\Pi x \leqslant \top: U_{1}{ }^{*} \cdot U_{2}{ }^{*}\right) \leqslant\left(\Pi x \leqslant \top: T_{1}{ }^{*} . T_{2}{ }^{*}\right): \star$
$\Delta^{*} \vdash\left(U_{1} \rightarrow U_{2}\right)^{*} \leqslant\left(T_{1} \rightarrow T_{2}\right)^{*}: \star$
by rule S-Prod
by definition of T^{*}
- Case $\frac{\Delta, X \leqslant U \vdash T_{1} \leqslant T_{2}}{\Delta \vdash \forall X \leqslant U \cdot T_{1} \leqslant \forall X \leqslant U . T_{2}}$:
$(\Delta, X \leqslant U)^{*} \vdash T_{1}{ }^{*} \leqslant T_{2}{ }^{*}: \star$
by IH
$\Delta^{*}, X \leqslant U^{*}: \star \vdash T_{1}{ }^{*} \leqslant T_{2}{ }^{*}: \star$
by definition of Δ^{*}
$\Delta^{*}, X \leqslant U^{*}: \star \vdash T_{1}{ }^{*}: \star$
by Lemma 5.3.1
$\vdash \Delta^{*}, X \leqslant U^{*}: \star$
$\Delta^{*} \vdash U^{*}: \star$
$\vdash \Delta^{*}$
by regularity
by inversion of rule W-Cons
$\Delta^{*} \vdash \star$: \star
by regularity
by rule S-Ax
$\Delta^{*} \vdash\left(\Pi X \leqslant U^{*}: \star . T_{1}{ }^{*}\right) \leqslant\left(\Pi X \leqslant U^{*}: \star . T_{2}{ }^{*}\right): \star \quad$ by rule S-Prod
$\Delta^{*} \vdash\left(\forall X \leqslant U . T_{1}\right)^{*} \leqslant\left(\forall X \leqslant U . T_{2}\right)^{*}: \star \quad$ by definition of T^{*}

Lemma A.2.4 (Typing). If $\Delta \vdash t: T$, then $\Delta^{*} \vdash t^{*}: T^{*}$.
Proof. By induction on the derivation of $\Delta \vdash t: T$:

- Case $\frac{\vdash \Delta \quad x: U \in \Delta}{\Delta \vdash x: U}$:

$$
\begin{array}{ll}
\vdash \Delta^{*} & \text { by Lemma A.2.2 } \\
x \leqslant \top: U^{*} \in \Delta^{*} & \text { by definition of } \Delta^{*} \\
\Delta^{*} \vdash x^{*}: U^{*} & \text { by rule S-VARREFL }
\end{array}
$$

- Case $\frac{\Delta, x: T_{1} \vdash t: T_{2}}{\Delta \vdash \lambda x: T_{1} \cdot t: T_{1} \rightarrow T_{2}}$:
$\left(\Delta, x: T_{1}\right)^{*} \vdash t^{*}: T_{2}{ }^{*}$
$\Delta^{*}, x \leqslant \top: T_{1}{ }^{*} \vdash t^{*}: T_{2}{ }^{*}$
$\Delta^{*}, x \leqslant \top: T_{1}{ }^{*} \vdash T_{2}{ }^{*}: \star$
by IH
by definition of Δ^{*}
by Lemma 5.3.11
$\vdash \Delta^{*}, x \leqslant \top: T_{1}{ }^{*}$
by regularity
$\Delta^{*} \vdash \mathrm{\top}: T_{1}{ }^{*}$
by inversion of rule W-Cons
by inversion of rule W-Cons
by rule S-Abs
by definition of T^{*} and t^{*}
- Case $\frac{\Delta \vdash t_{1}: U_{1} \rightarrow U_{2} \quad \Delta \vdash t_{2}: U_{1}}{\Delta \vdash t_{1} t_{2}: U_{2}}$:

$$
\begin{array}{ll}
\Delta^{*} \vdash t_{1}{ }^{*}:\left(U_{1} \rightarrow U_{2}\right)^{*} & \text { by IH } \\
\Delta^{*} \vdash t_{1}{ }^{*}: \Pi x \leqslant T: U_{1}{ }^{*} . U_{2}{ }^{*} & \text { by definition of } T^{*} \\
\Delta^{*} \vdash t_{2}{ }^{*}: U_{1}{ }^{*} & \text { by IH } \\
\Delta^{*} \vdash t_{2}{ }^{*} \leqslant \top: U_{1}{ }^{*} & \text { by rule S-Top } \\
\Delta^{*} \vdash t_{1}{ }^{*} t_{2}{ }^{*}: U_{2}{ }^{*}\left[x \mapsto t_{2}{ }^{*}\right] & \text { by rule S-APP } \\
U_{2}{ }^{*}\left[x \mapsto t_{2}{ }^{*}\right]=U_{2}{ }^{*} & x \text { Fresh } \\
\Delta^{*} \vdash\left(t_{1} t_{2}\right)^{*}: U_{2}{ }^{*} & \text { by definition of } t^{*}
\end{array}
$$

- Case $\frac{\Delta, X \leqslant T_{1} \vdash t: T_{2}}{\Delta \vdash \Lambda X \leqslant T_{1} \cdot t: \forall X \leqslant T_{1} \cdot T_{2}}$:

```
    (\Delta,X\leqslant T1)*\vdash 苂: T2 *
    \Delta*,X\leqslant T1* }\mp@subsup{}{}{*}:\star\vdash\mp@subsup{t}{}{*}:\mp@subsup{T}{2}{*}\quad by definition of 挂**
    \Delta*,X\leqslant T1* : \star\vdash T T }\mp@subsup{}{}{*}:\star \ by Lemma 5.3.11
    \vdash
    \Delta*\vdash T1 ** : *
    \vdash,
    \Delta*\vdash\star:\star
```



```
    \Delta*}\vdash(\LambdaX\leqslant\mp@subsup{T}{1}{}\cdott\mp@subsup{)}{}{*}:(\forallX\leqslant\mp@subsup{T}{1}{}.\mp@subsup{T}{2}{}\mp@subsup{)}{}{*
- Case }\frac{\Delta\vdasht:\forallX\leqslant\mp@subsup{U}{1}{}.\mp@subsup{U}{2}{}\quad\Delta\vdashT\leqslant\mp@subsup{U}{1}{}}{\Delta\vdasht[T]:\mp@subsup{U}{2}{}[X\mapstoT]}
    \Delta*\vdashT T** U}\mp@subsup{}{}{*}\mp@subsup{}{}{*}:\star\quad\mathrm{ by Lemma A.2.3
    \Delta*\vdash生*:(\forallX\leqslant U1. U2 )
    \Delta*\vdasht\mp@subsup{t}{}{*}:\PiX\leqslant U
    \Delta*}\vdash\mp@subsup{t}{}{*}\mp@subsup{T}{}{*}:\mp@subsup{U}{2}{*}[X\mapsto\mp@subsup{T}{}{*}]\quad\mathrm{ by rule S-APP
    U2}\mp@subsup{}{}{*}[X\mapstoT\mp@subsup{T}{}{*}]=(\mp@subsup{U}{2}{}[X\mapstoT])\mp@subsup{)}{}{*}\quad\mathrm{ by Lemma A.2.1
    \Delta*\vdash(t[T])*}:(\mp@subsup{U}{2}{}[X\mapstoT])* by definition of t t**
- Case }\frac{\Delta\vdasht:T\quad\Delta\vdashT\leqslantU}{\Delta\vdasht:U
    \Delta*\vdasht*:T
    \Delta*\vdash
    \Delta*\vdash生*:U* by rule S-Sub
```


A． 3 Soundness of Translation for Sig

Lemma A．3．1（Translation of Values）．If $\Delta \vdash V: T \rightsquigarrow e$ ，then e is a value．
Proof．Trivial by induction on the derivation of $\Delta \vdash V: T \rightsquigarrow e$ ．
Lemma A．3．2（Context Well－formedness）．If $\Delta \vdash E: T \rightsquigarrow e$ ，then $\vdash \Delta \rightsquigarrow \Gamma$ ．
Proof．Trivial by induction on the derivation of $\Delta \vdash E: T \rightsquigarrow e$ ．
Lemma A．3．3（Weakening）．If $\Delta_{1}, \Delta_{3} \vdash E: T \rightsquigarrow e$ and $\vdash \Delta_{1}, \Delta_{2}, \Delta_{3} \rightsquigarrow \Gamma$ ，then $\Delta_{1}, \Delta_{2}, \Delta_{3} \vdash$ $E: T \rightsquigarrow e$ ．

Proof．Trivial by induction on the derivation of $\Delta_{1}, \Delta_{3} \vdash E: T \rightsquigarrow e$ ．
Lemma A．3．4（Uniqueness）．If $\Delta \vdash E: T_{1} \rightsquigarrow e_{1}$ and $\Delta \vdash E: T_{2} \rightsquigarrow e_{2}$ ，then $T_{1}=T_{2}$ and $e_{1}=e_{2}$ ．

Proof．Trivial by induction on the derivation of $\Delta \vdash E: T_{1} \rightsquigarrow e_{1}$ ．
Definition A．3．1（Projection－Only Terms）．We call Ex．L－only－projection if x and L are free variables in E and $x \notin \mathrm{FV}(E[x . L \mapsto y])$ for any fresh variable $y \neq x$ ．Similarly，bindings Δ, M and S are x ．L－only－projection if they only contain x ．L－only－projection terms．

Lemma A．3．5（Value Projection Substitution）．If V_{1} is a value and V_{2} is a value，then $V_{1}[x . L \mapsto$ V_{2} ］is still a value．

Proof. Trivial by induction on the form of V_{1}.
Lemma A.3.6 (Projection Substitution). Assume $T^{\prime}=\operatorname{trait}\left\{\right.$ type $\left.L_{1}: T_{3} ; S_{1}\right\}$.
(1) If $\Delta_{1}, z=\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \vdash E: T \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{3} \rightsquigarrow v$, where E and Δ_{2} are $z . L_{1}-$ only-projection, then $\Delta_{1}, \Delta_{2}\left[z . L_{1} \mapsto V_{2}\right] \vdash E\left[z . L_{1} \mapsto V_{2}\right]: T\left[z . L_{1} \mapsto V_{2}\right] \rightsquigarrow e\left[z_{1} \mapsto v\right]$.
(2) If $\vdash \Delta_{1}, z=\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \rightsquigarrow \Gamma_{1}, z_{1}: A, z_{2}: B, \Gamma_{2}$ and $\Delta_{1} \vdash V_{2}: T_{3} \rightsquigarrow v$, where Δ_{2} is z. L_{1}-only-projection, then $\vdash \Delta_{1}, \Delta_{2}\left[z . L_{1} \mapsto V_{2}\right] \rightsquigarrow \Gamma_{1}, \Gamma_{2}\left[z_{1} \mapsto v\right]$.
(3) If $\Delta_{1}, z=\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \vdash M: S \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{3} \rightsquigarrow v$, where M and Δ_{2} are $z . L_{1}-$ only-projection, then $\Delta_{1}, \Delta_{2}\left[z . L_{1} \mapsto V_{2}\right] \vdash M\left[z . L_{1} \mapsto V_{2}\right]: S\left[z . L_{1} \mapsto V_{2}\right] \rightsquigarrow e\left[z_{1} \mapsto v\right]$.
(4) If $\Delta_{1}, z=\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \vdash S \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{1} \rightsquigarrow v$, where S and Δ_{2} are $z . L_{1}$-only-projection, then $\Delta_{1}, \Delta_{2}\left[z . L_{1} \mapsto V_{2}\right] \vdash S\left[z . L_{1} \mapsto V_{2}\right] \rightsquigarrow e\left[z_{1} \mapsto v\right]$.

Proof. By mutual induction on the derivation of translation. The cases for $(2,3,4)$ are trivial. We only show proof cases for (1). For source meta-variables, we use E^{*} to denote $E\left[z . L_{1} \mapsto V_{2}\right], \Delta^{*}$ to denote $\Delta\left[z . L_{1} \mapsto V_{2}\right]$, etc. For target meta-variables, we use e^{*} to denote $e\left[z_{1} \mapsto v\right]$.

- Case TR-Ax: Noting that Type* $=$ Type, trivial by IH.
- Case TR-VAR, TR-VARM: If $x=z$, then x is not $z \cdot L_{1}$-only-projection. Thus $x^{*}=x$, the conclusion is trivial by IH.
- Case TR-PI:
$T_{1}{ }^{*}$ is not a trait by definition since V cannot be a trait
$T_{1}, T_{2},\left(\Delta_{2}, x: T_{2}\right)$ are $z . L_{1}$-only-projection
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}{ }^{*}$: Type $\rightsquigarrow A_{1}{ }^{*}$
$\Delta_{1}, \Delta_{2}^{*}, x: T_{1}{ }^{*} \vdash T_{2}{ }^{*}:$ Type $\rightsquigarrow A_{2}{ }^{*}$
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*}:$ Type $\rightsquigarrow \Pi x: A_{1}{ }^{*} . A_{2}{ }^{*}$
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*}:$ Type $\rightsquigarrow\left(\Pi x: A_{1}, A_{2}\right)^{*}$
(see Figure 6.4, similarly for other cases) by definition
by IH
by IH
by TR-PI
by definition
- Case TR-PIM:

$T_{1}{ }^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$	by definition
$T_{1}, T_{2},\left(\Delta_{2}, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}\right)$ are $z . L_{1}$-only-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}^{*}:$ Type $\rightsquigarrow\left(\Sigma x_{1}: A . B\right)^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*}, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}^{*} \vdash T_{2}^{*}:$ Type $\rightsquigarrow C^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(x: T_{1}^{*}\right) \rightarrow T_{2}^{*}:$ Type $\rightsquigarrow \Pi y:\left(\Sigma x_{1}: A . B\right)^{*} \cdot\left(\lambda x_{1}: A^{*} \cdot C^{*}\right)(y .1)$	by TR-PiM
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*}:$ Type $\rightsquigarrow\left(\Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1)\right)^{*}$	by definition

- Case TR-App:

$T_{1}{ }^{*}$ is not a trait	by definition
E_{1}, E_{2} are $z \cdot L_{1}$-only-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash E_{1}{ }^{*}: T_{1}{ }^{*} \rightarrow T_{2}{ }^{*} \rightsquigarrow e_{1}{ }^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E_{2}{ }^{*}: T_{1}{ }^{*} \rightsquigarrow e_{2}{ }^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E_{1}{ }^{*} E_{2}{ }^{*}: T_{2}{ }^{*} \rightsquigarrow e_{1}{ }^{*} e_{2}{ }^{*}$	by TR-APP
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(E_{1} E_{2}\right)^{*}: T_{2}{ }^{*} \rightsquigarrow\left(e_{1} e_{2}\right)^{*}$	by definition

- Case TR-AppV:
$T_{1}{ }^{*}$ is not a trait by definition
E, V are $z . L_{1}$-only-projection by definition
V^{*} is a value
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*}:\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*} \rightsquigarrow e_{1}{ }^{*}$ by value substitution
by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash V^{*}: T_{1}^{*} \rightsquigarrow e_{2}^{*} \quad$ by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*} V^{*}: T_{2}^{*}\left[x \mapsto V^{*}\right] \rightsquigarrow e_{1}^{*} e_{2}{ }^{*} \quad$ by TR-AppV
$\Delta_{1}, \Delta_{2}^{*} \vdash(E V)^{*}:\left(T_{2}[x \mapsto V]\right)^{*} \rightsquigarrow\left(e_{1} e_{2}\right)^{*} \quad$ by definition
- Case TR-AppX: $z=y$ is impossible similarly to case TR-VARM. When $z \neq y, y^{*}=y$.
$T_{1}{ }^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$
E is $z . L_{1}$-only-projection
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*}:\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*} \rightsquigarrow e^{*}$
by definition by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash y: T_{1}^{*} \rightsquigarrow\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}$ by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*} y: T_{2}^{*}[x \mapsto y] \rightsquigarrow \operatorname{cast}_{\downarrow}^{2}\left(e^{*}\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}\right)$
by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash(E y)^{*}:\left(T_{2}[x \mapsto y]\right)^{*} \rightsquigarrow\left(\operatorname{cast}_{\downarrow}^{2}\left(e\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle\right)\right)^{*}$
by TR-AppX
by definition
- Case TR-AppM:

```
\(T_{1}{ }^{*}=\operatorname{trait}\left\{\right.\) type \(\left.L: T^{*} ; S^{*}\right\} \quad\) by definition
\(V_{1}{ }^{*}=\mathbf{o b j}\left\{\right.\) type \(\left.L=V^{*} ; M^{*}\right\}\) as \(T_{1}{ }^{*} \quad\) by definition
\(E, V_{1}\) are \(z . L_{1}\)-only-projection
\(V_{1}{ }^{*}\) is a value
\(\Delta_{1}, \Delta_{2}^{*} \vdash E^{*}:\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*} \rightsquigarrow e^{*}\)
\(\Delta_{1}, \Delta_{2}^{*} \vdash V_{1}{ }^{*}: T_{1}{ }^{*} \rightsquigarrow\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}\)
\(\Delta_{1}, \Delta_{2}^{*} \vdash E^{*} V_{1}{ }^{*}: T_{2}^{*}\left[x . L \mapsto V^{*}\right] \rightsquigarrow \operatorname{cast}_{\downarrow}^{2}\left(e^{*}\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}\right)\)
\(\Delta_{1}, \Delta_{2}^{*} \vdash\left(E V_{1}\right)^{*}:\left(T_{2}[x . L \mapsto V]\right)^{*} \rightsquigarrow\left(\operatorname{cast}_{\downarrow}^{2}\left(e\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle\right)\right)^{*}\)
```

by definition by definition by definition by value subst. by IH by IH by TR-AppM by definition

- Case TR-Lam:

T_{1}^{*} is not a trait	by definition
$T_{1}, E,\left(\Delta_{2}, x: T_{1}\right)$ are $z \cdot L_{1}$-only-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}^{*}:$ Type $\rightsquigarrow A^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*}, x: T_{1}^{*} \vdash E^{*}: T_{2}^{*} \rightsquigarrow e^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash \lambda\left(x: T_{1}^{*}\right) \Rightarrow E^{*}:\left(x: T_{1}^{*}\right) \rightarrow T_{2}^{*} \rightsquigarrow \lambda x: A^{*} \cdot e^{*}$	by TR-LAM
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\lambda\left(x: T_{1}\right) \Rightarrow E\right)^{*}:\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*} \rightsquigarrow(\lambda x: A \cdot e)^{*}$	by definition

- Case TR-LamM:
$T_{1}{ }^{*}=\operatorname{trait}\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$
$T_{1}, E,\left(\Delta_{2}, x: T_{1}\right)$ are $z . L_{1}$-only-projection
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}{ }^{*}:$ Type $\rightsquigarrow\left(\Sigma x_{1}: A . B\right)^{*}$
$\Delta_{1}, \Delta_{2}^{*}, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}{ }^{*} \vdash E^{*}: T_{2}{ }^{*} \rightsquigarrow e^{*}$
by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash \lambda\left(x: T_{1}{ }^{*}\right) \Rightarrow E^{*}:\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*} \rightsquigarrow e_{1}$ by definition by IH by IH by TR-LAMM
where $e_{1}=\lambda y:\left(\Sigma x_{1}: A \text {. } B\right)^{*}$. open y as $\left\langle x_{1}, x_{2}\right\rangle$ in e^{*} $\Delta_{1}, \Delta_{2}^{*} \vdash\left(\lambda\left(x: T_{1}\right) \Rightarrow E\right)^{*}:\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*} \rightsquigarrow e_{2}{ }^{*} \quad$ by definition where $e_{2}=\lambda y:\left(\Sigma x_{1}: A . B\right)$. open y as $\left\langle x_{1}, x_{2}\right\rangle$ in e
- Case TR-Mod:

T^{*} is not a trait	by definition
$T_{1}^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$	by definition
V, M, T_{1} are $z . L_{1}$-only-projection	by definition
$M^{*}\left[L \mapsto V^{*}\right]$ is $z . L_{1}$-only-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash V^{*}: T^{*} \rightsquigarrow e_{1}^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash M^{*}\left[L \mapsto V^{*}\right]: S^{*}\left[L \mapsto V^{*}\right] \rightsquigarrow e_{2}^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}^{*}:$ Type $\rightsquigarrow \Sigma x_{1}: A^{*} . B^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash \mathbf{o b j}\left\{\right.$ type $\left.L=V^{*} ; M^{*}\right\}$ as $T_{1}^{*}: T_{1}^{*} \rightsquigarrow\left\langle e_{1}^{*}, e_{2}^{*}\right.$ as $\left.\Sigma x_{1}: A^{*} . B^{*}\right\rangle$	by TR-MoD
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\mathbf{o b j}\{\text { type } L=V ; M\} \text { as } T_{1}\right)^{*}: T_{1}^{*} \rightsquigarrow\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}$	by definition

- Case TR-Sig:
T^{*} is not a trait by definition $T, S,\left(\Delta_{2}, L: T\right)$ are $z . L_{1}$-only-projection by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T^{*}:$ Type $\rightsquigarrow A^{*} \quad$ by IH
$\Delta_{1}, \Delta_{2}^{*}, L: T^{*} \vdash S^{*} \rightsquigarrow B^{*} \quad$ by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}:$ Type $\rightsquigarrow \Sigma x_{1}: A^{*} . B^{*}\left[L \mapsto x_{1}\right] \quad$ by TR-SIG
$\Delta_{1}, \Delta_{2}^{*} \vdash(\text { trait }\{\text { type } L: T ; S\})^{*}:$ Type $\rightsquigarrow\left(\Sigma x_{1}: A . B\left[L \mapsto x_{1}\right]\right)^{*} \quad$ by definition
- Case TR-ProjT:
- Case $x=z$: we have $L=L_{1}$, otherwise $x . L$ is not $z . L_{1}$-only-projection. Thus, $x . L=z . L_{1}$ and $(x . L)^{*}=V_{2}$.
$\Delta_{1}, z=\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \vdash z . L_{1}: T_{3} \rightsquigarrow z_{1}$ $\Delta_{1}, z=\left\langle z_{1}, z_{2}\right\rangle: T^{\prime}, \Delta_{2} \vdash x . L: T \rightsquigarrow x_{1}$ $T_{3}=T, z_{1}=x_{1}$ $x_{1}{ }^{*}=v$
$T_{3}=T_{3}{ }^{*}$ $\Delta_{1} \vdash V_{2}: T_{3}{ }^{*} \rightsquigarrow v$ $\Delta_{1}, \Delta_{2}^{*} \vdash V_{2}: T_{3}{ }^{*} \rightsquigarrow v$ $\Delta_{1}, \Delta_{2}^{*} \vdash(x . L)^{*}: T^{*} \rightsquigarrow x_{1}{ }^{*}$
- Case $x \neq z$: we have $(x . L)^{*}=x$.L.
$T_{1}{ }^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\} \quad$ by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash x: T_{1}{ }^{*} \rightsquigarrow\left\langle x_{1}, x_{2}\right.$ as $\left.\Sigma x_{1}: A^{*} . B^{*}\right\rangle$
$\Delta_{1}, \Delta_{2}^{*} \vdash x . L: T^{*} \rightsquigarrow x_{1}$
$\Delta_{1}, \Delta_{2}^{*} \vdash(x . L)^{*}: T^{*} \rightsquigarrow x_{1}$
by TR-ProjT
by condition
by uniqueness by equality by $z \notin \mathrm{FV}\left(T_{3}\right)$
by equality
by weakening
by equality
by IH
by TR-ProjT
by $x^{*}=x$
- Case TR-Proj: Note that $x \neq z$ otherwise $x . l$ is not $z . L_{1}$-only-projection. Thus $(x . l)^{*}=x . l$.

$$
\begin{array}{ll}
T_{1}{ }^{*}=\text { trait }\left\{\text { type } L: T^{*} ; S^{*}\right\} & \text { by definition } \\
\Delta_{1}, \Delta_{2}^{*} \vdash x: T_{1}{ }^{*} \rightsquigarrow\left\langle x_{1}, x_{2} \text { as } \Sigma x_{1}: A^{*} . B^{*}\right\rangle & \text { by IH } \\
\operatorname{val} l: T_{2}{ }^{*} \in S^{*} & \text { by definition } \\
\Delta_{1}, \Delta_{2}^{*} \vdash x . l: T_{2}{ }^{*}[L \mapsto x . L] \rightsquigarrow x_{2} . l & \text { by TR-ProJ } \\
\Delta_{1}, \Delta_{2}^{*} \vdash(x . l)^{*}:\left(T_{2}[L \mapsto x . L]\right)^{*} \rightsquigarrow\left(x_{2} . l\right)^{*} & \text { by } x^{*}=x
\end{array}
$$

Definition A.3.2 (Non-projection Terms). We call $E x$-non-projection if it does not contain any projection form of x (i.e. $x . L$ or $x . l$ where x occurs free in E). Similarly, bindings Δ, M and S are x-non-projection if they only contain x-non-projection terms.

Lemma A.3.7 (Value Substitution). If V_{1} is a x-non-projection value and V_{2} is a value, then $V_{1}\left[x \mapsto V_{2}\right]$ is still a value

Proof. Trivial by induction on the form of V_{1}.
Lemma A.3.8 (Typing Substitution).
(1) If $\Delta_{1}, z: T_{1}, \Delta_{2} \vdash E: T \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{1} \rightsquigarrow v$, where E and Δ_{2} are z-non-projection, then $\Delta_{1}, \Delta_{2}\left[z \mapsto V_{2}\right] \vdash E\left[z \mapsto V_{2}\right]: T\left[z \mapsto V_{2}\right] \rightsquigarrow e[z \mapsto v]$.
(2) If $\vdash \Delta_{1}, z: T_{1}, \Delta_{2} \rightsquigarrow \Gamma_{1}, z: A, \Gamma_{2}$ and $\Delta_{1} \vdash V_{2}: T_{1} \rightsquigarrow v$, where Δ_{2} is z-non-projection, then $\vdash \Delta_{1}, \Delta_{2}\left[z \mapsto V_{2}\right] \rightsquigarrow \Gamma_{1}, \Gamma_{2}[z \mapsto v]$.
(3) If $\Delta_{1}, z: T_{1}, \Delta_{2} \vdash M: S \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{1} \rightsquigarrow v$, where M and Δ_{2} are z-non-projection, then $\Delta_{1}, \Delta_{2}\left[z \mapsto V_{2}\right] \vdash M\left[z \mapsto V_{2}\right]: S\left[z \mapsto V_{2}\right] \rightsquigarrow e[z \mapsto v]$.
(4) If $\Delta_{1}, z: T_{1}, \Delta_{2} \vdash S \rightsquigarrow e$ and $\Delta_{1} \vdash V_{2}: T_{1} \rightsquigarrow v$, where S and Δ_{2} are z-non-projection, then $\Delta_{1}, \Delta_{2}\left[z \mapsto V_{2}\right] \vdash S\left[z \mapsto V_{2}\right] \rightsquigarrow e[z \mapsto v]$.

Proof. By mutual induction on the derivation of translation. The cases for $(2,3,4)$ are trivial. We only show proof cases for (1). For source meta-variables, we use E^{*} to denote $E\left[z \mapsto V_{2}\right], \Delta^{*}$ to denote $\Delta\left[z \mapsto V_{2}\right]$, etc. For target meta-variables, we use e^{*} to denote $e[z \mapsto v]$.

- Case TR-Ax: Trivial by IH.
- Case TR-VAR: Suppose $E=x$,
- Case $z=x$: Immediate by $x \notin \mathrm{FV}(T)$ and weakening.
- Case $z \neq x$: We have $x^{*}=x$ and $x: T \in \Delta_{1}, z: T_{1}, \Delta_{2}$. If $x: T \in \Delta_{1}$, then $z \notin \operatorname{dom}\left(\Delta_{1}\right)$ and $z \notin \mathrm{FV}(T)$. Thus, $T^{*}=T$. The conclusion holds immediately by weakening. Otherwise, $x: T \in \Delta_{2}$ and $x: T^{*} \in \Delta_{2}^{*}$. Note that Δ_{2} is z-non-projection, then $\vdash \Delta_{1}, \Delta_{2}^{*} \rightsquigarrow \Gamma$. Thus, the conclusion holds by TR-VAR.
- Case TR-VarM: Suppose $E=y$,
- Case $z=x$: Impossible. $x: T_{1} \in \Delta$ and $x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \in \Delta$ are mismatched.
- Case $z \neq x$: We have $x^{*}=y$ and $x=\left\langle x_{1}, x_{2}\right\rangle: T \in \Delta_{1}, z: T_{1}, \Delta_{2}$. If $x=\left\langle x_{1}, x_{2}\right\rangle: T \in \Delta_{1}$, then $z \notin \mathrm{FV}\left(\Delta_{1}\right)$ and $z \notin \mathrm{FV}(T)$. Thus, $T^{*}=T$. The conclusion holds immediately by weakening. Otherwise, $x=\left\langle x_{1}, x_{2}\right\rangle: T \in \Delta_{2}$ and $x=\left\langle x_{1}, x_{2}\right\rangle: T^{*} \in \Delta_{2}^{*}$. By IH, we have $\vdash \Delta_{1}, \Delta_{2}^{*} \rightsquigarrow \Gamma_{1}, \Gamma_{2}^{*}$. By inversion of TRW-Mod, we have $\Delta_{1}, \Delta_{2}^{*} \vdash T^{*}$: Type $\rightsquigarrow\left(\Sigma x_{1}: A . B\right)^{*}$ The conclusion holds by TR-VARM.
- Case TR-Pi:
$T_{1}{ }^{*}$ is not a trait by definition
$T_{1}, T_{2},\left(\Delta_{2}, x: T_{2}\right)$ are z-non-projection by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}{ }^{*}$: Type $\rightsquigarrow A_{1}{ }^{*} \quad$ by IH
$\Delta_{1}, \Delta_{2}^{*}, x: T_{1}{ }^{*} \vdash T_{2}{ }^{*}:$ Type $\rightsquigarrow A_{2}{ }^{*}$
by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*}:$ Type $\rightsquigarrow \Pi x: A_{1}{ }^{*} . A_{2}{ }^{*} \quad$ by TR-PI
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*}:$ Type $\rightsquigarrow\left(\Pi x: A_{1} . A_{2}\right)^{*} \quad$ by definition
- Case TR-PIM:

$T_{1}{ }^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$	by definition
$T_{1}, T_{2},\left(\Delta_{2}, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}\right)$ are z-non-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}{ }^{*}:$ Type $\rightsquigarrow\left(\Sigma x_{1}: A . B\right)^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*}, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}{ }^{*} \vdash T_{2}{ }^{*}:$ Type $\rightsquigarrow C^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*}:$ Type $\rightsquigarrow \Pi y:\left(\Sigma x_{1}: A . B\right)^{*} \cdot\left(\lambda x_{1}: A^{*} \cdot C^{*}\right)(y .1)$	by TR-PIM
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*}:$ Type $\rightsquigarrow\left(\Pi y:\left(\Sigma x_{1}: A \cdot B\right) .\left(\lambda x_{1}: A \cdot C\right)(y \cdot 1)\right)^{*}$	by definition

- Case TR-App:

$T_{1}{ }^{*}$ is not a trait	by definition
E_{1}, E_{2} are z-non-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash E_{1}{ }^{*}: T_{1}{ }^{*} \rightarrow T_{2}{ }^{*} \rightsquigarrow e_{1}{ }^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E_{2}{ }^{*}: T_{1}{ }^{*} \rightsquigarrow e_{2}{ }^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E_{1}{ }^{*} E_{2}{ }^{*}: T_{2}{ }^{*} \rightsquigarrow e_{1}{ }^{*} e_{2}{ }^{*}$	by TR-APP
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(E_{1} E_{2}\right)^{*}: T_{2}{ }^{*} \rightsquigarrow\left(e_{1} e_{2}\right)^{*}$	by definition

- Case TR-AppV:
$T_{1}{ }^{*}$ is not a trait by definition
E, V are z-non-projection by definition
V^{*} is a value by value substitution
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*}:\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*} \rightsquigarrow e_{1}{ }^{*} \quad$ by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash V^{*}: T_{1}{ }^{*} \rightsquigarrow e_{2}{ }^{*} \quad$ by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*} V^{*}: T_{2}{ }^{*}\left[x \mapsto V^{*}\right] \rightsquigarrow e_{1}{ }^{*} e_{2}{ }^{*} \quad$ by TR-ApPV
$\Delta_{1}, \Delta_{2}^{*} \vdash(E V)^{*}:\left(T_{2}[x \mapsto V]\right)^{*} \rightsquigarrow\left(e_{1} e_{2}\right)^{*} \quad$ by definition
- Case TR-ApPX: $z=y$ is impossible similarly to case TR-VARM. When $z \neq y, y^{*}=y$.

$T_{1}{ }^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$	by definition
E is z-non-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*}:\left(x: T_{1}{ }^{*}\right) \rightarrow T_{2}{ }^{*} \rightsquigarrow e^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash y: T_{1}{ }^{*} \rightsquigarrow\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash E^{*} y: T_{2}{ }^{*}[x \mapsto y] \rightsquigarrow \operatorname{cast}_{\downarrow}{ }^{2}\left(e^{*}\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}\right)$	by TR-APPX
$\Delta_{1}, \Delta_{2}^{*} \vdash(E y)^{*}:\left(T_{2}[x \mapsto y]\right)^{*} \rightsquigarrow\left(\operatorname{cast}_{\downarrow}^{2}\left(e\left\langle y_{1}, y_{2} \text { as } \Sigma x_{1}: A . B\right\rangle\right)\right)^{*}$	by definition

- Case TR-AppM:

$$
\begin{array}{ll}
T_{1}^{*}=\operatorname{trait}\left\{\text { type } L: T^{*} ; S^{*}\right\} & \text { by definition } \\
V_{1}^{*}=\mathbf{o b j}\left\{\text { type } L=V^{*} ; M^{*}\right\} \text { as } T_{1}^{*} & \text { by definition } \\
E, V_{1} \text { are } z \text {-non-projection } & \text { by definition } \\
V_{1}^{*} \text { is a value } & \text { by value subst. } \\
\Delta_{1}, \Delta_{2}^{*} \vdash E^{*}:\left(x: T_{1}^{*}\right) \rightarrow T_{2}^{*} \rightsquigarrow e^{*} & \text { by IH } \\
\Delta_{1}, \Delta_{2}^{*} \vdash V_{1}^{*}: T_{1}^{*} \rightsquigarrow\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*} & \text { by IH } \\
\Delta_{1}, \Delta_{2}^{*} \vdash E^{*} V_{1}^{*}: T_{2}^{*}\left[x . L \mapsto V^{*}\right] \rightsquigarrow \operatorname{cast}_{\downarrow}^{2}\left(e^{*}\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}\right) & \text { by TR-AppM } \\
\Delta_{1}, \Delta_{2}^{*} \vdash\left(E V_{1}\right)^{*}:\left(T_{2}[x . L \mapsto V]\right)^{*} \rightsquigarrow\left(\operatorname{cast}_{\downarrow}^{2}\left(e\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle\right)\right)^{*} & \text { by definition }
\end{array}
$$

- Case TR-LAM:

T_{1}^{*} is not a trait	by definition
$T_{1}, E,\left(\Delta_{2}, x: T_{1}\right)$ are z-non-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}^{*}:$ Type $\rightsquigarrow A^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*}, x: T_{1}^{*} \vdash E^{*}: T_{2}^{*} \rightsquigarrow e^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash \lambda\left(x: T_{1}^{*}\right) \Rightarrow E^{*}:\left(x: T_{1}^{*}\right) \rightarrow T_{2}^{*} \rightsquigarrow \lambda x: A^{*} \cdot e^{*}$	by TR-LAM
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\lambda\left(x: T_{1}\right) \Rightarrow E\right)^{*}:\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*} \rightsquigarrow(\lambda x: A \cdot e)^{*}$	by definition

- Case TR-LamM:

$$
\begin{array}{ll}
T_{1}{ }^{*}=\text { trait }\left\{\text { type } L: T^{*} ; S^{*}\right\} & \text { by definition } \\
T_{1}, E,\left(\Delta_{2}, x: T_{1}\right) \text { are } z \text {-non-projection } & \text { by definition } \\
\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}^{*}: \text { Type } \rightsquigarrow\left(\Sigma x_{1}: A . B\right)^{*} & \text { by IH } \\
\Delta_{1}, \Delta_{2}^{*}, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1}^{*} \vdash E^{*}: T_{2}^{*} \rightsquigarrow e^{*} & \text { by IH } \\
\Delta_{1}, \Delta_{2}^{*} \vdash \lambda\left(x: T_{1}^{*}\right) \Rightarrow E^{*}:\left(x: T_{1}^{*}\right) \rightarrow T_{2}^{*} \rightsquigarrow e_{1} & \text { by TR-LAMM }
\end{array}
$$

where $e_{1}=\lambda y:\left(\Sigma x_{1}: A . B\right)^{*}$. open y as $\left\langle x_{1}, x_{2}\right\rangle$ in e^{*}
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\lambda\left(x: T_{1}\right) \Rightarrow E\right)^{*}:\left(\left(x: T_{1}\right) \rightarrow T_{2}\right)^{*} \rightsquigarrow e_{2}{ }^{*} \quad$ by definition where $e_{2}=\lambda y:\left(\Sigma x_{1}: A\right.$. $\left.B\right)$. open y as $\left\langle x_{1}, x_{2}\right\rangle$ in e

- Case TR-Mod:

T^{*} is not a trait	by definition
$T_{1}^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$	by definition
V, M, T_{1} are z-non-projection	by definition
$M^{*}\left[L \mapsto V^{*}\right]$ is z-non-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash V^{*}: T^{*} \rightsquigarrow e_{1}^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash M^{*}\left[L \mapsto V^{*}\right]: S^{*}\left[L \mapsto V^{*}\right] \rightsquigarrow e_{2}^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash T_{1}^{*}:$ Type $\rightsquigarrow \Sigma x_{1}: A^{*} . B^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash \mathbf{o b j}\left\{\right.$ type $\left.L=V^{*} ; M^{*}\right\}$ as $T_{1}^{*}: T_{1}^{*} \rightsquigarrow\left\langle e_{1}^{*}, e_{2}^{*}\right.$ as $\left.\Sigma x_{1}: A^{*} . B^{*}\right\rangle$	by TR-MoD
$\Delta_{1}, \Delta_{2}^{*} \vdash\left(\mathbf{o b j}\{\text { type } L=V ; M\} \text { as } T_{1}\right)^{*}: T_{1}^{*} \rightsquigarrow\left\langle e_{1}, e_{2} \text { as } \Sigma x_{1}: A . B\right\rangle^{*}$	by definition

- Case TR-Sig:

T^{*} is not a trait	by definition
$T, S,\left(\Delta_{2}, L: T\right)$ are z-non-projection	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash T^{*}:$ Type $\rightsquigarrow A^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*}, L: T^{*} \vdash S^{*} \rightsquigarrow B^{*}$	by IH
$\Delta_{1}, \Delta_{2}^{*} \vdash \operatorname{trait}\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}:$ Type $\rightsquigarrow \Sigma x_{1}: A^{*} . B^{*}\left[L \mapsto x_{1}\right]$	by TR-SIG
$\Delta_{1}, \Delta_{2}^{*} \vdash(\operatorname{trait}\{\operatorname{type} L: T ; S\})^{*}:$ Type $\rightsquigarrow\left(\Sigma x_{1}: A . B\left[L \mapsto x_{1}\right]\right)^{*}$	by definition

- Case TR-ProjT: Note that $x \neq z$ otherwise $x . L$ is not x-non-projection. Thus $x^{*}=x$.

$$
\begin{array}{ll}
T_{1}^{*}=\text { trait }\left\{\text { type } L: T^{*} ; S^{*}\right\} & \text { by definition } \\
\Delta_{1}, \Delta_{2}^{*} \vdash x: T_{1}^{*} \rightsquigarrow\left\langle x_{1}, x_{2} \text { as } \Sigma x_{1}: A^{*} . B^{*}\right\rangle & \text { by IH } \\
\Delta_{1}, \Delta_{2}^{*} \vdash x . L: T^{*} \rightsquigarrow x_{1} & \text { by TR-ProjT } \\
\Delta_{1}, \Delta_{2}^{*} \vdash(x . L)^{*}: T^{*} \rightsquigarrow x_{1}^{*} & \text { by } x^{*}=x
\end{array}
$$

- Case TR-Proj: Note that $x \neq z$ otherwise $x . l$ is not x-non-projection. Thus $x^{*}=x$.

$T_{1}{ }^{*}=$ trait $\left\{\right.$ type $\left.L: T^{*} ; S^{*}\right\}$	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash x: T_{1}{ }^{*} \rightsquigarrow\left\langle x_{1}, x_{2}\right.$ as $\left.\Sigma x_{1}: A^{*} . B^{*}\right\rangle$	by IH
$\operatorname{val} l: T_{2}{ }^{*} \in S^{*}$	by definition
$\Delta_{1}, \Delta_{2}^{*} \vdash x . l: T_{2}{ }^{*}[L \mapsto x . L] \rightsquigarrow x_{2} . l$	by TR-ProJ
$\Delta_{1}, \Delta_{2}^{*} \vdash(x . l)^{*}:\left(T_{2}[L \mapsto x . L]\right)^{*} \rightsquigarrow\left(x_{2} . l\right)^{*}$	by $x^{*}=x$

Lemma A.3.9 (Correctness of Types). If $\Delta \vdash E: T \rightsquigarrow e$, then exists A such that $\Delta \vdash T$: Type $\rightsquigarrow A$.

Proof. By induction on the derivation of $\Delta \vdash E: T \rightsquigarrow e$. Most cases are trivial by induction hypothesis. We only show interesting cases where the conclusion type T involves substitution.

- Case TR-AppV:
T_{2} is x-non-projection
$\Delta, x: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow A_{2}$
$\Delta \vdash V: T_{1} \rightsquigarrow e_{2}$
e_{2} is a value
$\Delta \vdash T_{2}[x \mapsto V]:$ Type $\rightsquigarrow A_{2}\left[x \mapsto e_{2}\right]$
- Case TR-AppX:
$\Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow C$
T_{2} is $x . L$-only-projection
$\Delta \vdash y . L: T \rightsquigarrow y_{1}$
$\Delta \vdash T_{2}[x . L \mapsto y . L]:$ Type $\rightsquigarrow C\left[x_{1} \mapsto y_{1}\right]$
$\Delta \vdash T_{2}[x \mapsto y]:$ Type $\rightsquigarrow C\left[x_{1} \mapsto y_{1}\right]$
- Case TR-AppM:
$\Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow C$
by inversion of TR-PIM
T_{2} is x. L-only-projection
$\Delta \vdash V: T \rightsquigarrow e_{1}$
e_{1} is a value
$\Delta \vdash T_{2}[x . L \mapsto V]:$ Type $\rightsquigarrow C\left[x_{1} \mapsto e_{1}\right]$
- Case TR-Proj:
$\Delta \vdash T_{1}:$ Type $\rightsquigarrow \Sigma x_{1}: A . B$
T is not a trait
$\Delta, L: T \vdash T_{2}:$ Type $\rightsquigarrow A_{2}$
T_{2} is L-non-projection
$\Delta \vdash x . L: T \rightsquigarrow x_{1}$
$\Delta \vdash T_{2}[L \mapsto x . L]:$ Type $\rightsquigarrow A_{2}\left[L \mapsto x_{1}\right]$
by T_{1} is not a trait
by inversion of TR-PI
by premise
by value translation
by substitution
by inversion of TR-PIM by inversion of TR-PIM by TR-ProjT by projection substitution

$$
\Delta \vdash T_{2}[L \mapsto x . L]: \text { Type } \rightsquigarrow A_{2}\left[L \mapsto x_{1}\right]
$$

$$
-2,-2[-\infty
$$

by IH
by inversion of TR-Sig
by inversion of TRS-SIG
by T is not a trait
by TR-ProjT
by substitution

Lemma A.3.10 (Soundness of Translation).
(1) If $\vdash \Delta \rightsquigarrow \Gamma$, then $\vdash \Gamma$.
(2) If $\vdash \Delta \rightsquigarrow \Gamma$ and $\Delta \vdash S \rightsquigarrow A$, then $\Gamma \vdash A: \star$.
(3) Given $\vdash \Delta \rightsquigarrow \Gamma$, if $\Delta \vdash E: T \rightsquigarrow e$ and $\Delta \vdash T:$ Type $\rightsquigarrow A$, then $\Gamma \vdash e: A$.

Proof. By simultaneous induction on the derivation of $\Delta \vdash E: T \rightsquigarrow e, \vdash \Delta \rightsquigarrow \Gamma$ and $\Delta \vdash M: S \leadsto e$. The cases in (1) and (2) are trivial. We only show the proofs regarding (3).

- Case TR-Ax:

$\vdash \Gamma$	
$\Gamma \vdash \star: \star$	by IH
$\Gamma P-A x$	

- Case TR-VAR:

$x: A \in \Gamma$	
$\Delta \vdash T:$ by TRW-Cons	
$\vdash \Gamma A$	
by TRW-Cons	
$\Gamma \vdash x: A$	

- Case TR-VARM:

$x_{1}: A, x_{2}: B \in \Gamma$	by TRW-Mod
$\Gamma \vdash x_{1}: A$	by SP-VAR
$\Gamma \vdash x_{2}: B$	by SP-VAR
$\Gamma, x_{1}: A \vdash B: \star$	by well-formedness of $\Sigma x_{1}: A . B$
$\Gamma \vdash\left\langle x_{1}, x_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle: \Sigma x_{1}: A . B$	by SP-PAIR

- Case TR-PI:

$\Gamma \vdash A_{1}: \star$	by IH
$\Gamma, x: A_{1} \vdash A_{2}: \star$	by IH and TRW-Cons
$\Gamma \vdash \Pi x: A_{1} \cdot A_{2}: \star$	by SP-Prod

- Case TR-PiM:

$\Gamma \vdash \Sigma x_{1}: A . B: \star$	by IH
$\Gamma, x_{1}: A, x_{2}: B \vdash C: \star$	by IH and TRW-Mod
$x_{2} \notin \mathrm{FV}(C)$	by T_{2} is $x . L$-only-projection
$\Gamma \vdash \lambda x_{1}: A . C: A \rightarrow \star$	by IH and SP-ABS
$\Gamma, y: \Sigma x_{1}: A . B \vdash y \cdot 1: A$	by SP-FsT
$\Gamma, y: \Sigma x_{1}: A . B \vdash\left(\lambda x_{1}: A . C\right)(y .1): A$	by SP-APp
$\Gamma \vdash \Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1): \star$	by SP-Prod

- Case TR-App:

$\Delta \vdash T_{1} \rightarrow T_{2}:$ Type $\rightsquigarrow A_{1} \rightarrow A_{2}$	by correctness of types
$\Delta \vdash T_{1}:$ Type $\rightsquigarrow A_{1}$	by inversion of TR-PI
$\Delta \vdash T_{2}:$ Type $\rightsquigarrow A_{2}$	by inversion of TR-PI
$\Gamma \vdash e_{1}: A_{1} \rightarrow A_{2}$	by IH
$\Gamma \vdash e_{2}: A_{1}$	by IH
$\Gamma \vdash e_{1} e_{2}: A_{2}$	by SP-App

- Case TR-AppV:

$\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}:$ Type $\rightsquigarrow \Pi x: A_{1} . A_{2}$	by correctness of types
$\Delta \vdash T_{1}:$ Type $\rightsquigarrow A_{1}$	by inversion of TR-PI
$\Delta, x: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow A_{2}$	by inversion of TR-PI
$\Gamma \vdash e_{1}: \Pi x: A_{1} . A_{2}$	by IH
$\Gamma \vdash e_{2}: A_{1}$	by IH
e_{2} is a value	by translation of values
$\Gamma \vdash e_{1} e_{2}: A_{2}\left[x \mapsto e_{2}\right]$	by SP-APPV

- Case TR-AppX:
$\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}:$ Type $\rightsquigarrow A_{1}$
where $A_{1}=\Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1)$
$\Delta \vdash T_{1}:$ Type $\rightsquigarrow \Sigma x_{1}: A . B$
T_{2} is x.L-only-projection
$y=\left\langle y_{1}, y_{2}\right\rangle: T_{1} \in \Delta$
$y_{1}: A, y_{2}: B \in \Gamma$
$\Delta \vdash y . L: T \rightsquigarrow y_{1}$
$\Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow C$
$\Delta \vdash T_{2}[x . L \mapsto y . L]:$ Type $\rightsquigarrow C\left[x_{1} \mapsto y_{1}\right]$
$\Delta \vdash T_{2}[x \mapsto y]:$ Type $\rightsquigarrow C\left[x_{1} \mapsto y_{1}\right]$
$\Gamma \vdash e: \Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1)$
$\Gamma \vdash\left\langle y_{1}, y_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle: \Sigma x_{1}: A . B$
$\Gamma \vdash \operatorname{cast}_{\downarrow}^{2}\left(e\left\langle y_{1}, y_{2}\right.\right.$ as $\left.\left.\Sigma x_{1}: A . B\right\rangle\right): C\left[x_{1} \mapsto y_{1}\right]$
- Case TR-AppM:
$\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}:$ Type $\rightsquigarrow A_{1}$
where $A_{1}=\Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1)$
$\Delta \vdash T_{1}:$ Type $\rightsquigarrow \Sigma x_{1}: A . B$
$\Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow C$
T_{2} is $x . L$-only-projection
$\Delta \vdash V: T \rightsquigarrow e_{1}$
e_{1} is a value
$\Delta \vdash T_{2}[x . L \mapsto V]:$ Type $\rightsquigarrow C\left[x_{1} \mapsto e_{1}\right]$
$\Gamma \vdash e: \Pi y:\left(\Sigma x_{1}: A . B\right) .\left(\lambda x_{1}: A . C\right)(y .1)$
$\Gamma \vdash\left\langle e_{1}, e_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle: \Sigma x_{1}: A . B$
$\Gamma \vdash \operatorname{cast}_{\downarrow}^{2}\left(e\left\langle e_{1}, e_{2}\right.\right.$ as $\left.\left.\Sigma x_{1}: A . B\right\rangle\right): C\left[x_{1} \mapsto e_{1}\right]$
by correctness of types
by inversion of TR-PIM
by inversion of TR-PIM
by inversion of TR-VARM
by inversion of TRW-Mod
by TR-ProjT
by inversion of TR-PıM
by projection substitution
by IH
by IH
by SP-CAStDn and SP-AppV
by correctness of types
by inversion of TR-PIM
by inversion of TR-PIM
by inversion of TR-PIM
by inversion of TR-MOD
by translation of values
by projection substitution
by IH
by IH
by SP-CAStDn and SP-AppV
- Case TR-Lam:
$\Delta, x: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow B \quad$ by correctness of types
$\Gamma \vdash A: \star \quad$ by IH
$\Gamma, x: A \vdash e: B \quad$ by IH
$\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}:$ Type $\rightsquigarrow \Pi x: A . B \quad$ by TR-Pi
$\Gamma \vdash \lambda x: A . e: \Pi x: A . B \quad$ by SP-Abs
- Case TR-LamM:
$\Delta, x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \vdash T_{2}:$ Type $\rightsquigarrow C$
$\Gamma \vdash \Sigma x_{1}: A . B: \star$
$\Gamma, x_{1}: A, x_{2}: B \vdash e: C$
$\Delta \vdash\left(x: T_{1}\right) \rightarrow T_{2}:$ Type $\rightsquigarrow A_{1}$
where $A_{1}=\Pi y:\left(\Sigma x_{1}: A . B\right) \cdot\left(\lambda x_{1}: A . C\right)(y .1)$
$x_{2} \notin \mathrm{FV}(C)$
$\Gamma, y: \Sigma x_{1}: A . B \vdash$ open y as $\left\langle x_{1}, x_{2}\right\rangle$ in $e:\left(\lambda x_{1}: A . C\right)(y .1)$
$\Gamma \vdash \lambda y:\left(\Sigma x_{1}: A\right.$. B). open y as $\left\langle x_{1}, x_{2}\right\rangle$ in $e: A_{1}$
by correctness of types
by IH
by IH
by TR-PIM
by T_{2} is x. L-only-projection
by SP-Open
by SP-Abs
- Case TR-Mod:
$\Delta \vdash T$: Type $\rightsquigarrow A \quad$ by inversion of TR-SIG
$\Delta, L: T \vdash S \rightsquigarrow B\left[x_{1} \mapsto L\right] \quad$ by inversion of TR-SIG
S is L-non-projection by T is not a trait
$\Delta \vdash S[L \mapsto V] \rightsquigarrow B\left[x_{1} \mapsto e_{1}\right] \quad$ by substitution
$\Gamma \vdash e_{1}: A \quad$ by IH
$\Gamma \vdash e_{2}: B\left[x_{1} \mapsto e_{1}\right] \quad$ by IH
e_{1} is a value
$\Gamma \vdash\left\langle e_{1}, e_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle: \Sigma x_{1}: A . B$
by translation of values
$\Gamma \vdash\left\langle e_{1}, e_{2}\right.$ as $\left.\Sigma x_{1}: A . B\right\rangle: \Sigma x_{1}: A . B \quad$ by SP-PAIR
- Case TR-Sig:

$\Gamma \vdash A: \star$	by IH
$\Gamma, L: A \vdash B: \star$	by IH
$\Gamma, x_{1}: A \vdash B\left[L \mapsto x_{1}\right]: \star$	by substitution
$\Gamma \vdash \Sigma x_{1}: A . B\left[L \mapsto x_{1}\right]: \star$	by SP-SIG

- Case TR-ProjT:

$$
\begin{array}{ll}
x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \in \Delta & \text { by inversion of TR-VARM } \\
x_{1}: A, x_{2}: B \in \Gamma & \text { by inversion of TRW-MOD } \\
\Delta \vdash T_{1}: \text { Type } \rightsquigarrow \Sigma x_{1}: A . B & \text { by inversion of TRW-MoD } \\
\Delta \vdash T: \text { Type } \rightsquigarrow A & \text { by inversion of TR-SIG } \\
\Gamma \vdash x_{1}: A & \text { by SP-VAR }
\end{array}
$$

- Case TR-Proj:

$x=\left\langle x_{1}, x_{2}\right\rangle: T_{1} \in \Delta$	by inversion of TR-VARM
$x_{1}: A, x_{2}: B \in \Gamma$	by inversion of TRW-MoD
$\Delta \vdash T_{1}:$ Type $\rightsquigarrow \Sigma x_{1}: A . B$	by inversion of TRW-MoD
$\Delta \vdash T:$ Type $\rightsquigarrow A$	by inversion of TR-SIG
$\Delta, L: T \vdash S \rightsquigarrow B$	by inversion of TR-SIG
$\Delta, L: T \vdash T_{2}:$ Type $\rightsquigarrow A_{2}$	by inversion of TS-SIG
$l: A_{2} \in B$	by inversion of TS-SIG
$\Gamma, L: A \vdash x_{2} . l: A_{2}$	by record projection
T_{2} is L-non-projection	by T is not a trait
$\Delta \vdash x . L: T \rightsquigarrow x_{1}$	by TR-PROJT
$\Delta \vdash T_{2}[L \mapsto x . L]:$ Type $\rightsquigarrow A_{2}\left[L \mapsto x_{1}\right]$	by substitution
$\Gamma \vdash x_{1}: A$	by SP-VAR
$\Gamma \vdash x_{2} . l: A_{2}\left[L \mapsto x_{1}\right]$	by substitution

References

Andreas Abel and Dulma Rodriguez. 2008. Syntactic metatheory of higher-order subtyping. In International Workshop on Computer Science Logic (CSL '08). 446-460.

Beniamino Accattoli and Giulio Guerrieri. 2016. Open Call-by-Value. In Programming Languages and Systems, Atsushi Igarashi (Ed.). Springer International Publishing, Cham, 206-226.

Wilhelm Ackermann. 1928. Zum hilbertschen aufbau der reellen zahlen. Math. Ann. 99, 1 (1928), 118-133.
Robin Adams. 2006. Pure type systems with judgemental equality. Journal of Functional Programming 16, 02 (2006), 219-246.

Robin Adams. 2008. A Survey of Predicativity. (2008). https://www.cs.ru.nl/R.Adams/predicativity3.pdf
Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury. 2010. ПГ: Dependent Types without the Sugar. In Functional and Logic Programming, Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 40-55.

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The essence of dependent object types. In A List of Successes That Can Change the World. Springer, 249-272.

Nada Amin, Adriaan Moors, and Martin Odersky. 2012a. Dependent object types. In 19th International Workshop on Foundations of Object-Oriented Languages (FOOL '12).

Nada Amin, Adriaan Moors, and Martin Odersky. 2012b. Dependent object types. In 19th International Workshop on Foundations of Object-Oriented Languages (FOOL '12). ACM.

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-dependent types. In OOPSLA '14 ACM, 233-249.

David Aspinall and Adriana Compagnoni. 1996. Subtyping dependent types. In LICS '96. 86-97.
Lennart Augustsson. 1998. Cayenne - a Language with Dependent Types. In Proceedings of the Third ACM SIGPLAN International Conference on Functional Programming (ICFP '98). ACM, New York, NY, USA, 239-250. https://doi.org/10.1145/289423.289451

Henk Barendregt. 1991. Introduction to generalized type systems. fournal of Functional Programming 1, 2 (1991), 125-154.

Henk Barendregt. 1992. Lambda Calculi with Types. In Handbook of Logic in Computer Science, Vol. 2. 117-309.

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions (1st ed.). Springer Publishing Company, Incorporated.

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-preserving CPS Translation of Σ and Π Types is Not Not Possible. Proc. ACM Program. Lang. 2, POPL, Article 22 (Dec. 2017), 33 pages. https://doi.org/10.1145/3158110

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. 1998. Making the Future Safe for the Past: Adding Genericity to the Java Programming Language. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA '98). ACM, New York, NY, USA, 183-200. https://doi.org/10.1145/286936.286957

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal of Functional Programming 23, 05 (2013), 552-593.

Edwin C. Brady. 2011. IDRIS - Systems Programming Meets Full Dependent Types. In Proceedings of the 5th ACM Workshop on Programming Languages Meets Program Verification (PLPV '11). ACM, New York, NY, USA, 43-54. https://doi.org/10.1145/1929529.1929536

Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. 1999. Comparing object encodings. Information and Computation 155, 1-2 (1999), 108-133.

Joana Campos and Vasco T. Vasconcelos. 2015. Imperative objects with dependent types. In Proceedings of the 17th Workshop on Formal Techniques for Java-like Programs (FTffP '15). ACM, 2:1-2:6.

Joana Campos and Vasco T. Vasconcelos. 2018. Dependent Types for Class-based Mutable Objects. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018) (Leibniz International Proceedings in Informatics (LIPIcs)), Todd Millstein (Ed.), Vol. 109. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 13:1-13:28. https://doi.org/10.4230/LIPIcs.ECOOP.2018.13

Luca Cardelli. 1986a. Amber. In Combinators and Functional Programming Languages. Springer Berlin Heidelberg, 21-47.

Luca Cardelli. 1986b. A Polymorphic lambda-calculus with Type: Type. Digital Systems Research Center.
Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1994. An extension of system F with subtyping. Information and Computation 109, 1-2 (1994), 4-56.

Luca Cardelli and Peter Wegner. 1985. On understanding types, data abstraction, and polymorphism. ACM Computing Surveys (CSUR) 17, 4 (1985), 471-523.

Chris Casinghino. 2014. Combining Proofs and Programs. Ph.D. Dissertation. The University of Pennsylvania.
Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. 2014. Combining Proofs and Programs in a Dependently Typed Language. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '14). ACM, New York, NY, USA, 33-45. https://doi.org/10.1145/2535838. 2535883

Giuseppe Castagna and Gang Chen. 2001. Dependent types with subtyping and late-bound overloading. Information and Computation 168, 1 (2001), 1-67.

Gang Chen. 1997. Subtyping calculus of construction. Mathematical Foundations of Computer Science 1997 (1997), 189-198.

Gang Chen. 1998. Dependent type system with subtyping (I) type level transitivity elimination. fournal of Computer Science and Technology 13, 6 (1998), 564-578.

Gang Chen. 2003. Coercive Subtyping for the Calculus of Constructions. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '03). ACM, 150-159.

James Cheney and Ralf Hinze. 2003. First-Class Phantom Types. Technical Report CUCIS TR2003-1901.
Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

Adriana Compagnoni and Healfdene Goguen. 2003. Typed operational semantics for higher-order subtyping. Information and Computation 184, 2 (2003), 242-297.

Adriana Beatriz Compagnoni. 1995. Higher-order subtyping with intersection types. Ph.D. Dissertation. University of Nijmegen.

Thierry Coquand. 1986. An analysis of Girard's paradox. Ph.D. Dissertation. INRIA.
Thierry Coquand and Gérard Huet. 1988. The Calculus of Constructions. Information and Computation 76 (1988), 95-120.

Judicaël Courant. 1997. A module calculus for pure type systems. In Typed Lambda Calculi and Applications, Philippe de Groote and J. Roger Hindley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 112-128.

Judicaël Courant. 2007. A module calculus for Pure Type Systems. fournal of Functional Programming 17, 3 (2007), 287-352.

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementation (PLDI '99). ACM, New York, NY, USA, 50-63. https://doi.org/10.1145/301618.301641

Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of subsumption, minimum typing and typechecking in $\mathrm{F} \leqslant$. Mathematical structures in computer science 2, 01 (1992), 55-91.

Derek Dreyer. 2005. Understanding and Evolving the ML Module System. Ph.D. Dissertation. Carnegie Mellon University.

Richard A. Eisenberg. 2016. Dependent types in haskell: Theory and practice. Ph.D. Dissertation. University of Pennsylvania.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed Type Families with Overlapping Equations. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '14). ACM, New York, NY, USA, 671-683. https://doi.org/10. 1145/2535838.2535856

Leonidas Fegaras and Tim Sheard. 1996. Revisiting Catamorphisms over Datatypes with Embedded Functions (or, Programs from Outer Space). In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '96). ACM, New York, NY, USA, 284-294. https://doi.org/ 10.1145/237721.237792

Herman Geuvers. 1995. A short and flexible proof of strong normalization for the calculus of constructions. In Types for Proofs and Programs, Peter Dybjer, Bengt Nordström, and Jan Smith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 14-38.

Jean-Yves Girard. 1972. Interprétation fonctionelle et élimination des coupures de l'arithmétique d'ordre supérieur. Ph.D. Dissertation. Université Paris VII.

Brian Goetz. 2016. JEP 286: Local-Variable Type Inference. http://openjdk.java.net/jeps/286
James Gosling, Bill Joy, and Guy L. Steele. 1996. The Java Language Specification (1st ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Adam Michael Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.

Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. 1994. Type classes in Haskell. In Programming Languages and Systems - ESOP '94, Donald Sannella (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 241-256.

Robert Harper. 2013. Practical foundations for programming languages (1st ed.). Cambridge University Press.

Robert Harper and Mark Lillibridge. 1994. A Type-theoretic Approach to Higher-order Modules with Sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '94). ACM, New York, NY, USA, 123-137. https://doi.org/10.1145/174675.176927

Robert Harper and John C. Mitchell. 1993. On the Type Structure of Standard ML. ACM Trans. Program. Lang. Syst. 15, 2 (April 1993), 211-252. https://doi.org/10.1145/169701.169696

James G. Hook and Douglas J. Howe. 1986. Impredicative Strong Existential Equivalent to Type:Type. Technical Report. Ithaca, NY, USA.

William A. Howard. 1980. The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic, lambda calculus and formalism 44 (1980), 479-490.

DeLesley S. Hutchins. 2010. Pure Subtype Systems. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '10). ACM, 287-298.

Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. 1999. Featherweight Java: A Minimal Core Calculus for Java and GJ. In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA '99). ACM, New York, NY, USA, 132-146. https://doi.org/ 10.1145/320384.320395

Mark P. Jones. 1993. A System of Constructor Classes: Overloading and Implicit Higher-order Polymorphism. In Proceedings of the Conference on Functional Programming Languages and Computer Architecture (FPCA '93). ACM, New York, NY, USA, 52-61. https://doi.org/10.1145/165180.165190

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Programming Languages and Systems, Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 230-244.

Jonas Kaiser, Tobias Tebbi, and Gert Smolka. 2017. Equivalence of System F and $\lambda 2$ in Coq Based on Context Morphism Lemmas. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP '17). ACM, 222-234.

Garrin Kimmell, Aaron Stump, Harley D. Eades, III, Peng Fu, Tim Sheard, Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathan Collins, and Ki Yung Ahn. 2012. Equational Reasoning About Programs with General Recursion and Call-by-value Semantics. In Proceedings of the Sixth Workshop on Programming Languages Meets Program Verification (PLPV '12). ACM, New York, NY, USA, 15-26. https://doi.org/10.1145/2103776.2103780

Xavier Leroy. 1990. The ZINC Experiment: An Economical Implementation of the ML Language. Technical Report 117. INRIA. http://pauillac.inria.fr/~xleroy/bibrefs/Leroy-ZINC.html

Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '94). ACM, New York, NY, USA, 109-122. https://doi.org/10.1145/174675.176926

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2018. The OCaml system release 4.07: Documentation and user's manual. http://caml.inria.fr/pub/docs/ manual-ocaml/ Release 4.07.

Mark Lillibridge. 1997. Translucent sums: A foundation for higher-order module systems. Ph.D. Dissertation. Carnegie Mellon University.

Yong Luo and Zhaohui Luo. 2004. Combining Incoherent Coercions for Σ-Types. In Types for Proofs and Programs, Stefano Berardi, Mario Coppo, and Ferruccio Damiani (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 276-292.

David B. MacQueen. 1986. Using Dependent Types to Express Modular Structure. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL '86). ACM, New York, NY, USA, 277-286. https://doi.org/10.1145/512644.512670

Simon Marlow. 2010. Haskell 2010 Language Report. https://www.haskell.org/definition/haskell2010.pdf 2010.

Simon Marlow et al. 2010. Haskell 2010 language report. Available online http://www. haskell. org/(May 2011) (2010).

John Meacham. 2006. Jhc User's Manual. http://repetae.net/computer/jhc/manual.html
Microsoft Corporation. 2016. TypeScript Language Specification. https://github.com/Microsoft/TypeScript/ blob/master/doc/spec.md Version 1.8.

Robin Milner, Mads Tofte, and Robert Harper. 1990. The Definition of Standard ML. MIT Press, Cambridge, MA, USA.

John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have Existential Type. ACM Trans. Program. Lang. Syst. 10, 3 (July 1988), 470-502. https://doi.org/10.1145/44501.45065
T. Æ. Mogensen. 1992. Theoretical pearls: Efficient self-interpretation in lambda calculus. Journal of Functional Programming 2, 3 (1992), 345-364.

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Generics of a Higher Kind. In OOPSLA '08. ACM, 423-438.

Ulf Norell. 2007a. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Chalmers University of Technology.

Ulf Norell. 2007b. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Chalmers University of Technology.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An Overview of the Scala Programming Language. Technical Report IC/2004/64. EPFL Lausanne, Switzerland.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. 2003. A nominal theory of objects with dependent types. In European Conference on Object-Oriented Programming (ECOOP '03). Springer, 201-224.

Luca Paolini and Simona Ronchi Della Rocca. 1999. Call-by-value Solvability. RAIRO-Theoretical Informatics and Applications 33, 6 (1999), 507-534.

Simon Peyton Jones and Erik Meijer. 1997. Henk: a Typed Intermediate Language. In Types in Compilation Workshop.

Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. 2004. Wobbly types: type inference for generalised algebraic data types. Technical Report MS-CIS-05-26. University of Pennsylvania.
F. Pfenning and C. Elliott. 1988. Higher-order Abstract Syntax. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation (PLDI '88). ACM, New York, NY, USA, 199-208. https://doi.org/10.1145/53990.54010

Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf - A Meta-Logical Framework for Deductive Systems. In Proceedings of the International Conference on Automated Deduction. 202-206.

Benjamin C. Pierce. 1992. Bounded quantification is undecidable. In Proceedings of the 19th ACM SIGPLANSIGACT symposium on Principles of programming languages (POPL '92). ACM, 305-315.

Benjamin C Pierce. 2002. Types and programming languages. MIT press.
Benjamin C. Pierce and Martin Steffen. 1997. Higher-order subtyping. Theoretical computer science 176, 1 (1997), 235-282.

Benjamin C. Pierce and David N. Turner. 1994. Simple type-theoretic foundations for object-oriented programming. Journal of functional programming 4, 02 (1994), 207-247.

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Transactions on Programming Languages and Systems (TOPLAS) 22, 1 (2000), 1-44.

Robert Pollack. 2002. Dependently Typed Records in Type Theory. Formal Aspects of Computing 13, 3 (01 Jul 2002), 386-402. https://doi.org/10.1007/s001650200018

Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A Simple Soundness Proof for Dependent Object Types. Proc. ACM Program. Lang. 1, OOPSLA, Article 46 (Oct. 2017), 27 pages. https://doi.org/10. 1145/3133870

John C. Reynolds. 1974. Towards a theory of type structure. In Proceedings of the 'Colloque sur la Programmation'. Paris, France, 408-425.

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT). In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA '16). ACM, 624-641.

Andreas Rossberg. 2015. 1ML - Core and Modules United (F-ing First-class Modules). In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, New York, NY, USA, 35-47. https://doi.org/10.1145/2784731.2784738

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. 2010. F-ing Modules. In Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI '10). ACM, New York, NY, USA, 89-102. https://doi.org/10.1145/1708016.1708028

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits: Composable units of behaviour. In European Conference on Object-Oriented Programming. Springer, 248-274.

David A. Schmidt. 1994. The Structure of Typed Programming Languages. MIT Press.
Paula G. Severi and Fer-Jan J. de Vries. 2012. Pure Type Systems with Corecursion on Streams: From Finite to Infinitary Normalisation. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP '12). ACM, New York, NY, USA, 141-152. https://doi.org/10.1145/2364527.2364550

Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for Haskell. In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell (Haskell '02). ACM, New York, NY, USA, 1-16. https: //doi.org/10.1145/581690.581691

Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional Programming. 81-92.

Vincent Siles and Hugo Herbelin. 2012. Pure Type System conversion is always typable. Journal of Functional Programming 22, 2 (2012), 153-180.

Vilhelm Sjöberg. 2015. A Dependently Typed Language with Nontermination. Ph.D. Dissertation. University of Pennsylvania.

Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley D. Eades III, Peng Fu, Garrin Kimmell, Tim Sheard, Aaron Stump, and Stephanie Weirich. 2012. Irrelevance, Heterogenous Equality, and Call-by-value Dependent Type Systems. In Fourth workshop on Mathematically Structured Functional Programming (MSFP '12) (MSFP '12). 112-162.

Vilhelm Sjöberg and Stephanie Weirich. 2015. Programming Up to Congruence. In Proceedings of the $42 N d$ Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '15). ACM, New York, NY, USA, 369-382. https://doi.org/10.1145/2676726.2676974

Martin Steffen. 1998. Polarized Higher-Order Subtyping. Ph.D. Dissertation. Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg.

Sandro Stucki. 2017. Higher-Order Subtyping with Type Intervals. Ph.D. Dissertation. EPFL.
Aaron Stump. 2017. The calculus of dependent lambda eliminations. Journal of Functional Programming 27 (2017), e14. https://doi.org/10.1017/S0956796817000053

Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy Simpson. 2008. Verified Programming in Guru. In Proceedings of the 3rd Workshop on Programming Languages Meets Program Verification (PLPV '09). ACM, New York, NY, USA, 49-58. https://doi.org/10.1145/1481848.1481856

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. System F with Type Equality Coercions. In Proceedings of the 2007 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation (TLDI '07). ACM, New York, NY, USA, 53-66. https: //doi.org/10.1145/1190315.1190324

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure Distributed Programming with Value-dependent Types. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP '11). ACM, New York, NY, USA, 266-278. https://doi.org/10.1145/2034773.2034811

Wouter Swierstra. 2008. Data types à la carte. fournal of functional programming 18, 4 (2008), 423-436.
The Coq development team. 2016. The Coq proof assistant reference manual. https://coq.inria.fr/refman/ Version 8.6.

The GHC Team. 2018. The Glasgow Haskell Compiler. https://www.haskell.org/ghc/
The Rust Project Developers. 2011. The Rust Programming Language. https://doc.rust-lang.org/book/
Alan M Turing. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London mathematical society 2, 1 (1937), 230-265.
L. S. van Benthem Jutting. 1993. Typing in pure type systems. Information and Computation 105, 1 (1993), 30-41.

Floris van Doorn, Herman Geuvers, and Freek Wiedijk. 2013. Explicit Convertibility Proofs in Pure Type Systems. In Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frameworks \& Meta-languages: Theory \& Practice (LFMTP '13). ACM, New York, NY, USA, 25-36. https://doi.org/10. 1145/2503887.2503890

Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2014. PEP 484 - Type Hints. https://www.python. org/dev/peps/pep-0484/

Philip Wadler. 1995. Monads for functional programming. In Advanced Functional Programming, Johan Jeuring and Erik Meijer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 24-52.

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP '13). ACM, New York, NY, USA, 275-286. https://doi.org/10.1145/2500365.2500599

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017. A Specification for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110275

Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and computation 115, 1 (1994), 38-94.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive Datatype Constructors. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '03). ACM, New York, NY, USA, 224-235. https://doi.org/10.1145/604131.604150

Hongwei Xi and Frank Pfenning. 1999. Dependent types in practical programming. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '99). ACM, 214-227.

Yanpeng Yang, Xuan Bi, and Bruno C. d. S. Oliveira. 2016. Unified Syntax with Iso-types. In Programming Languages and Systems, Atsushi Igarashi (Ed.). Springer International Publishing, Cham, 251-270.

Yanpeng Yang and Bruno C. d. S. Oliveira. 2017. Unifying Typing and Subtyping. Proc. ACM Program. Lang. 1, OOPSLA, Article 47 (Oct. 2017), 26 pages. https://doi.org/10.1145/3133871

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI '12). ACM, New York, NY, USA, 53-66. https: //doi.org/10.1145/2103786.2103795

Jan Zwanenburg. 1999. Pure type systems with subtyping. In TLCA '99. 381-396.

[^0]: ${ }^{1}$ Note that the consistency of behavior is not logical consistency, but meant for reduction relations.

[^1]: ${ }^{2}$ For example, $(\lambda x:$ Int. $1+1) \perp$ is a non-terminating term under call-by-value reduction but can be reduced to ($\lambda x:$ Int. 2$) \perp$ by parallel reduction.

[^2]: ${ }^{3}$ This theorem is also called decidability of typability [Barendregt 1992, Section 4.4] where the typing result A is not given and constructed by the typing algorithm.

[^3]: ${ }^{4}$ Notice that multi-step reduction $\hookrightarrow_{\mathrm{p}}$ is still confluent since it is equivalent to multi-step full beta reduction $\longrightarrow{ }_{\beta}^{*}$ (see Lemma 4.3.3) which is confluent.

[^4]: ${ }^{1}$ Some stratified systems [Aspinall and Compagnoni 1996; Castagna and Chen 2001] also have the kinding judgment, which is mutually dependent on typing. We uniformly refer to them as typing.

[^5]: ${ }^{1}$ For brevity, we leave out the annotation of cast ${ }_{\Downarrow}$.
 ${ }^{2}$ The rule presented here is for demonstrating the idea of typing and is a bit different from the one used in λI_{Σ}. It does not employ the value restriction, i.e., requiring e to be a value v. We will later discuss the value restriction of λI_{Σ} in Section 6.2.

