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Preface

The problem of classification is perhaps one of the most widely studied in the data mining and ma-
chine learning communities. This problem has been studied by researchers from several disciplines
over several decades. Applications of classification include a wide variety of problem domains such
as text, multimedia, social networks, and biological data. Furthermore, the problem may be en-
countered in a number of different scenarios such as streaming or uncertain data. Classification is a
rather diverse topic, and the underlying algorithms depend greatly on the data domain and problem
scenario.

Therefore, this book will focus on three primary aspects of data classification. The first set of
chapters will focus on the core methods for data classification. These include methods such as prob-
abilistic classification, decision trees, rule-based methods, instance-based techniques, SVM meth-
ods, and neural networks. The second set of chapters will focus on different problem domains and
scenarios such as multimedia data, text data, time-series data, network data, data streams, and un-
certain data. The third set of chapters will focus on different variations of the classification problem
such as ensemble methods, visual methods, transfer learning, semi-supervised methods, and active
learning. These are advanced methods, which can be used to enhance the quality of the underlying
classification results.

The classification problem has been addressed by a number of different communities such as
pattern recognition, databases, data mining, and machine learning. In some cases, the work by the
different communities tends to be fragmented, and has not been addressed in a unified way. This
book will make a conscious effort to address the work of the different communities in a unified way.
The book will start off with an overview of the basic methods in data classification, and then discuss
progressively more refined and complex methods for data classification. Special attention will also
be paid to more recent problem domains such as graphs and social networks.

The chapters in the book will be divided into three types:

¢ Method Chapters: These chapters discuss the key techniques that are commonly used for
classification, such as probabilistic methods, decision trees, rule-based methods, instance-
based methods, SVM techniques, and neural networks.

* Domain Chapters: These chapters discuss the specific methods used for different domains
of data such as text data, multimedia data, time-series data, discrete sequence data, network
data, and uncertain data. Many of these chapters can also be considered application chap-
ters, because they explore the specific characteristics of the problem in a particular domain.
Dedicated chapters are also devoted to large data sets and data streams, because of the recent
importance of the big data paradigm.

* Variations and Insights: These chapters discuss the key variations on the classification pro-
cess such as classification ensembles, rare-class learning, distance function learning, active
learning, and visual learning. Many variations such as transfer learning and semi-supervised
learning use side-information in order to enhance the classification results. A separate chapter
is also devoted to evaluation aspects of classifiers.

This book is designed to be comprehensive in its coverage of the entire area of classification, and it
is hoped that it will serve as a knowledgeable compendium to students and researchers.
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2 Data Classification: Algorithms and Applications

1.1 Introduction

The problem of data classification has numerous applications in a wide variety of mining ap-
plications. This is because the problem attempts to learn the relationship between a set of feature
variables and a target variable of interest. Since many practical problems can be expressed as as-
sociations between feature and target variables, this provides a broad range of applicability of this
model. The problem of classification may be stated as follows:

Given a set of training data points along with associated training labels, determine the class la-
bel for an unlabeled test instance.

Numerous variations of this problem can be defined over different settings. Excellent overviews
on data classification may be found in [39, 50, 63, 85]. Classification algorithms typically contain
two phases:

* Training Phase: In this phase, a model is constructed from the training instances.
* Testing Phase: In this phase, the model is used to assign a label to an unlabeled test instance.

In some cases, such as lazy learning, the training phase is omitted entirely, and the classification is
performed directly from the relationship of the training instances to the test instance. Instance-based
methods such as the nearest neighbor classifiers are examples of such a scenario. Even in such cases,
a pre-processing phase such as a nearest neighbor index construction may be performed in order to
ensure efficiency during the testing phase.

The output of a classification algorithm may be presented for a test instance in one of two ways:

1. Discrete Label: In this case, a label is returned for the test instance.

2. Numerical Score: In this case, a numerical score is returned for each class label and test in-
stance combination. Note that the numerical score can be converted to a discrete label for a
test instance, by picking the class with the highest score for that test instance. The advantage
of a numerical score is that it now becomes possible to compare the relative propensity of
different test instances to belong to a particular class of importance, and rank them if needed.
Such methods are used often in rare class detection problems, where the original class distri-
bution is highly imbalanced, and the discovery of some classes is more valuable than others.

The classification problem thus segments the unseen test instances into groups, as defined by the
class label. While the segmentation of examples into groups is also done by clustering, there is
a key difference between the two problems. In the case of clustering, the segmentation is done
using similarities between the feature variables, with no prior understanding of the structure of the
groups. In the case of classification, the segmentation is done on the basis of a training data set,
which encodes knowledge about the structure of the groups in the form of a rarget variable. Thus,
while the segmentations of the data are usually related to notions of similarity, as in clustering,
significant deviations from the similarity-based segmentation may be achieved in practical settings.
As a result, the classification problem is referred to as supervised learning, just as clustering is
referred to as unsupervised learning. The supervision process often provides significant application-
specific utility, because the class labels may represent important properties of interest.
Some common application domains in which the classification problem arises, are as follows:

* Customer Target Marketing: Since the classification problem relates feature variables to
target classes, this method is extremely popular for the problem of customer target marketing.
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In such cases, feature variables describing the customer may be used to predict their buy-
ing interests on the basis of previous training examples. The target variable may encode the
buying interest of the customer.

* Medical Disease Diagnosis: In recent years, the use of data mining methods in medical
technology has gained increasing traction. The features may be extracted from the medical
records, and the class labels correspond to whether or not a patient may pick up a disease
in the future. In these cases, it is desirable to make disease predictions with the use of such
information.

 Supervised Event Detection: In many temporal scenarios, class labels may be associated
with time stamps corresponding to unusual events. For example, an intrusion activity may
be represented as a class label. In such cases, time-series classification methods can be very
useful.

* Multimedia Data Analysis: It is often desirable to perform classification of large volumes of
multimedia data such as photos, videos, audio or other more complex multimedia data. Mul-
timedia data analysis can often be challenging, because of the complexity of the underlying
feature space and the semantic gap between the feature values and corresponding inferences.

* Biological Data Analysis: Biological data is often represented as discrete sequences, in
which it is desirable to predict the properties of particular sequences. In some cases, the
biological data is also expressed in the form of networks. Therefore, classification methods
can be applied in a variety of different ways in this scenario.

* Document Categorization and Filtering: Many applications, such as newswire services,
require the classification of large numbers of documents in real time. This application is
referred to as document categorization, and is an important area of research in its own right.

¢ Social Network Analysis: Many forms of social network analysis, such as collective classi-
fication, associate labels with the underlying nodes. These are then used in order to predict
the labels of other nodes. Such applications are very useful for predicting useful properties of
actors in a social network.

The diversity of problems that can be addressed by classification algorithms is significant, and cov-
ers many domains. It is impossible to exhaustively discuss all such applications in either a single
chapter or book. Therefore, this book will organize the area of classification into key topics of in-
terest. The work in the data classification area typically falls into a number of broad categories;

* Technique-centered: The problem of data classification can be solved using numerous
classes of techniques such as decision trees, rule-based methods, neural networks, SVM meth-
ods, nearest neighbor methods, and probabilistic methods. This book will cover the most
popular classification methods in the literature comprehensively.

* Data-Type Centered: Many different data types are created by different applications. Some
examples of different data types include text, multimedia, uncertain data, time series, discrete
sequence, and network data. Each of these different data types requires the design of different
techniques, each of which can be quite different.

 Variations on Classification Analysis: Numerous variations on the standard classification
problem exist, which deal with more challenging scenarios such as rare class learning, transfer
learning, semi-supervised learning, or active learning. Alternatively, different variations of
classification, such as ensemble analysis, can be used in order to improve the effectiveness
of classification algorithms. These issues are of course closely related to issues of model
evaluation. All these issues will be discussed extensively in this book.
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This chapter will discuss each of these issues in detail, and will also discuss how the organization of
the book relates to these different areas of data classification. The chapter is organized as follows.
The next section discusses the common techniques that are used for data classification. Section
1.3 explores the use of different data types in the classification process. Section 1.4 discusses the
different variations of data classification. Section 1.5 discusses the conclusions and summary.

1.2 Common Techniques in Data Classification

In this section, the different methods that are commonly used for data classification will be dis-
cussed. These methods will also be associated with the different chapters in this book. It should
be pointed out that these methods represent the most common techniques used for data classifi-
cation, and it is difficult to comprehensively discuss all the methods in a single book. The most
common methods used in data classification are decision trees, rule-based methods, probabilistic
methods, SVM methods, instance-based methods, and neural networks. Each of these methods will
be discussed briefly in this chapter, and all of them will be covered comprehensively in the different
chapters of this book.

1.2.1 Feature Selection Methods

The first phase of virtually all classification algorithms is that of feature selection. In most data
mining scenarios, a wide variety of features are collected by individuals who are often not domain
experts. Clearly, the irrelevant features may often result in poor modeling, since they are not well
related to the class label. In fact, such features will typically worsen the classification accuracy
because of overfitting, when the training data set is small and such features are allowed to be a
part of the training model. For example, consider a medical example where the features from the
blood work of different patients are used to predict a particular disease. Clearly, a feature such
as the Cholesterol level is predictive of heart disease, whereas a feature! such as PSA level is not
predictive of heart disease. However, if a small training data set is used, the PSA level may have
freak correlations with heart disease because of random variations. While the impact of a single
variable may be small, the cumulative effect of many irrelevant features can be significant. This will
result in a training model, that generalizes poorly to unseen test instances. Therefore, it is critical to
use the correct features during the training process.

There are two broad kinds of feature selection methods:

1. Filter Models: In these cases, a crisp criterion on a single feature, or a subset of features, is
used to evaluate their suitability for classification. This method is independent of the specific
algorithm being used.

2. Wrapper Models: In these cases, the feature selection process is embedded into a classifica-
tion algorithm, in order to make the feature selection process sensitive to the classification
algorithm. This approach recognizes the fact that different algorithms may work better with
different features.

In order to perform feature selection with filter models, a number of different measures are used
in order to quantify the relevance of a feature to the classification process. Typically, these measures
compute the imbalance of the feature values over different ranges of the attribute, which may either
be discrete or numerical. Some examples are as follows:

I'This feature is used to measure prostate cancer in men.
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* Gini Index: Let py ... pi be the fraction of classes that correspond to a particular value of the
discrete attribute. Then, the gini-index of that value of the discrete attribute is given by:

G=1-Y p; (1.1)

The value of G ranges between 0 and 1 — 1/k. Smaller values are more indicative of class
imbalance. This indicates that the feature value is more discriminative for classification. The
overall gini-index for the attribute can be measured by weighted averaging over different
values of the discrete attribute, or by using the maximum gini-index over any of the different
discrete values. Different strategies may be more desirable for different scenarios, though the
weighted average is more commonly used.

» Entropy: The entropy of a particular value of the discrete attribute is measured as follows:

E=-—

k
2 pi-log(pi) (1.2)

i=1

The same notations are used above, as for the case of the gini-index. The value of the entropy
lies between 0 and log(k), with smaller values being more indicative of class skew.

e Fisher’s Index: The Fisher’s index measures the ratio of the between class scatter to the within
class scatter. Therefore, if p; is the fraction of training examples belonging to class j, u; is
the mean of a particular feature for class j, u is the global mean for that feature, and G; is
the standard deviation of that feature for class j, then the Fisher score F can be computed as
follows:

Y ipi (uj—p)?

F =
k
Zj:lpj ’ G?

(1.3)

A wide variety of other measures such as the y-statistic and mutual information are also available in
order to quantify the discriminative power of attributes. An approach known as the Fisher’s discrim-
inant [61] is also used in order to combine the different features into directions in the data that are
highly relevant to classification. Such methods are of course feature transformation methods, which
are also closely related to feature selection methods, just as unsupervised dimensionality reduction
methods are related to unsupervised feature selection methods.

The Fisher’s discriminant will be explained below for the two-class problem. Let fig and uy be
the d-dimensional row vectors representing the means of the records in the two classes, and let ¥y
and X be the corresponding d X d covariance matrices, in which the (i, j)th entry represents the
covariance between dimensions i and j for that class. Then, the equivalent Fisher score FS(V) for a
d-dimensional row vector V may be written as follows:

(V- (o — m))?
Vipo-Zo+p1- L)V

FS(V)= (1.4)

This is a generalization of the axis-parallel score in Equation 1.3, to an arbitrary direction V. The
goal is to determine a direction V, which maximizes the Fisher score. It can be shown that the
optimal direction V* may be determined by solving a generalized eigenvalue problem, and is given
by the following expression:

VF=(po-Zo+p1-Z1)  (wo—m)" (1.5)

If desired, successively orthogonal directions may be determined by iteratively projecting the data
onto the residual subspace, after determining the optimal directions one by one.
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More generally, it should be pointed out that many features are often closely correlated with
one another, and the additional utility of an attribute, once a certain set of features have already
been selected, is different from its standalone utility. In order to address this issue, the Minimum
Redundancy Maximum Relevance approach was proposed in [69], in which features are incremen-
tally selected on the basis of their incremental gain on adding them to the feature set. Note that this
method is also a filter model, since the evaluation is on a subset of features, and a crisp criterion is
used to evaluate the subset.

In wrapper models, the feature selection phase is embedded into an iterative approach with a
classification algorithm. In each iteration, the classification algorithm evaluates a particular set of
features. This set of features is then augmented using a particular (e.g., greedy) strategy, and tested
to see of the quality of the classification improves. Since the classification algorithm is used for
evaluation, this approach will generally create a feature set, which is sensitive to the classification
algorithm. This approach has been found to be useful in practice, because of the wide diversity of
models on data classification. For example, an SVM would tend to prefer features in which the two
classes separate out using a linear model, whereas a nearest neighbor classifier would prefer features
in which the different classes are clustered into spherical regions. A good survey on feature selection
methods may be found in [59]. Feature selection methods are discussed in detail in Chapter 2.

1.2.2 Probabilistic Methods

Probabilistic methods are the most fundamental among all data classification methods. Proba-
bilistic classification algorithms use statistical inference to find the best class for a given example.
In addition to simply assigning the best class like other classification algorithms, probabilistic clas-
sification algorithms will output a corresponding posterior probability of the test instance being a
member of each of the possible classes. The posterior probability is defined as the probability after
observing the specific characteristics of the test instance. On the other hand, the prior probability
is simply the fraction of training records belonging to each particular class, with no knowledge of
the test instance. After obtaining the posterior probabilities, we use decision theory to determine
class membership for each new instance. Basically, there are two ways in which we can estimate
the posterior probabilities.

In the first case, the posterior probability of a particular class is estimated by determining the
class-conditional probability and the prior class separately and then applying Bayes’ theorem to find
the parameters. The most well known among these is the Bayes classifier, which is known as a gen-
erative model. For ease in discussion, we will assume discrete feature values, though the approach
can easily be applied to numerical attributes with the use of discretization methods. Consider a test
instance with d different features, which have values X = (x; ...x;) respectively. Its is desirable to
determine the posterior probability that the class Y (T') of the test instance T is i. In other words, we
wish to determine the posterior probability P(Y(T) = i|x ...xs). Then, the Bayes rule can be used
in order to derive the following:

P(x1...xq|Y(T) =)
P(x1 .. .xd)

P(Y(T) =ilx1...xg) = P(Y(T) = i)- (1.6)

Since the denominator is constant across all classes, and one only needs to determine the class with
the maximum posterior probability, one can approximate the aforementioned expression as follows:

P(Y(T) = ilx1...xg) < P(Y(T) = i) - P(x1...xq|Y(T) = i) (1.7

The key here is that the expression on the right can be evaluated more easily in a data-driven
way, as long as the naive Bayes assumption is used for simplification. Specifically, in Equationl.7,
the expression P(Y (T') = i|x; ...x4) can be expressed as the product of the feature-wise conditional
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probabilities.
d

P(x1...xg[Y(T) = i) = [ P(x;|Y(T) =) (1.8)

Jj=1

This is referred to as conditional independence, and therefore the Bayes method is referred to as
“naive.” This simplification is crucial, because these individual probabilities can be estimated from
the training data in a more robust way. The naive Bayes theorem is crucial in providing the ability
to perform the product-wise simplification. The term P(x;|Y (T) = i) is computed as the fraction of
the records in the portion of the training data corresponding to the ith class, which contains feature
value x; for the jth attribute. If desired, Laplacian smoothing can be used in cases when enough
data is not available to estimate these values robustly. This is quite often the case, when a small
amount of training data may contain few or no training records containing a particular feature value.
The Bayes rule has been used quite successfully in the context of a wide variety of applications,
and is particularly popular in the context of text classification. In spite of the naive independence
assumption, the Bayes model seems to be quite effective in practice. A detailed discussion of the
naive assumption in the context of the effectiveness of the Bayes classifier may be found in [38].

Another probabilistic approach is to directly model the posterior probability, by learning a dis-
criminative function that maps an input feature vector directly onto a class label. This approach is
often referred to as a discriminative model. Logistic regression is a popular discriminative classifier,
and its goal is to directly estimate the posterior probability P(Y (7T) = i|X) from the training data.
Formally, the logistic regression model is defined as

1

P(Y(T)=iX) = ma

(1.9)
where 0 is the vector of parameters to be estimated. In general, maximum likelihood is used to deter-
mine the parameters of the logistic regression. To handle overfitting problems in logistic regression,
regularization is introduced to penalize the log likelihood function for large values of 6. The logistic
regression model has been extensively used in numerous disciplines, including the Web, and the
medical and social science fields.

A variety of other probabilistic models are known in the literature, such as probabilistic graphical
models, and conditional random fields. An overview of probabilistic methods for data classification
are found in [20, 64]. Probabilistic methods for data classification are discussed in Chapter 3.

1.2.3 Decision Trees

Decision trees create a hierarchical partitioning of the data, which relates the different partitions
at the leaf level to the different classes. The hierarchical partitioning at each level is created with
the use of a split criterion. The split criterion may either use a condition (or predicate) on a single
attribute, or it may contain a condition on multiple attributes. The former is referred to as a univari-
ate split, whereas the latter is referred to as a multivariate split. The overall approach is to try to
recursively split the training data so as to maximize the discrimination among the different classes
over different nodes. The discrimination among the different classes is maximized, when the level of
skew among the different classes in a given node is maximized. A measure such as the gini-index or
entropy is used in order to quantify this skew. For example, if p; ... p; is the fraction of the records
belonging to the k different classes in a node N, then the gini-index G(N) of the node N is defined
as follows:

k
G(N)=1-Y p; (1.10)
i=1

The value of G(N) lies between 0 and 1 — 1 /k. The smaller the value of G(N), the greater the skew.
In the cases where the classes are evenly balanced, the value is 1 — 1/k. An alternative measure is
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TABLE 1.1: Training Data Snapshot Relating Cardiovascular Risk Based on Previous Events to
Different Blood Parameters

Patient Name | CRP Level | Cholestrol | High Risk? (Class Label)
Mary 3.2 170 Y
Joe 0.9 273 N
Jack 2.5 213 Y
Jane 1.7 229 N
Tom 1.1 160 N
Peter 1.9 205 N
Elizabeth 8.1 160 Y
Lata 1.3 171 N
Daniela 4.5 133 Y
Eric 11.4 122 N
Michael 1.8 280 Y
the entropy E(N):
k
E(N)=—-Y pi-log(pi) (1.11)
i=1

The value of the entropy lies®> between 0 and log(k). The value is log(k), when the records are
perfectly balanced among the different classes. This corresponds to the scenario with maximum
entropy. The smaller the entropy, the greater the skew in the data. Thus, the gini-index and entropy
provide an effective way to evaluate the quality of a node in terms of its level of discrimination
between the different classes.

While constructing the training model, the split is performed, so as to minimize the weighted
sum of the gini-index or entropy of the two nodes. This step is performed recursively, until a ter-
mination criterion is satisfied. The most obvious termination criterion is one where all data records
in the node belong to the same class. More generally, the termination criterion requires either a
minimum level of skew or purity, or a minimum number of records in the node in order to avoid
overfitting. One problem in decision tree construction is that there is no way to predict the best
time to stop decision tree growth, in order to prevent overfitting. Therefore, in many variations, the
decision tree is pruned in order to remove nodes that may correspond to overfitting. There are differ-
ent ways of pruning the decision tree. One way of pruning is to use a minimum description length
principle in deciding when to prune a node from the tree. Another approach is to hold out a small
portion of the training data during the decision tree growth phase. It is then tested to see whether
replacing a subtree with a single node improves the classification accuracy on the hold out set. If
this is the case, then the pruning is performed. In the testing phase, a test instance is assigned to an
appropriate path in the decision tree, based on the evaluation of the split criteria in a hierarchical
decision process. The class label of the corresponding leaf node is reported as the relevant one.

Figure 1.1 provides an example of how the decision tree is constructed. Here, we have illustrated
a case where the two measures (features) of the blood parameters of patients are used in order to
assess the level of cardiovascular risk in the patient. The two measures are the C-Reactive Protein
(CRP) level and Cholesterol level, which are well known parameters related to cardiovascular risk.
It is assumed that a training data set is available, which is already labeled into high risk and low
risk patients, based on previous cardiovascular events such as myocardial infarctions or strokes. At
the same time, it is assumed that the feature values of the blood parameters for these patients are
available. A snapshot of this data is illustrated in Table 1.1. It is evident from the training data that

2The value of the expression at p; = 0 needs to be evaluated at the limit.
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C-Reactive Protein (CRP) < 2 C-Reactive Protein (CRP) > 2

Cholesterol<250 holesterol>250

Cholesterol<20! Cholesterol>200

Normal High Risk Normal High Risk

(a) Univariate Splits

CRP + Chol/100 < 4 CRP + Chol/100 > 4

Normal High Risk

(b) Multivariate Splits

FIGURE 1.1: [llustration of univariate and multivariate splits for decision tree construction.

higher CRP and Cholesterol levels correspond to greater risk, though it is possible to reach more
definitive conclusions by combining the two.

An example of a decision tree that constructs the classification model on the basis of the two
features is illustrated in Figure 1.1(a). This decision tree uses univariate splits, by first partitioning
on the CRP level, and then using a split criterion on the Cholesterol level. Note that the Cholesterol
split criteria in the two CRP branches of the tree are different. In principle, different features can
be used to split different nodes at the same level of the tree. It is also sometimes possible to use
conditions on multiple attributes in order to create more powerful splits at a particular level of the
tree. An example is illustrated in Figure 1.1(b), where a linear combination of the two attributes
provides a much more powerful split than a single attribute. The split condition is as follows:

CRP + Cholestrol/100<4

Note that a single condition such as this is able to partition the training data very well into the
two classes (with a few exceptions). Therefore, the split is more powerful in discriminating between
the two classes in a smaller number of levels of the decision tree. Where possible, it is desirable
to construct more compact decision trees in order to obtain the most accurate results. Such splits
are referred to as multivariate splits. Some of the earliest methods for decision tree construction
include C4.5 [72], ID3 [73], and CART [22]. A detailed discussion of decision trees may be found
in [22,65,72,73]. Decision trees are discussed in Chapter 4.

1.2.4 Rule-Based Methods

Rule-based methods are closely related to decision trees, except that they do not create a strict
hierarchical partitioning of the training data. Rather, overlaps are allowed in order to create greater
robustness for the training model. Any path in a decision tree may be interpreted as a rule, which
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assigns a test instance to a particular label. For example, for the case of the decision tree illustrated
in Figure 1.1(a), the rightmost path corresponds to the following rule:

CRP>2 & Cholestrol >200= HighRisk

It is possible to create a set of disjoint rules from the different paths in the decision tree. In fact,
a number of methods such as C4.5, create related models for both decision tree construction and
rule construction. The corresponding rule-based classifier is referred to as C4.5Rules.

Rule-based classifiers can be viewed as more general models than decision tree models. While
decision trees require the induced rule sets to be non-overlapping, this is not the case for rule-based
classifiers. For example, consider the following rule:

CRP>3 = HighRisk

Clearly, this rule overlaps with the previous rule, and is also quite relevant to the prediction of a
given test instance. In rule-based methods, a set of rules is mined from the training data in the first
phase (or training phase). During the testing phase, it is determined which rules are relevant to the
test instance and the final result is based on a combination of the class values predicted by the
different rules.

In many cases, it may be possible to create rules that possibly conflict with one another on the
right hand side for a particular test instance. Therefore, it is important to design methods that can
effectively determine a resolution to these conflicts. The method of resolution depends upon whether
the rule sets are ordered or unordered. If the rule sets are ordered, then the top matching rules can
be used to make the prediction. If the rule sets are unordered, then the rules can be used to vote on
the test instance. Numerous methods such as Classification based on Associations (CBA) [58], CN2
[31], and RIPPER [26] have been proposed in the literature, which use a variety of rule induction
methods, based on different ways of mining and prioritizing the rules.

Methods such as CN2 and RIPPER use the sequential covering paradigm, where rules with
high accuracy and coverage are sequentially mined from the training data. The idea is that a rule is
grown corresponding to specific target class, and then all training instances matching (or covering)
the antecedent of that rule are removed. This approach is applied repeatedly, until only training
instances of a particular class remain in the data. This constitutes the default class, which is selected
for a test instance, when no rule is fired. The process of mining a rule for the training data is referred
to as rule growth. The growth of a rule involves the successive addition of conjuncts to the left-hand
side of the rule, after the selection of a particular consequent class. This can be viewed as growing a
single “best” path in a decision tree, by adding conditions (split criteria) to the left-hand side of the
rule. After the rule growth phase, a rule-pruning phase is used, which is analogous to decision tree
construction. In this sense, the rule-growth of rule-based classifiers share a number of conceptual
similarities with decision tree classifiers. These rules are ranked in the same order as they are mined
from the training data. For a given test instance, the class variable in the consequent of the first
matching rule is reported. If no matching rule is found, then the default class is reported as the
relevant one.

Methods such as CBA [58] use the traditional association rule framework, in which rules are
determined with the use of specific support and confidence measures. Therefore, these methods are
referred to as associative classifiers. It is also relatively easy to prioritize these rules with the use of
these parameters. The final classification can be performed by either using the majority vote from
the matching rules, or by picking the top ranked rule(s) for classification. Typically, the confidence
of the rule is used to prioritize them, and the support is used to prune for statistical significance.
A single catch-all rule is also created for test instances that are not covered by any rule. Typically,
this catch-all rule might correspond to the majority class among training instances not covered
by any rule. Rule-based methods tend to be more robust than decision trees, because they are not
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restricted to a strict hierarchical partitioning of the data. This is most evident from the relative
performance of these methods in some sparse high dimensional domains such as text. For example,
while many rule-based methods such as RIPPER are frequently used for the text domain, decision
trees are used rarely for text. Another advantage of these methods is that they are relatively easy
to generalize to different data types such as sequences, XML or graph data [14, 93]. In such cases,
the left-hand side of the rule needs to be defined in a way that is specific for that data domain. For
example, for a sequence classification problem [14], the left-hand side of the rule corresponds to a
sequence of symbols. For a graph-classification problem, the left-hand side of the rule corresponds
to a frequent structure [93]. Therefore, while rule-based methods are related to decision trees, they
have significantly greater expressive power. Rule-based methods are discussed in detail in Chapter 5.

1.2.5 Instance-Based Learning

In instance-based learning, the first phase of constructing the training model is often dispensed
with. The test instance is directly related to the training instances in order to create a classification
model. Such methods are referred to as lazy learning methods, because they wait for knowledge of
the test instance in order to create a locally optimized model, which is specific to the test instance.
The advantage of such methods is that they can be directly tailored to the particular test instance,
and can avoid the information loss associated with the incompleteness of any training model. An
overview of instance-based methods may be found in [15, 16, 89].

An example of a very simple instance-based method is the nearest neighbor classifier. In the
nearest neighbor classifier, the top k nearest neighbors in the training data are found to the given
test instance. The class label with the largest presence among the k nearest neighbors is reported as
the relevant class label. If desired, the approach can be made faster with the use of nearest neighbor
index construction. Many variations of the basic instance-based learning algorithm are possible,
wherein aggregates of the training instances may be used for classification. For example, small
clusters can be created from the instances of each class, and the centroid of each cluster may be
used as a new instance. Such an approach is much more efficient and also more robust because of
the reduction of noise associated with the clustering phase which aggregates the noisy records into
more robust aggregates. Other variations of instance-based learning use different variations on the
distance function used for classification. For example, methods that are based on the Mahalanobis
distance or Fisher’s discriminant may be used for more accurate results. The problem of distance
function design is intimately related to the problem of instance-based learning. Therefore, separate
chapters have been devoted in this book to these topics.

A particular form of instance-based learning, is one where the nearest neighbor classifier is
not explicitly used. This is because the distribution of the class labels may not match with the
notion of proximity defined by a particular distance function. Rather, a locally optimized classifier
is constructed using the examples in the neighborhood of a test instance. Thus, the neighborhood is
used only to define the neighborhood in which the classification model is constructed in a lazy way.
Local classifiers are generally more accurate, because of the simplification of the class distribution
within the locality of the test instance. This approach is more generally referred to as lazy learning.
This is a more general notion of instance-based learning than traditional nearest neighbor classifiers.
Methods for instance-based classification are discussed in Chapter 6. Methods for distance-function
learning are discussed in Chapter 18.

1.2.6 SVM Classifiers

SVM methods use linear conditions in order to separate out the classes from one another. The
idea is to use a linear condition that separates the two classes from each other as well as possible.
Consider the medical example discussed earlier, where the risk of cardiovascular disease is related
to diagnostic features from patients.
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FIGURE 1.2: Hard and soft support vector machines.

CRP + Cholestrol/100<4

In such a case, the split condition in the multivariate case may also be used as stand-alone con-
dition for classification. This, a SVM classifier, may be considered a single level decision tree with
a very carefully chosen multivariate split condition. Clearly, since the effectiveness of the approach
depends only on a single separating hyperplane, it is critical to define this separation carefully.

Support vector machines are generally defined for binary classification problems. Therefore, the
class variable y; for the ith training instance X; is assumed to be drawn from {—1,+1}. The most
important criterion, which is commonly used for SVM classification, is that of the maximum margin
hyperplane. In order to understand this point, consider the case of linearly separable data illustrated
in Figure 1.2(a). Two possible separating hyperplanes, with their corresponding support vectors and
margins have been illustrated in the figure. It is evident that one of the separating hyperplanes has a
much larger margin than the other, and is therefore more desirable because of its greater generality
for unseen test examples. Therefore, one of the important criteria for support vector machines is to
achieve maximum margin separation of the hyperplanes.

In general, it is assumed for d dimensional data that the separating hyperplane is of the form
W -X +b = 0. Here W is a d-dimensional vector representing the coefficients of the hyperplane of
separation, and b is a constant. Without loss of generality, it may be assumed (because of appropriate
coefficient scaling) that the two symmetric support vectors have the form W-X +b =1 and W -
X +b = —1. The coefficients W and b need to be learned from the training data 9 in order to
maximize the margin of separation between these two parallel hyperplanes. It can shown from
elementary linear algebra that the distance between these two hyperplanes is 2/||W||. Maximizing
this objective function is equivalent to minimizing ||W||?/2. The problem constraints are defined by
the fact that the training data points for each class are on one side of the support vector. Therefore,
these constraints are as follows:

W-Xi+b>+1 Vi:y=+1 (1.12)
W-X;+b<—1 Vi:yi=—1 (1.13)

This is a constrained convex quadratic optimization problem, which can be solved using Lagrangian
methods. In practice, an off-the-shelf optimization solver may be used to achieve the same goal.
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In practice, the data may not be linearly separable. In such cases, soft-margin methods may
be used. A slack &; > 0 is introduced for training instance, and a training instance is allowed to
violate the support vector constraint, for a penalty, which is dependent on the slack. This situation
is illustrated in Figure 1.2(b). Therefore, the new set of constraints are now as follows:

W-X;+b>+1-& Vi:yi=+1 (1.14)
W-Xi+b< -1+ Viiyi=-—1 (1.15)
£ >0 (1.16)

Note that additional non-negativity constraints also need to be imposed in the slack variables. The
objective function is now |[W|[?/2+C- Y7, &;. The constant C regulates the importance of the
margin and the slack requirements. In other words, small values of C make the approach closer to
soft-margin SVM, whereas large values of C make the approach more of the hard-margin SVM. It
is also possible to solve this problem using off-the-shelf optimization solvers.

It is also possible to use transformations on the feature variables in order to design non-linear
SVM methods. In practice, non-linear SVM methods are learned using kernel methods. The key idea
here is that SVM formulations can be solved using only pairwise dot products (similarity values)
between objects. In other words, the optimal decision about the class label of a test instance, from
the solution to the quadratic optimization problem in this section, can be expressed in terms of the
following:

1. Pairwise dot products of different training instances.
2. Pairwise dot product of the test instance and different training instances.

The reader is advised to refer to [84] for the specific details of the solution to the optimization
formulation. The dot product between a pair of instances can be viewed as notion of similarity
among them. Therefore, the aforementioned observations imply that it is possible to perform SVM
classification, with pairwise similarity information between training data pairs and training-test data
pairs. The actual feature values are not required.

This opens the door for using transformations, which are represented by their similarity values.
These similarities can be viewed as kernel functions K(X,Y), which measure similarities between
the points X and Y. Conceptually, the kernel function may be viewed as dot product between the
pair of points in a newly transformed space (denoted by mapping function ®(-)). However, this
transformation does not need to be explicitly computed, as long as the kernel function (dot product)
K(X,Y) is already available:

KX,)Y)=®(X) - ®(Y) 1.17)
Therefore, all computations can be performed in the original space using the dot products implied

by the kernel function. Some interesting examples of kernel functions include the Gaussian radial
basis function, polynomial kernel, and hyperbolic tangent, which are listed below in the same order.

K(X%.X;) — o IXi-Xjl[* /20 (1.18)
KX, X;) =(X;-X;+ 1) (1.19)
K(X;, X)) =tanh(xX; - X; — ) (1.20)

These different functions result in different kinds of nonlinear decision boundaries in the original
space, but they correspond to a linear separator in the transformed space. The performance of a
classifier can be sensitive to the choice of the kernel used for the transformation. One advantage
of kernel methods is that they can also be extended to arbitrary data types, as long as appropriate
pairwise similarities can be defined.
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The major downside of SVM methods is that they are slow. However, they are very popular and
tend to have high accuracy in many practical domains such as text. An introduction to SVM methods
may be found in [30, 46,75, 76, 85]. Kernel methods for support vector machines are discussed
in [75]. SVM methods are discussed in detail in Chapter 7.

1.2.7 Neural Networks

Neural networks attempt to simulate biological systems, corresponding to the human brain. In
the human brain, neurons are connected to one another via points, which are referred to as synapses.
In biological systems, learning is performed by changing the strength of the synaptic connections,
in response to impulses.

This biological analogy is retained in an artificial neural network. The basic computation unit
in an artificial neural network is a neuron or unit. These units can be arranged in different kinds
of architectures by connections between them. The most basic architecture of the neural network
is a perceptron, which contains a set of input nodes and an output node. The output unit receives
a set of inputs from the input units. There are d different input units, which is exactly equal to
the dimensionality of the underlying data. The data is assumed to be numerical. Categorical data
may need to be transformed to binary representations, and therefore the number of inputs may be
larger. The output node is associated with a set of weights W, which are used in order to compute a
function f(-) of its inputs. Each component of the weight vector is associated with a connection from
the input unit to the output unit. The weights can be viewed as the analogue of the synaptic strengths
in biological systems. In the case of a perceptron architecture, the input nodes do not perform any
computations. They simply transmit the input attribute forward. Computations are performed only
at the output nodes in the basic perceptron architecture. The output node uses its weight vector along
with the input attribute values in order to compute a function of the inputs. A typical function, which
is computed at the output nodes, is the signed linear function:

7 = sign{W -X; + b} (1.21)

The output is a predicted value of the binary class variable, which is assumed to be drawn from
{—1,+1}. The notation b denotes the bias. Thus, for a vector X; drawn from a dimensionality of d,
the weight vector W should also contain d elements. Now consider a binary classification problem,
in which all labels are drawn from {41, —1}. We assume that the class label of X; is denoted by y;.
In that case, the sign of the predicted function z; yields the class label. An example of the perceptron
architecture is illustrated in Figure 1.3(a). Thus, the goal of the approach is to learn the set of
weights W with the use of the training data, so as to minimize the least squares error (y; — z;). The
idea is that we start off with random weights and gradually update them, when a mistake is made
by applying the current function on the training example. The magnitude of the update is regulated
by a learning rate A. This update is similar to the updates in gradient descent, which are made for
least-squares optimization. In the case of neural networks, the update function is as follows.

W =W+ My — )X (1.22)
Here, W' is the value of the weight vector in the tth iteration. It is not difficult to show that the
incremental update vector is related to the negative gradient of (y; — z;)? with respect to W. It is also
easy to see that updates are made to the weights, only when mistakes are made in classification.
When the outputs are correct, the incremental change to the weights is zero.

The similarity to support vector machines is quite striking, in the sense that a linear function
is also learned in this case, and the sign of the linear function predicts the class label. In fact, the
perceptron model and support vector machines are closely related, in that both are linear function
approximators. In the case of support vector machines, this is achieved with the use of maximum
margin optimization. In the case of neural networks, this is achieved with the use of an incremental
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FIGURE 1.3: Single and multilayer neural networks.

learning algorithm, which is approximately equivalent to least squares error optimization of the
prediction.

The constant A regulates the learning rate. The choice of learning rate is sometimes important,
because learning rates that are too small will result in very slow training. On the other hand, if the
learning rates are too fast, this will result in oscillation between suboptimal solutions. In practice,
the learning rates are fast initially, and then allowed to gradually slow down over time. The idea here
is that initially large steps are likely to be helpful, but are then reduced in size to prevent oscillation
between suboptimal solutions. For example, after ¢ iterations, the learning rate may be chosen to be
proportional to 1/z.

The aforementioned discussion was based on the simple perceptron architecture, which can
model only linear relationships. In practice, the neural network is arranged in three layers, referred
to as the input layer, hidden layer, and the output layer. The input layer only transmits the inputs
forward, and therefore, there are really only two layers to the neural network, which can perform
computations. Within the hidden layer, there can be any number of layers of neurons. In such cases,
there can be an arbitrary number of layers in the neural network. In practice, there is only one hidden
layer, which leads to a 2-layer network. An example of a multilayer network is illustrated in Figure
1.3(b). The perceptron can be viewed as a very special kind of neural network, which contains only
a single layer of neurons (corresponding to the output node). Multilayer neural networks allow the
approximation of nonlinear functions, and complex decision boundaries, by an appropriate choice
of the network topology, and non-linear functions at the nodes. In these cases, a logistic or sigmoid
function known as a squashing function is also applied to the inputs of neurons in order to model
non-linear characteristics. It is possible to use different non-linear functions at different nodes. Such
general architectures are very powerful in approximating arbitrary functions in a neural network,
given enough training data and training time. This is the reason that neural networks are sometimes
referred to as universal function approximators.

In the case of single layer perceptron algorthms, the training process is easy to perform by using
a gradient descent approach. The major challenge in training multilayer networks is that it is no
longer known for intermediate (hidden layer) nodes, what their “expected” output should be. This is
only known for the final output node. Therefore, some kind of “error feedback” is required, in order
to determine the changes in the weights at the intermediate nodes. The training process proceeds in
two phases, one of which is in the forward direction, and the other is in the backward direction.

1. Forward Phase: In the forward phase, the activation function is repeatedly applied to prop-
agate the inputs from the neural network in the forward direction. Since the final output is
supposed to match the class label, the final output at the output layer provides an error value,
depending on the training label value. This error is then used to update the weights of the
output layer, and propagate the weight updates backwards in the next phase.
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2. Backpropagation Phase: In the backward phase, the errors are propagated backwards through
the neural network layers. This leads to the updating of the weights in the neurons of the
different layers. The gradients at the previous layers are learned as a function of the errors
and weights in the layer ahead of it. The learning rate A plays an important role in regulating
the rate of learning.

In practice, any arbitrary function can be approximated well by a neural network. The price of this
generality is that neural networks are often quite slow in practice. They are also sensitive to noise,
and can sometimes overfit the training data.

The previous discussion assumed only binary labels. It is possible to create a k-label neural net-
work, by either using a multiclass “one-versus-all” meta-algorithm, or by creating a neural network
architecture in which the number of output nodes is equal to the number of class labels. Each output
represents prediction to a particular label value. A number of implementations of neural network
methods have been studied in [35,57,66,77,88], and many of these implementations are designed in
the context of text data. It should be pointed out that both neural networks and SVM classifiers use a
linear model that is quite similar. The main difference between the two is in how the optimal linear
hyperplane is determined. Rather than using a direct optimization methodology, neural networks
use a mistake-driven approach to data classification [35]. Neural networks are described in detail
in [19,51]. This topic is addressed in detail in Chapter 8.

1.3 Handing Different Data Types

Different data types require the use of different techniques for data classification. This is be-
cause the choice of data type often qualifies the kind of problem that is solved by the classification
approach. In this section, we will discuss the different data types commonly studied in classification
problems, which may require a certain level of special handling.

1.3.1 Large Scale Data: Big Data and Data Streams

With the increasing ability to collect different types of large scale data, the problems of scale
have become a challenge to the classification process. Clearly, larger data sets allow the creation
of more accurate and sophisticated models. However, this is not necessarily helpful, if one is com-
putationally constrained by problems of scale. Data streams and big data analysis have different
challenges. In the former case, real time processing creates challenges, whereas in the latter case,
the problem is created by the fact that computation and data access over extremely large amounts
of data is inefficient. It is often difficult to compute summary statistics from large volumes, because
the access needs to be done in a distributed way, and it is too expensive to shuffle large amounts of
data around. Each of these challenges will be discussed in this subsection.

1.3.1.1 Data Streams

The ability to continuously collect and process large volumes of data has lead to the popularity
of data streams [4]. In the streaming scenario, two primary problems arise in the construction of
training models.

* One-pass Constraint: Since data streams have very large volume, all processing algorithms
need to perform their computations in a single pass over the data. This is a significant chal-
lenge, because it excludes the use of many iterative algorithms that work robustly over static
data sets. Therefore, it is crucial to design the training models in an efficient way.
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* Concept Drift: The data streams are typically created by a generating process, which may
change over time. This results in concept drift, which corresponds to changes in the underly-
ing stream patterns over time. The presence of concept drift can be detrimental to classifica-
tion algorithms, because models become stale over time. Therefore, it is crucial to adjust the
model in an incremental way, so that it achieves high accuracy over current test instances.

* Massive Domain Constraint: The streaming scenario often contains discrete attributes that
take on millions of possible values. This is because streaming items are often associated with
discrete identifiers. Examples could be email addresses in an email addresses, IP addresses
in a network packet stream, and URLs in a click stream extracted from proxy Web logs.
The massive domain problem is ubiquitous in streaming applications. In fact, many synopsis
data structures, such as the count-min sketch [33], and the Flajolet-Martin data structure [41],
have been designed with this issue in mind. While this issue has not been addressed very
extensively in the stream mining literature (beyond basic synopsis methods for counting),
recent work has made a number of advances in this direction [9].

Conventional classification algorithms need to be appropriately modified in order to address the
aforementioned challenges. The special scenarios, such as those in which the domain of the stream
data is large, or the classes are rare, pose special challenges. Most of the well known techniques
for streaming classification use space-efficient data structures for easily updatable models [13, 86].
Furthermore, these methods are explicitly designed to handle concept drift by making the models
temporally adaptive, or by using different models over different regions of the data stream. Spe-
cial scenarios or data types need dedicated methods in the streaming scenario. For example, the
massive-domain scenario can be addressed [9] by incorporating the count-min data structure [33] as
a synopsis structure within the training model. A specially difficult case is that of rare class learn-
ing, in which rare class instances may be mixed with occurrences of completely new classes. This
problem can be considered a hybrid between classification and outlier detection. Nevertheless it is
the most common case in the streaming domain, in applications such as intrusion detection. In these
cases, some kinds of rare classes (intrusions) may already be known, whereas other rare classes may
correspond to previously unseen threats. A book on data streams, containing extensive discussions
on key topics in the area, may be found in [4]. The different variations of the streaming classification
problem are addressed in detail in Chapter 9.

1.3.1.2 The Big Data Framework

While streaming algorithms work under the assumption that the data is too large to be stored
explicitly, the big data framework leverages advances in storage technology in order to actually store
the data and process it. However, as the subsequent discussion will show, even if the data can be
explicitly stored, it is often not easy to process and extract insights from it.

In the simplest case, the data is stored on disk on a single machine, and it is desirable to scale
up the approach with disk-efficient algorithms. While many methods such as the nearest neighbor
classifier and associative classifiers can be scaled up with more efficient subroutines, other methods
such as decision trees and SVMs require dedicated methods for scaling up. Some examples of scal-
able decision tree methods include SLIQ [48], BOAT [42], and RainForest [43]. Some early parallel
implementations of decision trees include the SPRINT method [82]. Typically, scalable decision tree
methods can be performed in one of two ways. Methods such as RainForest increase scalability by
storing attribute-wise summaries of the training data. These summaries are sufficient for performing
single-attribute splits efficiently. Methods such as BOAT use a combination of bootstrapped samples,
in order to yield a decision tree, which is very close to the accuracy that one would have obtained
by using the complete data.

An example of a scalable SVM method is SVMLight [53]. This approach focusses on the fact
that the quadratic optimization problem in SVM is computationally intensive. The idea is to always
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optimize only a small working set of variables while keeping the others fixed. This working set is
selected by using a steepest descent criterion. This optimizes the advantage gained from using a
particular subset of attributes. Another strategy used is to discard training examples, which do not
have any impact on the margin of the classifiers. Training examples that are away from the decision
boundary, and on its “correct” side, have no impact on the margin of the classifier, even if they are
removed. Other methods such as SVMPerf [54] reformulate the SVM optimization to reduce the
number of slack variables, and increase the number of constraints. A cutting plane approach, which
works with a small subset of constraints at a time, is used in order to solve the resulting optimization
problem effectively.

Further challenges arise for extremely large data sets. This is because an increasing size of the
data implies that a distributed file system must be used in order to store it, and distributed processing
techniques are required in order to ensure sufficient scalability. The challenge here is that if large
segments of the data are available on different machines, it is often too expensive to shuffle the data
across different machines in order to extract integrated insights from it. Thus, as in all distributed
infrastructures, it is desirable to exchange intermediate insights, so as to minimize communication
costs. For an application programmer, this can sometimes create challenges in terms of keeping
track of where different parts of the data are stored, and the precise ordering of communications in
order to minimize the costs.

In this context, Google’s MapReduce framework [37] provides an effective method for analysis
of large amounts of data, especially when the nature of the computations involve linearly computable
statistical functions over the elements of the data streams. One desirable aspect of this framework is
that it abstracts out the precise details of where different parts of the data are stored to the applica-
tion programmer. As stated in [37]: “The run-time system takes care of the details of partitioning the
input data, scheduling the program’s execution across a set of machines, handling machine failures,
and managing the required inter-machine communication. This allows programmers without any
experience with parallel and distributed systems to easily utilize the resources of a large distributed
system.” Many classification algorithms such as k-means are naturally linear in terms of their scala-
bility with the size of the data. A primer on the MapReduce framework implementation on Apache
Hadoop may be found in [87]. The key idea here is to use a Map function in order to distribute the
work across the different machines, and then provide an automated way to shuffle out much smaller
data in (key,value) pairs containing intermediate results. The Reduce function is then applied to the
aggregated results from the Map step in order to obtain the final results.

Google’s original MapReduce framework was designed for analyzing large amounts of Web
logs, and more specifically deriving linearly computable statistics from the logs. It has been shown
[44] that a declarative framework is particularly useful in many MapReduce applications, and that
many existing classification algorithms can be generalized to the MapReduce framework. A proper
choice of the algorithm to adapt to the MapReduce framework is crucial, since the framework is
particularly effective for linear computations. It should be pointed out that the major attraction of
the MapReduce framework is its ability to provide application programmers with a cleaner abstrac-
tion, which is independent of very specific run-time details of the distributed system. It should not,
however, be assumed that such a system is somehow inherently superior to existing methods for dis-
tributed parallelization from an effectiveness or flexibility perspective, especially if an application
programmer is willing to design such details from scratch. A detailed discussion of classification
algorithms for big data is provided in Chapter 10.

1.3.2 Text Classification

One of the most common data types used in the context of classification is that of text data. Text
data is ubiquitous, especially because of its popularity, both on the Web and in social networks.
While a text document can be treated as a string of words, it is more commonly used as a bag-
of-words, in which the ordering information between words is not used. This representation of
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text is much closer to multidimensional data. However, the standard methods for multidimensional
classification often need to be modified for text.

The main challenge with text classification is that the data is extremely high dimensional and
sparse. A typical text lexicon may be of a size of a hundred thousand words, but a document may
typically contain far fewer words. Thus, most of the attribute values are zero, and the frequencies are
relatively small. Many common words may be very noisy and not very discriminative for the clas-
sification process. Therefore, the problems of feature selection and representation are particularly
important in text classification.

Not all classification methods are equally popular for text data. For example, rule-based meth-
ods, the Bayes method, and SVM classifiers tend to be more popular than other classifiers. Some
rule-based classifiers such as RIPPER [26] were originally designed for text classification. Neural
methods and instance-based methods are also sometimes used. A popular instance-based method
used for text classification is Rocchio’s method [56, 74]. Instance-based methods are also some-
times used with centroid-based classification, where frequency-truncated centroids of class-specific
clusters are used, instead of the original documents for the k-nearest neighbor approach. This gen-
erally provides better accuracy, because the centroid of a small closely related set of documents is
often a more stable representation of that data locality than any single document. This is especially
true because of the sparse nature of text data, in which two related documents may often have only
a small number of words in common.

Many classifiers such as decision trees, which are popularly used in other data domains, are
not quite as popular for text data. The reason for this is that decision trees use a strict hierarchical
partitioning of the data. Therefore, the features at the higher levels of the tree are implicitly given
greater importance than other features. In a text collection containing hundreds of thousands of
features (words), a single word usually tells us very little about the class label. Furthermore, a
decision tree will typically partition the data space with a very small number of splits. This is a
problem, when this value is orders of magnitude less than the underlying data dimensionality. Of
course, decision trees in text are not very balanced either, because of the fact that a given word
is contained only in a small subset of the documents. Consider the case where a split corresponds
to presence or absence of a word. Because of the imbalanced nature of the tree, most paths from
the root to leaves will correspond to word-absence decisions, and a very small number (less than
5 to 10) word-presence decisions. Clearly, this will lead to poor classification, especially in cases
where word-absence does not convey much information, and a modest number of word presence
decisions are required. Univariate decision trees do not work very well for very high dimensional
data sets, because of disproportionate importance to some features, and a corresponding inability to
effectively leverage all the available features. It is possible to improve the effectiveness of decision
trees for text classification by using multivariate splits, though this can be rather expensive.

The standard classification methods, which are used for the text domain, also need to be suitably
modified. This is because of the high dimensional and sparse nature of the text domain. For example,
text has a dedicated model, known as the multinomial Bayes model, which is different from the
standard Bernoulli model [12]. The Bernoulli model treats the presence and absence of a word in
a text document in a symmetric way. However, in a given text document, only a small fraction
of the lexicon size is present in it. The absence of a word is usually far less informative than the
presence of a word. The symmetric treatment of word presence and word absence can sometimes be
detrimental to the effectiveness of a Bayes classifier in the text domain. In order to achieve this goal,
the multinomial Bayes model is used, which uses the frequency of word presence in a document,
but ignores non-occurrence.

In the context of SVM classifiers, scalability is important, because such classifiers scale poorly
both with number of training documents and data dimensionality (lexicon size). Furthermore, the
sparsity of text (i.e., few non-zero feature values) should be used to improve the training efficiency.
This is because the training model in an SVM classifier is constructed using a constrained quadratic
optimization problem, which has as many constraints as the number of data points. This is rather
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large, and it directly results in an increased size of the corresponding Lagrangian relaxation. In the
case of kernel SVM, the space-requirements for the kernel matrix could also scale quadratically with
the number of data points. A few methods such as SVMLight [53] address this issue by carefully
breaking down the problem into smaller subproblems, and optimizing only a few variables at a time.
Other methods such as SVMPerf [54] also leverage the sparsity of the text domain. The SVMPerf
method scales as O(n - s), where s is proportional to the average number of non-zero feature values
per training document.

Text classification often needs to be performed in scenarios, where it is accompanied by linked
data. The links between documents are typically inherited from domains such as the Web and social
networks. In such cases, the links contain useful information, which should be leveraged in the
classification process. A number of techniques have recently been designed to utilize such side
information in the classification process. Detailed surveys on text classification may be found in
[12,78]. The problem of text classification is discussed in detail in Chapter 11 of this book.

1.3.3 Multimedia Classification

With the increasing popularity of social media sites, multimedia data has also become increas-
ingly popular. In particular sites such as Flickr or Youtube allow users to upload their photos or
videos at these sites. In such cases, it is desirable to perform classification of either portions or all
of either a photograph or a video. In these cases, rich meta-data may also be available, which can
facilitate more effective data classification. The issue of data representation is a particularly impor-
tant one for multimedia data, because poor representations have a large semantic gap, which creates
challenges for the classification process. The combination of text with multimedia data in order to
create more effective classification models has been discussed in [8]. Many methods such as semi-
supervised learning and transfer learning can also be used in order to improve the effectiveness of
the data classification process. Multimedia data poses unique challenges, both in terms of data repre-
sentation, and information fusion. Methods for multimedia data classification are discussed in [60].
A detailed discussion of methods for multimedia data classification is provided in Chapter 12.

1.3.4 Time Series and Sequence Data Classification

Both of these data types are temporal data types in which the attributes are of two types. The first
type is the contextual attribute (time), and the second attribute, which corresponds to the time series
value, is the behavioral attribute. The main difference between time series and sequence data is that
time series data is continuous, whereas sequence data is discrete. Nevertheless, this difference is
quite significant, because it changes the nature of the commonly used models in the two scenarios.

Time series data is popular in many applications such as sensor networks, and medical informat-
ics, in which it is desirable to use large volumes of streaming time series data in order to perform
the classification. Two kinds of classification are possible with time-series data:

* Classifying specific time-instants: These correspond to specific events that can be inferred at
particular instants of the data stream. In these cases, the labels are associated with instants in
time, and the behavior of one or more time series are used in order to classify these instants.
For example, the detection of significant events in real-time applications can be an important
application in this scenario.

* Classifying part or whole series: In these cases, the class labels are associated with portions
or all of the series, and these are used for classification. For example, an ECG time-series will
show characteristic shapes for specific diagnostic criteria for diseases.
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Both of these scenarios are equally important from the perspective of analytical inferences in a wide
variety of scenarios. Furthermore, these scenarios are also relevant to the case of sequence data.
Sequence data arises frequently in biological, Web log mining, and system analysis applications.
The discrete nature of the underlying data necessitates the use of methods that are quite different
from the case of continuous time series data. For example, in the case of discrete sequences, the
nature of the distance functions and modeling methodologies are quite different than those in time-
series data.

A brief survey of time-series and sequence classification methods may be found in [91]. A
detailed discussion on time-series data classification is provided in Chapter 13, and that of sequence
data classification methods is provided in Chapter 14. While the two areas are clearly connected,
there are significant differences between these two topics, so as to merit separate topical treatment.

1.3.5 Network Data Classification

Network data is quite popular in Web and social networks applications in which a variety of
different scenarios for node classification arise. In most of these scenarios, the class labels are asso-
ciated with nodes in the underlying network. In many cases, the labels are known only for a subset
of the nodes. It is desired to use the known subset of labels in order to make predictions about nodes
for which the labels are unknown. This problem is also referred to as collective classification. In this
problem, the key assumption is that of homophily. This implies that edges imply similarity relation-
ships between nodes. It is assumed that the labels vary smoothly over neighboring nodes. A variety
of methods such as Bayes methods and spectral methods have been generalized to the problem of
collective classification. In cases where content information is available at the nodes, the effective-
ness of classification can be improved even further. A detailed survey on collective classification
methods may be found in [6].

A different form of graph classification is one in which many small graphs exist, and labels are
associated with individual graphs. Such cases arise commonly in the case of chemical and biolog-
ical data, and are discussed in detail in [7]. The focus of the chapter in this book is on very large
graphs and social networks because of their recent popularity. A detailed discussion of network
classification methods is provided in Chapter 15 of this book.

1.3.6 Uncertain Data Classification

Many forms of data collection are uncertain in nature. For example, data collected with the use
of sensors is often uncertain. Furthermore, in cases when data perturbation techniques are used, the
data becomes uncertain. In some cases, statistical methods are used in order to infer parts of the
data. An example is the case of link inference in network data. Uncertainty can play an important
role in the classification of uncertain data. For example, if an attribute is known to be uncertain,
its contribution to the training model can be de-emphasized, with respect to an attribute that has
deterministic attributes.

The problem of uncertain data classification was first studied in [S]. In these methods, the un-
certainty in the attributes is used as a first-class variable in order to improve the effectiveness of
the classification process. This is because the relative importance of different features depends not
only on their correlation with the class variable, but also the uncertainty inherent in them. Clearly,
when the values of an attribute are more uncertain, it is less desirable to use them for the classifica-
tion process. This is achieved in [5] with the use of a density-based transform that accounts for the
varying level of uncertainty of attributes. Subsequently, many other methods have been proposed to
account for the uncertainty in the attributes during the classification process. A detailed description
of uncertain data classification methods is provided in Chapter 16.
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1.4 Variations on Data Classification

Many natural variations of the data classification problem correspond to either small variations
of the standard classification problem or are enhancements of classification with the use of additional
data. The key variations of the classification problem are those of rare-class learning and distance
function learning. Enhancements of the data classification problem make use of meta-algorithms,
more data in methods such as transfer learning and co-training, active learning, and human interven-
tion in visual learning. In addition, the topic of model evaluation is an important one in the context of
data classification. This is because the issue of model evaluation is important for the design of effec-
tive classification meta-algorithms. In the following section, we will discuss the different variations
of the classification problem.

1.4.1 Rare Class Learning

Rare class learning is an important variation of the classification problem, and is closely related
to outlier analysis [1]. In fact, it can be considered a supervised variation of the outlier detection
problem. In rare class learning, the distribution of the classes is highly imbalanced in the data, and
it is typically more important to correctly determine the positive class. For example, consider the
case where it is desirable to classify patients into malignant and normal categories. In such cases,
the majority of patients may be normal, though it is typically much more costly to misclassify a
truly malignant patient (false negative). Thus, false negatives are more costly than false positives.
The problem is closely related to cost-sensitive learning, since the misclassification of different
classes has different classes. The major difference with the standard classification problem is that
the objective function of the problem needs to be modified with costs. This provides several avenues
that can be used in order to effectively solve this problem:

* Example Weighting: In this case, the examples are weighted differently, depending upon their
cost of misclassification. This leads to minor changes in most classification algorithms, which
are relatively simple to implement. For example, in an SVM classifier, the objective function
needs to be appropriately weighted with costs, whereas in a decision tree, the quantification of
the split criterion needs to weight the examples with costs. In a nearest neighbor classifier, the
k nearest neighbors are appropriately weighted while determining the class with the largest
presence.

e Example Re-sampling: In this case, the examples are appropriately re-sampled, so that rare
classes are over-sampled, whereas the normal classes are under-sampled. A standard classifier
is applied to the re-sampled data without any modification. From a technical perspective, this
approach is equivalent to example weighting. However, from a computational perspective,
such an approach has the advantage that the newly re-sampled data has much smaller size.
This is because most of the examples in the data correspond to the normal class, which is
drastically under-sampled, whereas the rare class is typically only mildly over-sampled.

Many variations of the rare class detection problem are possible, in which either examples of a
single class are available, or the normal class is contaminated with rare class examples. A survey
of algorithms for rare class learning may be found in [25]. This topic is discussed in detail in
Chapter 17.

1.4.2 Distance Function Learning

Distance function learning is an important problem that is closely related to data classification.
In this problem it is desirable to relate pairs of data instances to a distance value with the use of ei-
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ther supervised or unsupervised methods [3]. For example, consider the case of an image collection,
in which the similarity is defined on the basis of a user-centered semantic criterion. In such a case,
the use of standard distance functions such as the Euclidian metric may not reflect the semantic sim-
ilarities between two images well, because they are based on human perception, and may even vary
from collection to collection. Thus, the best way to address this issue is to explicitly incorporate
human feedback into the learning process. Typically, this feedback is incorporated either in terms of
pairs of images with explicit distance values, or in terms of rankings of different images to a given
target image. Such an approach can be used for a variety of different data domains. This is the train-
ing data that is used for learning purposes. A detailed survey of distance function learning methods
is provided in [92]. The topic of distance function learning is discussed in detail in Chapter 18.

1.4.3 Ensemble Learning for Data Classification

A meta-algorithm is a classification method that re-uses one or more currently existing classifi-
cation algorithm by applying either multiple models for robustness, or combining the results of the
same algorithm with different parts of the data. The general goal of the algorithm is to obtain more
robust results by combining the results from multiple training models either sequentially or indepen-
dently. The overall error of a classification model depends upon the bias and variance, in addition to
the intrinsic noise present in the data. The bias of a classifier depends upon the fact that the decision
boundary of a particular model may not correspond to the true decision boundary. For example, the
training data may not have a linear decision boundary, but an SVM classifier will assume a linear
decision boundary. The variance is based on the random variations in the particular training data set.
Smaller training data sets will have larger variance. Different forms of ensemble analysis attempt to
reduce this bias and variance. The reader is referred to [84] for an excellent discussion on bias and
variance.

Meta-algorithms are used commonly in many data mining problems such as clustering and out-
lier analysis [1,2] in order to obtain more accurate results from different data mining problems. The
area of classification is the richest one from the perspective of meta-algorithms, because of its crisp
evaluation criteria and relative ease in combining the results of different algorithms. Some examples
of popular meta-algorithms are as follows:

* Boosting: Boosting [40] is a common technique used in classification. The idea is to focus
on successively difficult portions of the data set in order to create models that can classify
the data points in these portions more accurately, and then use the ensemble scores over all
the components. A hold-out approach is used in order to determine the incorrectly classified
instances for each portion of the data set. Thus, the idea is to sequentially determine better
classifiers for more difficult portions of the data, and then combine the results in order to
obtain a meta-classifier, which works well on all parts of the data.

* Bagging: Bagging [24] is an approach that works with random data samples, and combines
the results from the models constructed using different samples. The training examples for
each classifier are selected by sampling with replacement. These are referred to as bootstrap
samples. This approach has often been shown to provide superior results in certain scenarios,
though this is not always the case. This approach is not effective for reducing the bias, but can
reduce the variance, because of the specific random aspects of the training data.

e Random Forests: Random forests [23] are a method that use sets of decision trees on either
splits with randomly generated vectors, or random subsets of the training data, and com-
pute the score as a function of these different components. Typically, the random vectors are
generated from a fixed probability distribution. Therefore, random forests can be created by
either random split selection, or random input selection. Random forests are closely related
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to bagging, and in fact bagging with decision trees can be considered a special case of ran-
dom forests, in terms of how the sample is selected (bootstrapping). In the case of random
forests, it is also possible to create the trees in a lazy way, which is tailored to the particular
test instance at hand.

* Model Averaging and Combination: This is one of the most common models used in ensemble
analysis. In fact, the random forest method discussed above is a special case of this idea. In
the context of the classification problem, many Bayesian methods [34] exist for the model
combination process. The use of different models ensures that the error caused by the bias of
a particular classifier does not dominate the classification results.

* Stacking: Methods such as stacking [90] also combine different models in a variety of ways,
such as using a second-level classifier in order to perform the combination. The output of
different first-level classifiers is used to create a new feature representation for the second
level classifier. These first level classifiers may be chosen in a variety of ways, such as using
different bagged classifiers, or by using different training models. In order to avoid overfitting,
the training data needs to be divided into two subsets for the first and second level classifiers.

* Bucket of Models: In this approach [94] a “hold-out” portion of the data set is used in order to
decide the most appropriate model. The most appropriate model is one in which the highest
accuracy is achieved in the held out data set. In essence, this approach can be viewed as a
competition or bake-off contest between the different models.

The area of meta-algorithms in classification is very rich, and different variations may work better
in different scenarios. An overview of different meta-algorithms in classification is provided in
Chapter 19.

1.4.4 Enhancing Classification Methods with Additional Data

In this class of methods, additional labeled or unlabeled data is used to enhance classification.
Both these methods are used when there is a direct paucity of the underlying training data. In the case
of transfer learning, additional training (labeled) data from a different domain or problem is used
to supervise the classification process. On the other hand, in the case of semi-supervised learning,
unlabeled data is used to enhance the classification process. These methods are briefly described in
this section.

1.4.4.1 Semi-Supervised Learning

Semi-supervised learning methods improve the effectiveness of learning methods with the use
of unlabeled data, when only a small amount of labeled data is available. The main difference
between semi-supervised learning and transfer learning methods is that unlabeled data with the
same features is used in the former, whereas external labeled data (possibly from a different source)
is used in the latter. A key question arises as to why unlabeled data should improve the effectiveness
of classification in any way, when it does not provide any additional labeling knowledge. The reason
for this is that unlabeled data provides a good idea of the manifolds in which the data is embedded,
as well as the density structure of the data in terms of the clusters and sparse regions. The key
assumption is that the classification labels exhibit a smooth variation over different parts of the
manifold structure of the underlying data. This manifold structure can be used to determine feature
correlations, and joint feature distributions, which are very helpful for classification. The semi-
supervised setting is also sometimes referred to as the fransductive setting, when the test instances
must be specified together with the training instances. Some problem settings such as collective
classification of network data are naturally transductive.
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FIGURE 1.4: Impact of unsupervised examples on classification process.

The motivation of semi-supervised learning is that knowledge of the dense regions in the space
and correlated regions of the space are helpful for classification. Consider the two-class example
illustrated in Figure 1.4(a), in which only a single training example is available for each class.
In such a case, the decision boundary between the two classes is the straight line perpendicular
to the one joining the two classes. However, suppose that some additional unsupervised examples
are available, as illustrated in Figure 1.4(b). These unsupervised examples are denoted by ‘x’. In
such a case, the decision boundary changes from Figure 1.4(a). The major assumption here is that
the classes vary less in dense regions of the training data, because of the smoothness assumption.
As a result, even though the added examples do not have labels, they contribute significantly to
improvements in classification accuracy.

In this example, the correlations between feature values were estimated with unlabeled training
data. This has an intuitive interpretation in the context of text data, where joint feature distributions
can be estimated with unlabeled data. For example, consider a scenario, where training data is
available about predicting whether a document is the “politics” category. It may be possible that the
word “Obama” (or some of the less common words) may not occur in any of the (small number
of) training documents. However, the word “Obama” may often co-occur with many features of the
“politics” category in the unlabeled instances. Thus, the unlabeled instances can be used to learn the
relevance of these less common features to the classification process, especially when the amount
of available training data is small.

Similarly, when the data is clustered, each cluster in the data is likely to predominantly contain
data records of one class or the other. The identification of these clusters only requires unsuper-
vised data rather than labeled data. Once the clusters have been identified from unlabeled data,
only a small number of labeled examples are required in order to determine confidently which label
corresponds to which cluster. Therefore, when a test example is classified, its clustering structure
provides critical information for its classification process, even when a smaller number of labeled
examples are available. It has been argued in [67] that the accuracy of the approach may increase ex-
ponentially with the number of labeled examples, as long as the assumption of smoothness in label
structure variation holds true. Of course, in real life, this may not be true. Nevertheless, it has been
shown repeatedly in many domains that the addition of unlabeled data provides significant advan-
tages for the classification process. An argument for the effectiveness of semi-supervised learning
that uses the spectral clustering structure of the data may be found in [18]. In some domains such
as graph data, semi-supervised learning is the only way in which classification may be performed.
This is because a given node may have very few neighbors of a specific class.

Semi-supervised methods are implemented in a wide variety of ways. Some of these methods
directly try to label the unlabeled data in order to increase the size of the training set. The idea is
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to incrementally add the most confidently predicted label to the training data. This is referred to as
self training. Such methods have the downside that they run the risk of overfitting. For example,
when an unlabeled example is added to the training data with a specific label, the label might be
incorrect because of the specific characteristics of the feature space, or the classifier. This might
result in further propagation of the errors. The results can be quite severe in many scenarios.

Therefore, semi-supervised methods need to be carefully designed in order to avoid overfitting.
An example of such a method is co-training [21], which partitions the attribute set into two subsets,
on which classifier models are independently constructed. The top label predictions of one classifier
are used to augment the training data of the other, and vice-versa. Specifically, the steps of co-
training are as follows:

1. Divide the feature space into two disjoint subsets f; and f>.

2. Train two independent classifier models M and M5, which use the disjoint feature sets f;
and f», respectively.

3. Add the unlabeled instance with the most confidently predicted label from 9 to the training
data for M, and vice-versa.

4. Repeat all the above steps.

Since the two classifiers are independently constructed on different feature sets, such an approach
avoids overfitting. The partitioning of the feature set into f; and f> can be performed in a variety
of ways. While it is possible to perform random partitioning of features, it is generally advisable
to leverage redundancy in the feature set to construct f; and f>. Specifically, each feature set f;
should be picked so that the features in f; (for j # i) are redundant with respect to it. Therefore,
each feature set represents a different view of the data, which is sufficient for classification. This
ensures that the “confident” labels assigned to the other classifier are of high quality. At the same
time, overfitting is avoided to at least some degree, because of the disjoint nature of the feature
set used by the two classifiers. Typically, an erroneously assigned class label will be more easily
detected by the disjoint feature set of the other classifier, which was not used to assign the erroneous
label. For a test instance, each of the classifiers is used to make a prediction, and the combination
score from the two classifiers may be used. For example, if the naive Bayes method is used as the
base classifier, then the product of the two classifier scores may be used.

The aforementioned methods are generic meta-algorithms for semi-supervised leaning. It is also
possible to design variations of existing classification algorithms such as the EM-method, or trans-
ductive SVM classifiers. EM-based methods [67] are very popular for text data. These methods
attempt to model the joint probability distributions of the features and the labels with the use of
partially supervised clustering methods. This allows the estimation of the conditional probabilities
in the Bayes classifier to be treated as missing data, for which the EM-algorithm is very effec-
tive. This approach shows a connection between the partially supervised clustering and partially
supervised classification problems. The results show that partially supervised classification is most
effective, when the clusters in the data correspond to the different classes. In transductive SVMs,
the labels of the unlabeled examples are also treated as integer decision variables. The SVM for-
mulation is modified in order to determine the maximum margin SVM, with the best possible label
assignment of unlabeled examples. Surveys on semi-supervised methods may be found in [29, 96].
Semi-supervised methods are discussed in Chapter 20.

1.4.4.2 Transfer Learning

As in the case of semi-supervised learning, transfer learning methods are used when there is a
direct paucity of the underlying training data. However, the difference from semi-supervised learn-
ing is that, instead of using unlabeled data, labeled data from a different domain is used to enhance
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the learning process. For example, consider the case of learning the class label of Chinese docu-
ments, where enough training data is not available about the documents. However, similar English
documents may be available that contain training labels. In such cases, the knowledge in training
data for the English documents can be transferred to the Chinese document scenario for more ef-
fective classification. Typically, this process requires some kind of “bridge” in order to relate the
Chinese documents to the English documents. An example of such a “bridge” could be pairs of
similar Chinese and English documents though many other models are possible. In many cases,
a small amount of auxiliary training data in the form of labeled Chinese training documents may
also be available in order to further enhance the effectiveness of the transfer process. This general
principle can also be applied to cross-category or cross-domain scenarios where knowledge from
one classification category is used to enhance the learning of another category [71], or the knowl-
edge from one data domain (e.g., text) is used to enhance the learning of another data domain (e.g.,
images) [36,70,71,95]. Broadly speaking, transfer learning methods fall into one of the following
four categories:

1. Instance-Based Transfer: In this case, the feature spaces of the two domains are highly over-
lapping; even the class labels may be the same. Therefore, it is possible to transfer knowledge
from one domain to the other by simply re-weighting the features.

2. Feature-Based Transfer: In this case, there may be some overlaps among the features, but
a significant portion of the feature space may be different. Often, the goal is to perform a
transformation of each feature set into a new low dimensional space, which can be shared
across related tasks.

3. Parameter-Based Transfer: In this case, the motivation is that a good training model has
typically learned a lot of structure. Therefore, if two tasks are related, then the structure can
be transferred to learn the target task.

4. Relational-Transfer Learning: The idea here is that if two domains are related, they may share
some similarity relations among objects. These similarity relations can be used for transfer
learning across domains.

The major challenge in such transfer learning methods is that negative transfer can be caused in
some cases when the side information used is very noisy or irrelevant to the learning process. There-
fore, it is critical to use the transfer learning process in a careful and judicious way in order to truly
improve the quality of the results. A survey on transfer learning methods may be found in [68], and
a detailed discussion on this topic may be found in Chapter 21.

1.4.5 Incorporating Human Feedback

A different way of enhancing the classification process is to use some form of human supervision
in order to improve the effectiveness of the classification process. Two forms of human feedback
are quite popular, and they correspond to active learning and visual learning, respectively. These
forms of feedback are different in that the former is typically focussed on label acquisition with
human feedback, so as to enhance the training data. The latter is focussed on either visually creating
a training model, or by visually performing the classification in a diagnostic way. Nevertheless, both
forms of incorporating human feedback work with the assumption that the active input of a user can
provide better knowledge for the classification process. It should be pointed out that the feedback
in active learning may not always come from a user. Rather a generic concept of an oracle (such as
Amazon Mechanical Turk) may be available for the feedback.
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FIGURE 1.5: Motivation of active learning.

1.4.5.1 Active Learning

Most classification algorithms assume that the learner is a passive recipient of the data set,
which is then used to create the training model. Thus, the data collection phase is cleanly separated
out from modeling, and is generally not addressed in the context of model construction. However,
data collection is costly, and is often the (cost) bottleneck for many classification algorithms. In
active learning, the goal is to collect more labels during the learning process in order to improve
the effectiveness of the classification process at a low cost. Therefore, the learning process and data
collection process are tightly integrated with one another and enhance each other. Typically, the
classification is performed in an interactive way with the learner providing well-chosen examples to
the user, for which the user may then provide labels.

For example, consider the two-class example of Figure 1.5. Here, we have a very simple division
of the data into two classes, which is shown by a vertical dotted line, as illustrated in Figure 1.5(a).
The two classes here are labeled by A and B. Consider the case where it is possible to query only
seven examples for the two different classes. In this case, it is quite possible that the small number
of allowed samples may result in a training data which is unrepresentative of the true separation
between the two classes. Consider the case when an SVM classifier is used in order to construct
a model. In Figure 1.5(b), we have shown a total of seven samples randomly chosen from the
underlying data. Because of the inherent noisiness in the process of picking a small number of
samples, an SVM classifier will be unable to accurately divide the data space. This is shown in
Figure 1.5(b), where a portion of the data space is incorrectly classified, because of the error of
modeling the SVM classifier. In Figure 1.5(c), we have shown an example of a well chosen set of
seven instances along the decision boundary of the two classes. In this case, the SVM classifier is
able to accurately model the decision regions between the two classes. This is because of the careful
choice of the instances chosen by the active learning process. An important point to note is that it
is particularly useful to sample instances that can clearly demarcate the decision boundary between
the two classes.

In general, the examples are typically chosen for which the learner has the greatest level of
uncertainty based on the current training knowledge and labels. This choice evidently provides the
greatest additional information to the learner in cases where the greatest uncertainty exists about
the current label. As in the case of semi-supervised learning, the assumption is that unlabeled data
is copious, but acquiring labels for it is expensive. Therefore, by using the help of the learner in
choosing the appropriate examples to label, it is possible to greatly reduce the effort involved in the
classification process. Active learning algorithms often use support vector machines, because the
latter are particularly good at determining the boundaries between the different classes. Examples
that lie on these boundaries are good candidates to query the user, because the greatest level of
uncertainty exists for these examples. Numerous criteria exist for training example choice in active
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learning algorithms, most of which try to either reduce the uncertainty in classification or reduce the
error associated with the classification process. Some examples of criteria that are commonly used
in order to query the learner are as follows:

* Uncertainty Sampling: In this case, the learner queries the user for labels of examples, for
which the greatest level of uncertainty exists about its correct output [45].

* Query by Committee (OQBC): In this case, the learner queries the user for labels of examples
in which a committee of classifiers have the greatest disagreement. Clearly, this is another
indirect way to ensure that examples with the greatest uncertainty are queries [81].

* Greatest Model Change: In this case, the learner queries the user for labels of examples,
which cause the greatest level of change from the current model. The goal here is to learn
new knowledge that is not currently incorporated in the model [27].

* Greatest Error Reduction: In this case, the learner queries the user for labels of examples,
which causes the greatest reduction of error in the current example [28].

* Greatest Variance Reduction: In this case, the learner queries the user for examples, which
result in greatest reduction in output variance [28]. This is actually similar to the previous
case, since the variance is a component of the total error.

* Representativeness: In this case, the learner queries the user for labels that are most represen-
tative of the underlying data. Typically, this approach combines one of the aforementioned
criteria (such as uncertainty sampling or QBC) with a representativeness model such as a
density-based method in order to perform the classification [80].

These different kinds of models may work well in different kinds of scenarios. Another form of
active learning queries the data vertically. In other words, instead of examples, it is learned which
attributes to collect, so as to minimize the error at a given cost level [62]. A survey on active learning
methods may be found in [79]. The topic of active learning is discussed in detail in Chapter 22.

1.4.5.2 Visual Learning

The goal of visual learning is typically related to, but different from, active learning. While
active learning collects examples from the user, visual learning takes the help of the user in the
classification process in either creating the training model or using the model for classification of a
particular test instance. This help can be received by learner in two ways:

* Visual feedback in construction of training models: In this case, the feedback of the user may
be utilized in constructing the best training model. Since the user may often have important
domain knowledge, this visual feedback may often result in more effective models. For ex-
ample, while constructing a decision tree classifier, a user may provide important feedback
about the split points at various levels of the tree. At the same time, a visual representation
of the current decision tree may be provided to the user in order to facilitate more intuitive
choices. An example of a decision tree that is constructed with the use of visual methods is
discussed in [17].

* Diagnostic classification of individual test instances: In this case, the feedback is provided by
the user during classification of test instances, rather than during the process of construction
of the model. The goal of this method is different, in that it enables a better understanding of
the causality of a test instance belonging to a particular class. An example of a visual method
for diagnostic classification, which uses exploratory and visual analysis of test instances, is
provided in [11]. Such a method is not suitable for classifying large numbers of test instances
in batch. It is typically suitable for understanding the classification behavior of a small number
of carefully selected test instances.
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A general discussion on visual data mining methods is found in [10, 47,49, 55, 83]. A detailed
discussion of methods for visual classification is provided in Chapter 23.

1.4.6 Evaluating Classification Algorithms

An important issue in data classification is that of evaluation of classification algorithms. How
do we know how well a classification algorithm is performing? There are two primary issues that
arise in the evaluation process:

* Methodology used for evaluation: Classification algorithms require a training phase and a
testing phase, in which the test examples are cleanly separated from the training data. How-
ever, in order to evaluate an algorithm, some of the labeled examples must be removed from
the training data, and the model is constructed on these examples. The problem here is that the
removal of labeled examples implicitly underestimates the power of the classifier, as it relates
to the set of labels already available. Therefore, how should this removal from the labeled
examples be performed so as to not impact the learner accuracy too much?

Various strategies are possible, such as hold out, bootstrapping, and cross-validation, of which
the first is the simplest to implement, and the last provides the greatest accuracy of implemen-
tation. In the hold-out approach, a fixed percentage of the training examples are “held out,”
and not used in the training. These examples are then used for evaluation. Since only a subset
of the training data is used, the evaluation tends to be pessimistic with the approach. Some
variations use stratified sampling, in which each class is sampled independently in proportion.
This ensures that random variations of class frequency between training and test examples are
removed.

In bootstrapping, sampling with replacement is used for creating the training examples. The
most typical scenario is that n examples are sampled with replacement, as a result of which
the fraction of examples not sampled is equal to (1 — 1/n)" & 1 /e, where e is the basis of
the natural logarithm. The class accuracy is then evaluated as a weighted combination of the
accuracy a; on the unsampled (test) examples, and the accuracy a; on the full labeled data.
The full accuracy A is given by:

A=(1-1/e)-ai+(1/e)-ar (1.23)

This procedure is repeated over multiple bootstrap samples and the final accuracy is reported.
Note that the component a; tends to be highly optimistic, as a result of which the bootstrap-
ping approach produces highly optimistic estimates. It is most appropriate for smaller data
sets.

In cross-validation, the training data is divided into a set of k disjoint subsets. One of the k
subsets is used for testing, whereas the other (k— 1) subsets are used for training. This process
is repeated by using each of the k subsets as the test set, and the error is averaged over all
possibilities. This has the advantage that all examples in the labeled data have an opportunity
to be treated as test examples. Furthermore, when £ is large, the training data size approaches
the full labeled data. Therefore, such an approach approximates the accuracy of the model
using the entire labeled data well. A special case is “leave-one-out” cross-validation, where
k is chosen to be equal to the number of training examples, and therefore each test segment
contains exactly one example. This is, however, expensive to implement.

* Quantification of accuracy: This issue deals with the problem of quantifying the error of
a classification algorithm. At first sight, it would seem that it is most beneficial to use a
measure such as the absolute classification accuracy, which directly computes the fraction
of examples that are correctly classified. However, this may not always be appropriate in
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all cases. For example, some algorithms may have much lower variance across different data
sets, and may therefore be more desirable. In this context, an important issue that arises is that
of the statistical significance of the results, when a particular classifier performs better than
another on a data set. Another issue is that the output of a classification algorithm may either
be presented as a discrete label for the test instance, or a numerical score, which represents the
propensity of the test instance to belong to a specific class. For the case where it is presented
as a discrete label, the accuracy is the most appropriate score.

In some cases, the output is presented as a numerical score, especially when the class is rare.
In such cases, the Precision-Recall or ROC curves may need to be used for the purposes of
classification evaluation. This is particularly important in imbalanced and rare-class scenarios.
Even when the output is presented as a binary label, the evaluation methodology is different
for the rare class scenario. In the rare class scenario, the misclassification of the rare class
is typically much more costly than that of the normal class. In such cases, cost sensitive
variations of evaluation models may need to be used for greater robustness. For example, the
cost sensitive accuracy weights the rare class and normal class examples differently in the
evaluation.

An excellent review of evaluation of classification algorithms may be found in [52]. A discussion
of evaluation of classification algorithms is provided in Chapter 24.

1.5 Discussion and Conclusions

The problem of data classification has been widely studied in the data mining and machine
learning literature. A wide variety of methods are available for data classification, such as decision
trees, nearest neighbor methods, rule-based methods, neural networks, or SVM classifiers. Different
classifiers may work more effectively with different kinds of data sets and application scenarios.

The data classification problem is relevant in the context of a variety of data types, such as
text, multimedia, network data, time-series and sequence data. A new form of data is probabilistic
data, in which the underlying data is uncertain and may require a different type of processing in
order to use the uncertainty as a first-class variable. Different kinds of data may have different kinds
of representations and contextual dependencies. This requires the design of methods that are well
tailored to the different data types.

The classification problem has numerous variations that allow the use of either additional train-
ing data, or human intervention in order to improve the underlying results. In many cases, meta-
algorithms may be used to significantly improve the quality of the underlying results.

The issue of scalability is an important one in the context of data classification. This is because
data sets continue to increase in size, as data collection technologies have improved over time. Many
data sets are collected continuously, and this has lead to large volumes of data streams. Even in cases
where very large volumes of data are collected, big data technologies need to be designed for the
classification process. This area of research is still in its infancy, and is rapidly evolving over time.
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