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ABSTRACT
A Sequence OLAP (S-OLAP) system provides a platform on

which pattern-based aggregate (PBA) queries on a sequence database
are evaluated. In its simplest form, a PBA query consists of a pat-
tern template T and an aggregate function F . A pattern template
is a sequence of variables, each is defined over a domain. For ex-
ample, the template T = (X ,Y ,Y ,X) consists of two variables X
and Y . Each variable is instantiated with all possible values in its
corresponding domain to derive all possible patterns of the tem-
plate. Sequences are grouped based on the patterns they possess.
The answer to a PBA query is a sequence cuboid (s-cuboid), which
is a multidimensional array of cells. Each cell is associated with a
pattern instantiated from the query’s pattern template. The value of
each s-cuboid cell is obtained by applying the aggregate function F
to the set of data sequences that belong to that cell. Since a pattern
template can involve many variables and can be arbitrarily long,
the induced s-cuboid for a PBA query can be huge. For most ana-
lytical tasks, however, only iceberg cells with very large aggregate
values are of interest. This paper proposes an efficient approach to
identify and evaluate iceberg cells of s-cuboids. Experimental re-
sults show that our algorithms are orders of magnitude faster than
existing approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-Data

Mining
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1. INTRODUCTION
Sequence data is ubiquitous. Examples include workflow data,

data streams and RFID logs. Techniques for processing various
kinds of sequence data have been studied extensively in the litera-
ture (e.g., [12, 13, 10, 1, 3, 14]). Recently, issues related to ware-
housing and online analytical processing (OLAP) of archived se-
quence data (e.g., stock ticks archive, passenger traveling histories)
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have received growing attentions [7, 6, 9]. In particular, [9] de-
veloped a sequence OLAP system (called S-OLAP) that efficiently
supports various kinds of pattern-based aggregate queries.

While traditional OLAP systems group data tuples based on their
attribute values, an S-OLAP system groups sequences based on
the patterns they possess. Common aggregate functions such as
COUNT/SUM/AVG can then be applied to each group. The result-
ing aggregate values form the cells of a so-called sequence data
cuboid, or s-cuboid.

Since an s-cuboid displays the aggregate values of sequences that
are grouped by the patterns they possess, one can view an s-cuboid
as the answer to a pattern-based aggregate (PBA) query. To illus-
trate PBA queries and s-cuboids, let us consider the sequence data
set shown in Figure 1. The dataset models a collection of passenger
traveling records registered by the Washington DC’s metro system.
The records are captured electronically by SmarTrip, which is an
RFID-card-based stored-value e-payment system. Each row in Fig-
ure 1 shows a sequence of passenger events. An event consists of
a number of attributes, such as Time, Station, Action and Amount.
For example, the event [t9; Wheaton; exit; 1.9] of passenger s623
indicates that the passenger exited Wheaton Station at time t9 and
paid $1.9 for the trip.

Passenger (Sequence) ID Event Sequence
. . . . . .
s28 〈 [t4;Clarendon;enter;0], [t7;Pentagon;exit;1.9],

[t9;Pentagon;enter;0],[t10;Clarendon;exit;1.9] 〉
. . . . . .

s623 〈 [t1;Pentagon;enter;0], [t9;Wheaton;exit;1.9] 〉
. . . . . .

Figure 1: An example sequence data set — Passenger traveling
log of Washington DC’s metro
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Figure 2: A PBA query and its s-cuboid

Figure 2 shows a PBA query “(X,Y, Y,X), COUNT” and a few
cells of the resulting s-cuboid. A PBA query “T , F ” consists of two
components: A pattern template T (e.g., (X,Y, Y,X)) and an ag-
gregate function F (e.g., COUNT). A pattern template is a sequence
of pattern symbols (e.g.,X , Y ) defined over an attributeA of event
records. The pattern symbols are instantiated by the values of A to
generate various patterns. Data sequences are grouped based on



the patterns. Finally, the function F is applied to each sequence
group to derive aggregate values.

For example, the pattern template (X,Y, Y,X) defined on the
Station attribute specifies that passenger sequences are grouped to-
gether if they have traveled round-trip between stations X and Y
(i.e., he first entered station X and exited station Y in his first trip,
and then entered station Y and come back to stationX in the next).
The symbols X and Y are instantiated with various station names
to form patterns, such as (Clarendon, Pentagon, Pentagon, Claren-
don). Data sequences that possess a given pattern are grouped into
a cell1. Each data sequence gives a value (or measure) to be ag-
gregated. For example, a passenger sequence could be associated
with the amount of fare paid, or simply ‘1’ if we only care about
the cardinality of a cell. The aggregate function F is then applied
to the values of the sequences of each cell to obtain an aggregate
value of the cell. In this paper we use C(P ) to denote the cell of a
pattern P (i.e., C(P ) = the set of sequences containing pattern P ),
and we use F (C(P )) to denote the aggregate value of the cell. For
example, Figure 2 shows that there are 16,289 sequences that pos-
sess the pattern (Clarendon, Pentagon, Pentagon, Clarendon). In
our notation: COUNT(C((Clarendon, Pentagon, Pentagon, Claren-
don))) = 16,289. We write P ` T if pattern P is an instantiation of
the template T . (e.g., (Clarendon, Pentagon, Pentagon, Clarendon)
` (X,Y, Y,X)). An s-cuboid consists of all the aggregate values
of the cells derived from all possible instantiations of the pattern
template. A PBA query (e.g., “(X,Y, Y,X), COUNT”) is evalu-
ated by computing all the cells of the corresponding s-cuboid (e.g.,
all the cells and their counts listed in Figure 2).

In [9], a basic implementation of an S-OLAP system is pre-
sented. In that study, data sequences were indexed by inverted lists.
Given a pattern P , its inverted list L[P ] is a list of sequence id’s
such that each sequence s listed in L[P ] contains the pattern P .
An s-cuboid cell C(P ) can thus be represented by the inverted list
L[P ]. The inverted list of a pattern P can be obtained by either (1)
scanning the data sequences and checking which sequences contain
P , or (2) joining the lists of P ’s sub-patterns. For example, con-
sider the query pattern template (X,Y, Z,X). To materialize an
s-cuboid cell, say, C((a, b, c, a)), one can intersect (or “join”) the
inverted lists L[(a, b, c)] and L[(c, a)] (if these lists are available).
This is because a sequence that contains the pattern (a, b, c, a) must
contain the sub-patterns (a, b, c) and (c, a). (More details on this
list joining operation will be given in Section 2.)

In some cases, the computation of a full s-cuboid could be ex-
pensive. This is especially true when the pattern template is long
with many pattern symbols, which results in a high-dimensional s-
cuboid with large numbers of cells. We note that in many cases,
computing the full s-cuboid is not necessary. More often, a user is
interested in only those cells of an s-cuboid that return very large
aggregate values. For example, a marketing manager of the Metro
company may be interested in the pairs of stations for which most
people commute roundtrip in order to design a fare and discount
structure strategically. As another example, an online store man-
ager may want to know what products X , Y , Z give high visiting
counts of the product webpage visiting pattern (X,Y, Z,X). This
pattern reveals that a customer interested in product X is likely to
compare it against products Y and Z, but will eventually commit
to X .

Given a pattern template T , an aggregate function F , and a user-
specified threshold σ, our objective is to compute the iceberg cells,
which are those whose aggregate values exceed the threshold σ.

1A data sequence may contain more than one pattern. A sequence
can, therefore, belong to multiple cells.

We call the query “T , F , σ” an Iceberg Pattern-Based Aggregate
Query (or IPBA query). Formally,

DEFINITION 1. (IPBA Query) The answer to the IPBA query
“T , F , σ” is the set of all iceberg cells and their aggregate values,
i.e., {(P, F (C(P ))) | (P ` T ) ∧ (F (C(P )) ≥ σ)}.

One straightforward way to answer an IPBA query is to com-
pute the full s-cuboid of the PBA query and return only the iceberg
cells. In [9], two methods for computing full s-cuboids, namely,
the counter-based method (CB) and the inverted-list method (II),
are studied. The CB method scans the relevant sequences in the
database to compute the cells’ aggregate values in batch, while the
II method computes the s-cuboid using list joining. Both of these
methods could be expensive for very large sequence databases.
For example, computing an inverted list requires I/O (to retrieve
sub-patterns’ inverted lists) and CPU processing (to join the sub-
patterns’ lists). Yet, most of these costs are wasted since the ma-
jority of cells are non-iceberg ones. In this paper, we propose sta-
tistical estimation techniques that allow very efficient identification
and computation of iceberg cells. Our idea is to retain a very small
synopsis of the database in main memory. Through statistical tests,
the synopsis allows us to decide whether a cell is iceberg or not
and whether the decision meets a given significance level require-
ment. For the identified iceberg cells, we estimate their aggregate
values based on the small synopsis and check whether the estimated
values satisfy an accuracy requirement with a high confidence re-
quirement. Through this mechanism, we show that we are highly
confident that the reported cells are all and only iceberg cells and
their reported aggregate values are highly accurate. We remark that
our approach results in a very efficient method of answering IPBA
queries. This is because we avoid heavy I/O (by not accessing disk-
resident data) and reduce CPU processing (by processing the small
synopsis instead of scanning big data sequences or joining large
inverted lists).

The rest of this paper is organized as follows. Section 2 reviews
the basic algorithm for evaluating PBA queries based on inverted
indices. Section 3 presents our system architecture. We discuss
how sequence data, inverted indices, and a synopsis are stored. In
Section 4, we discuss how a synopsis is constructed and present our
synopsis-based algorithm for evaluating IPBA queries. Section 5
evaluates our methods through an experimental study. Section 6
discusses some related works, and finally, Section 7 concludes the
paper.

2. INVERTED LISTS
In [9], two methods for computing s-cuboids are studied, namely,

the counter-based method (CB) and the inverted-list method (II). It
is shown that while CB is suitable for computing a full s-cuboid
from scratch, the II method is more efficient if the system has
already materialized and cached a significant number of inverted
lists, or if only a portion of the s-cuboid cells have to be computed.
As we have mentioned, our approach to answering an IPBA query
is to identify iceberg cells and compute only them, the II method is
more suitable. In this section we describe the inverted index struc-
ture and explain how to compute s-cuboids using inverted indices.
For reference, symbols that are frequently used in our discussion
are shown in Table 1.

An inverted index consists of a set of inverted lists. An inverted
list, L[P ], is associated with a length-m pattern P = (v1, . . . , vm).
Each element (vi) in pattern P is a value of a chosen attribute’s
domain. The inverted list L[P ] is a list of postings which record
the occurrences of P in the sequence dataset. Each posting is of
the form (si: p1, . . . , pfi ), where si is a sequence identifier, fi



T A pattern template.
P , C(P ) A pattern and its s-cuboid cell.
P ` T Pattern P is an instantiation of template T .
IT Inverted index for template T .
L[P ] Inverted list of pattern P .
S, S̃ The set of data sequences and its synopsis.
x |S̃|/|S|.

L̃[P ] The inverted list of pattern P w.r.t. synopsis S̃.
kP , UkP |L̃[P ]| and the largest hash value of sequences

in L̃[P ], respectively.
DP , D̃P The true count and the estimated count of cell

C(P ).
σ Iceberg threshold.
θ Significance level requirement of hypothesis

testings.
ε Error tolerance threshold.
α Confidence threshold of aggregate value esti-

mation.

Table 1: Frequently used symbols

I(X,Y,Y )

l1: L[(Clarendon, Pentagon, Pentagon)] = {(s2:1,4), (s27:3), (s34:1)}
...

l3: L[(Pentagon, Rockville, Rockville)] = {(s4:5,8)}
l4: L[(Pentagon, Suitland, Suitland)] = {(s15:3)}

...
l5: L[(Wheaton, Pentagon, Pentagon)] = {(s23:7), (s26:1,4,12,16)}

I(Y,X)

l6: L[(Clarendon, Pentagon)] = {(s2:1,4), (s27:1,3,19), (s34:1)}
...

l7: L[(Pentagon, Glenmont)] = {(s16:2,7,9), (s25:6), (s18:6,12)}
l8: L[(Pentagon, Clarendon)] = {(s1:1,3), (s27:5), (s34:16), (s40:6)}

...
l9: L[(Glenmont, Pentagon)] = {(s6:1), (s7:4,11), (s8:2,6,12), (s50:7)}
l10: L[(Glenmont, Wheaton)] = {(s19:4,14), (s21:8)}

I(X,X)

l11: L[(Clarendon, Clarendon)] = {(s3:2,8,12), (s4:5,22), (s16:19,32)}
l12: L[(Deanwood, Deanwood)] = {(s5:2,9), (s7:2,12,17)}

...
l13: L[(Pentagon, Pentagon)] = {(s2:2,5), (s27:2,4,16), (s34:2,19)}

...
l14: L[(Wheaton, Wheaton)] = {(s67:7,14), (s86:2,8,11)}

Figure 3: Inverted indices

is the number of occurrences of P in si, and p1, . . . , pfi are the
starting positions at which pattern P occurs in si. Given a pattern
template T , the inverted index IT is the set of inverted lists L[P ]
such that P ` T . Figure 3 shows three example inverted indices:
I(X,Y,Y ), I(Y,X) and I(X,X). For instance, the first inverted list
l1 in I(X,Y,Y ) indicates that sequences s2, s27 and s34 all contain
the pattern (Clarendon, Pentagon, Pentagon)2. The first posting
(s2:1,4) indicates that there are two occurrences of the pattern in
sequence s2 at positions [1..3] and [4..6].

The answer of a PBA query “T , F ” is an s-cuboid, which can
be obtained from the inverted index IT by applying the aggregate
function F to each inverted list L[P ] in IT . For example, given
the set of inverted indices shown in Figure 3 and the PBA query
“(Y,X), COUNT”, the value of the cell C((Pentagon, Clarendon))
is 4 because the inverted list l8 contains four sequences. Evaluating
an s-cuboid cell of a pattern P thus requires the inverted list L[P ].

2Symbols in a pattern template are unbound variables. So, the in-
verted indices I(X,Y ) and I(Z,U) are the same. Multiple occur-
rences of the same variable in a template, however, have the same
binding. So, I(X,X) and I(X,Y ) are different.

If L[P ] is not previously computed (and thus is not available), it
can be materialized by joining the inverted lists of shorter patterns.
For example, the inverted list L[(v1, v2, v2, v1)] can be obtained
by joining L[(v1, v2, v2)] and L[(v2, v1)]. More specifically, if a
sequence s appears in a posting of L[(v1, v2, v2)] with a starting
position i and in another posting of L[(v2, v1)] with a starting posi-
tion i+2, then s is recorded in a posting of L[(v1, v2, v2, v1)] with
a starting position i. We use L[(v1, v2, v2, v1)] = L[(v1, v2, v2)]
1 L[(v2, v1)] to denote this join operation. For example, the in-
verted list L[(Clarendon, Pentagon, Pentagon, Clarendon)] can be
obtained by considering l1 and l8. From the lists, we see that s27
at position 3 is in l1 and s27 at position 5 is in l8, so the posting
(s27:3) is added to L[(v1, v2, v2, v1)].

3. SYSTEM ARCHITECTURE
Figure 4 shows the system architecture of our S-OLAP imple-

mentation for answering IPBA queries. We remark that a general
S-OLAP system should also be able to answer general PBA queries
and to support a set of S-OLAP operations3. Since we focus on
evaluating IPBA queries in this paper, only components that are
relevant to IPBA query processing are shown in Figure 4.

In our system, a set of data sequences S is stored on secondary
storage. As the S-OLAP system operates and answers queries (PBA
or IPBA), certain inverted indices and inverted lists are material-
ized. These materialized indices (lists) are stored in an inverted
index store (II store). The II store serves as a disk-resident cache
of the previously materialized lists. A replacement policy is em-
ployed by the system to control the II store’s content when the II
store overflows4. To compute an s-cuboid cell C(P ) (for example,
in answering a PBA/IPBA query), the query engine could consult
the II store and check if the inverted list L[P ] is present (i.e., ma-
terialized). If so, L[P ] could be retrieved for computing the ag-
gregate value F (C(P )). If L[P ] is not present in the II store, it
is materialized by joining the lists of P ’s sub-patterns. These sub-
patterns’ lists are retrieved from the II store if they are present, or
are recursively constructed otherwise. We assume that the indices
of all length-2 pattern templates are materialized in the II store. We
call this set of inverted indices the core index CI, which is always
present in the II store. This approach is similar to bigram indexing
in document retrieval systems and is shown to be effective in PBA
query processing [9].

To speed up IPBA query processing, we should avoid disk ac-
cesses, such as in retrieving lists from the II store. We achieve this
by maintaining a synopsis S̃ in main memory, which is a small
sample of the sequence dataset S. Accompanying S̃ is the synop-
sis’ II store (SII store), also stored in main memory. The SII store
is similar to the disk-resident II store except that inverted lists in
the SII store contain the id’s of only those sequences found in the
synopsis S̃. We use L̃[P ] to denote such a list of the pattern P .
In other words, a posting (si : p1, . . . , pfi) is in L̃[P ] iff the se-
quence si contains P at starting positions p1, . . ., pfi and si ∈ S̃.
Moreover, while the core index CI of the dataset S must be present
in the disk-resident II store, we do not assume the presence of any
particular inverted lists in the SII store. The SII store is simply a
fixed-size temporary cache of previously materialized inverted lists
of the sequences in the synopsis.

3Readers are referred to [9] for a discussion of the six S-OLAP op-
erations for s-cuboids manipulations. These S-OLAP operations
are analogous to traditional OLAP operations such as slice and
dice.
4A study on various II store replacement policies can be found
in [4].



Given an IPBA query “T , F , σ”, for each P ` T , we estimate
the aggregate value F (C(P )) by processing the synopsis and the
SII store. Our objectives are:

1. Derive statistical tests that decide whether C(P ) is or is not
an iceberg cell. The decision of the tests has to satisfy a
significance level threshold θ.

2. For each cell C(P ) declared iceberg by the tests, we esti-
mate F (C(P )). The estimate has to be accurate to within an
error tolerance threshold ε and the estimation has to exceed
a confidence threshold α.

We remark that (θ, ε, α) could be system-wise parameters or
could be specified by the user of each IPBA query. We callR = (σ,
θ, ε, α) the statistical requirement of an IPBA query. An interest-
ing feature of our system is that given R, we can mathematically
determine how big S̃ should be in order to meet the requirement.
This information is very useful in designing the S-OLAP system
because it allows us to decide how much memory the system needs
to store an effective synopsis.
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Figure 4: Architecture

4. IPBA QUERY EVALUATION
In this section we first discuss how to obtain a random sample

S̃ from the sequence dataset S. Next, we describe our synopsis-
based algorithm (SBA), which answers IPBA queries with results
that satisfy the queries’ statistical requirementsR’s.

4.1 Sampling
We obtain the synopsis S̃ by drawing uniform random samples

from S. Given an amount of memory for storing the synopsis, we
determine a budget B, which is the number of sequences in the
synopsis that the memory can hold. For example, if 100 million se-
quences occupy 250GB of disk space, then 500MB of memory for
the synopsis gives a budget B of 200,000 sequences. We adopt the
sampling technique proposed in [8] to obtain S̃. First, we randomly
pick a hash function h : S 7→ [0, 1] from a family of universal hash
functionsH. Let {s1, . . . , s|S|} be the set of all data sequence id’s.
The hash values, h(s1), . . . , h(s|S|), form an i.i.d. sequence of the
uniform distribution over the range [0,1]. To obtain a size-B sample
of S, we collect into S̃ all sequences in S whose ids’ hash values
are≤ x, where x = B/|S|. That is, S̃ = {si ∈ S|h(si) ≤ x}. By
expectation, |S̃| = B and so x = |S̃|/|S|.

4.2 The SBA Algorithm
Given an IPBA query “T , F , σ” and its statistical requirement
R = (σ, θ, ε, α), our algorithm, SBA, needs to return the aggregate
values of the iceberg cells of an s-cuboid. Also, the reported results
should satisfy R. Given a pattern P ` T , SBA uses L̃[P ], which

is the inverted list of P for the synopsis S̃, to decide if the cell
C(P ) is iceberg and if so, to compute the cell’s aggregate value
F (C(P )). In this process, SBA accesses the SII store (Figure 4)
to retrieve L̃[P ]. For those cells C(P )’s whose lists L̃[P ]’s are
not found in the SII store, the small synopsis S̃ is scanned once to
build the missing L̃[P ]’s. In the following discussion, we assume
that L̃[P ] has been made available (either by retrieval from the SII
store or by construction from S̃). To simplify our discussion, we
only consider the COUNT aggregate function in this paper. Other
functions, such as SUM and AVG, can be similarly handled.

Let DP be the count of the cell C(P ), i.e., DP = |L[P ]|. SBA
computes an estimate D̃P of DP based on L̃[P ]. SBA then con-
ducts three tests to evaluate if the cell C(P ) is iceberg, and if so,
whether the estimate D̃P is accurate enough. Figure 5 abstracts
SBA’s logic. It involves the following steps: (1) Test if we can
reject the hypothesis “H1: C(P ) is an iceberg cell,” with a sig-
nificance level θ. If so, discard the cell. (2) Otherwise, test if we
can reject the hypothesis “H2: C(P ) is not an iceberg cell,” with
a significance level θ. If we cannot reject H2 (and because we
failed to reject H1), the synopsis is insufficient for us to determine
if C(P ) is iceberg or not. In this case, SBA computes the exact
count of C(P ) by reverting to the disk-based list-joining algorithm
(see Section 2). (3) If H2 is rejected, then SBA tests if the estimate
D̃P satisfies the error bound ε with confidence α. If so, C(P ) is
reported as an iceberg cell with count D̃P . If the error tolerance re-
quirement is not met, SBA again reverts to the disk-based algorithm
to compute the exact count.

Reject H1?

Reject H2? Accurate?

Discard
C(P)

Disk-based 
list joining Output exact count

Return
estimate

Yes

Yes Yes

No

No

No

Figure 5: Algorithm flowchart

Our estimator is derived based on [2]:

THEOREM 1. Given a pattern P , let Ur be the r-th smallest
hash value of the sequences in L̃[P ]. The quantity (r−1)/Ur is an
unbiased estimate of DP . And the estimation variance decreases
when r increases.

With Theorem 1, we shall use the largest r made available by
the list L̃[P ] for the most accurate estimation. Hence, we use
D̃P = (kP − 1)/UkP , where kP = |L̃[P ]| and UkP is the largest
hash value in L̃[P ], as the estimator for DP 5. We consider the
hypothesis:

H1 : DP ≥ σ.
Given a uniform hash function h, each sequence in L[P ] has the

same probability x (= |S̃|/|S|) of being included in the synopsis’
inverted list L̃[P ] (see Section 4.1). Let k be the random variable
that represents the number of sequences in L̃[P ]. To reject H1, we
consider the following one-tail p-value:

PH 1(P ) = P (k ≤ kP ) =

kP∑
k=0

(
DP
k

)
xk(1− x)DP−k.

5We define D̃P = 0 and 1 for kP = 0 and 1, respectively.



It can be showed that for DP ≥ σ,

PH 1(P ) ≤
kP∑
k=0

(
σ

k

)
xk(1− x)σ−k = PH 1(P ). (1)

Note that PH 1(P ) can be computed from kP (the observed size of
L̃[P ]) and σ. Given a significance level θ, we reject hypothesis H1

if

Pruning Test: PH 1(P ) ≤ 1− θ. (2)

We call this test the pruning test because if it holds we have strong
evidence that the cell C(P ) is not iceberg. In this case, the cell is
pruned. Otherwise, we consider another hypothesis:

H2 : DP < σ.

and the following p-value:

PH 2(P ) : P (k ≥ kP ) =

DP∑
k=kP

(
DP
k

)
xk(1− x)DP−k.

It can be shown that for DP < σ,

PH 2(P ) ≤
σ∑

k=kP

(
σ

k

)
xk(1− x)σ−k = PH 2(P ).

Similar to PH 1(P ), PH 2(P ) can be computed from kP and σ.
We reject hypothesis H2 if

Accepting Test: PH 2(P ) ≤ 1− θ. (3)

We call this the accepting test because if it holds, we have strong
evidence that the cell C(P ) is iceberg. In this case, the cell is
accepted and we proceed to estimate the accuracy of the estimate
D̃P .

Let ΥP be the probability that the relative error of our estimate,
i.e., |(D̃P −DP )|/DP , is less than or equal to ε. Based on [2], we
can prove the following theorem6:

THEOREM 2. ∀0 < ε < 1 and kP ≥ 1,

ΥP = P (|D̃P −DP | ≤ εDP )

= Iu(DP ,kP ,ε)
(kP , DP − kP + 1)

− Il(DP ,kP ,ε)
(kP , DP − kP + 1),

(4)

where

u(DP , kP , ε) =
kP − 1

(1− ε)DP
, l(DP , kP , ε) =

kP − 1

(1 + ε)DP
, and

Id(a, b) =

(∫ d

0
ta−1(1− t)b−1dt

) / (∫ 1

0
ta−1(1− t)b−1dt

)
is the regularized incomplete beta function.

Note that ΥP depends onDP , which is unknown. It is shown in [2]
that the probability can be practically approximated by substituting
DP by D̃P in the beta function. Hence, we approximate ΥP by,

Υ′P = Iu(D̃P ,kP ,ε)
(kP , D̃P−kP+1)−Il(D̃P ,kP ,ε)

(kP , D̃P−kP+1).

Now, we report the cell C(P ) and its estimated count D̃P if it
satisfies the accuracy test:

Accuracy Test: Υ′P ≥ α. (5)

In case Υ′P < α, we do not have sufficient confidence in the ac-
curacy of the estimation. In this case, the exact value of DP is
determined by the disk-based list-joining procedure. Algorithm 1
summarizes the SBA algorithm.
6Due to space limitation, we skip the proof of the theorem in this
paper.

Algorithm 1 The SBA algorithm
Input: IPBA query “T , F , σ” with requirementR = (σ, θ, ε, α)
1: for all P ` T do
2: obtain L̃[P ] either from the SII store or by scanning S̃
3: end for
4: for all P ` T do
5: if PH 1(P ) ≤ 1− θ then
6: Continue
7: else if (PH 2(P ) ≤ 1− θ) ∧ (Υ′P ≥ α) then
8: Output C(P ) and its estimated count D̃P = kP−1

UkP

9: else
10: Compute the true count DP by disk-based list joining
11: if DP ≥ σ then
12: Output C(P ) and DP
13: end if
14: end if
15: end for

5. EXPERIMENT
In this section we evaluate SBA through an experimental study.

The algorithms were implemented in Python and the experiments
were conducted on a machine with a 2.5GHz Pentium dual core
CPU and 8GB RAM running Ubuntu 11.04.

In order to study the algorithms’ performance under various data
characteristics, we generate synthetic data. This allows us to con-
trol various parameters, from database size to pattern selectivities.
Our synthetic sequence data generator follows that of [4]. The de-
fault synopsis size is 100,000 sequences. In the experiment, the II
store (Figure 4) contains only the core index CI and the SII store
is empty. We remark that the algorithms’ performance is better if
more materialized inverted lists are cached in the stores. The results
shown in this section are thus conservative ones of our algorithms.
Below shows the parameters and their default values. We also show
in the table the default settings of the query requirement.

parameter notation default value
Number of sequences N 2,000,000

Average number of events per sequence L 300
Domain size of pattern dimension M 100

Data skewness β 0.5
Iceberg selectivity ξσ 0.005
Significance level θ 0.95

Error tolerance ε 0.1
Confidence α 0.95

Synopsis size |S̃| 100,000

We have conducted experiments using various pattern templates
T . In this paper we show the results of two templates T1 = (X ,Y ,Y ,X)
and T2 = (X ,Y ,Z,X). As we have mentioned in the introduction,
the first template is related to the round-trip query for metro data
while the second template is related to the comparison-shopping
query for an online store’s web log data. The results of these
two templates are illustrative of the algorithms’ performance —
the general observations drawn from these queries are found to be
consistent with those of other templates we tested on the system.
For reference, we have also implemented the disk-based CB algo-
rithm [9], which computes the s-cuboid in full to identify iceberg
cells. The CB algorithm generally takes more than an hour to exe-
cute on our 2-million-sequence dataset. In contrast, SBA take only
seconds to a couple of minutes across our experiment settings. We
do not explicitly show CB’s performance in this section because it
is at least an order of magnitude slower than SBA.

Varying ξσ . The first experiment studies the effect of the iceberg
threshold σ as controlled by the iceberg selectivity ξσ = σ/|S|.
Figures 6(a) and 6(b) show the execution times of SBA for the tem-
plates T1 and T2, respectively. Note that since the s-cuboid for T2 is



of a higher dimension than that of T1, there are more cells to com-
pute for T2. The execution times shown in Figure 6(b) are therefore
generally larger than those shown in Figure 6(a). Also, patterns de-
rived from T2 are less restrictive than those from T1, therefore, the
s-cuboid cells of T2 are of much higher counts. To stay focus on
the iceberg cells, we use a range of ξσ of larger values for T2.

From the figures, we see that in general, as ξσ increases, the ex-
ecution times decrease. This is because a larger ξσ gives a larger
iceberg threshold σ. Hence, (1) there are more non-iceberg cells
and (2) the gaps between their counts and the iceberg threshold are
generally larger. These translate into (1) more pruning opportuni-
ties and (2) more effective pruning (i.e., more likely that the pruning
test is satisfied), respectively. Moreover, for a larger σ, the count
of an iceberg cell C(P ) has to be larger for C(P ) to be classified
as iceberg. Therefore, C(P ) has to have a bigger presence in the
synopsis, i.e., L̃[P ] has to be larger. This allows DP to be more
accurately estimated and so the accuracy test is easier to satisfy. In
summary, a bigger ξσ gives us more effective tests and so there are
fewer cases for which we need to compute the cells’ exact counts.
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Figure 6: Running time vs ξσ and synopsis size |S̃|

Varying |S̃|. Next, we study the effect of the synopsis size |S̃|.
Figure 6(c) shows the algorithms’ execution times for template T1

when |S̃| varies from 1K to 400K. Let us first look at the perfor-
mance of SBA. From the figure, we see that SBA’s execution time
first drops then rises as |S̃| increases. There are two effects of the
synopsis size: (1) A bigger synopsis results in longer time spent on
processing the synopsis (e.g., to compute the lists L̃[P ]’s). Hence
execution time rises. (2) A bigger synopsis results in more effective
pruning/accepting/accuracy tests. It is thus less likely that SBA has
to resort to disk-based list-joining. Hence, execution time drops.
The net effect of these two factors is a U-shaped performance curve
for SBA. In our future work, we will try to automatically decide the
optimal sample size for each query.

6. RELATED WORK
Before PREDATOR [13], traditional database systems do not for-
mally support sequence data. PREDATOR stores sequence data
based on the object-relational model. The DEVise system [10] sup-
ports sequence data processing using the relational model. To query
sequence data, Sadri et al. [11] develop an extension to SQL, called
SQL-TS, to express various kinds of pattern-based queries. These
systems do not directly support OLAP operations or the processing
of pattern-based aggregate queries

Iceberg query on relational data was first studied by Fang et al.
[5]. The computational issue addressed in their work is the dif-

ficulty of housing a large multidimensional array in memory for
effective computation of cuboids (and thus iceberg cells). Two
techniques, namely, sampling and coarse counting are devised to
identify candidate iceberg cells. Full scans of the disk-resident data
is needed to eliminate false positives and false negatives in the an-
swer. In contrast, our approach is to compute the iceberg cells of an
s-cuboid via statistical tests. As we have shown in the experiments,
disk accesses are mostly avoided, resulting in very fast processing.

7. CONCLUSION
In this paper we studied the problem of answering iceberg pattern-

based aggregate (IPBA) queries. We put forward a synopsis-based
solution, which samples and stores a small synopsis of a sequence
database in main memory. We devised three statistical tests that
process the synopsis to confidently classify a cell as iceberg or non-
iceberg, and to confidently compute aggregate estimates of the ice-
berg cells. Experimental study shows that our proposed algorithm
outperforms the existing algorithms in order of magnitude.
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