
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014 2029

Scalable Evaluation of Trajectory Queries over
Imprecise Location Data

Xike Xie, Member, IEEE, Man L. Yiu, Reynold Cheng, Member, IEEE, and Hua Lu Member, IEEE

Abstract—Trajectory queries, which retrieve nearby objects for every point of a given route, can be used to identify alerts of potential
threats along a vessel route, or monitor the adjacent rescuers to a travel path. However, the locations of these objects (e.g., threats,
succours) may not be precisely obtained due to hardware limitations of measuring devices, as well as complex natures of the
surroundings. For such data, we consider a common model, where the possible locations of an object are bounded by a closed
region, called “imprecise region”. Ignoring or coarsely wrapping imprecision can render low query qualities, and cause undesirable
consequences such as missing alerts of threats and poor response rescue time. Also, the query is quite time-consuming, since all
points on the trajectory are considered. In this paper, we study how to efficiently evaluate trajectory queries over imprecise objects, by
proposing a novel concept, u-bisector, which is an extension of bisector specified for imprecise data. Based on the u-bisector, we
provide an efficient and versatile solution which supports different shapes of commonly-used imprecise regions (e.g., rectangles,
circles, and line segments). Extensive experiments on real datasets show that our proposal achieves better efficiency, quality, and
scalability than its competitors.

Index Terms—Trajectory query, possible nearest neighbor, imprecise object, u-bisector

1 INTRODUCTION

TRAJECTORY queries retrieve nearby objects for a given
route. Such queries are useful in various domains

including transportation and facility management. For
example, in the air and shipping industries where safety
is the top priority, it is very important to identify potential
threats along the route of a flight or a vessel and give alerts
in advance. Such threats are exemplified by volcanic ashes
for flights in North Europe [1] and icebergs for vessels in
U.S. [2]. Due to the limited capacity for a radar system in
tracking multiple targets [3], it would be beneficial to focus
on those closest threats. As another example, trajectories
can also represent the pipelines for transporting oil, gas,
water, etc. When a section of a pipeline is broken, it causes
economic loss and potential hazard. The authority therefore
needs to call up the technicians nearest to the damage spot
in order to fix the problem [4] as soon as possible.

One fundamental challenge in such scenarios is that the
measured locations of objects (e.g., clouds of volcanic ash,
icebergs, or people) are imprecise. Such imprecise locations
result from: (i) limited resolution of the measure device,
(ii) infrequent measurement, and/or (iii) environmental
factors.

• X. Xie and H. Lu are with the Department of Computer Science,
Aalborg University, Aalborg DK-9220, Denmark.
E-mail: {xkxie, luhua}@cs.aau.dk.

• M. L. Yiu is with the Department of Computing, Hong Kong Polytechnic
University, Hong Kong. E-mail: csmlyiu@comp.polyu.edu.hk.

• R. Cheng is with the Department of Computer Science, University of
Hong Kong, Hong Kong. E-mail: ckcheng@cs.hku.hk.

Manuscript received 10 Oct. 2012; revised 29 Apr. 2013; accepted 30 Apr.
2013. Date of publication 12 May 2013; date of current version 10 July 2014.
Recommended for acceptance by C. Shahabi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.77

In the transportation example, the threats (icebergs or
volcanic ashes) are often detected by remote sensing tech-
nologies like satellite imaging. Such technologies usually
work at low sensing frequency because of cost constraints,
and thus render the measured locations stale for objects.
Furthermore, icebergs (volcanic ashes) can move depending
on the ocean current (wind) speed. In the pipeline example,
a technician may have a GPS device for location track-
ing [4], where GPS reports locations with measurement
errors subject to terrain and climate conditions [5].

Consequently, trajectory queries have to handle such
imprecise objects whose locations cannot be precisely deter-
mined. Table 1 summarizes these aforementioned two kinds
of applications that involve imprecise objects.

A common way to model an imprecise object is to use
so-called imprecise region [8]–[14], which is a closed region
covering all possible position during a time interval. Fig. 1
illustrates imprecise regions of different shapes that are seen
in GPS, RFID, and road network applications.

In this paper, we study the problem of searching impre-
cise objects close to a given query trajectory. Fig. 2(a)
shows a query trajectory T = {q1, q2, q3, q4} and a set of
imprecise objects O1, O2, O3. The query result (Fig. 2(b)) is
represented in a compact way by partitioning the query
trajectory into segments such that all locations within the
same segment share the same result. In this example, O2 is
the definite nearest neighbor to segment [s2, s3]. On the other
hand, O1 and O2 are possible nearest neighbors (PNNs) to seg-
ment [s1, s2] because both of them have potential to be the
closest object for any location between s1 and s2.

Determining the query results over imprecise objects is
technically challenging, as the geometries of the imprecise
regions must be considered. A simple solution is to replace
the imprecise region of each object with a central point

1041-4347 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2030 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

TABLE 1
Summary of Applications

(shown as a grey dot in Fig. 2(c)). Accordingly, the single
closest object is associated with the corresponding segment
in the query result, as shown in Fig. 2(d). For instance, the
closest object to location q2 appears to be object O1 only
and object O2 is missing from the result. Recall that object
O2 also has the possibility to be a closest object to location
q2 as shown in Fig. 2(a) and (b).

In the aforementioned application scenarios, the “center
simplification” approach causes undesirable consequences
such as missing threat alerts and poor response time. In
the flight/vessel example, modeling threats as imprecise
regions prioritizes the safety in all cases, whereas the igno-
rance of imprecise regions can cause potential dangers. In
the pipeline example, a technician seemingly close to (far
from) the broken pipeline section may be actually far from
(close to) it due to the location imprecision. Calling up such
a technician would incur longer time to respond to the
emergency. It is important to call up all technicians likely
to be close to the damage spot, in order to fix the problem
as soon as possible.

An alternative to simplify the trajectory query is the
“sampling approach”, which considers only those positions
at every fixed length on the query trajectory and computes
the nearby objects for each such sample. However, decid-
ing the sampling rate is a dilemma in this approach. A
high sampling rate incurs huge computation costs, while a
low rate can miss many answers. Referring to Fig. 2(a), the
query result changes only at a few positions (s1, s2, s3, s4).
It is not clear how to decide the correct sampling rate in
order to get these answers.

Neither the center simplification approach nor the sam-
pling approach solves the trajectory queries over imprecise
objects. In fact, our preliminary experiments show that
they cannot guarantee correct and complete query results.
Therefore, we develop a solution that can accurately com-
pute a trajectory query on imprecise objects in this paper.
A special case of our problem, finding the closest precise

Fig. 1. Imprecise regions. (a) Circle can be used to describe the position
uncertainty of a person or vehicle tracked by GPS [6]. (b) Rectangle can
be a person’s imprecise region when the RFID-based indoor tracking
works on the room level [7]. (c) Line segment is used, when a vehicle is
moving in a road network [6].

Fig. 2. Example trajectory query. (a) Imprecise objects. (b) Result.
(c) Precise objects. (d) Result.

points for a given query trajectory, was studied by Tao
et al. [15]. The authors used the (perpendicular) bisectors of
each pair of consecutive points to derive the query answer.
For example, in Fig. 2(c), the point s′1 is the intersection
between the query trajectory and the bisector (in dashed
lines) of precise points O1 and O2. Likewise, s′2 is derived
by the bisector of O2 and O3.

We extend the bisector concept to u-bisector in order to
support imprecise objects. Fig. 3 illustrates the u-bisectors
for circular and rectangular imprecise regions. Note that a
u-bisector is not a straight line anymore for two objects oi
and oj. Instead, it becomes a pair of curves, namely bi(j) and
bj(i), that partition the domain space into three parts: (1) the
left part, where points are absolutely closer to Oi than to
Oj; (2) the right part, where points are absolutely closer to
Oj than to Oi; and (3) the middle part, where points can
be closer to either Oi or Oj. We call the region enclosed by
a u-bisector half as a half-space. For example, in Fig. 3(a),
the left of bi(j) is a half-space, and so is the right of bj(i).
We make use of half-spaces and u-bisectors to answer a
trajectory query.

In practice, it is challenging to compute the intersections
between the query trajectory and u-bisectors. As shown
in Fig. 3, u-bisectors can be hyperbolic curves (Fig. 3(a)),
or polylines (Fig. 3(b)). Furthermore, these u-bisectors may
intersect the query trajectory at multiple points. Our solu-
tion avoids generating u-bisectors for all pairs of imprecise
objects by employing a filter-refinement framework. In the
filtering phase, candidate objects that may be the closest to
each query segment are obtained. In the refinement phase,

Fig. 3. u-bisector for imprecise regions. (a) Circular imprecise region.
(b) Rectangle imprecise region.

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2031

TABLE 2
Notations and Meanings

we develop a novel technique called tenary decomposition
to derive the final answers accurately. We show theoreti-
cally and experimentally that our solution is efficient and
scalable. Moreover, our solution can easily adapt to impre-
cise objects of arbitrary shapes to other shapes (e.g., circles,
rectangles, line segments, etc.) that are required in different
applications.

This paper substantially extends our previous work [16]
in several aspects. First, we theoretically prove that a half-
space is convex for arbitrary shaped imprecise objects
(Section 4.1). Second, we extend the query techniques
from supporting circular imprecise objects to objects of
arbitrary shapes (Section 4.2). Third, we derive a novel
analysis model to estimate the selectivity for trajectory
queries (Section 5). Fourth, we conduct extensive additional
experiments to evaluate the new proposals (Section 6.3).

The rest of this paper is organized as follows. Section 2
defines the trajectory query we study and presents two
query evaluation approaches. Section 3 elaborates on a sim-
plified yet fundamental case where a query trajectory is a
single line segment. Section 4 proposes generalized tech-
niques to support different shaped imprecise regions of
objects. Section 5 designs an analysis model for trajectory
queries. Section 6 presents the experiment results. Section 7
discusses the related works and finally Section 8 concludes
the paper. The notations used throughout the paper are
listed in Table 2.

2 TRAJECTORY POSSIBLE NEAREST
NEIGHBOR QUERIES

2.1 Problem Definitions
We first introduce the definition of PNNQ (studied in [6]),
which is used to define the query studied in this paper. Let
q be a point, and Oi an imprecise object from a set O. We
use distmin(q, Oi) and distmax(q, Oi) to denote the minimum
and maximum distances between q and Oi, respectively.

Definition 1.•(Possible Nearest Neighbor Query (PNNQ)).
Given a set of imprecise objects O and a query point q, the
result of the PNNQ query is a set PNNQ(q) = {Oi ∈ O |
∀Oj ∈ O(distmax(q, Oj) ≥ distmin(q, Oi))}.

In Fig. 2(a), PNNQ(q2) = {O1, O2} implies that either O1
or O2 could be the NN of the query point q2. By extending
the concept of PNNQ to all points in a query trajectory
T , we define the trajectory possible nearest neighbor query
(TPNNQ) which returns PNNQ for all the points in T . In
other words, the query returns {〈q, PNNQ(q)〉}q∈T . To get
a compact representation of the query result, we merge all
consecutive trajectory points that have the same PNNQ. The
formal definition of TPNNQ is given below.

Definition 2.•(Trajectory Possible Nearest Neighbor Query
(TPNNQ)). Given a set of imprecise objects O and a query
trajectory T , the answer for the TPNNQ query is a set of
tuples R = {〈Ti, Ri〉 | Ti ⊆ T , Ri ⊆ O}, where PNNQ(q) =
Ri(∀q ∈ Ti), and Ti is a continuous segment in T .

In other words, the TPNNQ splits T into a set of
consecutive segments 〈T1, T2, . . . , Tt〉 where each Ti is a
sub-trajectory of T , such that all positions in a given
Ti have the same possible nearest neighbors. Formally,
∀qi, qj ∈ Ti, PNNQ(qi) = PNNQ(qj). We call each Ti a valid-
ity interval. Accordingly, we call the connection point of
two consecutive intervals turning point. Such a turning
point indicates the change of PNNQ answers. An example
for a TPNNQ over three imprecise objects {O1, O2, O3} is
shown in Fig. 2(c). The trajectory query T (s0, s5) is split
into 5 segments. Also, point s1 is the turning point for
segments T(s0, s1) and T(s1, s2). It is apparent that find-
ing turning points is crucial for evaluating TPNNQ. This is
however a non-trivial task for imprecise location data. We
propose an effective technique for this task in Section 2.2,
and develop algorithms on top of it to evaluate TPNNQ in
Section 2.3.

There are two major differences between the results on
imprecise objects and precise objects. Comparing Fig. 2(c)
and (a): (1) the imprecise case could have more result tuples
(5 compared to 3); (2) a query point in imprecise case might
return a set of PNNs instead of a single object. These obser-
vations indicate that the previous techniques for trajectory
queries over precise objects [15] do not solve TPNNQ.

2.2 Finding Turning Points with u-bisectors
Given a set of imprecise objects and a query trajectory,
deriving the turning points on the trajectory is the cru-
cial step for answering TPNNQ. To address that, we first
investigate the u-bisector for imprecise objects. In general,
the u-bisector splits the domain space into several parts,
such that query points on different parts could have dif-
ferent PNNs. After that, the turning points are decided by
finding the intersections of the u-bisectors and the query
trajectory.

Definition 3. Given two imprecise objects Oi and Oj, their u-
bisector consists of two curves: bi(j) and bj(i). The u-bisector
half bi(j) is a set of points satisfying

bi(j) = {z:distmax(z, Oi) = distmin(z, Oj)}
The curve bi(j) splits the domain space into two parts:

Hi(j) and Hi(j), where Hi(j) is the part covering all points
closer to Oi than to Oj and Hi(j) is the remaining part of
the domain space. We call Hi(j) a half-space, and Hi(j) as
a half-space complement. An example is shown in Fig. 4.

2032 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Fig. 4. u-bisector.

Algorithm 1 FindIntersectione

1: function FINDINTERSECTIONe(Line segment L(s, e), Objects
Oi, Oj)

2: Let R be a set (of intersection points);
3: Let Oi =
(ci, ri) and Oj =
(cj, rj);
4: fx = ci.x+cj.x

2 fy = ci.y+cj.y
2 ;

5: cosθ = cj.x−ci.x
dist(ci,cj)

sinθ = cj.y−ci.y
dist(ci,cj)

;

6: Construct the hyperbola h1 for Oi and Oj:
x2
θ

a2
1
− y2

θ

b2
1
= 1,

where
⎧
⎪⎨

⎪⎩

a1 = ri+rj
2 , c1 = dist(ci,cj)

2 , and b1 =
√

c2
1 − a2

1
xθ = (x− fx)cosθ + (y− fy)sinθ

yθ = (fx − x)sinθ + (y− fy)cosθ

7: Suppose L is on straight line l1: a2x+ b2y+ c2 = 0
8: Let � be the roots of the equation group consisting of h1

and l1:
{

h1: x2
θ

a2
1
− y2

θ

b2
1
= 1

l1:a2x+ b2y+ c2 = 0

9: for each φ ∈ � do
10: if φ is on L(s, e) then
11: R = R ∪ φ;
12: return R;

Formally, we have:

Hi(j) = {z:distmax(z, Oi) ≤ distmin(z, Oj)}
Hi(j) = {z:distmax(z, Oi) > distmin(z, Oj)}.

Generally speaking, the u-bisector half bi(j) is a curve in
the domain space. If a query point q ∈ Hi(j), q must take
Oi as its nearest neighbor. The u-bisector halves bi(j) and
bj(i) separate the domain into three parts, including two
half-spaces Hi(j) and Hj(i), and a region V(i, j), where

V(i, j) = Hi(j) ∩Hj(i).

Notice that V(i, j) = V(j, i). If Oi and Oj are degenerated
into precise points, V(i, j) becomes ∅ and bi(j) merges with
bj(i) into a straight line.

If a query line segment is totally covered by V(i, j), Hi(j),
or Hj(i), it does not intersect with bi(j) or bj(i). Otherwise,
the intersections split the line segment into several parts.
Different parts correspond to different PNNs answers, as
those parts are located on different sides of bi(j) or Hj(i).

For circular imprecise objects, we can derive the closed
form equations of the u-bisectors and evaluate the analyt-
ical solution for the intersection points. The procedure to
find such intersections is formalized in Algorithm 1. The
number of intersections (�) is at most 2, since the equation

Fig. 5. Verification.

Algorithm 2 Nested-Loop
1: function NESTED-LOOP(Trajectory T)
2: for all line segment L ∈ T do
3: for i = 1 . . . n do � consider object Oi
4: for j = i+ 1 . . . n do � consider object Oj
5: I = FindIntersectione(L, Oi, Oj) (Algo-

rithm 1);
6: Verify I and delete unqualified elements;
7: Evaluate PNNs for each interval and merge two successive

ones if they have same PNNs;

group (line 8) has at most 2 roots. Thus, Algorithm 1 can
be finished in a constant time, denoted by β.

As a matter of fact, we find that the “2-intersection” fact
holds for arbitrary shaped imprecise regions. For the sake of
presentation, we use circular imprecise regions in following
sections (Sections 2.3 to 3) and present the generalization
to other shapes in Section 4.

2.3 Evaluating TPNNQ
In this section, we present two approaches for evaluating
TPNNQ. Section 2.3.1 discusses a nested-loop approach,
and Section 2.3.2 presents a more advanced approach that
employs the filter-refinement paradigm.

2.3.1 Nested-Loop Approach
From Definition 2, the TPNNQ could be answered by deriv-
ing the turning points, which are intersections of the query
trajectory and the u-bisectors. A u-bisector is constructed by
a pair of objects. Given a set O of n objects, there can be Cn

2
u-bisectors. The Nested-Loop method (Algorithm 2) checks
the intersections between the query trajectory and each of
the Cn

2 u-bisectors. The intersections are found by calling
Algorithm 1 on line 5.

However, not all of the intersections are qualified as
turning points. According to the definition, a turning point
indicates the change of PNN answers. In Fig. 5, s6 and s7
are not qualified as turning points, since they do not indi-
cate such changes. b1(3) splits the trajectory into two parts.
Thinking only of objects O1 and O3, one part would be def-
initely closer to O1, while the other part would take both
O1 and O3 as PNNs. In either case, PNNQ(s6) contains O1.
However, neither of the two cases exists, since O2 is closer.
The query result for Fig. 5 is presented in Fig. 2(b). We can
see that all points on segment [s2, s3], including s6 and s7,
take only O2 as the nearest neighbor.

In Algorithm 2, we employ a “verification” (line 6) pro-
cess to exclude those unqualified intersections. Based on
the discussion above, an intersection can be verified by a
PNNQ. In general, given an intersection si�j = bi(j) ∩ L, if

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2033

Fig. 6. Trajectory tree T(T) and Ternary tree �(L2).

PNNQ(si�j) contains Oi, si�j is verified as a turning point.
For example, s1 is on b1(2) and PNN(s1) contains O1, thus
s1 is a turning point. An counter example is s6, since s6 is
on b1(3), but PNN(s6) does not contain O1. As the PNN
evaluation with a R-tree can be done in the manner of
incremental nearest neighbor [6], it takes O(logn) time in
practical cases [17], [18], although it could take O(n) time
in some rare worst cases.

Suppose T contains l line segments, then Nested-Loop’s
total time complexity is O(l n2(log n + β)). Nested-Loop
is not efficient because it does not prune unqualified
objects early in query evaluation but exclude them by late
verifications. Next, we present a Filter-Refinement query
evaluation approach that effectively prunes those unquali-
fied objects that cannot be PNN for any point on the query
trajectory.

2.3.2 Filter-Refinement Approach
In this section, we present a filter-refinement framework for
evaluating TPNNQ. We assume an R-tree R is built on the
imprecise objects in O and it can be stored in the main
memory, as the memory capabilities improve fast in recent
years.

Suppose a query trajectory T is represented as a series
of consecutive line segments, i.e., T = 〈L1, L2, . . . , Ll〉, we
organize T using a binary trajectory tree T(T). Each binary
tree node Ti = 〈L1, . . . , Ll′ 〉 has two children: Ti.left =
〈L1, . . . , L� l′

2 �
〉 and Ti.right = 〈L� l′

2 �
, . . . , Ll′ 〉. The trajectory

tree for T = 〈L1, L2, L3〉 is shown in Fig. 6(a).
The data structure for each binary tree node Ti is a triple:

Ti = 〈L, MBC, Guard〉. Specifically, L is a line segment if
Ti is a leaf-node and NULL otherwise, MBC is the mini-
mum bounded circle covering Ti or NULL for leaf-nodes. In
our algorithm, R-tree is explored gradually. Among all vis-
ited R-tree entries, Guard is the one which keeps minimum
maximum distances to Ti.

The Guard entry can be either an R-tree node or an
imprecise object. Note such Guard entries are not initial-
ized until processing TPNNQ is started. Since T contains
l line segments, the trajectory tree T(T) is constructed in
O(l log l) time.

The pseudo code for the filter-refinement framework is
shown in Algorithm 3. It takes a trajectory tree T and an
R-tree R as input. The filtering phase is equipped with two
filters. Trajectory Filter (line 3) retrieves candidate objects
from O such that only those objects that can be the closest
objects to the query trajectory T . All other imprecise objects
are filtered due to their long distances to T . Segment Filter
(lines 4–5) further prunes unqualified candidate objects for

Algorithm 3 TPNNQ
1: function TPNNQ(Trajectory T , R-tree R)
2: let φ be a list (of candidate objects);
3: φ←TrajectoryFilter(T, R);
4: for all line segment Li ∈ T do � T = {Li}i≤l
5: φi ← SegmentFilter(Li, φ);
6: {〈L, R〉}i ← TernaryDecomposition(Li, φi);
7: {〈Ti, Ri〉}ti=1 ← Merge(∪l

i=1{〈L, R〉}i);

each line segment Li ∈ T . Our previous work [16] elaborates
on how the two filters work with trees T and R. We skip
the details here due to the page limit.

The refinement phase evaluates all the validity intervals
and turning points for each line segment in T . This phase
is encapsulated in function TernaryDecomposition(.), to
be detailed in Section 3. Finally, all derived validity intervals
are scanned once and consecutive ones are merged if they
belong to different line segments but have the same set of
PNNs (line 7).

Example of TPNNQ. Refer to Fig. 7(a). A query trajectory
T = {L1, L2, L3} is given, and an R-tree is built on imprecise
objects O = {a, b, c, d, e, f }. We use trajectory filter to derive
T ’s trajectory filtering bound, as shown by shaded areas in
Fig. 7(b). Objects {c, d, e, f } overlapping with the trajectory
filtering bound are taken as candidates. During the process,
object d is set to be L2’s Guard, and stored in the trajectory
tree. The segment filter is applied for each line segment in
T . Taking L2 as an example, the segment filtering bound is
shown as Fig. 7(c), where f is excluded from L2’s candidates
because f does not overlap with the filter bound.

In the refinement phase, we call the routine Ternary
Decomposition for each line segment to derive the turning
points. As shown in Fig. 7(d), we find the u-bisector halves
bd(c) and bc(d) intersects with L2 at sd�c and sd�c, respec-
tively. Thus, L2 is split into three sub-line-segments [h, sd�c],
[sd�c, sd�c], and [sd�c, t]. Meanwhile, the construction of a
ternary tree �(L2) starts accordingly, as shown in Fig. 6(b).
Its root node has three children, each corresponding to a
sub-line-segment. These refinement steps recur for each of

Fig. 7. TPNNQ. (a) Query input. (b) Trajectory filter. (c) Segment filter
L2. (d) Trajectory refine L2(h,t).

2034 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

TABLE 3
Three Cases for a Line Segment

the three sub-line-segment. Finally, the process stops and a
complete ternary tree �(L2) is constructed when no further
split is possible.

Note that the degree of a ternary tree node is at
most 3, since a line segment is split into at most 3
sub-line-segments (guaranteed by Theorem 2 and to be
discussed in Section 4.1). Subsequently, the query result
for L2 can be fetched by traversing the leaf-nodes of
�(L2). Therefore, we have TPNNQ(L2) = {〈[h, sd�c], {d}〉,
〈[sd�c, sc�e], {c, d}〉, 〈[sc�e, sd�c], {c, d, e}〉, 〈[sd�c, t], {c, e}〉}. The
results for L1 and L3 can be obtained likewise.

We proceed to present the refinement process that is
done for each line segment in the query trajectory.

3 REFINEMENT PROCESS FOR A LINE
SEGMENT IN QUERY TRAJECTORY

In the filter-refinement query evaluation framework, we do
the refinement for each line segment Li in the query trajec-
tory T . In particular, we need to find turning points and
validity intervals for a line segment Li. We find them a
recursive manner. At each iteration, we use a u-bisector to
split the current line segment into a number of sub-line-
segments. We classify the sub-line-segments into different
categories and derive the specified pruning bound for each
category in order to eliminate disqualified objects. The pro-
cess repeats until the current intervals can not be further
split. Since the current line segment is decomposed into at
most 3 parts due to the at most 2 intersections, we name
our algorithm ternary decomposition. Essentially, the process
is equivalent to constructing a ternary tree �(Li) for Li.

In the sequel, we introduce categories of pruning bounds
in Section 3.1. Based on that, we design the ternary decom-
position algorithm in Section 3.2.

3.1 Pruning Bounds for Three Cases
A query line segment Li(s, e) can be divided by a u-bisector
(Definition 3) into at most 3 sub-line-segments. With respect
to their positions in half spaces, there are three types of sub-
line-segments: Open Case, Pair Case, and Close Case. Refer to
Fig. 4 for the sake of easy presentation. Close Case means
the sub-line-segment is totally covered by Hi(j) or Hj(i).
Open Case means the sub-line-segment is totally covered
by V(i, j), except that one of its endpoints is on bi(j) or
bj(i). Pair Case means the sub-line-segment’s two endpoints
are on bi(j) and bj(i) respectively, whereas all its remaining
points are in V(i, j).

The three cases are formally described in Table 3.
For Pair Case and Open Case, we can derive two types of

pruning bounds. Suppose the u-bisector between O1 and O2
splits the query line-segment [s, e] into sub-line-segments:

(a) (b)

Fig. 8. Open case and pair case.

[s, s1�2], [s1�2čňs1�2], and [s1�2, e], which are of Open Case,
Pair Case, and Open Case, respectively. We show the prun-
ing bound derived for [s, s1�2] and [s1�2čňs1�2] in Fig. 8(a)
and (b). The bounds are highlighted by shaded areas. Note
that any object Oi beyond the bounds are safely pruned for
the corresponding sub-line-segments.The pruning bound of
[s1�2, e] is similar to Fig. 8(a), so it is omitted.

Close Case is a special case, when a line segment has two
intersections and totally inside one half-space, say Hi(j). It
could be represented by [si�j, s′i�j], which means the two
end-points are on the same u-bisector half bi(j). In this
example, we know that [si�j, s′i�j] must be in Hi(j), so Oj
cannot be the PNN for each point inside. We design their
pruning bounds in the following.

Lemma 1 (Pair Case). Given two imprecise objects Oi and Oj,
suppose their u-bisector bi(j) and bj(i) intersect with a straight
line at si�j and si�j. ∀q ∈ [si�jsi�j], an object ON cannot
be q’s PNN if ON has no overlap with the pruning bound
�(si�j, Oi) ∪�(si�j, Oj)

⋂
�(si�j, Oj) ∪�(si�j, Oi).

Lemma 2 (Open Case). Given an Open Case sub-line-
segment [s, si�j], ∀q ∈ [s, si�j], an object ON cannot be q’s
PNN, if ON has no overlap with �(s, Oi) ∪�(si�j, Oi).

Lemma 3 (Close Case). Given an Close Case sub-line-
segment [si�j, s′i�j], ∀q ∈ [s, s′i�j], an object ON cannot be
q’s PNN, if ON has no overlap with �(si�j, Oi)∪�(s′i�j, Oi).

The proof of Lemma 1 is given in our technical
report [19]. As the proofs of Lemma 2 and 3 can be eas-
ily derived from Lemma 8 (in Appendix), they are omitted
due to page limit.

The Pair Case can also be considered as the union of two
Open Cases. For example, a Pair Case [si�j, si�j] is equiva-
lent to the overlap part of [s, si�j] and [si�j, e]. Moreover, the
Close Case can be viewed as the union of [s, s′i�j] and [si�j, e].
The three cases and their combinations cover all possibili-
ties for each piece (validity interval) of a query line segment
Li. After the ternary tree �(Li) is constructed for Li, we can
derive the pruning bound of a validity interval. It is the
intersection of all its ascender nodes’ pruning bounds in
the ternary tree �.

3.2 Ternary Decomposition
The ternary decomposition constructs the ternary tree �

in an iterative manner, as shown in Algorithm 4. At each
iteration, we select two objects from the current candidate
set φcur as seeds to divide the current line-segment Lcur into
two or three pieces. To split Lcur, we have to evaluate a

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2035

Algorithm 4 TernaryDecomposition
1: function TERNARYDECOMPOSITION(Segment L(s, e),

Candidates set φ
[L]
cur)

2: Sort φ
[L]
cur in the ascending of maximum distance to L

3: for i = 1 . . . |φcur| do � consider object Oi
4: for j = i+ 1 . . . |φcur| do � consider object Oj
5: I = FindIntersection(L, Oi, Oj);
6: Verify I and delete unqualified elements;
7: if |I| �= 0 then
8: Use I to split L(s, e) into |I| + 1 pieces
9: for each piece of line segment Li do

10: Use Lemma 1, 2, and 3 to derive pruning
bound Bi

11: φ
[Li]
cur ← Bi(φ

[L]
cur)

12: release φ
[L]
cur

13: for each piece of line segment Li do

14: TernaryDecomposition(Li, φ
[Li]
cur)

feasible u-bisector, whose intersections with Lcuri are turning
points. Then, to find the u-bisector, we might have to try
C(C−1)

2 pairs of objects, where C = |φcur|. In fact, the object
with the minimum maximum distance to Lcur, say O1, must
be one PNN. The correctness is shown in Lemma 4.

Lemma 4. If S = {O1, O2, ...} are sorted in the ascending order
of the maximum distance to the line segment L, then O1 ∈
TPNNQ(L).

Accordingly, the turning points on Lcur are often derived
by O1 and another object among the C candidates.
Therefore, the candidates are sorted first in the ternary
decomposition. After that, Lcur is split into 2 (or 3) pieces (or
children). For Lcur’s children Li, we derive a pruning bound
Bi for Li and select a subset of candidates from φcur (lines 9
to 12). Notice that for each leaf-node Li of the ternary tree
�(L(s, e)), Li’s two endpoints must be s, e, or the turning
points on L. If we traverse � in the pre-order manner, any
two successively visited leaf-nodes are the successively con-
nected validity intervals in L. Suppose we have m turning
points, we would have m + 1 validity intervals, which cor-
responds to m+ 1 �’s leaf-nodes. Algorithm 4 stops when
any pair of objects in φ

[L]
cur does not further split L.

The complexity of ternary decomposition depends on
the size of the turning points in the final result. A ternary
tree node Ti splits only if one or two intersections are found
in Ti’s line segment. If no intersections are found in its line
segment, Ti becomes a leaf-node. Given the final answer
containing m turning points, there would be at most 2m
nodes in the ternary tree �(T). At least, there are �1.5m�
nodes. So Algorithm 4 will be called (1.5m, 2m] times. sup-
pose that line 5 in Algorithm 4 is done in time β and
line 6 is in O(log C), where C is the number of candi-
date objects returned by the filtering phase in Algorithm 3.
As a result, the complexity of ternary decomposition is
O(mC2(log C+ β)).

4 SUPPORTING ARBITRARY SHAPES OF
IMPRECISE REGIONS OF OBJECTS

So far we have presented our solution for TPNNQ where all
imprecise objects have circular imprecise regions. It is how-
ever possible that imprecise objects take arbitrary shapes

of imprecise regions, as illustrated in Fig. 1. To handle
different shapes, an intuitive way is to enclose an object
by a minimum bounding circle (MBC in short), and then
evaluate the query on the MBCs. This makes sense when
the imprecise regions can be well represented by MBCs.
Otherwise, MBC can introduce considerable dead space,
and thus cause many false positives that degrade the query
result quality. Hence, it is desirable to have a solution that
is more general, reliable, and deployable.

As a matter of fact, the proposed techniques in pre-
vious sections can be generalized to arbitrary imprecise
region shapes. In particular, to apply the derived techniques
(Lemma 1 2 3 and 4), we need to instantiate distmax(.) (or
distmin(.)) for each specific type of shapes. In addition, we need
to consider two important aspects. First, the “2-intersection”
fact should hold for other arbitrary. We need to guarantee
this in order to make the Ternary Decomposition (Section 3)
still work. Second, the u-bisector’s form for arbitrary shaped
imprecise regions can be complex. We need to find the turn-
ing points (recall Algorithm 1) for the complex case where
the u-bisector’s math representation is not available.

4.1 Theories about the u-bisector
One important geometric property about the u-bisector half
bi(j) is: half space Hi(j) is convex. This property holds even
if the imprecise region’s shape is concave and irregular.
Next, we prove the property formally.

Theorem 1 (Half Space Convexity). Given two imprecise
objects Oi and Oj, the half space Hi(j) enclosed by the
u-bisector half bi(j) is convex.

Proof. According to Midpoint Convexity Theorem [20], if
two arbitrary points s, e ∈ Hi(j), whose midpoint m = s+e

2
satisfies m ∈ Hi(j), then Hi(j) is convex.

Suppose that two precise points pi ∈ Oi and pj ∈ Oj
satisfy:

{
distmax(m, Oi) = dist(m, pi)

distmin(m, Oj) = dist(m, pj).
(1)

Also,

s ∈ Hi(j)⇒ dist(s, pi) ≤ dist(s, pj). (2)

Similarly,

dist(e, pi) ≤ dist(e, pj). (3)

Applying Lemma 10 (see Appendix) to Equations 2
and 3, we have:

dist(m, pi) ≤ dist(m, pj)

⇒ distmax(m, Oi) ≤ distmin(m, Oj) (Equation 1)

⇒ m ∈ Hi(j)⇒ Hi(j) is convex.

The theorem is thus proved.
Based on H_i(j)’s convex property, a line segment L

could have at most two intersections with b_i(j). Formally,

Lemma 5. Given two imprecise objects O_i and O_j, a line seg-
ment L(s, e) has at most two intersection points with the
u-bisector half b_i(j).

Since Hi(j) is convex, its intersection with line segment
L is l = L ∩ Hi(j), which must also be convex. Since l is

2036 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

TABLE 4
Four Types of a Query Line Segment

also a part of L, l is a line segment or ∅. If l = ∅, l has
no intersections with bi(j). Otherwise, l has at most two
intersections with the u-bisector half bi(j), whereas l’s two
end points are on Hi(j)’s boundary.

Likewise, Theorem 1 and Lemma 5 hold for the Hj(i)
and bj(i). Next, we show a more interesting property about
the number of intersections between a line segment L and
the u-bisector as a whole.

Theorem 2 (Two-intersection Theorem). Given two impre-
cise objects Oi and Oj, a line segment L has at most two
intersections with the u-bisector that consists of bi(j) and bj(i).

Proof. It is sufficient to show: if L intersects with bi(j) at
two points, L ∩ Hj(i) = ∅. In other words, we need to
prove for an arbitrary point t ∈ L ∧ t /∈ Hi(j), t /∈ Hj(i).

For circular imprecise regions, the theorem is true
according to Lemma 11 (see Appendix). For non-circular
imprecise regions, we apply the site decomposition
idea [21] to decompose Oi and Oj into two sets of circles
P and Q. The circles in P or Q may be of different sizes
and overlap. An overall half-space Hj(i) is the intersec-
tion of all half-spaces Hj(q)(i(p)) where p ∈ P and q ∈ Q
(see Lemma 9 in Appendix).

Let ui = {ui(p)}p∈P and uj = {uj(q)}q∈Q. For each pair of
ui(p) and uj(q), we can prove t /∈ Hj(q)(i(p)) according to
Lemma 11. Hence, we have:

∀q ∈ Q ∀p ∈ P, t /∈ Hj(q)(i(p))⇒
t /∈ ∩p∈P∧q∈QHj(q)(i(p))⇒ t /∈ Hj(i).

Thus, the theorem is true.
Theorem 2 tells that a u-bisector can split the query line

segment into 3 sub-line segments at most, no matter what
shapes the imprecise regions of the two objects have and
how complex the form of the u-bisector is. Supported by
Theorem 2, we proceed to show how to find intersections
when arbitrary imprecise region shapes are involved.

4.2 Finding Intersections Involving Arbitrary
Imprecise Region Shapes

For arbitrary imprecise regions, whose u-bisector’s math-
ematical representation is not available, we design an
approximated method to find the intersections. The intuition
of doing that is to decompose the line segment into smaller
pieces in order to approach the intersections. The decom-
position stops if intersections are found or the current
line segment contains no intersections. Otherwise, as the
decomposition continues, the intersection will be infinitely
approached. To do that, we have to: 1) detect whether the
current line segment contains intersections; 2) determine
whether the approximation is sufficiently accurate. For 1),

Fig. 9. Types of a line segment.

we use Table 4 to list all possible cases of intersections on
a line segment, as well as their judging criteria. For 2), we
use a precision parameter Tε . The method is described in
more detail below.

Given a line segment and two objects Oi and Oj’s u-
bisector, there can be at most two intersections, as revealed
by Theorem 2. We thus classify the line segment into 4 dif-
ferent categories according to the number of intersections,
as shown in Table 4. Different cases correspond to differ-
ent conditions. Referring to the example shown in Fig. 9,
L1’s two endpoints are located in Hj(i) and V(i, j), so L1
belongs to type 1. Also, L0 and L2 belong to type 0-A and 2-
A respectively, according to the conditions listed in Table 4.
However, Lunknown

0 and Lunknown
2 are two “undetermined”

cases. If we only know that one line segment’s endpoints
are in V(i, j), we can not tell if it is of type 0-B (e.g., Lunknown

0)
or 2-B (e.g., Lunknown

2). We use Lunkown to represent the case
that a line segment’s two endpoints are in V(i, j). Thus, it is
hard to detect which type the Lunkown belongs to. We have
developed Lemma 7 for type 0-B. Nevertheless, not all cases
in type 0-B can be captured. For “undermined” types, we
can recursively decompose the line segments, until all the
sub-line segments can be classified.

Lemma 6. A line segment L is in the region V(i, j) iff:

∀p ∈ L, distmax(p, Oi) > distmin(p, Oj)

∧ distmax(p, Oj) > distmin(p, Oi).

Proof.
According to the definition of half space:

p ∈ V(i, j)⇔ p /∈ Hi(j) ∧ p /∈ Hj(i)

⇔ distmax(p, Oi) > distmin(p, Oj)

∧ distmax(p, Oj) > distmin(p, Oi).

Thus,

L ∈ V(i, j)⇔
∀p ∈ L, distmax(p, Oi) > distmin(p, Oj) ∧

distmax(p, Oj) > distmin(p, Oi).

Lemma 7. A line segment L is in the region V(i, j) if:

distmax(m, Oi) > distmin(m, Oj)+ length(L)

∧ distmax(m, Oj) > distmin(m, Oi)+ length(L),

where m is the middle point of L.

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2037

Algorithm 5 FindIntersection
1: function FINDINTERSECTION(Line segment L(s, e), Objects

Oi, Oj)
Parameter: the precision threshold Tε

2: if L contains definitely 0 intersection then
3: return NULL;
4: else
5: m = s+e

2 ;
6: if length(L) < Tε then
7: if both s and e are in one of Hi(j), Hj(i) and V(i, j)

then
8: if L contains definitely 0 or 1 intersection then
9: return m;

10: else if ¬(L contains definitely 0 intersection) then
11: return FindIntersection([s, m], Oi, Oj)∪

FindIntersection([m, e], Oi, Oj);

Proof. Let p be an arbitrary point on the line segment L, x
be any location in Oi, and rm = length(L)

2 .

distmax(m, Oi) > distmin(m, Oj)+ length(L)⇒
distmax(m, Oi)− rm > distmin(m, Oj)+ rm. (4)

We consider the left-hand side of Equation 4 first. Let
y be a point of Oi such that distmax(m, Oi) = dist(m, y).
By triangle inequality, we have dist(p, y) ≥
dist(m, y) − dist(p, m) = distmax(m, Oi) − dist(p, m).
As m is the middle point of L, we have
rm = length(L)

2 ≥ dist(p, m). We also have
distmax(p, Oi) ≥ dist(p, y). From these three inequalities,
we have

distmax(p, Oi) ≥ distmax(m, Oi)− rm. (5)

Likewise, for the right-hand side of Equation 4, we
have:

distmin(m, Oj)+ rm ≥ distmin(p, Oj). (6)

Considering Equations 4, 5 and 6 altogether, we have:

∀p ∈ L, distmax(p, Oi) > distmin(p, Oj). (7)

Similarly, we can prove

∀p ∈ L, distmax(p, Oj) > distmin(p, Oi). (8)

According to Lemma 6, Equations 7 and 8 are suffi-
cient to show L is in the region V(i, j).
Based on the four types of a line segment, we compute

the intersection points approximately using Algorithm 5.
The idea of the approximation is to recursively split the
query line segment until the current line segment, which
contains the type 1 intersection, is shorter than the precision
threshold Tε . We thus return the middle point of the line
segment as an intersection.

During the decomposition, we classify the line segments
into 4 types following Table 4. If the current line segment is
of type 1 or 2, it is decomposed for evaluating intersections.
If it is of type 0, the branch is stopped. Otherwise, it is
of type Unknown, the line segment is also decomposed for
clarification. The complexity of Algorithm 5 is O(logTε

|L|).
For common shapes, such as line segments, circle, rect-

angles, we can derive the closed form equation for distmin
and distmax and substitute them into Algorithm 5. In real

Fig. 10. Hexagonal model.

applications, objects can have complex shapes. An iceberg
floating on the sea could have an irregular contour. Or the
location of a vehicle moving on the road network could be
summarized as a polyline. However, if the complex shaped
object can be represented by the combination of simple
shapes (e.g., circles, line segments, rectangles), our solu-
tion can be replanted. For example, the moving object in
a road network can be represented by a polyline, which
consists of a set of line-segments. Or the iceberg can be
decomposed into a set of circles or rectangles. In general, if
a complex shaped object O can be represented by a set of
simple shapes {mi}, the minimum and maximum distances
between a query point q to O can be calculated by:

{
distmin(q, O) = mini{distmin(q, mi)}
distmax(q, O) = maxi{distmax(q, mi)}.

By substituting those equations into Table 4 and
Algorithm 5, our solution can be extended to support those
complex shaped imprecise regions, even if they are concave.
The correctness can be guaranteed by Theorem 1 and 2.

5 SELECTIVITY ESTIMATION FOR TPNNQ
Accurate selectivity estimation is crucial for query process-
ing in database systems. In many mobile subscriptions, it
is important to estimate the size of the data to be trans-
mitted (e.g. φ in Algorithm 3) from the LBS server to the
client, because that means how much money the subscriber
needs to pay. In some settings, the LBS server can also
decide to stop the processing if it finds out the results size
is higher than the client’s upper limit that is indicated by
his subscription.

In this section, we study selectivity estimation for
TPNNQ. We start from the simplest case where the query
is a point (Section 5.1). Further, we extend it to query line-
segments (Section 5.2) and query trajectories (Section 5.3).
We consider the hexagonal lattice model [22], [23], as shown
in Fig. 10, where each object has six neighbors whose cen-
ters are equidistant from each other, with distance d0

1.
We assume that the imprecise regions are equal-sized and
circular shaped with a radius of r.

5.1 Result Size Analysis for Query Point
To derive the number of possible nearest neighbors for a
given query point q, we need to estimate the minimum

1. The centers of uncertainty regions form the vertices of n

hexagons, each of which has an area of
√

3d2
0

2 . Since |D| = n ×
√

3d2
0

2 ,

d0 =
√

2|D|√
3n

.

2038 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Fig. 11. �-neighborhood.

maximum distance from q to all imprecise objects. We use
dNN to denote that distance. Subsequently, the search region
of PNN(q) is the circle centered at q with radius dNN. Objects
that overlap with
(q, dNN) are qualified as q’s possible
nearest neighbors [6].

If we connect the centers of two adjacent objects, the
domain would be triangulated by dashed lines as shown
in Fig. 10. Given query point q, it must be resided in a tri-
angle. We denote it as �-neighborhood, which consists of
three objects, as shown in Fig. 11. Among the three, there
must be one object having the minimum maximum distance
dNN to q, since these three objects are closer than others out-
side. Different locations in �-neighborhood correspond to
different dNNs. In Fig. 11, qmin’s dNN is O2’s radius, and
qmax’s dNN is the distance from qmax to O3’s center plus
O3’s radius. Since dNN is changing over q’s locations, the
number of PNNs also varies. If we define the density ρ as
the number of objects over a unit area, then the number
of PNNs can be measured by the density times the area of
the search region. Thus, we can get the expected number
of PNNs. We first derive the E(|PNN|) for the shaded area
(in Fig. 11) denoted as �shaded, and repeat 6 times to cover
the entire �-neighborhood.

E(|PNN(q)|q∈�-neighborhood)

=
∫

q∈� |PNN(q)|dq

|�-neighborhood| =
6 · ∫q∈�shaded

|PNN(q)|dq

6 · |�shaded|

=
6 · ∫q∈�shaded

ρπd2
NNdq

6 · |�shaded|

=
∫ d0

2
0

∫ x√
3

0 ρπ(

√

x2 + y2 + r)2dydx

1
2 · d0

2 · d0
2
√

3

= ρπ

[√
3d0(24r+ 5

√
3d0 + 18r log2

√
3)

108
+ r2

]

.

Also, since ρ and π are independent, by extracting them
we can derive E(dNN):

ρπE2(dNN) = E(|PNN(q)|)

E(dNN) =
√

E(|PNN(q)|)
ρπ

. (9)

In the sequel, we simply use dNN to represent E(dNN).

5.2 Result Size Analysis for Query Line Segment
If the query is a line-segment instead of a point, the search
region would be the union of search regions for all points
on the line-segment. We show an example of the search

Fig. 12. |PNN(L)|.

Fig. 13. |PNN(T)|.

region of line-segment L in Fig. 12. The number of L’s PNNs
can be calculated as the product of density ρ and the search
region’s area. dNN can be calculated by Equation 9.

E(|PNN(L)|) = ρπ(2 · dNN · |L| + π · d2
NN). (10)

5.3 Result Size Analysis for Query Trajectory
Now we extend the estimation from query line-segments
to query trajectories. Suppose trajectory T is represented
by {L1, . . . ,Ll}, where successive line-segments Li and Li+1
are connected by point si. Then, T ’s search region equals
to the union of all Li’s search regions, as shown in Fig. 13.
The union could be well approximated by the summation
of all line-segments ({Li})’s search regions subtracting all
connecting points ({si})’s search regions.

E(|PNN(T)|) ≈
∑

Li∈T
E(|PNN(Li)|)−

∑

si∈T
E(|PNN(si)|). (11)

The analysis above can be extended to other object dis-
tributions as follows. We apply an equal-sized histogram
which splits the domain into m×m squares. For each square
s, we assume the objects are uniformly distributed inside.
We count the number of objects N(s) of square s. Thus, the
density ρ(s) of s is collected by N(s)

|D|/(m×m)
. We take the aver-

age density ρ̄ for all squares overlapping with the query
trajectory T 2, and substitute them into Equation 11 to get
the estimation.

6 EXPERIMENTAL EVALUATION

In this section we report on the experimental results on
different datasets. Section 6.1 describes the relevant settings.
Section 6.2 gives a metric to measure to quality of query
results. Section 6.3 presents the experimental results.

6.1 Experimental Settings
Queries. The query trajectories are generated by

Brinkhoff’s network-based mobile data generator3. The

2. Other parameters such as d̄0 and r̄ are obtained similarly.
3. http://iapg.jade-hs.de/personen/brinkhoff/generator/

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2039

trajectory represents movements over the road-network of
Oldenburg city in Germany. We normalize them into 10K
×10K space. By default, the length of trajectory is 500 units.
Each reported value is the average of 20 trajectory query
runs.

Imprecise Objects. We use four real datasets of geo-
graphical objects in Germany and U.S.4, namely germany,
LB, stream and block with 30K, 50K, 199K, 550K spatial
objects, respectively. We also construct the MBC for each
object and get 4 other datasets with circular imprecise
regions5. We use stream as the default dataset. Datasets are
normalized to the same domain as queries.

To index imprecise regions, we use a packed R*-tree [24].
The page size of R-tree is set to 4K-byte, and the fanout
is 50. The entire R*-tree is accommodated in the main
memory.

All our programs were implemented in C++ and tested
on a Core2 Duo 2.83GHz PC enabled by MS Windows 7
Enterprise.

6.2 Query Result Quality Metric
As TPNNQ queries over imprecise objects, it is interesting
to measure the query result quality. We adopt an Error func-
tion based on the Jaccard Distance [25], which measures the
similarity between two sets. Recall that the query result of
TPNNQ is a set of tuples {〈Ti, Ri〉}. It can be transformed
into the PNNs for every point on the query trajectory T , i.e.,
{〈q, PNNQ(q)〉}q∈T . Let R∗(q) = PNNQ(q) be the ground-
truth query result for a point q. We use RA(q) to represent
the PNNs returned by algorithm A for the point q. The Error
for algorithm A on query T is:

Error(T , A) = 1
|T |

∫

q∈T
1− R∗(q) ∩ RA(q)

R∗(q) ∪ RA(q)
dq. (12)

Here, |T | is the total length of trajectory T . If T is repre-
sented by a set of line segments T = {Li}ti=1, the total length
|T | =∑t

i=1 |Li|.
Equation 12 captures the effect of false positives and

false negatives as well. There is a false positive when RA(q)
contains an extra item not found in R∗(q). There is a false
negative when an item of R∗(q) is missing from RA(q). For a
perfect method with no false positives and false negatives,
the two terms R∗(q) and RA(q) are the same, so the inte-
gration value is 0. In implementation, it is not feasible to
check all q ∈ T to calculate Equation 12. Instead, we use
the Monte-carlo method with very large sampling rate (by
setting the sampling interval to be 10e−5 unit) to accurately
calculate the integration.

In summary, the error score is a value between 0 and 1.
The smaller an error score is, the more accurate the result is.
On the other hand, if a method has many extra or missing
results, it acquires a high error score.

6.3 Performance Results
The query performance is evaluated by two metrics: effi-
ciency and quality. The efficiency is measured by counting
the clock time. The quality is measured by the error score

4. http://www.rtreeportal.org/
5. We handle other shaped imprecise regions in Section 6.3.4.

Fig. 14. Tq (s) vs. datasets.

defined in Section 6.2. To evaluate the filter-refinement
query evaluation framework (Algorithm 3), we list sev-
eral competitors: Nested-Loop, Sample, TP-S, TP-TS, and
TP-TSe. The suffixes T and S refer to Trajectory Filter and
Segment Filter, respectively. Nested-Loop does not use any
filter; TP-S does not use Trajectory Filter; TP-TS and TP-TSe

(Algorithm 3) use all the filtering and refinement tech-
niques. Sample draws a set of uniform sampling points {q}
from T . Then, for all q, PNNQ(q) is evaluated. The sampling
interval, denoted by ε, is set to 0.1 unit by default6.

As discussed, we either use FindIntersectione

(Algorithm 1) to find exact turning points or FindIntersection
(Algorithm 5) to find approximated turning points. The
superscript e indicates the exact intersection calculation.
So, TP-TSe derives exact turning points for circular regions,
while TP-TS calculates approximate turning points for
arbitrary shaped regions. For FindIntersectione, we call GSL
Library7 to get the analytical solution. For FindIntersection,
the default Tε is set to 0.01 unit.

6.3.1 Query Efficiency Tq

According to the results shown in Fig. 14, the Nested-Loop
method is the slowest among all. It elaborates all the pos-
sible pairs of objects for turning points (but most of them
do not contribute to validity intervals). Next, Sample comes
the second slowest. We analyze it in Section 6.3.2.

The other three methods have significant improvement
over Sample and Nested-Loop. One reason is because of
the effectiveness of the pruning techniques, as shown in
Fig. 15. For all the real datasets, the pruning ratio are as
high as 98.8%. TP-S is less efficient, because some candi-
dates shared by different line segments in trajectory will
be fetched multiple times. This drawback is overcome by
TP-TS and TP-TSe. Notice that gap would be bigger if the
query trajectory consists of many tiny line segments. Also,
the combined traversal over R-tree in TP-TS and TP-TSe

save plenty of extra I/O cost, compared to TP-S, shown in
Fig. 16.

To get a clearer picture about the efficiency, we measure
the time costs for Filtering and Refinement in Fig. 17. TP-TS
and TP-TSe are faster than TP-S in both phases. In Filtering,

6. The sampling rate is reasonably high regarding to the trajec-
tory’s default length. More details about sampling rates are discussed
in Section 6.3.2.

7. http://www.gnu.org/software/gsl/

2040 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Fig. 15. Pruning ratio vs. datasets.

Fig. 16. Tq (# of node access) vs. datasets.

the combined R-tree traversal in TP-TS and TP-TSe save
plenty of extra node access, compared to TP-S. The number
of node access is shown in Fig. 16. In Refinement, TP-TS and
TP-TSe are faster, since they has fewer candidates to handle.
The observation is consistent with the fact that TP-TS has
a higher pruning ratio, shown in Fig. 15. TP-TSe directly
derives turning points by analytical solution, which is more
efficient than TP-TS.

6.3.2 TP-TS vs. Sample
Efficiency. We test the query efficiency by varying the query
length in Fig. 18. The Sample method is slower than others
at least one order of magnitude. The costs of others increase
stably w.r.t. the query length. The reason can be explained

Fig. 17. Tq ’s breakdown.

Fig. 18. Tq vs. query length.

Fig. 19. TP-TS vs. sample (Tq).

in Fig. 16, where Sample incurs much more node access
than our methods. We also test the efficiency by varying
the sampling interval ε from 0.01 to 10 in Fig. 19. TP-TS
outperforms Sample in most of the cases. Sample is faster
only when ε is very large (e.g. equal to 10 units). Is it
good if large ε is used? The answer is NO. In Table 5,
when “Sample, ε = 10, block”, the error score of Sample is
as high as 0.443! Next, we discuss more detail on the query
quality.

Effectiveness. We demonstrate the qualities of Sample
and TP-TS in Table 5. TP-TS achieves better query quality
than Sample. For Sample, one could choose a very large sam-
pling rate (or a small ε equivalently) for higher quality. But
the accompanied burden in efficiency also increases signif-
icantly. For example, Sample’s query time (when ε = 0.01)
is already 100 times slower than that of TP-TS.

We also test the error score of simplifying the imprecise
regions by precise points, as mentioned in the introduction.
For germany dataset, the error is as high as 0.76! In appli-
cations such as safety sailing, the simplified solution could
be harmful.

TABLE 5
TP-TS vs. Sample (Error)

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2041

Fig. 20. � of validity intervals vs. datasets (TP-TS).

Fig. 21. Estimation of |PNN|.

Fig. 22. Error vs. precision (stream).

6.3.3 Analysis of TPNN
Observed from Fig. 20, the number of validity intervals
increases with the size of the datasets. TP-TSe has the same
number of validity intervals, which means the approximate
calculation is capable of deriving the turning points within
a limited precision Tε .

We also test our proposed analysis model in Fig. 21.
We split the domain into 25×25 squares and use average
parameters as input. The number of PNNs increases with
the size of datasets. In all tested cases, the error rate is
within 5%, which shows a high accuracy of the selectivity
estimation.

We test the error score of the TP-TS w.r.t. the increase
of precision Tε . As shown in Fig. 22, when Tε < 0.1, the
error score of TP-TS is quite close to the value of TP-TSe,

Fig. 23. Tq vs. shapes (TP-TS).

Fig. 24. Error vs. shapes (TP-TS).

which is 0. This offers us flexibility in choosing the parame-
ter Tε . When Tε > 0.1, the error score increases significantly
w.r.t. Tε . In our implementation, we set Tε to 0.01. It is
possible to sacrifice some precision for a faster query execu-
tion. However, the quality will decrease accordingly. More
details are omitted due to page limit.

6.3.4 Objects with Different Shaped Imprecise Regions
We model the moving objects on a road network by an
imprecise region, whose shape is a line segment. For exper-
iments, we reuse the 4 real rectangular datasets by using
each rectangle’s two opposite corners as two end-points of a
line segment. Then, we test how the quality will be affected
by representing the line segment with its enclosed MBC or
MBR(Minimum Bounding Rectangle). We also investigate
how the query performance varies for the three different
shapes: circle, rectangle, and line segment.

The queries are implemented by TP-TS method. Fig. 23
shows that the Tqs are similar for the three shapes we have
tested. Tq on the circular dataset is a little bit faster, as the
max/min distance evaluation for circular objects requires
less distance comparisons than the other two.

However, to approximate a line segment by its MBC
or MBR would decrease the query quality. In Fig. 24, the
approximated MBC’ error is as high as 0.15. The error of
MBR is lower than MBC, because a rectangle has smaller
dead space than a circle while enclosing a line segment.

Compared to the result over line segments, the MBC or
MBR method’s quality is low. In real deployment, if the
object could be well represented by its MBC or MBR, we

2042 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

suggest to use MBC or MBR for better efficiency. Otherwise,
the shape of objects should be considered to achieve better
query quality.

In summary, we have shown that TP-TS, as well as its
variant TP-TSe, are both efficient and effective. TP-TS is
also capable of supporting TPNNQ over arbitrary shaped
imprecise regions.

7 RELATED WORK

In this section, we review the related work on moving nearest
neighbor queries (Section 7.1), as well as the evaluation of
trajectory nearest neighbor queries for imprecise location
data (Section 7.2).

7.1 Moving Nearest Neighbor Query
Nearest neighbor (NN) query for moving query points is a
well studied topic [26], [27], [28], [15]. Most existing works
focus on reducing the computational cost at the server. They
fall into two major categories.

The first category does not require the user’s entire tra-
jectory in advance [26], [27], [28], but processes the query
online (multiple times) based on the user’s moving location.

Song and Roussopoulos [26] propose sampling tech-
niques to answer the moving NN query. They study how to
calculate the upper-bound distance within which the mov-
ing point does not issue a new query to the server. Some
others [27], [28] use validity region and validity time for
the query answer of moving points. Voronoi cells are used
to represent the validity region. The query answer becomes
invalid if the validity time is expired or the user leaves the
validity region.

Other types of nearest neighbor queries, like group
nearest neighbor query [29], continuous nearest neighbor
query [30], expected nearest neighbor query [31] have also
been proposed. In these works, the query input is limited
to precise points.

The second category assumes that the user’s trajectory
is known in advance. It evaluates the query only once [15].
In particular, the route of the query point is split into
sub-line-segments, such that the NN answer within the
same sub-line-segment remains unchanged. A perpendicu-
lar bisector ⊥(pi, pj) between two points pi and pj is used to
partition the trajectory query into two sub-trajectories, one
being definitely closer to pi and the other being definitely
closer to pj.

The query trajectory in our TPNNQ setting, such as a
flight route or a pipeline, is known in advance. However,
the exising technique [15] is not applicable to our prob-
lem on imprecise location data. As shown in Fig. 2, some
segments like [s1, s2] can have multiple PNNs and it is
challenging to derive them.

The bisector for imprecise objects has been addressed by
a few works recently. They use bisectors for specific shapes
(circles [9], [10], rectangles [11]) to determine the dominance
relationship between objects. This paper distinguishes itself
from these works in several important aspects.

First, the query studied in this paper is issued for a tra-
jectory, but not for a single object. Second, the u-bisector
defined in this paper is extended to support arbitrary
shaped imprecise objects. It is however unknown how the

existing bisectors [9]–[11] can be generalized for similar
purposes. Third, our query evaluation partitions the query
trajectory into several segments each of which has its own
answer set. In contrast, these previous works [9]–[11] do
not partition their query objects.

7.2 Trajectory Nearest Neighbor Query over
Uncertain Data

Only a few works have addressed trajectory queries over
imprecise data. Chen et al. [12] study the problem of updat-
ing answers for continuous probabilistic nearest neighbor
queries in the server was studied. Computational overhead
is saved if the query answers are within specific proba-
bilistic bounds. Zheng et al. [32] study range queries over
trajectory data. Trajcevski et al. [13] investigate the problem
of efficiently executing continuous NN queries for uncer-
tain moving objects trajectories. Zheng et al. [14] study two
variants of k-NN query for fuzzy objects. They return the
qualified objects satisfying a probabilistic distance thresh-
old or a range of probability thresholds, respectively.

We use the imprecise region model in this paper. It allows
us to know which object may be the closest to a given trajec-
tory. In contrast, the uncertainty model described in [12]–[14]
contains a probability distribution, which describes the
chance that an imprecise object is located in each point
in the imprecise region. With this more complex uncertainty
model, it is possible to quantify the probability that an impre-
cise object is the nearest neighbor of any point in a given
trajectory. Note such a problem is beyond the scope of this
paper and therefore we leave it for future research.

Park et al. [8] study a similar problem as we do in this
paper. They also use an imprecise region to model the loca-
tions of an object and compute the object closest to a given
query segment. However, they only compute and return the
definite nearest neighbors but ignore objects that may be the
closest. This simplification renders significant answer loss
in the query result. Also, unlike our solution in this paper,
the techniques in [8] are specific to circular objects and are
inapplicable to arbitrary shaped imprecise objects.

8 CONCLUSION

In this paper, we study the problem of trajectory possi-
ble nearest neighbor query (TPNNQ) over imprecise data.
To overcome the low quality and inefficiency in simplified
methods, we study the geometric properties of u-bisector.
Based on that, we design an efficient query evaluation
approach that follows the filter-refinement paradigm. We
also generalize our solution to arbitrary shaped imprecise
data. Further, we propose theoretic analysis to estimate the
TPNNQ query result size. We conduct extensive experi-
ments to evaluate our proposals. The results show that
our query evaluation approach is efficient and scalable.
Meanwhile, our TPNNQ query result size estimation gives
very good hints.

In future, we would like to extend our solution to other
distance metrics (e.g., Manhattan distance) and support
other query variants (e.g., k possible nearest neighbor). We
are also interested in generalizing u-bisector to find nearest
neighbors with probabilistic guarantees.

XIE ET AL.: SCALABLE EVALUATION OF TRAJECTORY QUERIES OVER IMPRECISE LOCATION DATA 2043

ACKNOWLEDGMENTS

R. Cheng and X. Xie were supported in part by the Research
Grants Council of Hong Kong (GRF Projects 711309E,
711110) and in part by the University of Hong Kong (Seed
Funding Project 201211159083). M. L. Yiu was supported by
grant PolyU 5302/12E from Hong Kong RGC. The authors
would like to thank the anonymous reviewers for their
insightful comments.

APPENDIX

Lemma 8. Given two imprecise objects Oi, Oj and a line-
segment L(s, e), Oj can not be p ∈ L’s PNN if Oj does not
overlap with �(s, Oi) ∪�(e, Oi).

Lemma 9.•(Imprecise Region Decomposition.) Given
imprecise objects Oi and Oj, if their imprecise
regions are decomposed into two sets of sub-regions
P and Q, say ui = {ui(p)}p∈P and uj = {uj(q)}q∈Q,
Hi(j) = ∩p∈P∧q∈QHi(p)(j(q)).

Lemma 10. Given two triangle �ABC and �A′′B′′C′′, D and
D′′ are two midpoints on BC and B′′C′′, respectively. If |BC| =
|B′′C′′|, |AB| ≤ |A′′B′′| and |AC| ≤ |A′′C′′|, then |AD| ≤
|A′′D′′|.

Lemma 11. Given two imprecise objects Oi and Oj, whose
imprecise regions are circles: Oi(Ci, ri) and Oj(Cj, rj). A line-
segment L(s, e) has at most two intersection points with the
u-bisector: bi(j) and bj(i).

Due to space limit, we put the proofs of 8, 9, 10, and 11
in a technical report [19].

REFERENCES

[1] D. C. Scott. Available Now: A Volcanic Ash Detector for Aircraft
[Online]. Available:
http://www.csmonitor.com/World/Europe/2010/0420/Available
-now-a-volcanic-ash-detector-for-aircraft

[2] U. S. C. Guard. Announcement of 2011 International Ice Patrol
Services [Online]. Available:
http://www.uscg.mil/lantarea/iip/docs/AOS2011.pdf

[3] Wikipedia. Active Phased Array Radar [Online]. Available:
http://en.wikipedia.org/wiki/ActivePhasedArrayRadar

[4] Dow Employs GPS for Pipeline Worker Safety [Online]. Available:
http://www.automationworld.com/feature-8577

[5] L. Jesse, R. Janet, G. Edward, and V. Lee, “Effects of habitat on
GPS collar performance: Using data screening to reduce location
error,” J. Appl. Ecol., vol. 44, no. 3, pp. 663–671, Jun. 2007.

[6] R. Cheng, D. V. Kalashnikov, and S. Prabhakar, “Querying impre-
cise data in moving object environments,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1112–1127, Sept. 2004.

[7] H. Lu1, B. Yang, and C. S. Jensen, “Spatio-temporal joins on sym-
bolic indoor tracking data,” in Proc. IEEE 27th ICDE, Hannover,
Germany, 2011.

[8] K. Park, H. Choo, and P. Valduriez, “A scalable energy-efficient
continuous nearest neighbor search in wireless broadcast sys-
tems,” Wireless Netw., vol. 16, no. 4, pp. 1011–1031, 2010.

[9] R. Cheng, X. Xie, M. L. Yiu, J. Chen, and L. Sun, “UV-diagram: A
Voronoi diagram for uncertain data,” in Proc. ICDE, Long Beach,
CA, USA, 2010.

[10] X. Lian and L. Chen, “Efficient processing of probabilistic reverse
nearest neighbor queries over uncertain data,” VLDB J, vol. 18,
no. 3, pp. 787–808, 2009.

[11] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei,
“Probabilistic reverse nearest neighbor queries on uncertain
data,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 4, pp. 550–564,
Apr. 2010.

[12] J. Chen, R. Cheng, M. Mokbel, and C. Chow, “Scalable pro-
cessing of snapshot and continuous nearest-neighbor queries
over one-dimensional uncertain data,” VLDB J., vol. 18, no. 5,
pp. 1219–1240, 2009.

[13] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, and
I. F. Cruz, “Continuous probabilistic nearest-neighbor queries
for uncertain trajectories,” in Proc. 12th Int. Conf. EDBT, Saint
Petersburg, Russia, 2009, pp. 874–885.

[14] K. Zheng, G. P. C. Fung, and X. Zhou, “K-nearest neighbor search
for fuzzy objects,” in Proc. ACM SIGMOD, Indianapolis, IN, USA,
2010.

[15] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neigh-
bor search,” in Proc. 28th Int. Conf. VLDB, Hong Kong, China,
2002.

[16] X. Xie, R. Cheng, and M. L. Yiu, “Evaluating trajectory queries
over imprecise location data,” in Proc. 24th Int. Conf. SSDBM,
Chania, Greece, 2012.

[17] M. Kolahdouzan and C. Shahabi, “Voronoi-based k nearest neigh-
bor search for spatial network databases,” in Proc. 30th Int. Conf.
VLDB, Toronto, ON, Canada, 2004.

[18] H. Samet, Foundations of Multidimensional and Metric Data
Structures. San Francisco, CA, USA: Morgan Kaufmann, Inc.,
2005.

[19] X. Xie, M. L. Yiu, R. Cheng, and H. Lu. (2012).
“Trajectory Possible Nearest Neighbor Queries Over
Imprecise Location Data,” Tech. Rep. [Online]. Available:
http://dbtr.cs.aau.dk/DBPublications/DBTR-33.pdf

[20] K. Nikodem, “Midpoint convex functions majorized by midpoint
concave functions,” Aequationes Math., vol. 32, no. 1, pp. 45–51,
1987.

[21] A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, 2nd ed. New York,
NY, USA: Wiley, 2000.

[22] W. Stallings, Wireless Communications & Networks, 2nd ed. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[23] X. Xie, R. Cheng, M. Yiu, L. Sun, and J. Chen, “UV-diagram: A
Voronoi diagram for uncertain spatial databases,” VLDB J., vol.
22, no. 3, pp. 319–344, 2013.

[24] M. Hadjieleftheriou. Spatial Index Library Version 0.44.2b [Online].
Available: http://u-foria.org/marioh/spatialindex/index.html

[25] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Boston, MA, USA: Addison-Wesley, 2006.

[26] Z. Song and N. Roussopoulos, “K-nearest neighbor search for
moving query point,” in Proc. 7th Int. SSTD, Redondo Beach, CA,
USA, 2001.

[27] Z. Baihua and L. Dik, “Semantic caching in location-dependent
query processing,” in Proc. Adv. SSTD, Berlin, Germany: Springer,
2001.

[28] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee, “Location-
based spatial queries,” in Proc. ACM SIGMOD, San Diego, CA,
USA, 2003.

[29] X. Lian and L. Chen, “Probabilistic group nearest neighbor
queries in uncertain databases,” IEEE Trans. Knowl. Data Eng., vol.
20, no. 6, pp. 809–824, Jun. 2008.

[30] Y. Jin, R. Cheng, B. Kao, K.-Y. Lam, and Y. Zhang, “A filter-based
protocol for continuous queries over imprecise location data,” in
Proc. 21st ACM Int. CIKM, New York, NY, USA, 2012.

[31] P. K. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang,
“Nearest-neighbor searching under uncertainty,” in Proc. 31st
Symp. PODS, Scottsdale, AZ, USA, 2012.

[32] K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann,
“Probabilistic range queries for uncertain trajectories on road
networks,” in Proc. 14th Int. Conf. EDBT, Uppsala, Sweden,
2011.

Xike Xie received the B.Sc. and M.Sc. degrees
from the Xi’an Jiaotong University, China, in
2003 and 2006, respectively, and the Ph.D.
degree in computer science from the University
of Hong Kong, Hong Kong, in 2012. He is
currently a Research Assistant Professor in
the Department of Computer Science, Aalborg
University, Denmark. His current research inter-
ests include data uncertainty, spatiotemporal
databases, and mobile computing. He is a mem-
ber of the IEEE and ACM.

2044 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 8, AUGUST 2014

Man L. Yiu received the bachelor’s degree in
computer engineering and the Ph.D. degree in
computer science from the University of Hong
Kong, Hong Kong, in 2002 and 2006, respec-
tively. Prior to his current post, he was with
the Aalborg University, Denmark, for three years
from 2006. He is now an Assistant Professor
in the Department of Computing, Hong Kong
Polytechnic University, Hong Kong. His current
research interests include management of com-
plex data, in particular query processing topics

on spatiotemporal data and multidimensional data.

Reynold Cheng received the B.E. degree in
computer engineering and the M.Phil. degree
in computer science and information systems
from the University of Hong Kong (HKU), Hong
Kong in 1998 and 2000, respectively, and the
M.Sc. and Ph.D. degrees from the Department
of Computer Science, Purdue University, West
Lafayette, IN, USA, in 2003 and 2005, respec-
tively. He is an Associate Professor in the
Department of Computer Science, HKU. He was
the recipient of the 2010 Research Output Prize

from the Department of Computer Science of HKU. From 2005 to
2008, he was an Assistant Professor in the Department of Computing,
Hong Kong Polytechnic University, Hong Kong, where he received
two Performance Awards. He is a member of the IEEE, ACM, ACM
SIGMOD, and UPE. He has served on the program committees and
review panels for leading database conferences and journals. He is a
member of the Editorial Board of Information Systems and DAPD jour-
nal. He is also a Guest Editor for a special issue in TKDE. His current
research interests include database management, as well as querying
and mining of uncertain data.

Hua Lu received the B.Sc. and M.Sc. degrees
from the Peking University, China, in 1998 and
2001, respectively, and the Ph.D. degree in
computer science from the National University
of Singapore, Singapore, in 2007. Currently, he
is an Associate Professor in the Department
of Computer Science, Aalborg University,
Denmark. His current research interests include
databases, geographic information systems,
as well as mobile computing. Recently, he is
with indoor spatial awareness, complex queries

on spatial data with heterogeneous attributes, and location privacy
in mobile services. He has served on the program committees for
conferences and workshops including ICDE, ACM SIGSPATIAL GIS,
SSTD, MDM, PAKDD, APWeb, and MobiDE. He is a PC Co-Chair or
Vice Chair for ISA 2011, MUE 2011, and MDM 2012. He is a member
of the IEEE.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

