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Abstract The Voronoi diagram is an important technique
for answering nearest-neighbor queries for spatial databases.
We study how the Voronoi diagram can be used for uncer-
tain spatial data, which are inherent in scientific and business
applications. Specifically, we propose the Uncertain-Voronoi
diagram (or UV-diagram), which divides the data space into
disjoint “UV-partitions”. Each UV-partition P is associated
with a set S of objects, such that any point q located in P
has the set S as its nearest neighbor with nonzero proba-
bilities. The UV-diagram enables queries that return objects
with nonzero chances of being the nearest neighbor (NN)
of a given point q. It supports “continuous nearest-neighbor
search”, which refreshes the set of NN objects of q, as the
position of q changes. It also allows the analysis of nearest-
neighbor information, for example, to find out the number
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of objects that are the nearest neighbors of any point in a
given area. A UV-diagram requires exponential construction
and storage costs. To tackle these problems, we devise an
alternative representation of a UV-diagram, by using a set of
UV-cells. A UV-cell of an object o is the extent e for which
o can be the nearest neighbor of any point q ∈ e. We study
how to speed up the derivation of UV-cells by considering
its nearby objects. We also use the UV-cells to design the
UV-index, which supports different queries, and can be con-
structed in polynomial time. We have performed extensive
experiments on both real and synthetic data to validate the
efficiency of our approaches.

Keywords Voronoi diagram · Uncertain data ·
Nearest-neighbor query

1 Introduction

The Voronoi diagram, primarily designed for evaluating
nearest-neighbor queries over two-dimensional spatial point
[33], has raised plenty of research interest. This technique
has been extended to handle different related problems,
including database services in wireless broadcast environ-
ments [44,45]; high-dimensional query evaluation [7]; con-
tinuous location-based services [4,32,43]; and virus spread
analysis among mobile devices [41]. Conceptually, the
Voronoi diagram partitions the data space into disjoint
“Voronoi cells”, so that all points in the same Voronoi cell
have the same nearest neighbor. The task of finding the near-
est neighbor of a query point is then reduced to a point query.
Figure 1a illustrates a Voronoi diagram of seven points. Since
the query point q is located in the Voronoi cell of O2, O2 is
the nearest neighbor of q.

Is it possible to use the Voronoi diagram to perform
nearest-neighbor search on objects whose values are impre-
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Fig. 1 a Voronoi diagram. b UV-diagram

cise? Data values can be uncertain for a variety of reasons.
Consider a satellite image, which depicts geographical
objects like airports, vehicles, and people. Using machine
learning and human effort (e.g., community-based systems
like Wikimapia), the location of each object on the image
can be obtained. Due to the noisy transmission of satellite
data, the quality of these images can be affected, and we
may not be able to obtain very accurate locations. More-
over, if this location information is released to the public
(e.g, for research purposes), it may need to be preprocessed
for privacy purposes. In fact, recent proposals like [1,2]
have suggested to represent a user’s position as a larger
region, in order to lower the likelihood that a user is identi-
fied at a particular site. Uncertainty is also inherent in bio-
logical data management. For example, microscopy images
have been actively used to analyze the thickness of neuron
layers in the retina, as well as the extent of the area of a cell.
Due to factors like image resolution and measurement accu-
racy, it is hard to obtain exact values of the objects of inter-
est [28,29]. For this kind of data, techniques for evaluating
range queries, nearest-neighbor queries, and joins have been
developed. These queries return answers with probabilistic
guarantees, which reflect the confidence of answers due to
data uncertainty. For these applications, tools that resemble
the Voronoi diagram can be potentially useful. Specifically,
we would like to examine space-partitioning techniques for
performing a Probabilistic Nearest-Neighbor Query (PNN).
Given a query point q, a PNN returns the IDs of objects
with nonzero probabilities for being the closest to q, as well
as their probabilities. In the sequel, we denote the objects
returned by the PNN as answer objects, and their probability
values as qualification probabilities.

An uncertainty model that has been commonly used is to
assume that an object Oi has an “uncertainty region” and
a probability distribution function (pdf). This means that
the precise position of Oi can only be located inside the
(closed) region, with a pdf that describes the distribution
of the object’s position within the region. The uncertainty
region can have any shape, and the pdf is arbitrary (e.g., it can
be a uniform distribution, Gaussian, or a histogram). Here,
we assume that Oi has a two-dimensional circular uncer-

tainty region. We will also explain how our solution can be
extended to handle non-circular-shaped regions. We examine
how the Voronoi diagram should be defined to support PNN
execution. Specifically, we propose the Uncertain-Voronoi
diagram (or UV-diagram), where the nearest-neighbor infor-
mation of every point in the data space is recorded, based on
the uncertain objects involved. The UV-diagram provides a
basis for studying solutions that used the Voronoi diagram
for point data. It could be interesting, for instance, to extend
the solution of [44] to support uncertain data in broadcasting
services. Figure 1b illustrates an example of the UV-diagram
of seven uncertain objects, where the space is divided into
disjoint regions called UV-partitions. Each UV-partition P is
associated with a set S of one or more objects. For any point q
located inside P , S is the set of answer objects of q (i.e., each
object in S has a nonzero probability for being the nearest
neighbor of q). The highlighted regions contain points that
have two or more nearest-neighbor objects. As an example,
since q1 is inside the dashed region, O4 has a nonzero proba-
bility for being the nearest neighbor of q1; on the other hand,
q2 is located inside the dotted region, and O6 and O7 are
the answer objects for the PNN with q2 as the query point.
Observe that the Voronoi diagram, which indexes on spatial
points, is a special case of the UV-diagram, since a point
can be viewed as an uncertainty region with a zero radius.
Figure 1 compares the two diagrams.

The Voronoi diagram can also be used in other applica-
tions. For example, a continuous nearest-neighbor query,
which constantly returns the nearest neighbor (e.g., gas
station) of a moving point q (e.g., a vehicle), is a typical
operation in location-based services [32,43]. The Voronoi
diagram supports this query; particularly, the Voronoi cell
that contains the current location of q can be easily retrieved.
We will illustrate how to use the UV-diagram to track the
possible nearest neighbors of a moving point. Another use of
the Voronoi diagram is to perform data analysis or observe
interesting patterns of nearest-neighbor information. In [41],
the Voronoi diagram is used to investigate the spreading pat-
tern of bluetooth viruses among mobile users. We can also
use UV-diagram to provide valuable information about these
“nearest-neighbor patterns”. In Fig. 1b, if the dashed region is
large, it indicates that O4 has high chance to be placed in dif-
ferent clusters (assuming that a nearest-neighbor clustering
algorithm is used). Another interesting query is as follows:
given a region R, display all UV-partitions that intersect
with R, as well as the density of objects that can be the
nearest neighbor in each UV-partition. Hence, a UV-diagram
allows a user to visualize patterns about the nearest-neighbor
information.

Challenges of constructing UV-diagram. Although the
UV-diagram is useful, developing a UV-diagram is not sim-
ple. Notice that the UV-partitions are produced based on
uncertainty regions, which may not be points. Unfortunately,
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Fig. 2 A UV-diagram for 3 uncertain objects

efficient computational geometry methods for generating the
Voronoi diagram (e.g., line-sweeping [19]) cannot be readily
used for creating a UV-diagram, since these methods are pri-
marily designed for spatial points, rather than uncertainty
regions. Figure 2 depicts the space partition based on three
uncertainty regions represented as circles. Each UV-partition
(named Ri , where i = 1, . . . , 7) is irregular in shape and con-
tains different answer objects, listed on the side of the figure.
In general, given a set of uncertain regions, an exponential
number of UV-partitions can be created. For example, Fig. 2
shows that for three objects, there are seven UV-partitions,
each of which contains one of 23 − 1 = 7 combinations of
the three objects. Moreover, the number of edges of each
UV-partition can also be exponentially large! This makes it
computationally infeasible to generate and store these parti-
tions. It is also difficult to find out which of these irregular
UV-partitions contain a given query point. Indeed, our exper-
imental results show that a brute-force approach of comput-
ing and indexing UV-partitions over 40,000 objects requires
about 60 h. Therefore, a scalable method for constructing a
UV-diagram is highly desirable.

Our solutions. Instead of computing UV-partitions, we
have developed an alternative interpretation of the UV-
diagram. For every object Oi , we consider the extent ai such
that Oi can be the nearest neighbor of any point selected
from ai . We call this extent the UV-cell of Oi . We examine
some basic properties of a UV-cell (e.g., its size and num-
ber of edges). We show how to represent a UV-cell as a set
of objects, and develop novel methods to find this object set
efficiently. For example, our batch-construction algorithm
allows the UV-cells of objects that are physically close to
each other to be swiftly obtained. We propose a polynomial
time method for constructing an index for the UV-partitions,
called the UV-index. We adopt an adaptive-grid indexing
scheme, which has the advantage of adapting to different
distributions of uncertain objects’ positions. Our experimen-
tal results show that on both synthetic and real dataset, this
index can be constructed in a much shorter time. We also
explain how to use the UV-index to support different appli-
cations (e.g., PNN and nearest-neighbor pattern queries).

To summarize, our contributions are the following:

– Study the UV-diagram and its basic properties;
– Propose efficient algorithms for obtaining a UV-cell;
– Design the UV-index;
– Use the UV-index to support different queries; and
– Conduct experiments on real and synthetic datasets.

The rest of the paper is as follows. Section 2 summarizes
the related work. In Sect. 3, we present basic concepts of
the UV-diagram. In Sect. 4, we study the UV-cell and its
essential properties. We then explain how to represent UV-
cell efficiently in Sect. 5. An adaptive index based on the
UV-diagram is presented in Sect. 6. We present experimental
results in Sect. 7. Section 8 concludes the paper.

2 Related work

Data uncertainty management. Recently, researchers have
proposed to consider uncertainty as a “first-class citizen” in
a DBMS [13,14,18,39]. Two models can be used to rep-
resent uncertain data: tuple- and attribute- uncertainty. For
tuple uncertainty, each database tuple has a probability of
being correct [18]. Here, we assume attribute uncertainty,
which represents an attribute as a range of possible val-
ues and a probability distribution function (pdf) bounded
in the range [39]. Common queries for attribute uncertainty
include range queries [16], k-nearest-neighbors [28], sky-
lines [25,36], and top-k queries [20].

A few works have been proposed to evaluate PNN
queries over attribute uncertainty. In [15], numerical inte-
gration techniques have been presented. Probabilistic veri-
fiers, described in [13], can generate answer objects’ proba
bility bounds without performing expensive integration oper-
ations. Another way to compute answer probabilities is based
on sampling [24]. In this paper, we focus on the efficient
retrieval of answer objects.

To our understanding, the only indexing method avail-
able for nearest-neighbor search over uncertain data is to
use an index like the R-tree and the grid. The R-tree is
a disk-based structure that uses the minimum bounding
rectangles (MBRs in short) to cluster the uncertainty regions
of the objects, and organizes MBRs in a hierarchical manner
[6]. To evaluate PNN using the R-tree, a branch-and-prune
strategy has been proposed in [15], where MBRs that may
contain answer objects are traversed. However, this involves
a lot of I/O cost in reading index nodes and leaf pages [13,15].
Similar issues also occur with grids [31]. On the other
hand, retrieving answer objects from the UV-diagram is
essentially a point query search: given a point q, find the
objects associated with the UV-partition that contains q.
Hence, a UV-diagram can support more efficient PNN search.
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While it is not clear how an R-tree or grid over uncer-
tain objects can provide pattern analysis of nearest-neighbor
information (e.g., displaying the extent of a UV-partition),
we will show how to use the UV-diagram to provide this
information.

Other types of nearest-neighbor queries, like the “group
nearest-neighbors” [26], “reverse-nearest-neighbors” [10,
27], “uncertain queries” [8], and “continuous nearest-
neighbor queries” [12] have also been proposed. In these
works, the R-tree was used to support object retrieval. It is
interesting to study how the UV-diagram can be used to sup-
port the execution of these queries. In this paper, we study
how to use the UV-diagram to support the execution of con-
tinuous nearest-neighbor queries.

The Voronoi diagram is an important technique for
answering nearest-neighbor queries over spatial points [33].
It has been extended to support other applications (e.g., [7,
32,43–45]). It also facilitates the analysis of spreading pat-
terns of mobile viruses [41]. In [9], the k-th order Voronoi
diagram is used to evaluate a k-NN query. In [38], an index
called VoR-Tree is designed to merge Voronoi diagrams into
R-tree in order to answer various nearest-neighbor queries.
The Voronoi diagram has also been defined for boundaries
of circular objects in [23]. However, these objects are not
uncertain, and the method of [23] cannot be used to answer
PNN queries.

Few works have studied the application of the Voronoi
diagram on uncertain data. [8] Consider the “uncertain” near-
est neighbor query (UNN) over spatial points. Different from
PNN, the query is an uncertain region, not a query point. To
evaluate a UNN, the authors propose to use a Voronoi dia-
gram over 2D points. The portions of the Voronoi cells that
overlap with the query’s uncertainty region are then used to
compute answer probabilities. [22] Consider the clustering
of uncertain attribute data, where a Voronoi diagram is con-
structed for centroid points. Notice that [8,22] do not con-
struct a Voronoi diagram for uncertain data. On the other
hand, the UV-diagram is a Voronoi diagram tailored for
attribute uncertainty.

In [21,37], the Voronoi diagram was modified to identify
an imprecise object that is surely the nearest object of a query
point q. However, the UV-diagram returns object(s) that may
have chance to be the nearest neighbor of q, and can be used to
answer probabilistic nearest-neighbor queries. We also study
a database index for the UV-diagram, which has not been
examined in these two works.

This paper is an extension of [17]. Here, we improve the
performance of UV-index construction by proposing batch
pruning, which reduces the workload of generating UV-cells
for a set of nearby objects. We provide a more detailed study
of the basic properties of a UV-cell (e.g., its size and number
of edges). We also examine how the UV-index can be used to
answer PNN queries for a moving query point. We conduct

new experiments to validate the effectiveness of these
approaches.

3 The UV-diagram

We now present the basic notions of the UV-diagram.
We introduce the UV-cell, an alternative presentation of

the UV-diagram, in Sect. 3.1. We then study some applica-
tions of the UV-diagram, in Sect. 3.2.

3.1 The UV-cell

As discussed before, the UV-diagram can be expensive to
construct. We hence propose an alternative representation of
the UV-diagram, by using UV-cells. We will later explain
how the UV-cells facilitate efficient construction of the UV-
diagram. Now, let O1, O2, . . . , On be the IDs of a set O of
uncertain objects, and D be a two-dimensional space that
contains these objects. For simplicity, we assume that D is a
square. The UV-cell is then defined as follows:

Definition 1 A UV-cell of Oi , denoted by Ui , is a region in
D such that Oi has a nonzero probability to be the nearest
neighbor (NN) of a point q, where q ∈ Ui .

Figure 2 illustrates the UV-cells for O1, O2, and O3. The
boundary of each UV-cell is labeled with the ID of the object.
For example, the UV-cell of O2 is a region enclosed by solid-
line segments.

The UV-cell can be used to recover the UV-partitions (i.e.,
disjoint regions of a UV-diagram). In fact, a UV-partition that
contains q is the intersection of all UV-cells that contain q.
This is because the objects associated with these UV-cells
have nonzero qualification probabilities for q. For instance, in
Fig. 2, the UV-cells of both O1 and O3 intersect at partitions
R5 and R7. This means that when q is located at any of these
partitions, both O1 and O3 are the answer objects. Since R7

is intersected by O2’s UV-cell, O2 is also associated with
R7. Therefore, a UV-diagram is the union of all objects’ UV-
cells. Besides, the UV-cells of all objects can be used to output
which object(s) is/are the nearest neighbor of q with nonzero
probabilities.

Table 1 shows the symbols used in this paper. Notice that
if there is at least one uncertain object in domain D, any point
in D must be covered by at least one UV-cell. In particular,
if Oi is the only object in domain D, then its UV-cell is
exactly D.

3.2 Applications of the UV-diagram

The UV-diagram supports a number of applications. Let
us now explain how to use the UV-diagram to handle the
following queries:
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Table 1 Notations and meanings

Notation Meaning

Objects and query

D Domain space (a square)

O A set of uncertain objects (O1, O2, . . . , On)

M BC(Oi ) Minimum bounding circle of object O

(ci , ri ) Center and radius of Oi ’s uncertainty region

q Query point of a PNN

ρ Density of objects in D

UV-diagram

�(c, r) A circle centered at c with radius r

dist (q, ci ) Euclidean distance between q and ci

distmin(q, Oi ) Minimum distance of Oi from q

distmax (q, Oi ) Maximum distance of Oi from q

Ui UV-cell of Oi

Pi Possible region of Oi

Ei ( j) UV-edge of Oi w.r.t. O j

Xi ( j) ( Xi ( j) ) Outside (inside) region of Oi w.r.t. O j

Fi r-Objects of Oi , where Fi ⊆ O

Ci cr-Objects of Oi , where Ci ⊆ O

M Maximum no. of non-leaf nodes

s Estimated size of a UV-cell

Tθ Split threshold

1. The Probabilistic Nearest-neighbor (PNN) Query. This
query has been mentioned in Sect. 1. To evaluate a PNN
for a given point q, we can find out the UV-partition that
contains q. The set A of objects associated with this partition
are those that can be the nearest neighbor of q. Notice that
the UV-partitions can be obtained by finding the union of all
the UV-cells. For each object Oi ∈ A, the probability that
Oi is the closest to q can be efficiently evaluated by using
solutions in [13,15,24].

2. The Continuous PNN Search (CPNN), an extension of
the PNN, is a query that resides in the processing server for
an extensive period of time. Different from PNN, the position
of a query point q changes with time [12]. The objective of
the CPNN is to refresh the PNN answer, when the value of q
changes. This query can be used in transportation services,
where q can be a moving vehicle or person, and the data can
be the geographical objects retrieved from satellite images.
Assuming that q reports its position to the server periodically,
the UV-diagram can conveniently support CPNN. Suppose
that the server receives a new position of q, say, q1. A simple
solution is to issue a new PNN for q1. However, if q1 is located
in the same UV-partition that contains the old position of q,
then it suffices to use the objects associated with that UV-
partition to compute the query answer for q1. The cost of
retrieving the UV-partition that contains q1 is thus saved.

3. The UV-partition Query. The UV-diagram can also be
used to retrieve the distribution and pattern information about
nearest neighbors, which can be useful for analysis purposes
(e.g., [41]). One such “pattern-analysis” operation is the UV-
partition query. Given a region R, this query retrieves all
UV-partitions inside R and the “density” of each partition
R j (which is equal to the number of objects associated with
R j , divided by the area of R j ). This allows a user to examine
the density distribution of the nearest neighbors in his/her
interested area R.

4. The UV-cell Query. This is another pattern analysis
operation. Given an object Oi , it returns the extent and the
area of Oi ’s UV-cell. The query user can then obtain the area
of the region where Oi may be the nearest neighbor. This
area can reflect the “influence” of Oi (in terms of the nearest
neighbor information). The shape of the UV-cell can also be
displayed on the user’s computer screen for further analysis.

Since the UV-diagram is expensive to construct, in Sect. 6,
we revisit how the above queries can be implemented by
the UV-index, which is an approximate version of the UV-
diagram. We next address the UV-cell in detail.

4 More about UV-cells

We now investigate the UV-cell, which is important for
constructing the UV-index, in more details. We first present
a simple method for constructing a UV-cell in Sect. 4.1. We
then examine the shape of a UV-cell in Sect. 4.2. The number
of edges of a UV-cell, and its size, is studied in Sects. 4.3 and
4.4, respectively.

4.1 Constructing a UV-cell

Let us first address the relationship between a query point and
UV-cells. Let p be a point in D, and let distmin(Oi , p) and
distmax (Oi , p) be the minimum and the maximum distances
of object Oi from p, respectively. Figure 3 illustrates two
uncertain objects, Oi and O j . For any point p on the solid
line shown, we require the following property to hold:

distmin(Oi , p) = distmax (O j , p) (1)

We call this solid line the “UV-edge of Oi with respect to O j ”,
denoted by Ei ( j). A special property of this edge is that any
point p at the region on the side of Ei ( j) closer to O j has its
maximum distance from O j , that is, distmax (O j , p), shorter
than its minimum distance from Oi , that is, distmin(Oi , p).
On the other hand, if p is on the opposite side of Ei ( j), then
distmax (O j , p) ≥ distmin(Oi , p).

The UV-edge allows us to decide whether an object is
an answer object (i.e., an object with nonzero qualifica-
tion probabilities). In Fig. 3, q0 is on the right of Ei ( j),
which is also closer to O j than Oi . Thus, distmax (O j , q0) <
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Fig. 3 The UV-edge

distmin(Oi , q0). In other words, O j is always closer to q0

than Oi , and Oi has no chance to be the nearest neighbor
of q0. As another example, q1 is on the left of Ei ( j). Since
distmin(Oi , q1) ≤ distmax (O j , q1), Oi has a nonzero qual-
ification probability. Hence, given Ei ( j), if the query point
is on the right of Ei ( j), Oi can be pruned.

We can now present a simple method for constructing a
UV-cell. Let us define the outside region:

Definition 2 The outside region of UV-edge Ei ( j), denoted
by Xi ( j), is the region on one side of Ei ( j) such that for
any point q ∈ Xi ( j), O j is always closer to q than Oi . We
call the complement of Xi ( j) the inside region, denoted by
Xi ( j).

Given a set of n objects O , the UV-cell Ui of object Oi is
essentially the intersection of all other n − 1 inside regions:

Ui =
⋂

j=1...|O|∧ j �=i

Xi ( j) (2)

Definition 3 A possible region of object Oi , denoted by Pi ,
is the intersection of a set of inside regions:

Pi =
⋂

j=1...|R|∧ j �=i∧R⊆O

Xi ( j) (3)

According to the definition, the possible region should be
an area that completely covers the UV-cell of Oi . An example
of an object’s possible region is the domain D, since D must
cover any UV-cell. Here, R is the empty set. Notice that a
UV-cell is also a possible region.

In Fig. 3, the outside region of the UV-edge Ei ( j) is the
area on the right of the solid line. Notice that since q0 is in
the outside region of Ei ( j), O j is closer to q0 than Oi , and
thus Oi cannot be q0’s nearest neighbor.

Given an object Oi , if we know all the outside regions
Xi ( j) (where j = 1, . . . , n ∧ j �= i), then Oi ’s UV-cell
can be constructed by excluding all these regions from D.

Algorithm 1 Generating a UV-cell
Input: Uncertain objects O = {O1, O2, . . . , On}
Output: U1, U2, . . . , Un

1: for each Oi ∈ O do
2: Pi ← D;
3: for each O j ∈ O ∧ j �= i do
4: Ei ( j)← UV-edge of Oi w.r.t. O j ;
5: Xi ( j)← outside region of Ei ( j);
6: Pi ← Pi − Xi ( j);
7: end for
8: Ui ← Pi ;
9: end for
10: return U1, U2, . . . , Un

Algorithm 1 illustrates the basic method for constructing
UV-cell for n objects. The possible region of each object Oi is
first initialized as the whole space (Step 2). Then, for each O j ,
we compute the UV-edge of Oi and its corresponding outside
region (Steps 4 and 5). The possible region, which contains all
the points that may have Oi as one of their nearest neighbors,
is then “reduced” by the outside region that overlaps with it
(Step 6). The UV-cell of Oi is then assigned to be the final
possible region (Step 8).

We now discuss Step 6 in more detail. This step uses Ei ( j)
to “refine” the edges of Pi , that is, find the intersections of
Ei ( j) with Pi . Specifically, for each UV-edge e of Pi , we
compute the intersection of Ei ( j) and e. Since Ei ( j) is a
hyperbola, we can use the techniques in [3] to do this. The
resulting intersections partition Ei ( j) into some segments.
For each segment s, there are two scenarios:

– Case 1: s is inside Pi : We refine Pi by using s as one
of the new edges of Pi . Some existing edges of Pi are
removed if necessary.

– Case 2: s is outside Pi (except the end points of s): Pi

cannot be changed by s, and we do not have to do anything
to handle this case.

After we have visited all the segments of Ei ( j), we have
found all the intersections of Ei ( j) and Pi . Moreover, Pi is
refined, and Step 6 is completed.

As an example of Step 6, consider Fig. 4a, which illustrates
Pi , and Fig. 4b, which shows the result of intersecting Ei ( j)
and Pi . The segment between v4 and v5 is inside Pi . Since
Case 1 is satisfied, the existing edges between v4 and v5 (i.e.,
(v4, v

′
1) and (v′1, v5)) are replaced by segment (v4,v5). On the

other hand, (v5, v6) is outside Pi , and so Case 2 is satisfied.
There is no need to change any edges of Pi between v5 and
v6. The process is repeated until all the segments are visited.
As shown in Fig. 4b, vertices v′1, v′2, and v′3 are removed from
Pi , while v4, . . . , v9 are added to it.

Note that the order of selecting the object for refining Oi ’s
possible region (Steps 4–6) does not affect the correctness
of the algorithm; the UV-cell is produced by “shrinking” the
possible regions by using the outside regions of other objects.
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Fig. 4 a Before checking Ei ( j). b After checking Ei ( j)

Also, not all objects are useful in shaping a UV-cell. In Sect. 5,
we will explain how to prune away these objects.

4.2 The shape of a UV-cell

We now study a mathematical representation of the UV-cell.
We also derive the number of UV-edges of a given UV-cell.
Here, we assume that the uncertainty region of Oi is a circle,
with center ci and radius ri , with ri > 0. Later, we discuss
the UV-cell of a “point uncertainty” (i.e., ri = 0), and also
uncertainty regions that are not circle in shape.

For any point q ∈ D, we can observe from Fig. 3 that:

distmin(Oi , q) =
{

dist (q, ci )− ri if q /∈ �(ci , ri )

0 otherwise
(4)

distmax (O j , q) = dist (q, c j )+ r j (5)

where �(ci , ri ) denotes a circle with center ci with radius
ri . Since r j > 0, distmax (O j , q) must also be positive. By
substituting Eqs. 4 and 5 into Eq. 1, we have:

dist (q, ci )− dist (q, c j ) = ri + r j (6)

Let the coordinates of ci and c j be (xi , yi ) and (x j , y j ). Let

fx = 1
2 (xi + x j ) and fy = 1

2 (yi + y j ). Let cosθ = (x j−xi )

dist (ci ,c j )

and sinθ = (y j−yi )

dist (ci ,c j )
. Then, Eq. 6 becomes:

x2
θ

a2 −
y2
θ

b2 = 1 (7)

where

– a = ri+r j
2 , c = dist (ci ,c j )

2 , and b = √c2 − a2;
– xθ = (x − fx ) cos θ + (y − fy) sin θ ;
– yθ = ( fx − x) sin θ + (y − fy) cos θ .

Essentially, Eq. 7 is a hyperbolic equation, with ci and c j as
the foci, rotated by θ in an anti-clockwise sense [3]. Figure 3
illustrates that the UV-edge of Oi w.r.t. O j (the solid line) is
a hyperbola.

Equation 7 shows that a UV-cell is composed of the inter-
sections of one or more UV-edges, which are hyperbolas.
Since a hyperbola is a conic curve, an UV-edge must be con-
cave in shape. In Fig. 2, apart from the edges of the domain
space, the UV-cells of the three objects have concave edges.
Note that Eq. 7 has two curves, which represent the UV-edges
for each pair of objects involved. For example, in Fig. 3, the
solid line is the UV-edge of Oi w.r.t. O j , and the dotted line
is the UV-edge of O j w.r.t. Oi .

If two objects overlap, then dist (ci , c j ) < ri + r j , and in
Eq. 7, b is not a real number. Physically, this means Ei ( j)
cannot be found, and we can treat Xi ( j) as an empty region.

We now revisit Algorithm 1. Step 4 is done using Eq. 7.
Step 5 is performed by observing that the outside region of
a UV-edge must be convex in shape. To perform Step 6 (i.e.,
cutting the possible region by an outside region), we compute
the intersections of hyperbola equations using linear algebra
techniques [3], which are detailed in Appendix 9.

Let us state an interesting observation about a possible
region, which we will use later.

Lemma 1 The possible region of an uncertain object is a
connected region without any hole inside it.

The proof of this lemma, detailed in Appendix 10, shows that
a contradiction will result if a possible region contains a hole.
We next discuss the shape of the UV-cell for other kinds of
uncertainty regions.

(1) Point uncertainty. Given two objects Oi and O j ,
suppose that at least one of them has no uncertainty, i.e., ri

or r j is equal to zero. There are two scenarios:

– If ci �= c j , without loss of generality, assume that ri = 0.
Then, Ei ( j) can be obtained by Eq. 7, because all vari-
ables used in that equation are real numbers, and a, b are
nonzero values. Notice that Ei ( j) becomes a perpendic-
ular line segment when ri = r j = 0.

– If ci = c j , then Ei ( j) does not exist. If ri �= r j , Eq. 1
does not hold, and the UV-cell of Oi , or Ui , does not
exist. If ri = r j , Eq. 1 always holds, and Ui = D.

(2) Non-circular uncertainty regions. To find the UV-
cells for non-circular uncertainty regions, our first attempt is
to derive the UV-edges for objects with rectangular uncer-
tainty regions. As shown in Fig. 5, the UV-edge between
objects O1 and O2 is a piecewise-quadratic line segments.
This is too expensive to compute and store. Instead, for each
object Oi , we convert its non-circular uncertainty region to
a circle, M BC(Oi ), which minimally contains it. Then, we
use Algorithm 1 to construct the UV-cells for these circles.
We claim that M BC(Oi )’s UV-cell always covers that
of Oi .

To understand why, notice that if some object O1 may be
q’s nearest neighbor, then M BC(O1) can also be q’snearest
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Fig. 5 A UV-Edge for rectangular regions

neighbor. First, for all i = 1, . . . , n, distmin(q, O1) <

distmax (q, Oi ). Also,

{
distmin(q, M BC(Oi )) < distmin(q, Oi ),

distmax (q, M BC(Oi )) > distmax (q, Oi )

Hence, distmin(q, M BC(O1)) < distmin(q, O1), which
is less than distmax (q, Oi ), and is less than distmax (q,

M BC(Oi )). Therefore, M BC(O1) is q’s possible nearest
neighbor, among {M BC(Oi )}ni=1. If q is situated in the
UV-cell of O1, it must also be located in the UV-cell of
M BC(O1). In other words, M BC(Oi )’s UV-cell always
cover that of Oi . Therefore, in answering a PNN, if we found
that M BC(Oi ) contains q, we have to verify whether Oi can
be the nearest neighbor of q. In the sequel, we assume that
all uncertainty regions are circular.

4.3 The number of UV-edges of a UV-cell

Let us now examine the number of UV-edges of a UV-cell.
As Algorithm 1 shows, for every object Oi , its UV-edge with
respect to other objects is used to refine its possible region
Pi (Step 6). This requires computing the intersections of all
edges of Pi with a new UV-edge Ei ( j), for some object O j .

As shown in Fig. 4b, Ei ( j) intersects with Ui ’s UV-edge
(v′1, v′2) at v5 and v6. Thus, (v′1, v′2) is replaced by three edges:
(v4, v5), (v5, v6), and (v6, v7).

From this example, we can see that Ei ( j), a hyperbolic
curve, can have at most 2 intersections with a UV-edge of
Pi ; and 3 new edges can be created for Pi as a result. In the
worst case, the number of edges of Pi increases by 3 times
whenever a new edge is considered.

In general, to obtain Ui , we have to take into account n−1
objects. Hence, the number of edges of the UV-cell has an
(exponential) upper bound of O(3n).

Moreover, computing intersections between hyperbolas is
complex. In our implementation, 60 h are needed to create a
UV-diagram of 40,000 objects by using Algorithm 1 . We will
explain how to find an efficient representation of the UV-cell,
in Sect. 5.

Fig. 6 Estimating the size of a UV-cell

4.4 The size of a UV-cell

We now estimate the size of a UV-cell, under the assumption
that all objects are evenly placed. We consider the hexagonal
lattice model, where each object has six neighbors whose
centers are equidistant from each other, with distance d0.1

We assume that the uncertainty region sizes of all objects are
the same, with a radius of r . Figure 6 illustrates seven objects
configured in this manner. Given an object O1, we assume
that the UV-cell U1 of O1 is not trimmed by the boundary of
the domain space. That is, its UV-cell is solely determined by
the uncertainty regions of other objects. Our goal is to find the
dimension s of a square that contains U1. This square should
be a good approximation of U1.2

Let H(d) be a set of six objects whose uncertainty region’s
centers have the same distance d from that of O1. For
example, Fig. 6, the centers of the uncertainty regions of
H(d) = {O2, . . . , O7} are d units away from that of O1. We
claim the following:

Lemma 2 Let P1,d be the possible region of O1 generated
by the objects in H(d). The length of the square, which is
centered at c1 and minimally covers P1,d , is as follows:

s(d) = 2d2 − 8r2

√
3d − 4r

ifd >
4r√

3
(8)

In the sequel, we use s(d) to denote the size of P1,d .
The proof of Lemma 2 can be found in Appendix 11. Notice
that P1,d contains U1.

Now, observe that the centers of the six objects in H(d0)

form the vertices of a hexagon called H E X1. This hexagon
is illustrated in Fig. 7. As shown in [35], a larger hexagon

1 The centers of uncertainty regions form the vertices of n hexagons,

each of which has an area of
√

3d2
0

2 . Since |D| = n×
√

3d2
0

2 , d0 =
√

2|D|√
3n

.

2 As shown in Fig. 2, a UV-cell can be irregular in shape, and so estimat-
ing its size is not easy. Thus, we use a simple data model here. We will
also explain how these results can be applied to uniformly distributed
data, in Sect. 5.2.

123



UV-diagram 327

Fig. 7 Illustrating O1 and its neighbors

H E Xi+1, formed by the centers of six other objects, can
be obtained by rotating H E Xi by π

6 radians, and scaling it
by a factor

√
3. Figure 7 shows how H E X2 and H E X3 are

generated in this way. We then obtain the following result.

Theorem 1 If d0 > 2
√

3r , then the square that minimally
contains U1 has a size of s(d0) obtained from Eq. 8.

The main idea of the proof is that when d0 > 2
√

3r , the
six objects that form H E X1 alone contribute to the edges of
O1’s UV-cell. Its details can be found in Appendix 12.

An iterative approach of finding d∗. We now explain how
to derive the size of a square that contains U1, for any value of
d0. Our goal is to find d∗ among different values of d, such
that the square covering P1,d∗ is the smallest. We observe
from the first-order derivative of s from Eq. 8 that d+ =
2
√

3r is the only inflexion point, such that s monotonously
decreases when 4r√

3
< d < d+, and monotonously increases

when d ≥ d+. However, this result cannot be readily used,
since we may not be able to find six neighbors of O1 that are
exactly d+ units apart from each other. We thus estimate d∗ as
follows. We first consider the objects on H E X1, and compute
s(d0). We then consider H E X2, where each vertex is

√
3d0

from c1, and evaluate s(
√

3d0). We repeat this process, until
the six objects found are dx units apart from each other, where
(1) dx > 4r√

3
and (2) s(dx ) < s(

√
3dx ). Then, we set d∗ =

dx , and use Lemma 2 to find s.
The above process only examines the values of d at

d0,
√

3d0, (
√

3)2d0, . . . ,
√|D|. Hence, at most

⌈
log√3

(
√|D|/d0)

⌉
trials are needed to find d∗. Although this pro-

cedure does not find the square that tightly contains a UV-
cell, our experiments show that the approximation is highly
accurate.

5 Efficient UV-cell generation

Since generating a UV-cell is inefficient, our strategy is to
avoid computing it directly. Instead, we represent a UV-cell as
a set of candidate reference objects (cr-objects), which can be
efficiently derived. As will be discussed in Sect. 6, cr-objects
can be used to develop an approximate representation of the
UV-diagram. Section 5.1 outlines the algorithm of yielding
cr-objects. We explain the preparation phase of this algorithm
as well as two techniques for finding these objects quickly,
in Sects. 5.2 and 5.3, respectively. Section 5.4 discusses how
to derive cr-objects efficiently for a group of nearby objects.

5.1 Reference objects and candidate reference objects

Recall from Algorithm 1 that the UV-cell of an object Oi ,
that is, Ui , is the result of repeatedly subtracting the outside
region of other objects (i.e., Xi ( j)) from its possible region,
Pi . In fact, not all outside regions are useful for refining Pi . In
particular, if the UV-edge of Oi corresponding to O j , that is,
Ei ( j), does not intersect with Pi , then Pi cannot be shrinked
by Xi (j). We call an object O j a reference object (or r-object)
of Oi , if O j defines an edge of Oi ’s UV-cell. We also denote
Fi ⊆ O to be the set of r-objects of Oi . The set Fi contains
objects whose outside regions are responsible for defining
the UV-cell of Oi . In Fig. 2, for example, the set of r-objects
of O3, that is, F3, is {O1, O2}.

Given that the r-objects for each object are known, our
solution (to be shown in Sect. 6) can use r-objects to develop
an alternative representation of the UV-diagram. This solu-
tion is much cheaper than Algorithm 1 , which requires exact
UV-cells to be computed. However, finding Fi itself is diffi-
cult because we do not know the UV-cell of Oi . Our strategy
is to find a small set Ci of objects, where Fi ⊆ Ci . We call
Ci the candidate reference objects (or cr-objects in short).
We next show how Ci can be derived without acquiring the
exact UV-cell of Oi . In Sect. 6, we study an indexing solution
based on cr-objects.

Algorithm 2 (getcrObject(Oi , S)) presents a
procedure that derives the cr-object set Ci for object Oi ,
based on a set S of objects. To retrieve Ci , we can sim-
ply invoke getcrObject(Oi , O). In this algorithm, Step
1 (initPossibleRegion) creates a possible region Pi

based on a small number of objects retrieved from S. In
Step 2, the “index level” pruning (or iPrune) yields a set
I of objects that may contribute edges to the UV-cell. Step
3 applies “computational level” pruning (or cPrune) on I ,
and produces Ci . Here, we assume that an R-tree index has
been built on the uncertainty regions of the objects in O .
Each object’s information (e.g., uncertainty region and pdf)
is stored in the disk. Next, we explain how to generate an
initial possible region (Sect. 5.2), based on which two tech-
niques for pruning non-cr-objects are developed (Sect. 5.3).
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Algorithm 2 getcrObject(Oi , S)
Input: Uncertain object Oi
Output: cr-object Ci

1: Pi ← initPossibleRegion(Oi , S)
2: (Pi , I )← iPrune(Pi)
3: Ci ← cPrune(Pi , I)

5.2 Generating a possible region

In Step 1 of Algorithm 2 , we retrieve a small number of
objects, called seeds, from a set of objects S. These seeds are
used to generate an “initial” possible region, using a routine
similar to Steps 3–7 of Algorithm 1. This region is used by
other pruning methods to produce cr-objects.

Seeds have to be selected with care. If seeds are randomly
selected, a big initial region can be produced. This region
may be intersected by many outside regions, resulting in a
poor pruning efficiency. Ideally, we would like the initial
possible region generated by these seeds to closely resemble
the UV-cell. We would also prefer the number of these seeds
to be small, so that the possible region can be constructed
efficiently. We next present two simple steps to find “good”
seeds.

Step (i). We issue a k-Nearest-Neighbor Query (k-NN) on
S, by using the center ci of Oi ’s uncertainty region as the
query point. The k objects, which are not Oi and whose
regions’ minimum distances from ci are the shortest, are
obtained. Since these objects are close to Oi , we consider
them to have a good chance for defining the UV-edges
of Ui . They are thus good candidates for being seeds.
Note that if S = O , then the R-tree on O can be used to
support the k-NN search.
Step (ii). Out of the k objects obtained from Step (i), we
select ks seeds. These objects are chosen in way such
that they are evenly spread, in order to generate a “good”
possible region. In particular, we divide the domain D
into ks equally sized sectors, centered at ci . For each
sector, the object closest to ci is a seed.

The above method does not guarantee that all ks seeds can
be found (e.g., no seeds can be found if a sector is empty).
Even if this happens, however, we can still obtain an initial
possible region without affecting the latter steps. This region
may be larger, though. In our experiments, ks = 30, and in
most cases, all seeds can be found. For each object, evaluating
a k-NN query requires O(|S|) time, selecting seeds costs
O(k) time, and constructing an initial region needs O(ks)

time. Hence, the cost of this step is O(|S| + k + ks).
Model-based seed selection. We can use the results in

Sect. 4.4 to estimate the value of k derived from Step (i). We
assume that all the objects in domain D follow the hexago-
nal lattice model. First, we find the size s of the square that

bounds the UV-cell of Oi . Particularly, we check whether
the condition for Theorem 1 is satisfied. If this is true, we
let dmin = d0. Otherwise, we use the iterative approach,
described in Sect. 4.4, to find d∗, and let dmin = d∗. Then,
we find s(dmin) by using Lemma 2. Figure 6 shows that the
maximum distance of any point on the possible region Pi

from the center ci of Oi ’s uncertainty region is s
2 . If we draw

a circle of radius (s − r), centered at ci , then Theorem 3 (to
be discussed in Sect. 5.3) tells us that only objects located
in this circle can be the reference objects Fi . We can then
estimate k as the expected number of objects in�(ci , s− r):

k = 
π(s − r)2ρ� (9)

We can also use the above approach in a database whose
locations are uniformly distributed in D. We first compute
the average uncertainty radius ra of these objects. We then
suppose that all these objects have the same radius ra . We also
evaluate the distance of each object from its nearest neighbor,
and find the average da of these distances. The values of the
radius r and the distance d0 of the hexagonal model are set
to be ra and da , respectively. We also compute the density
ρ, which is equal to No. of objects inD

Area of D . Our experiments show
that this model can enhance the seed selection process for
uniformly distributed data.

5.3 I-Pruning and C-Pruning

Once the possible region has been initialized, we perform
I-pruning and C-pruning (Steps 2 and 3 of Algorithm 2), in
order to remove objects that cannot constitute a UV-edge to
the UV-cell. Let us now examine these two steps in more
details.

Step 2: Index Level Pruning. To understand this step, let
us consider an object Oi , its possible region Pi , and another
object O j , which has not yet been considered for refining
Pi . Our goal is to establish the necessary and sufficient con-
dition(s) for O j to have effect on the shape of Pi . We first
claim the following.

Lemma 3 Pi = Pi − Xi ( j), if and only if for every point p
inside Pi , distmax (p, O j ) > distmin(p, Oi ).

Proof (If) For every p ∈ Pi , p cannot be on Xi ( j). If
this is false, then O j is always closer to p than Oi , i.e.,
distmax (p, O j ) ≤ distmin(p, Oi ) (Definition 2). This vio-
lates the condition that distmax (p, O j ) > distmin(p, Oi ).
Hence, p /∈ Xi ( j), and Pi = Pi − Xi ( j).

(Only if) Suppose there exists a point p′ inside Pi , such
that distmax (p′, O j ) ≤ distmin(p′, Oi ). Then O j is always
closer to p′ than Oi , and Oi cannot be the nearest neighbor
of p′. This implies that p′ must be excluded from Pi after
O j is considered. Hence, Pi cannot be equal to Pi − Xi ( j),
resulting in a contradiction.
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Fig. 8 Our pruning methods

Let b(Pi ) be the boundary of Pi . We have:

Theorem 2 Pi = Pi − Xi ( j) if and only if for every point
p ∈ b(Pi ), distmax (p, O j ) > distmin(p, Oi ).

Proof (If) Let us first show that:

∀p′′ ∈ Pi , distmax (p′′, O j ) > distmin(p′′, Oi ) (10)

Suppose by contrary that the above is not correct. That
is, ∃p′ ∈ Pi − b(Pi ), such that distmax (p′, O j ) ≤
distmin(p′, Oi ). If we let P ′i be Pi − Xi ( j), then p′ ∈ Xi ( j)
and p′ /∈ P ′i . From the given condition, we can see that for
every p ∈ b(Pi ), p /∈ Xi ( j), and p ∈ P ′i . Thus, P ′i must
have a hole (p′) inside it. However, this must not be true,
according to Lemma 1.

Hence, Eq. 10 is true. Using Lemma 3, we see that Pi =
Pi − Xi ( j), and the so the “if” part is correct.

(Only if) From Lemma 3, we know that for every point
p ∈ Pi , distmax (p, O j ) > distmin(p, Oi ). Since b(Pi ) ⊆
Pi , the “only if” part is correct.

Essentially, if we want to examine whether O j has any
effect on Pi , it suffices to consider the points on Pi ’s bound-
ary, instead of all points in Pi . We next present the following
theorem, which forms the basis of I-pruning.

Theorem 3 Given an object Oi with center ci and radius ri ,
let w be the maximum distance of Pi from ci . Let Cout be a
circle, with center ci and radius 2w− ri . For another object
O j , if c j /∈ Cout, then Pi = Pi − Xi ( j).

Proof Denote Cin by a circle with center ci and radius w.
Figure 8(a) illustrates Oi , its possible region Pi (in solid
lines), Cin and Cout. Let us suppose on the contrary that Pi

is not equal to Pi − Xi ( j), that is, Pi can be reshaped by the
UV-edge of O j . Then, using Theorem 2, there must exist a
point p on the boundary of Pi such that:

distmax (p, O j ) ≤ distmin(p, Oi ) (11)

Using Eqs. 4 and 5, we have:

dist (p, c j )+ r j ≤ dist (p, ci )− ri

⇒ dist (p, c j )+ dist (p, ci )+ r j ≤ 2 · dist (p, ci )− ri

⇒ dist (p, c j )+ dist (p, ci ) ≤ 2 · dist (p, ci )− ri

⇒ dist (ci , c j ) ≤ 2 · dist (p, ci )− ri

(12)

since dist (ci , c j ) ≤ dist (p, c j ) + dist (p, ci ) due to the
triangular inequality. Now, dist (p, ci ) ≤ w, so Eq. 12
becomes:

dist (ci , c j ) ≤ 2w − ri (13)

This implies that c j is in the circle Cout , contradicting the
assumption of Theorem 3. Hence, this lemma is correct.

The I-pruning method uses Theorem 3 by issuing a circular
range query, centered at ci with radius 2w−ri , on the dataset
O . This operation can be easily implemented by using the
R-tree created for O . The range query first uses the R-tree
to filter all objects that do not overlap with the range. For
the remaining objects, they are removed if their centers are
beyond the circular range. Hence, in this phase (Step 2 of
Algorithm 2), a cost of O(n) is needed.

Step 3: Computational Level Pruning.
We next discuss a method, based on distance comparison, to
check whether object O j can affect the possible region of
object Oi . We call this method C-pruning (Step 3 of Algo-
rithm 2). Theorem 4, discussed below, serves as the founda-
tion of C-pruning.

Theorem 4 Given an uncertain object Oi (ci , ri ) and Pi ’s
convex hull C H(Pi ), let v1, v2, . . . , vn be C H(Pi )’s vertex.
If another object O j ’s center c j is not in any of
{�(vm, dist (vm, ci ))}nm=1, then Pi = Pi − Xi ( j).

Proof First, the convex hull C H(Pi ), which completely con-
tains Pi , must also be Oi ’s possible region. For every point
p on C H(Pi )’s boundary, suppose c j is located outside the
circle �(p, dist (p, ci )). Then, we have:

dist (p, c j ) > dist (p, ci )

⇒ dist (p, c j )+ r j > dist (p, ci )− ri

⇒ distmax (p, O j ) > distmin(p, Oi ) (14)

Second, Theorem 2 states that if distmax (p, O j ) >

distmin(p, Oi ), then C H(Pi ) = C H(Pi ) − Xi ( j). There-
fore, if c j is outside �(p, dist (p, ci )) for every p on
C H(Pi )’s boundary, O j can be safely pruned.

For convenience, let �(p, dist (p, ci )) be a w-bound
(where w = dist (p, ci )). We also define a set S of w-bounds
for every point p in Ui . We now show that instead of check-
ing all the w-bounds in S, it is only necessary to check those
w-bounds constructed for the vertices of C H(Pi ). Specif-
ically, the w-bounds of the vertices must contain all other
w-bounds of all points on the boundary of C H(Pi ). To see
this, let wk be the distance of vertex vk from Oi ’s center. We
extend each vertex vk by the distance wk to obtain a new
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vertex v′j (black dot in Fig. 8b). These new vertices are con-
nected to form a polygon. We use e1 and e2 to represent the
w-bounds �(v1, w1) and �(v2, w2), respectively.

We next show that, for any point v′ on C H(Pi )’s edge
v1v2, �(v′, dist (v′, ci )) ⊆ e1 ∪ e2, where we let e′ =
�(v′, dist (v′, ci )). We draw a line c1c′1, which is perpen-
dicular with v1v2 and v′1v′2, and intersects them at points c1

and c′1, respectively. As v1v2 is the perpendicular bisector of
ci c′1, we see that ci c′1 is the common chord of e1, e2 and e′.
Since e1 or e2 is bigger than e′, e′ is contained by e1 or e2.

Hence, to check whether O j can refine Pi , we just need
to check the set of w-bounds S′ = {�(vm, dist (vm, ci ))}
(where S′ ⊆ S). If c j is located outside all w-bounds in
S′, then C H(Pi ) = C H(Pi ) − Xi ( j). Finally, since Pi is
completely covered by C H(Pi ), Pi = Pi − Xi ( j) must also
be true. This completes the proof.

Step 3 of Algorithm 2 uses Theorem 4 to prune unqualified
objects returned by I-pruning. This can be done efficiently,
because only the vertices of C H(Pi ) are used. Moreover,
|C H(Pi )| is small, since the possible region is only derived
by a small number ks of seeds. The complexity of this phase
is O(n).

We consider the objects that remain after this step as
cr-objects (i.e., Ci ). The complexity of Algorithm 2, for gen-
erating Ci ’s of n objects, is O(n(n + k)).

5.4 Batch processing of cr-objects

To create the UV-index, we first find out the cr-objects for
each of the n database objects. A simple way to do this is
to run Algorithm 2 (i.e., getcrObject(Oi , O)) for all
objects Oi ∈ O , as proposed in [17]. However, this involves
running getcrObject for n times and can be quite costly.
We now present a Batch Processing algorithm (or BP in
short), where the cr-objects of a group of objects are con-
sidered together. As we will show, this new algorithm allows
the effort of devising an object’s cr-objects to be shared by
others, and consequently reduces a lot of cr-object generation
overhead.

Observe that if an object Oi is near to O j , then their UV-
cells should be similar. The cr-object set of Oi , that is, Ci ,
can then be similar to C j . TheBPmakes use of this principle;
it employs Ci to derive C j , instead of generating Ci and C j

independently. Let G be a set of objects that are physically
close to each other. TheBP first computes a set of objects CG ,
a superset of Ci , for every Oi ∈ G. The cr-objects of objects
in G are then extracted from CG . Usually, CG is smaller than
the database size |O|, and thus retrieving cr-objects from CG

is faster than from O .
Algorithm 3 presents the BP. Given G ⊆ O , Step 1

creates a new object OG . The uncertainty region of OG is the
minimum bounding circle (MBC) of the uncertainty regions

Algorithm 3 BP
Input: A set G of objects in O
Output: cr-object set Ci for each Oi ∈ G

1: OG ← (M BC(G), uniform pdf)
2: CG ← getcrObject(OG , O)

3: for each object Oi ∈ G do
4: Pi ← initPossibleRegion(Oi , CG)

5: Ci ← cPrune(Pi , CG)

6: end for

of all objects in G. Its uncertainty pdf is not important here,
and we assume it to be uniform. Notice that OG is only used
by the BP; it will be deleted after the algorithm halts.

Step 2 invokes a slightly modified version of getcrObj
ect to obtain a cr-object set CG of OG . Particularly, in Step
(i) of initPossibleRegion, the k-NN search skips all
objects in G. Notice that initPossibleRegion com-
putes the possible region of an object. In Step (i) of that
procedure, we obtain the seeds – objects that are use-
ful for generating a UV-cell. In Algorithm 3, the input of
getcrObject is OG , whose uncertainty region includes
the uncertainty regions of all objects in G. Therefore, the
uncertainty region of any object Oi ∈ G overlaps with that
of OG . More importantly, Oi ∈ G is not useful for find-
ing possible regions of OG , because Oi does not create any
UV-edge for OG’s UV-cell. We next claim the following:

Theorem 5 Given an object O j , if O j /∈ CG after Step 2 of
Algorithm 3, then O j /∈ Fi , where Oi ∈ G.

That is to say, any object not contained in CG cannot be
an r-object of Oi ∈ G. In other words, CG is a superset of
r-objects for all the objects in G. The proof of this theorem,
which is quite complex, is detailed in Sect. 5.5. Notice that
all objects in G are included in CG after the execution of
Step 2. This is because in the last step of getcrObject
(Algorithm 2), objects whose centers are located in the c-
pruning bound of OG are treated as cr-objects. Since the
center of an object in G is inside OG’s c-pruning bound, it
must also be a cr-object of OG . Thus, G ⊆ CG .

Steps 3–6 use CG to generate cr-objects for each object
Oi ∈ G. From Theorem 5, we know that an object in CG may
be an r-object of Oi . Thus, objects in CG can be considered as
good candidates for generating an initial possible region, Pi

for Oi . We thus pass CG to initPossibleRegion and
get Pi (Step 4). We then execute cPrune on CG to retrieve
Ci (Step 5). These two steps are repeated for all objects in
G, until we obtain their cr-objects.3

The LP algorithm. We now discuss a way to use Algo-
rithm 3 to construct cr-objects for O . The Leaf-Node

3 We do not execute iPrune(Pi , O) after Step 4 because the set of
objects returned by iPrune is often the superset of CG in our experi-
ments. Thus, iPrune is not very effective here.
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Processing, or LP, performs a preorder traversal of the R-
tree that indexes O . When a leaf node, say N , is reached,
BP is invoked on all objects stored in N , in order to com-
pute their cr-objects. The algorithm terminates when all leaf
nodes have been exhausted.

The LP can generate cr-objects for O quickly. This is
because when the BP is called, it always uses the objects
located in a leaf node. In an R-tree, the leaf node consists of
a set G of objects, which are physically close to each other.
Recall that the object created in Step 1 of BP (i.e., OG) is
the MBC of the uncertainty regions of objects in G. Thus,
the size of OG would not be very different from those of the
objects in G. Consequently, the set CG derived from Step 2
(getcrObject) should also be similar to the r-objects of
G’s objects. In our experiments, |CG | is much smaller than
|O|. Hence, Step 4 can be carried out more efficiently than
if initPossibleRegion is carried out on O for every
object.

We have introduced an efficient construction method to
derive the cr-object set Ci for Oi . We have also explained
how to obtain cr-objects for O quickly. One may consider
to use Ci to generate the exact UV-cell of Oi . However, our
experiments show that |Ci | may be large, and so generating
the UV-cell of Oi can still be costly. In Sect. 6, we show how
to use Ci directly to construct an index for the UV-diagram.
In the rest of this section, we present the proof of Theorem 5.

5.5 Proof of Theorem 5

Recall that OG is formed by a set G of objects, using Step 1
of Algorithm 3. Let Pi (S) be a possible region of an object
Oi , constructed by using a set S ∈ O of objects. Essentially,
Pi (S) is the intersection of the inside regions Xi (k), where
Ok ∈ S. Let ui be the uncertainty region of Oi . We first claim
the following.

Lemma 4 Given a set S of objects, where S ⊆ O, for any
objects Oi and Ok, if ui ⊆ uk, then Pi (S) ⊆ Pk(S).

Fig. 9 Illustrating Lemmas 4 and 6

Fig. 10 Illustrating Lemma 5

Figure 9 illustrates Lemma 4, which shows that Pi (S) is
inside Pk(S). Its proof can be found in Appendix 13.1.

Lemma 5 Given objects Oi and O j , if c j /∈ Pi , then ∀p ∈
Pi (S):

distmax (p, O j ) > distmin(p, Oi ) (15)

if and only if ∃Ok ∈ S, where

distmax (p, O j ) > distmax (p, Ok) (16)

In Fig. 10, the objects in S are shaded. The center of
O j , that is, c j , is outside Pi (S). Given a point p ∈ Pi ,
Lemma 5 states that if there is an object Ok ∈ S such that
distmax (p, O j ) > distmax (p, Ok), then distmax (p, O j ) >

distmin(p, Oi ), or vice versa. Its proof can be found in
Appendix 13.2. These results are used by the next lemma.

Lemma 6 Given two objects Oi and Ok, where ui ⊆ uk, and
an object O j where c j /∈ Pk(S), if Pk(S) = Pk(S)− Xk( j),
then Pi (S) = Pi (S)− Xi ( j).

As shown in Fig. 9, Lemma 6 claims that given an object
O j whose center is outside Pk(S), if the edge Ek( j) does not
affect the possible region Pk(S), then Ei ( j) cannot contribute
to Pi (S).

Proof Since Pk(S) = Pk(S) − Xk( j), by using Lemma 3,
we have:

∀p ∈ Pk(S), distmax (p, O j ) > distmin(p, Ok) (17)

Using the “only-if” part of Lemma 5, we have:

∀p ∈ Pk(S), ∃Ot ∈ S, distmax (p, O j ) > distmax (p, Ot )

(18)

Since ui ∈ uk , using Lemma 4, we have Pi (S) ∈ Pk(S).
Thus, Eq. 18 becomes:

∀p ∈ Pi (S), ∃Ot ∈ S, distmax (p, O j ) > distmax (p, Ot )

(19)
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Using the “if” part of Lemma 5, Eq. 19 becomes:

∀p ∈ Pi (S), distmax (p, O j ) > distmin(p, Oi ) (20)

Using Lemma 3, Eq. 20 means that Pi = Pi − Xi ( j). Hence,
the lemma is correct.

Proof of Theorem 5 Let V be the set of seeds used to con-
struct possible region PG(V ) in Step 2 of Algorithm 3. If
O j /∈ CG , the UV-edge EG( j) does not cut PG(V ). In other
words, PG(V ) = PG(V ) − XG( j). The I-pruning and C-
pruning methods used in Step 2 also guarantee that c j is not
inside PG(V ), that is, c j /∈ PG(V ). Moreover, ui ⊆ uG .
By substituting S = V and k = G, we can deduce from
Lemma 6 that Pi (V ) = Pi (V ) − Xi ( j). Now there are two
cases to consider:

Case 1: O j contributes an edge to Pi (V ). In other words,
O j ∈ V . Since an object in V is not pruned by Step 2 of
Algorithm 3, V ⊆ CG , and so O j ∈ CG . However, this
contradicts with the assumption that O j /∈ CG , and so
this case cannot occur.
Case 2: O j does not contribute an edge to Pi (V ). Since
the UV-cell Ui of Oi must be inside Pi (V ), O j cannot
contribute an edge to Ui . Hence, O j is not an r-object of
Oi , and the theorem holds.

6 The UV-index

We now present the UV-index, an approximate version of
the UV-diagram. The UV-index can be efficiently computed
and stored. It also facilitates efficient query evaluation.
Section 6.1 gives an overview of its structure. In Sect. 6.2, we
discuss how to use this index to support execution of different
queries. We explain its construction process in Sect. 6.3.

6.1 Structure of the UV-index

The UV-index adopts a framework similar to a quad-tree [5],
in order to index the irregular and non-overlapping UV-
partitions. Figure 11a illustrates this index.4 Each non-leaf
node, 16 bytes each, records a pointer to each of its four child
nodes, where the square region spanned by each child node
is one-fourth of that of its parent. The region covered by the
root node is the whole domain D. Each leaf node stores all the
objects whose UV-cells overlap with the region defined for
the node. To save space, a node’s region is not stored, since
we can easily derive the dimension of the region based on the
level of the node in the tree. Also, due to approximation, a

4 We adopt the quad-tree rather than the R-tree. While R-tree MBRs
may overlap, quad-tree grids do not. Issuing a point query on non-
overlapping UV-partitions in quad-tree is thus more convenient than
R-tree.

Fig. 11 UV-index: a structure, b overlap checking

UV-cell that does not overlap with the leaf node’s region may
be included. However, a UV-cell that truly overlaps with the
region will not be excluded. For each leaf node l, we store
a linked list of disk pages, which contain tuples <ID, MBC,
pointer>, where:

– ID is the identity of object Oi whose UV-cell may overlap
with the region covered by l;

– MBC is the circle that minimally bounds the uncertainty
region of Oi ; and

– pointer stores the disk page address of the object.

We assume that all non-leaf nodes are stored in the main
memory, and allocate a maximum number of M non-leaf
nodes. The leaf nodes, which contain the lists of pages, are
stored in the disk. Hence, M controls the amount of main
memory to be used to implement the index. Next, we study
how to use it to support query evaluation.

6.2 Using the UV-index

We now explain how to use the UV-index to support the
queries that we described in Sect. 3.2.

1. The PNN Query. To find the probabilistic nearest neigh-
bors of q, we first locate the leaf node l, whose region contains
q. This can be done easily by finding the grid that contains q
in each index level, and traversing the index. We then retrieve
the disk pages associated with l, which contains the ID and
the MBC values of the objects stored in these pages. Since
these objects may have their UV-cells overlap with the region
of l, it is possible that q is contained in their UV-cells. Let L
be the set of objects associated with l, and A be the answer
objects of q. To answer a PNN, we need to retrieve A from
L , where A ⊆ L . We use the method described in [15]: from
the set of the MBC’s of the objects in L , find dminmax , the
minimum of the maximum distances of these objects from q.
Any object with the minimum distance larger than dminmax is
removed, since it cannot have a nonzero qualification proba-
bility. For objects that are not filtered, their probabilities are
computed and returned as answers.
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2. The CPNN Query maintains the PNN answers for
a “moving” query point, whose location is periodically
reported to the server. Let q0 be the latest position of q
received by the server. Let g0 be a leaf node in the UV-index,
whose region r0 contains q0. We assume that the objects
stored in the disk pages associated with g0 are known. Now,
suppose the new location of q, say, q1, is received by the
server. A straightforward solution is to treat q1 as a new PNN
query, and use the PNN algorithm described above to com-
pute the answers of q1. A better way is to check whether q1

is inside r0. If this is true, we simply use the object set asso-
ciated with g0 to compute the answer for q1. This saves the
effort of traversing the UV-index for q1.

3. The UV-Partition Query. We append a counter to each
leaf node, and record the number of objects at that node.
This process could be done after the UV-index is constructed.
Then, a range query with range R is issued over the index,
in order to find the leaf nodes whose regions overlap with
R. For every leaf node whose region r overlaps with R, we
compute its density, which is equal to the number of objects
associated with r , divided by the area of r . The query then
outputs r and its density value.

4. The UV-cell Query. Notice that if an object Oi appears
in a leaf node g, its UV-cell overlaps with the region of g.
Hence, we can return the approximate area and the extent of
Oi ’s UV-cell by scanning the leaf nodes associated with Oi ,
and then summing up the total area of the regions covered by
these nodes. This step can be improved by precomputing and
storing the area information. For example, we can scan all
the leaf-nodes once, and generate a table for each Oi with its
respective areas. A similar procedure can be used to support
the operation of displaying the approximate shape of the UV-
cell on the user’s screen.

6.3 Construction of the UV-index

As discussed in Sect. 5, a UV-cell can be represented by a set
of cr-objects, Ci . We now examine how this facilitates the
construction of the UV-index.

Framework. Let g be the grid node being examined, and
hk (where k = 1, . . . , 4) be the four child nodes of g. We
define a variable nonleafnum, which indicates the number of
non-leaf nodes allocated to the index and has an initial value
of 1. Originally, the root of the grid is a leaf node, whose
region covered (root.region) is the domain D.

We use Algorithm 4 (InsertObj) to insert an object
Oi to the index. This algorithm, whose inputs are Ci and
node g, is a recursive procedure, where InsertObj (Ci,
root) is first invoked. In Step 1, CheckOverlap investi-
gates whether the UV-cell represented by Ci overlaps with
the region of grid g. If so, we check whether g is a non-leaf
node. If this is true, InsertObj is called recursively (Steps

Algorithm 4 InsertObj
Input: cr-objects Ci ; Node g;

1: if (CheckOverlap(Ci , g.region) = true) then
2: if g is a non-leaf node then
3: for k = 1 to 4 do
4: InsertObj(Ci , hk );
5: end for
6: else
7: state← CheckSplit(Ci , g);
8: switch (state)
9: case NORMAL:
10: g.list.add(i , M BC(Oi ), ptr(Oi ));
11: break;
12: case OVERFLOW:
13: Allocate new page for g;
14: g.list.add(i , M BC(Oi ), ptr(Oi ));
15: break;
16: case SPLIT:
17: delete g.list;
18: for k = 1 to 4 do
19: Assign hk as child of g;
20: end for
21: nonleafnum← nonleafnum + 1;
22: break;
23: end if
24: end if

2–4). Otherwise, we perform CheckSplit (Step 7), which
returns:

1. NORMAL (Steps 9–11): g’s pages still have space left,
and so (i , M BCi , ptr(Oi )) is inserted to g’s page, where
ptr(Oi ) is the pointer to Oi ’s uncertainty region and pdf.

2. OVERFLOW (Steps 12–15): g’s pages are full, and a new
disk page has to be associated with g, before the infor-
mation about Oi is inserted to the new page.

3. SPLIT (Steps 16–22): g’s pages are full. The page
list g is removed. Then, g becomes the parent of four
nodes (hk), which have been previously generated by
CheckSplit. The region of each child node hk covers
each of the four quarters of the region defined for g. Also,
nonleafnum is incremented by a value of 1. Essentially,
The information about the UV-cells previously associ-
ated with g are now represented by its child nodes, and
g becomes a non-leaf node.

Decision on Splitting. When g’s pages are full, either
Oi ’s information is inserted to a new page (OVERFLOW) or
split into four child nodes (SPLIT). Ideally, the region of
the leaf node that covers q is completely covered by a true
UV-partition. This guarantees that the set of objects returned
by the UV-index is the true answer objects. The UV-index,
which contains grids, is just an approximation of the UV-
diagram. Apparently, the more the splitting is performed, the
closer the index can resemble the actual UV-diagram, and
yield better query performance.
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In fact, splitting is not always useful. Suppose that g.region
is associated with 100 UV-cells. Moreover, g.region is com-
pletely covered by each of these UV-cells. Then, it is not
necessary to redistribute g into four child nodes. If splitting
is performed in this case, then the UV-cells associated with
each child node are exactly the same.

Thus, more space is wasted to store duplicated information
about the UV-cells. This can happen if the corresponding 100
objects of these UV-cells are close to each other. Then, these
UV-cells have similar shapes and significant overlapping. To
decide whether to split, we define split fraction, θ , as follows:

θ = mink=1,...,4 |hk .list |
|g.list | (21)

which is the minimum fraction of UV-cells in one of the
child nodes hk that are also in g (note that the UV-cells asso-
ciated with hk must be the subset of the ones attached to g).
A small θ means that the number of UV-cells overlapping
with hk .region is small compared with that of g. We now
define a splitting condition of a node:

Split if θ < Tθ

where Tθ ∈ [0, 1] is called the split threshold. A larger value
of Tθ implies a higher tendency of splitting.

Algorithm 5 (CheckSplit) implements these ideas.
Steps 1–3 return NORMAL if the pages of g are not full. Steps
4 and 5 return OVERFLOW if the number of non-leaf nodes
allocated is higher than M . In Steps 7–16, we compute the
value of θ , by creating four nodes hk (Step 7), and check-
ing the overlap of each UV-cell with hk .region (Steps 11 and
12). If the splitting condition is satisfied (Step 17), then the
SPLIT decision is returned, where Algorithm 4 (Steps 18
and 19) will assign the nodes hk to be the child nodes of g.
Otherwise, the child nodes are deleted and an OVERFLOW
decision is made (Steps 20 and 21).

Overlap Checking. Algorithm 6 tests whether the UV-cell
of an object Oi overlaps with a grid g’s region r . For every cr-
object Ok ∈ Ci , if any of their corresponding outside region
(Xi (k)) totally contains r , then CheckOverlap returns
false (Steps 1–3). Otherwise, true is returned (Step 6).
To prove the correctness, we use the following lemma:

Lemma 7 If region r is totally covered by Xi (k), where Ok ∈
Ci , then r must not overlap with the UV-cell Ui .

Proof We would like to show that if there exists an object Ok ,
such that r ⊆ Xi (k), then r∩Ui = φ. Let Xi ( j) be the region
D − Xi ( j). Then Ui , the UV-cell of Oi , can be expressed
as the intersection of all regions Xi ( j), for all objects in O
except Oi , that is,

Ui =
⋂

j=1...|O|∧ j �=i

Xi ( j) (22)

Algorithm 5 CheckSplit
Input: cr-objects Ci ; node g;
Outputs: NORMAL, SPLIT, OVERFLOW;

1: if there is space on any disk page of g.list then
2: return NORMAL;
3: end if
4: if nonleafnum + 1 > M then
5: return OVERFLOW;
6: else
7: Create nodes hk (k = 1, . . . , 4) with hk .region equal to each

quarter of g.region;
8: A← Oi ∪ g.list;
9: for each O j ∈ A do
10: for each hk do
11: if (CheckOverlap(C j , hk .region)) = true then
12: hk .list.add( j , M BC(O j ), ptr(O j ));
13: end if
14: end for
15: end for
16: θ ← (mink=1,...,4 |hk .list |)/|g.list |;
17: if θ < Tθ then
18: return SPLIT;
19: else
20: delete hk , where k = 1, . . . , 4;
21: return OVERFLOW;
22: end if
23: end if

Algorithm 6 CheckOverlap
Input: cr-objects Ci ; Region r ;
Output: true if Ui and r overlap, false otherwise;

1: for each Ok ∈ Ci do
2: if r ⊆ Xi (k) then // Use 4-point testing
3: return false;
4: end if
5: end for
6: return true;

Since r ⊆ Xi (k), we have

r ∩ Xi (k) = φ

⇒ (r ∩ Xi (k)) ∩
⋂

j=1...|O|∧ j �=i∧ j �=k

Xi ( j) = φ

⇒ r ∩ (Xi (k) ∩
⋂

j=1...|O|∧ j �=i∧ j �=k

Xi ( j)) = φ

⇒ r ∩Ui = φ

from Eq. 22. Hence, the lemma is correct.

To check whether a region r is contained in Xi ( j) (Step
2), a simple way is to generate and test with the UV-edge
Ei ( j). This can be avoided, by carrying out a simple 4-point
test. Observe that r is a square, and the UV-edge of Oi with
respect to O j is concave in shape. If all its four corner points
are confirmed to be in Xi ( j), we conclude that r ⊆ Xi ( j).
Figure 11b shows that the region of g1 must not overlap
with Ui , since all the four corners of g are located on the
outside region of one of the UV-edges. Checking whether
a point is in Xi ( j) is easy, because we can simply check
whether the point’s minimum distance from Oi is larger than
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its maximum distance from O j . We thus use the four-point
test in Step 2.

Notice that Algorithm 6 may incorrectly judge that Ui

overlaps with r . Figure 11(b) shows that Ui does not over-
lap with the region of grid g2. However, some corners of
g2.region are not contained in the outside regions of two of
the UV-edges of Ui . If this is true for all UV-edges of Ui ,
then Ui would be decided to be associated with g2! If this
happens, then during query evaluation, Oi will be retrieved
from g2. This increases the execution time since Oi is not
in g2. However, query accuracy is not affected, since we can
still detect that Oi is not a nearest neighbor of q. In our exper-
iments, this situation is rare, and does not have a significant
effect on query evaluation time.

Since |Ci | = O(n), Algorithm 6 needs O(n) time to com-
plete. Algorithm 5 uses O(n2) time, mainly for performing
splitting and overlap checking with four child nodes. For
Algorithm 4, each UV-cell, in the worst case, needs to per-
form overlap and split tests with M non-leaf nodes. Hence,
its total time complexity is O(Mn2). The index has a maxi-
mum height of M/4, if, the data distribution is very skewed,
and splitting always happens in one single quadrant. How-
ever, all non-leaf nodes, 16-byte long, can all be stored in the
main memory. Thus, the tree height has little effect on query
performance.

7 Results

We now report the results. Section 7.1 describes the experi-
ment settings. In Sect. 7.2, we discuss the results about query
performance. Section 7.4 presents the results about UV-index
construction.

7.1 Setup

We use both synthetic and real datasets in our experiments.
For synthetic data, we use Theodoridis et al’s data generator5

to obtain 20, 40, 60, 80, and 100K objects, which are uni-
formly distributed in a 10K × 10K space. Each object has a
circular uncertainty region with a diameter of 40 units, and a
Gaussian uncertainty pdf. For each uncertainty pdf, its mean
is the center of the circle, and its variance is the square of
one-sixth of the uncertainty region’s diameter. We represent
an uncertainty pdf as 16 histogram bars, where a histogram
bar records the probability that the object is in that area.
We also use three real datasets of geographical objects in
Germany, namely utility, roads, and rrlines, with respec-
tive sizes 17, 30, and 36K. We also test the Long Beach
(or LB) dataset, which contains 53K objects.6 These objects

5 http://www.rtreeportal.org/software/SpatialDataGenerator.zip.
6 http://www.rtreeportal.org/.

are represented as circles before indexing, and has the same
uncertainty pdf information as that of the synthetic data.

To compare with R-tree, we use a packed R*-tree [30] to
index uncertain objects. The R-tree uses 4K-byte disk pages,
and has a fanout of 100. We keep all its non-leaf nodes in the
main memory.

For the UV-index, each non-leaf node has four 4-byte
pointers to its children. We set M , the number of non-leaf
nodes in the main memory, to be 10,000. The leaf nodes of
both indexes, as well as the uncertainty information about
the objects, are stored in the disk.

For Tθ , the splitting threshold used in constructing the UV-
index, we have performed a sensitivity test. Under a wide
range of Tθ , the indexes only have a slight performance dif-
ference. For very small values of Tθ (e.g., 0.2), however, the
adaptive grid tends not to split, and degrades into long linked
lists of pages. Here, we set Tθ to be 1.We wrote the programs
in C++ and tested them on a Core2 Duo 2.66 GHz PC.

7.2 Results on query evaluation

We first study the performance of the queries studied in
Sect. 3.2. We assume that the LP algorithm, presented
in Sect. 5.4, is used to generate the UV-index. However,
as we will discuss later, the different UV-index construc-
tion methods described here has little effect on query
performance.

1. The PNN Query. We first compare the PNN perfor-
mance of the UV-index and the R-tree. We present the aver-
age results of 50 query points randomly selected in the data
domain. We use the numerical integration method of [15] to
implement the probability computation of answer objects.7

Figure 12a shows the query running time (Tq ) for differ-
ent synthetic datasets, with the number of objects ranging
from 20 to 100K. The running times of both queries increase,
because with a larger dataset, potentially more objects qual-
ify as query answers, and this increases the time for index
retrieval and probability computation. Our method outper-
forms R-tree in all cases. For example, when |O| = 60K, the
UV-index needs about 50 % of the time needed by the R-tree.

To understand why our method performs better, let us
examine the traversal time of the UV-index, which is com-
posed of the time costs for visiting non-leaf and leaf nodes.
Since its non-leaf traversal time takes little time in all exper-
iments (up to 3.9 μs), we only present the I/O overhead.
In Fig. 12b, we compare the I/O performance of the UV-
index and the R-tree. The UV-index requires significantly
less number of I/Os than the R-tree (e.g., when |O| = 60K,
the UV-index consumes about one-fifth of the I/Os needed by

7 If faster methods such as [13] are used, the fraction of the time spent
on retrieving answer objects from the index will be higher, and thus it
would be more important to optimize the index.
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(d) (e)

(b)(a)
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Fig. 12 Results on the PNN query

Table 2 Results on real datasets
Dataset |O| (K) Tq (UV) (ms) Tq (R-tree) (ms) Tc (s) pc (%)

utility 17 89 141 569 97.45

roads 30 82 135 1,195 97.80

rrlines 36 107 159 1,340 98.30

LB 53 109 173 1,579 98.22

the R-tree). When the R-tree is used to process a PNN query,
plenty of leaf nodes needed to be retrieved. For the UV-index,
we only need to look for the leaf node that contains the query
point. Since the number of disk pages for each leaf node
is also small, a high I/O performance can be attained. Also
notice that the number of I/Os for the R-tree increases with
|O|, whereas that of the UV-index is relatively stable.

Figure 12c shows the time components of Tq : (1) index
traversal; (2) retrieval of objects’ pdf; and (3) probability
computation. While object retrieval and probability compu-
tation costs are similar for both indexes, the R-tree requires
a higher index traversal time. This explains the difference
in Fig. 12b. In Fig. 12d, we can see that the query time of
both indexes increases with uncertainty region size (i.e., the
radius of the uncertainty region), since the larger the region,
the more probable that the corresponding object is a PNN
answer. For real datasets, columns 3 and 4 of Table 2 show
that the UV-index consistently attains a higher query perfor-
mance than the R-tree. Again, this is because the I/O perfor-
mance of the UV-index is better than that of the R-tree.

2. The UV-Partition and the UV-cell Queries. We now
examine the efficiency of our index for answering the UV-

partition query on our synthetic dataset. For each size of a
query region R, 50 queries are generated, whose centers of
R are uniformly distributed in the data domain. We can see
from Fig. 12e that the retrieval time of UV-partitions (Tq )
increases with the size of R, since more UV-partitions are
loaded when R becomes larger. The increase is almost linear,
and the query evaluation time is less than 160 ms. We have
also examined the performance of the UV-cell queries on the
default synthetic dataset. On average, the time for obtaining
a UV-cell from the UV-index is 58.46 ms, or equivalently,
4.62 I/Os. Thus, running a UV-cell query costs little time in
our experiments.

3. The CPNN query. To generate a CPNN query, we
use the CanuMobiSim simulator,8 which produces a moving-
point trajectory. The movement of a query point follows a
random walk model, as detailed in [34]. The location of a
query point, which changes at a maximum speed of 100 units
per second, is reported every second. The default “trajectory
length” of a query is 60, that is, each query has 60 location

8 http://canu.informatik.uni-stuttgart.de/mobisim/downloads/.
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(a) (b) (c)

Fig. 13 Results on the CPNN query

(a) (b) (c)

Fig. 14 Storage cost analysis

reports. In our experiments, each data point is the average of
50 queries.

We examine two algorithms that use the UV-index to sup-
port CPNN queries. The first variant, called UV-index-n, is a
naïve application of the UV-index: each time a query point
is received, the UV-index is consulted once. The second one,
called UV-index-e, is the enhanced version of UV-index-n,
where the UV-index is only consulted if the current query
point is not located in the same grid as the previous one
(Sect. 6.2). Figure 13a shows the evaluation time of a query
over synthetic data of different sizes. As we can see, the query
performance of the UV-index is at least 25 % times better than
the R-tree. The reason can be explained by Fig. 13b, which
shows the number of I/Os required by these methods. We
observe that the I/O cost of issuing a CPNN on the UV-index
is much lower than that of the R-tree. For example, when
|O| = 60k, the query cost of the UV-index algorithms is
about 30 % of the R-tree. We also see that UV-index-e per-
forms better than UV-index-n. When the current query point
q1 is located in the grid g that also contains the previous
query point q0, UV-index-e uses the objects associated with
g to answer the PNN at q1. Thus, the effort of traversing the
UV-index for q1 can be saved. This saving is quite significant;
at |O| = 60k, for instance, the number of I/Os required by
UV-index-e is only 66 % of that of UV-index-n. In Fig. 13c,
we examine the effect of the query trajectory length. Again,
the UV-index-e performs the best among the three access
methods.

7.3 Storage cost analysis

Next, we compare the sizes of R-tree and UV-index. As men-
tioned in Sect. 7.1, for both indices, we store the non-leaf
nodes in the main memory, and the leaf-nodes in the disk.
The index size is the sum of the main memory and disk space
required. Figure 14a compares the size of the UV-index and
the R-tree. The UV-index is larger than the R-tree. While
the UV-index consumes less main memory than the R-tree
(Fig. 14b), it needs more disk space (Fig. 14c). Although the
UV-index has a larger size than the R-tree, the UV-index pro-
vides a better query performance. Moreover, the UV-index
provides functionalities that are not available by R-tree (e.g.,
retrieval of UV-partitions). These benefits are provided in the
expense of a larger disk cost. Given the low cost of hard disk
space nowadays, we believe that the extra disk space required
by the UV-index is still justifiable.

7.4 Results on UV-Index Construction

We now examine several UV-index construction methods.
We first study the following techniques:

– Basic: a UV-cell is derived using Algorithm 1, which is
then used to build the UV-index;

– ICR (I- and C-pruning with Refinement): collect
cr-objects through I- and C-pruning (Algorithm 2), com-
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(a) (b) (c)

(f)(e)(d)

(g)

Fig. 15 Basic, ICR, and IC

pute UV-cells and obtain the r-objects, then index them
with Algorithm 4.

– IC (I- and C-pruning): the cr-objects obtained through
I- and C-pruning are used directly to construct the UV-
index by Algorithm 4.

We assume that the R-tree for uncertain objects is available
for use by these methods. Unless stated otherwise, the model-
based seed selection and batch construction methods are not
used (their effect will be examined later). For generating ini-
tial possible regions (used in IC and ICR), we set k to 300 for
performing the k-NN search. Then, the domain D is divided
into ks = 30 sectors to obtain the seeds.

Figure 15a describes the development time (Tc) of the UV-
index for the three methods. Basic increases sharply with
the dataset size; handling a 40K dataset requires about 60 h.
This is because constructing a UV-cell requires an expo-
nential amount of time and numerous complex hyperbola
intersections. For ICR and IC, the use of I- and C-pruning
significantly reduces the number of objects examined. Their
effects are shown in Figure 15(b), where pc, the pruning ratio,
denotes the fraction of objects from O that has been filtered.
At |O|=60k, I-pruning and C-pruning achieve a pruning ratio

of 98.9 and 99.5 % respectively. Hence, a large portion of
objects are removed before being considered for construct-
ing the UV-cell. Next, we examine ICR and IC.

IC versus ICR. As shown in Fig. 15c, IC performs much
better than ICR. For example, at |O| = 80K, the construc-
tion time of IC is about 10 % of that of ICR. To understand
why, we analyze their time components in Fig. 15d, e. Recall
the difference between the two methods is that ICR needs to
find out the exact r-objects (by constructing an exact UV-cell
based on the objects returned by pruning), while IC does not.
For ICR, Fig. 15d shows the fraction of the construction time
spent on: (1) seeds selection, (2) initial possible region com-
putation, (3) I- and C-pruning, (4) generating r-objects, and
(5) indexing UV-cells. For most datasets, ICR spends most of
the time to generate exact r-objects, which is very costly. For
IC, r-object is not produced (Fig. 15e). Instead, the cr-objects
produced by the pruning methods are immediately passed to
Algorithm 4 for indexing. The number of cr-objects gener-
ated, while larger than that of r-objects, does not increase the
indexing time significantly.

In Fig. 15f, the construction time of ICR increases sharply
with the objects’ uncertainty region sizes. With larger uncer-
tainty regions, it is more likely that these regions overlap with
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(a) (b) (c)

Fig. 16 Model-based seed selection

each other, making it harder to prune the objects, so that more
time is needed to generate r-objects. On the other hand, IC
is relatively insensitive to the change in uncertainty region
sizes.

We have also measured the query times between the
indexes created by IC and ICR. Figure 15g shows that the
UV-index generated by the two methods is highly similar,
resulting in a close query performance. The query cost of
ICR is about 0.01 I/Os, or 0.13 ms, better than IC. In the
sequel, we assume that IC is used.

Model-based index construction. In Sect. 5.2, we have
demonstrated how to use the UV-cell model (Sect. 4.4)
to facilitate seed selection for objects whose locations are
uniformly distributed. We call the UV-index construction
algorithm that employs this method as Model, and the one
that does not use it as Non-model. We evaluate these two
algorithms on our synthetic datasets. As we can see from
Fig. 16a, Model performs better than Non-model in most
cases. When |O|=80 k, about 20 % of the index construc-
tion time is saved. Figure 16b illustrates that Model is con-
sistently better than Non-model under different uncertainty
region sizes. For example, when the radius of an uncertainty
region is 80, the time required by Model is about half of that
of I C .

To understand why Model performs well, we compare the
difference between the size S of a UV-cell estimated by our
model, and its “true” size. Again, S is the length of the MBR
that tightly bounds the estimated UV-cell. The true size of
the UV-cell can be obtained by using Algorithm 1. Based on
the vertices of this UV-cell, we obtain its minimum bound-
ing rectangle (MBR). We use the larger length of the two
dimensions of this MBR to represent the size of the UV-cell.
Figure 16c shows the average size of a UV-cell under differ-
ent uncertainty region sizes. The UV-cell size increases with
the uncertainty region radius, since an object can be in more
possible locations. This increases its chance to be a possi-
ble nearest neighbor of a query point. In this experiment, our
method offers a reasonable estimation of the UV-cell’s size—
the estimation error is between 4 and 12 %. This enables the
selection of seeds, as well as the index construction algo-
rithm, to be effective.

Batch processing. We next examine the performance of
LP, which derives cr-object based on groups of data objects
(Sect. 5.4). We compare LP with single, which generates a
cr-object set for each data object separately. We do not use
model-based seed selection in these experiments. Figure 17a
shows that LP performs better than single on our synthetic
datasets. At |O| = 80k, the time cost of LP is about 60 %
of that of single. In LP, the cr-object set generation cost is
shared among a group of objects.

We also test the performance of single and LP on larger
datasets. We use the same synthetic data generator to pro-
duce two datasets that contain 0.5M and 1M objects. The 1M
dataset occupies 640Mbytes. The new result, illustrated in
Fig. 17b, shows that the construction performance of both sin-
gle and LP increases with the dataset size in a linear manner.
For the 1M dataset, LP needs 7.7 h, which is 23 % faster than
single.

Figure 17c shows that when LP is used, the seed selec-
tion time of single is shortened by more than 80 %. While
single generates seeds for every object individually, in LP,
the seeds of every object in set G are retrieved from a set of
objects CG (Step 2 of Algorithm 3). We can also see that the
I- and C-pruning time required by LP is also less than sin-
gle; when |O| = 60k, the improvement is over 60 %. In
single, I-pruning is done for every object; in LP, I-pruning
is only done once for every group. The performance gap is
more profound when |O| is large, since the same domain is
populated with more objects, resulting in more candidates
retrieved after I-pruning.

We also examine the effect of the average uncertainty
region size on the construction time. As discussed before, the
larger this size, the more construction time will be needed.
Figure 17d shows that LP is more stable than single. When
the uncertainty region size is 60, LP needs more about 60 %
time of single; when the size becomes 100, LP is 3.5 times
faster than single. In Fig. 17e, we compare the query per-
formance of the UV-indices generated by single and LP. We
observe that the number of I/Os required by the two methods
is the same. Their probability computation times, not shown
here, are also very close. Hence, the query performance of
two methods is almost the same.
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(a) (b) (c)

(f)(e)(d)

(g)

Fig. 17 Results on batch processing

Next, we compare the construction time of the R-tree and
UV-index, using single and LP. Figure 17f shows that the
construction cost of the R-tree is less than 1 % of that of
the UV-index. Hence, the R-tree introduces little overhead to
the UV-index construction process. However, it improves the
performance of generating the UV-index. For instance, the
I-pruning phase can be executed more efficiently with the
use of the R-tree.

For real datasets, LP also outperforms single (Fig. 17g). In
rrline, for example, LP needs one-third of the time required
by single. LP also achieves a high pruning ratio, as shown in
Table 2. This explains why LP requires less time to construct
a UV-index, compared with single.

Skewness. In Fig. 18, we study the effect of data skewness,
by varying the variance (σ ) of the objects’ mean positions.
We can see that when the data are more skewed (i.e., with
a smaller variance), the construction time is higher, because
in a dense area where uncertainty regions have high degree
of overlap, an object’s UV-cell is likely small and associ-
ated with many r-objects. The LP algorithm is still more effi-
cient than single. In the most skewed dataset that we tested
(σ =1,500), LP is 33.3 % faster than single.

1500 2000 2500 3000 3500
0.5

1

1.5

σ

T
c(h

ou
r)

Fig. 18 Effect of variance

Finally, we examine how a skewed distribution of the
centers of uncertainty regions can affect our results. We
obtain a 60k dataset that follows the zipfian distribution, by
using the same generator that produces our uniformly distrib-
uted dataset. For the zipfian distribution, the average query
I/O costs for IC and ICR are 2.48 and 2.41. Thus, the query
performance of ICR is 0.07 I/Os (or 2.8 %) better than IC.
Since their time difference is small (around 0.4 ms), we use
IC in the rest of the experiments.

Table 3 compares these two distributions in terms of their
construction and query performance, by using the batch
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Table 3 Results on zipfian
distribution |O| = 60k Uniform Zipfian

L P Single L P

Tc(hours) 0.45 5.78 2.46

Tq (I/Os) 2.00 2.48 2.45

processing (LP) technique. Observe that the construction
time of the zipfian distribution is worse than the uniform dis-
tribution. In a skewed dataset, a UV-cell in a very dense area
can be determined by many r-objects, and this renders lower
pruning efficiency in the construction phase. However, there
is only a slight query I/O difference between the two distri-
butions, and the query performance for both distributions is
almost the same.

In the same table, we study the difference between single
and LP for zipfian distribution. Notice that LP requires about
42 % of time needed by single. This means that our batch
processing method improves the construction performance
for zipfian distribution significantly. The query performance
of the UV-index constructed by LP is also slightly better (0.03
I/Os) than single.

8 Conclusions

The UV-diagram is a variant of the Voronoi diagram designed
for uncertain data. To tackle the complexity of construct-
ing and evaluating a UV-diagram, we introduce the concept
of UV-cells and cr-objects. We study the theoretical size
of a UV-cell. We propose an adaptive index for the UV-
diagram, and develop efficient algorithms for building it. We
also present a batch processing algorithm to further reduce
the UV-index construction time. Our experiments show that
this index efficiently supports PNNs and other UV-diagram-
related queries.

We plan to study the use of the UV-diagram to sup-
port other variants of probabilistic NNQs, for example,
approximate NNQs [12,13]; monochromatic and bichro-
matic reverse-nearest-neighbor (RNN) queries [10,27,42];
and k-RNN queries [11]. Another interesting problem is to
design a UV-diagram such that whenever a query point is
located in a UV-cell Ui , we can know that the qualification
probability of Oi is larger than some threshold T . By using
this variant of UV-diagram, we can get all the objects with
qualification probability larger than T , without computing
their actual probabilities. This could be beneficial to queries
where a user is only interested in answers with qualification
probabilities larger than T . It is also interesting to examine
how the UV-diagram can support multi-dimensional data and
incremental updates.
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9 Appendix 1: Hyperbolic curve intersection

As discussed in Sect. 3.1, a vertex of the UV-cell is the
intersection point of two hyperbolic curves. We now outline
the procedure of finding this intersection, using the method
described in [3]. We can represent two hyperbolic curves, C1
and C2, as homogeneous conic equations:

C1:A1x2 + 2B1xy + C1 y2 + 2D1xz + 2E1 yz + F1z2 = 0

C2:A2x2 + 2B2xy + C2 y2 + 2D2xz + 2E2 yz + F2z2 = 0

which are obtained by substituting x/z into x and y/z into y
for the hyperbolas (Eq. 7) of C1 and C2. Next, we construct
equation Cλ:

Cλ : C1 + λC2 = 0 (23)

where λ is a real value, and Cλ, a linear combination of C1
and C2, is a system of hyperbolas. We then rewrite Cλ in the
form of ωT Hω = 0, where ω = (x, y, z)T , and

H =
⎛

⎝
A1 + λA2 B1 + λB2 D1 + λD2
B1 + λB2 C1 + λC2 E1 + λE2
D1 + λD2 E1 + λE2 F1 + λF2

⎞

⎠

Let det (H) be the determinant of H . Our aim is to find
the value(s) of λ that satisfy the characteristic equation
det (H) = 0. The real value of λ, when substituted into
Eq. 23, ensures that (1) there is at least one intersection
between C1 and C2, and (2) Cλ becomes a degenerated hyper-
bola, in the form of two straight lines.

Finally, for each of the λ found from the characteristic
equation, we obtain at most four roots that simultaneously
satisfy Cλ and C1. Each root represents an intersection point
of C1 and C2.

10 Appendix 2: Properties of a possible region
(Lemma 1)

Given an object Oi , we discuss two properties of its possible
region Pi .
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Fig. 19 Illustrating the proof of Lemma 1

1. Connectivity of Pi : Recall from Definition 3 that Pi

is the intersection of a set of inside regions. Since each
inside region is a connected region (by Definition 2), Pi

must also be connected.
2. Pi cannot contain any hole inside it. Suppose by
contradiction that there is a hole h inside Pi , such that an
arbitrary point q inside h does not have Oi as its possi-
ble nearest neighbor. Figure 19 illustrates the situation.
Since q must be covered by the UV-cell of some other
object, let us assume that q is covered by the UV-cell of
object O j . Then, distmin(q, Oi ) > distmax (q, O j ), or
dist (q, ci )− ri > dist (q, c j )+ r j .

We now draw a straight line, which passes through ci and
q, and intersects the boundary of Pi at q ′. We have:

distmin(q, Oi )+dist (q, q ′) > distmax (q, O j )

+ dist (q, q ′)
⇒ dist (q, ci )−ri+dist (q, q ′) > dist (q, c j )

+ r j + dist (q, q ′)
⇒ (dist (q, ci )+dist (q, q ′))−ri > (dist (q, c j )

+ dist (q, q ′))+ r j

Since dist (q, ci ) + dist (q, q ′) = dist (q ′, ci ) and
dist (q, c j )+ dist (q, q ′) > dist (q ′, c j ), we have:

dist (q ′, ci )− ri > dist (q ′, c j )+ r j

In other words, distmin(q ′, Oi ) > distmax (q ′, O j ).
Hence, q ′ cannot have Oi as its nearest neighbor. However,
this is not possible, since q ′ ∈ Pi . Therefore, Pi cannot have
any hole.

11 Appendix 3: Size of a possible region (Lemma 2)

Here, we explain how to derive the size of a possible region,
as shown in Eq. 8, Sect. 4. Let us denote the six objects that
have the same distance d from O1 be {O2, . . . , O7}, as shown

in Fig. 6. We consider two UV-edges E1(2) and E1(3). Let
X0 be the intersection of E1(2) and E1(3). Using Eq. 1, we
have:
{

distmin(O1, X0) = distmax (O2, X0)

distmin(O1, X0) = distmax (O3, X0)
(24)

Let X1 be the point on O1 such that dist (X0, X1) =
distmin(X0, O1). Also, let X2(X3) be the point on O2(O3)
whose distance from X0 is the maximum between X0 and
O2(O3). According to Eq. 24,

dist (X0, X1) = dist (X0, X2) = dist (X0, X3) (25)

Since X1, X2 and X3 have the same distance to X0, they are
on a circle centered at X0 with radius R. Thus, as shown in
Fig. 6, X0 is the center of circle�(X0, R), which is externally
tangent to O1 on X1, and internally tangent to O2 (O3) on
X2 (X3). Therefore,
{

dist (X0, c1) = R + r
dist (X0, c2) = dist (X0, c3) = R − r

(26)

Now, let the coordinates of c1 be (c1.x, c1.y). Since
� c2c1 X0 = π

6 (according to [40]), we have c2 = (c1.x −
d
2 , c1.y +

√
3d
2 ), and X0 = (c1.x, c1.y + R + r). By substi-

tuting them to Eq. 26, we have:

R = d × (d −√3r)√
3d − 4r

(d >
4r√

3
) (27)

Notice that d has to be larger than 4r√
3
, in order for R to

be positive. The dimension of the square s that bounds the
possible region P1,d is then equal to s = 2 × (R + r). By
substituting R with Eq. 27, we can obtain Eq. 8.

12 Appendix 4: Size of a UV-cell (Theorem 1)

Here, we establish the condition that the possible region
P1,d0 , formed by the six objects in H(d0), is exactly the UV-
cell of O1. Recall that the centers of uncertain regions of
objects in H(d0), which are the closest to that of O1, form
the vertices of a hexagon H E X1, as shown in Fig. 7. Now,
if objects in H(d0) are disregarded, then any of the object
Ok whose uncertainty region center is a vertex of hexagon
H E X2 must be the nearest neighbor of O1. Suppose that
the UV-edge Ei (k) cannot contribute to P1,d0 . Then, as all
uncertainty regions are equally spaced and identical, the UV-
edges of other objects that are further away from H E X1 and
H E X2 must also not change the shape of P1,d0 . Thus, P1,d0

becomes the UV-cell of O1, i.e., U1.
When does Ei (k) fail to influence the shape of P1,d0 ?

First, we calculate the minimum distance between the center
of O1 and E1(k), which is equal to

√
3

2 d0+r . We compare this

with s(d0)
2 , where s(d0) is the size of the square that bounds
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P1,d0 according to Eq. 8. If s(d0)
2 <

√
3

2 d0 + r , U1, which
is embedded in the square of size s(d0), cannot be further
refined by E1(k). By substituting this condition into Eq. 8,
we have:

s(d0)

2
<

√
3

2
d0 + r

⇒ 1

2
× 2d2

0 − 8r2

√
3d0 − 4r

<

√
3

2
d0 + r

Assume that d0 > 4r√
3

(required by Lemma 2). By multiply-

ing 2(
√

3d0 − 4r) on both sides of the above inequality, we
have:

2d2
0 − 8r2 < (

√
3d0 + 2r)(

√
3d0 − 4r)

⇒ 2d2
0 − 8r2 < 3d2

0 + 2
√

3d0r − 4
√

3d0r − 8r2

⇒ 2d2
0 < 3d2

0 − 2
√

3d0r

⇒ d0 > 2
√

3r

Thus, d0 > 2
√

3r is the condition that Ei (k) cannot change
P1,d0 . It is also the constraint that the 6 objects of H E X1

form the square of dimension s(d0) that minimally U1.

13 Appendix 5: Proof of Lemmas for Section 5.5

13.1 Proof of Lemma 4

For any point p ∈ Pi (S), p is within the intersection of
the inside regions Xi ( j), where O j ∈ S. Hence, for every
O j ∈ S,

distmax (p, O j ) > distmin(p, Oi ) (28)

Since ui ⊆ Pi (S), and ui ⊆ uk , ∀p ∈ Pi (S), distmin(p, Oi )

≥ distmin(p, Ok). Using Eq. 28, we have:

∀p ∈ Pi (S), O j ∈ S : distmax (p, O j ) > distmin(p, Ok)

(29)

This means that ∀p ∈ Pi (S), p ∈ ⋂
O j∈S Xk( j), or sim-

ply ∀p ∈ Pi (S), p ∈ Pk(S). Thus, Pi (S) ⊆ Pk(S), and the
lemma is proved.

13.2 Proof of Lemma 5

Proof (If) Since p ∈ Pi (S), we have p ∈ ∩Ok∈S Xi (k).
Thus, for every Ok ∈ S,

distmax (p, Ok) > distmin(p, Oi ) (30)

Using Eqs. 16 and 30, we see that distmax (p, O j ) >

distmin(p, Oi ). So, the “if” part is proved.
(Only if) Consider any point p′ lying on some UV-edge

Ei (k) of Pi (S), where Ok ∈ S. Then,

distmax (p′, Ok) = distmin(p′, Oi ) (31)

Fig. 20 Illustrating the proof of Lemma 5

Using Eqs. 31 and 15, we have:

distmax (p′, O j ) > distmax (p′, Ok) (32)

Thus, the “only if” part is true for any p′ ∈ Ei (k).
We now complete the proof by showing that the lemma is

true for any p′′ ∈ Pi (S). Since c j /∈ Pi (S), a line that passes
through c j and p′′ must intersect Ei (k) at some point p2 for
some object Ok ∈ S. Also suppose a line that passes through
ck and p′′ intersects Ei (k) at p1. The situation is shown in
Fig. 20.

Using Eq. 32, we have:

distmax (p2, O j ) > distmax (p2, Ok)

This implies:

l4 + r j > l3 + rk

l4 + l6 + r j > l3 + l6 + rk

Using triangular inequality, we have:

l3 + l6 > l1 + l5

Thus,

l4 + l6 + r j > l1 + l5 + rk

or simply distmax (p′′, O j ) > distmax (p′′, Ok). Thus, the
“only if” part is correct.
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