

Mecha Zeta
Project Title: Next-Generation Real Time Internet Game (Self-proposed)

Final Project Report

Compile Date : 15 May, 2003

Supervisor(s): Dr. C.L.Wang, Dr. W.Wang and Dr. A.T.C.Tam

2nd Examiner: Dr. K.S. Lui

Project Members: (CE)

• Cheung Hiu Yeung, Patrick 2000090550 hycheung@csis.hku.hk
• Ho King Hang, Tabris 2000090598 khho2@csis.hku.hk
• Sin Pak Fung, Lester 2000227701 pfsin@csis.hku.hk
• Wong Tin Chi, Ivan 2000277287 tcwong2@csis.hku.hk
• Yuen Man Long, Sam 2000248937 mlyuen@csis.hku.hk

 1

• TABLE OF CONTENT

1 INTRODUCTION..4

1.1 BACKGROUND ..4
1.2 MOTIVATIONS...4
1.3 GOAL AND SCOPES OF INVESTIGATION ...5
1.4 DIVISION OF LABOUR ...6
1.5 STRUCTURE OF REPORT ..6
1.6 CONVENTIONS ..6

2 PEER-TO-PEER NETWORK ARCHITECTURE AND NETWORK PROTOCOL.....................8
2.1 SCOPE OF INVESTIGATION ..8
2.2 ANALYSIS ... 10

2.2.1 Connection Performance of Internet ... 10
2.2.2 Real Time Response ... 11
2.2.3 Client Server Architecture .. 12
2.2.4 Communication Subsystem.. 13

2.3 THEORETICAL PRINCIPLES COMPARISON .. 16
2.3.1 TCP vs UDP... 16
2.3.2 unicast VS multicast .. 19
2.3.3 Frame per second System VS Event-driven System .. 20

2.4 FEASIBILITY OF JAVA .. 22
2.5 DESIGN AND CONSTRUCTION .. 25

2.5.1 Game Engine ... 25
2.5.2 Network Architecture ... 25
2.5.3 Network Protocol ... 26
2.5.4 Reliable UDP design .. 30
2.5.5 Application Protocol .. 33
2.5.6 Game Server .. 34

2.6 METHOD OF INVESTIGATION .. 35
2.7 ANALYSIS OF APPROACH AND RESULTS ... 36

2.7.1 UDP reliable transfer performance.. 36
2.7.2 Updates of the communication system ... 38
2.7.3 Congestion Control Comparison.. 39

2.8 CONCLUSION .. 41
3 PARTITIONING SYSTEM AND SOUND ENGINE .. 42

3.1 INTRODUCTION .. 42
3.2 PARTITIONING SYSTEM... 46

3.2.1 Overview.. 46
3.2.2 Theoretical principles .. 46
3.2.3 Partitioning Mechanism .. 48
3.2.4 Design and construction .. 50
3.2.5 Results ... 53
3.2.6 Discussion of the partitioning system... 53

3.3 SOUND ENGINE... 58
3.3.1 Introduction... 58
3.3.2 Theoretical principles .. 58
3.3.3 Choice of sound engine.. 60
3.3.4 Design and construction .. 60
3.3.5 Result and Conclusion... 61

3.4 EVALUATIONS AND CONCLUSION .. 62
4 SYNCHRONIZATION SYSTEM.. 64

4.1 INTRODUCTION .. 64
4.1.1 Scope of investigation .. 64

 2

4.1.2 Current design and implementation trend.. 64
4.1.3 Significance and Objectives ... 65

4.2 ANALYSIS OF SYNCHRONIZATION MECHANISMS ... 66
4.2.1 Synchronization mechanism .. 66
4.2.2 Consistency Protocol.. 67
4.2.3 Synchronization Algorithms... 68
4.2.4 Conservative Algorithms.. 69
4.2.5 Optimistic Algorithms .. 69

4.2.6 SUMMARY OF SYNCHRONIZATION MECHANISMS... 71
4.3 INVESTIGATIONS .. 73

4.3.1 Incentives of investigations .. 73
4.3.2 The choice of Bucket Synchronization... 73

4.4 OVERALL ARCHITECTURE .. 76
4.4.1 Synchronization architecture ... 76
4.4.2 Game World Clock... 77
4.4.3 Classification of commands ... 77

4.5 BUCKET SYNCHRONIZATION .. 78
4.5.1 An Example of Bucket Synchronization .. 78
4.5.2 Software Architecture of Bucket Synchronization.. 80
4.5.3 Analysis of Bucket Synchronization... 82

4.6 MULTI-STATES SYNCHRONIZATION (MSS) .. 84
4.6.1 An Example of MSS .. 85
4.6.2 Implementation of MSS ... 86
4.6.3 Analysis of MSS... 87

4.7 EXPERIMENTAL RESULTS ... 89
4.7.1 Scope of experiment... 89
4.7.2 Number of Rollback vs Frequency of command... 89
4.7.3 Number of Rollback vs Synchronization delay... 91

4.8 EVALUATIONS AND CONCLUSION .. 93
5 GRAPHIC ENGINE AND COLLISION DETECTION SYSTEM... 94

5.1 INTRODUCTION .. 94
5.1.1 Responsibilities of this module... 95
5.1.2 Scopes of investigation of this module ... 95
5.1.3 Structure .. 95

5.2 METHODS OF INVESTIGATIONS ... 96
5.2.1 Feasibility studies .. 96
5.2.2 Prototypes .. 97
5.2.3 Tests and Benchmarks ... 97
5.2.4 Specifications of benchmarks and tests.. 97

5.3 GRAPHIC ENGINE ... 99
5.3.1 Analysis of Problem ... 99
5.3.2 Feasibility Studies.. 100
5.3.3 Design and Construction ... 107
5.3.4 Test Results and Analysis ... 116
5.3.5 Discussions and Evaluations ... 120

5.4 COLLISION DETECTION SYSTEM .. 124
5.4.1 Analysis of Problems ... 124
5.4.2 Feasibility Studies.. 126
5.4.3 Design and Construction ... 130
5.4.4 Testing Results and Analysis .. 144
5.4.5 Discussions and Evaluations ... 151

5.5 OVERALL EVALUATION .. 156
5.5.1 Efficiency of research, design and construction... 157
5.5.2 Interactions with other modules... 158

5.6 CONCLUSION .. 159
6 3D MODELING, ANIMATIONS AND REAL TIME SHADOWING... 161

6.1 THEORETICAL PRINCIPLES ... 161
6.1.1 Overview.. 161

 3

6.1.2 Determining whether a point is above or below a plane given a plane equation............... 161
6.1.3 Silhouette Determination ... 163
6.1.4 Shadow Volume ... 165

6.2 DESIGN AND CONSTRUCTION .. 168
6.2.1 Overview.. 168
6.2.2 3D Modeling.. 168
6.2.3 Animation.. 180
6.2.4 Character control mechanism .. 185
6.2.5 Game logic... 188
6.2.6 Graphical effects.. 190

6.3 FEASIBILITY STUDY ON SHADOW ALGORITHMS... 196
6.3.1 Fake shadow.. 196
6.3.2 Vertex Projection ... 196
6.3.3 Shadow Z-buffer.. 196
6.3.4 Static shadow ... 197
6.3.5 Shadowing volume casting with Zfail approach... 198

6.4 PERFORMANCE ANALYSIS .. 199
6.5 DISCUSSIONS AND CONCLUSIONS.. 200

7 TESTING & CONCLUSION... 201
8 REFERENCES... 202

 4

1 Introduction

1.1 Background

In the 1960s, who would have ever thought that the computer video games would be

growing so rapidly and so dramatically impacting our popular culture and entertainment

art around the world? It is amazing that in such a brief time the computer and video game

industry has truly revolutionized entertainment. Games now influence films and books,

and make use of a wide variety of popular music and licenses. The industry had also

produced advanced technology that offers game players a rich, immersive interactive

entertainment experience, which many find more compelling than passive art forms like

movies and television. In 1975, an agreement between Sears and Atari ignited the growth

of the retail video game industry, with the “Pong” machine.

Since then, more and more different consoles were born. The most famous examples are

the Nintendo Entertainment System, Super Nintendo, Sega series, and the Play Station

series. In recent years, the personal computer game industry has been developing even

more rapidly. Games are no longer restricted to standalone consoles. Interactivity between

players becomes important and feasible thanks to the Internet. This raises our interests to

develop this next-generation Internet game, the “Mecha Zeta”

1.2 Motivations

As game evolves, it now comes to the generation that online action games that is capable a

large amount of players with excellent visual quality and experience. However, our group

notices that most of the online action games are still using the client-server architecture,

such as the well-known Quake, which is a First-Person-Shooter game. The number of

 5

players in a game is limited to a relatively small number say below 10. Apart from game

capacity, we also notice that commercial games always use approximate collision detection

to detect contact between objects in the world to gain performance, such as MDK2, which

is also an action game. Moreover, pre-computed shadows are always used in commercial

games instead of real time shadowing.

As a result, our group catches the insights and tries to design and implement the game

MechaZeta which aims at solving the above problems, and evaluate the success of our

implementations.

1.3 Goal and Scopes of investigation

Our goal is to test the feasibility of developing interactive, real and large capacity

real-time multiplayer games under unreliable Internet communication in

Peer-to-Peer architecture. Upon the development of computer graphics, our group

dedicates to the performance and quality of object collision detection. The goal is to

implement an efficient and accurate collision detection system as well as a robust and

extensible graphic engine, realistic models, motion and special effects.

Below are the scopes we are going to investigate:

w Peer-to-Peer network architecture over the Internet

w Partitioning

w Peer-to-Peer synchronization

w Graphic Engine Design and Accurate and Robust collision-detection

w Real-time shadowing, motion simulations and modeling

 6

1.4 Division of Labour

As we are group of five peoples, the duties are distributed into five main areas:

Members Duties

Cheung Hiu Yeung, Patrick Peer-to-Peer network architecture and protocol

System flow and game logic

Wong Tin Chi, Ivan Peer-to-Peer Synchronization System

Sin Pak Fung, Lester Partitioning System

Sound System

Ho King Hang, Tabris Graphic Engine Design

Collision Detection System

Yuen Man Long, Sam 3D Modeling and Animation

Real Time Shadowing System

1.5 Structure of report

In this report, analysis, designs, implementations, testing and evaluations of individual

areas will be carried out in order to maintain the readability of individual module. After all,

an overall testing of the system we implemented will be carried out as well as the analysis.

1.6 Conventions

In this report, all the main text is with font Times New Roman, size 12 and normal

weighting. The text with font Courier New, size 12 and normal weighting is either source

code, pseudo code, or class name.

 7

All reference points are numbered with square brackets. Complete references list can be

found in the Section 8.

 8

2 Peer-to-Peer Network Architecture and

Network Protocol

2.1 Scope of Investigation

One of the most important components of a game is the backend system of the whole

system. The meaning of backend system includes the application protocols, network

protocols and the basic operation of all types of game data. All of these elements are now

realized by player easily, but is very important for a player to play the game smoothly.

Therefore, the design of this backend system is an important part of a game to start

playing.

Every game should have its own application protocol in order to facilitate the basic

function like joining the game or firing a target. The design of application protocol should

be based on the needs of user and make use of low level functions to achieve the result.

Next, since our game is an Internet game, it must involve the use of network protocol

when players are playing with each other. There are many kinds of network protocol

theory available nowadays. Since we are going to implement a game which must have

some customized network functions available for playing, our focus on protocols will be

mainly transport layer protocol, the basic network protocol essential for communicating on

the Internet. The reason is that most high level network protocol is designed for some

specific use and may not be suitable for our game. We need to make use of the basic

transport layer protocol to make a customized network protocol suitable for our design of

the game. Furthermore, the design of the network architecture is also one of the main

issues in our game. Our main goal of network architecture design is to archive a scalable,

 9

interactive and real-time Internet game. Currently, most Internet games do not involve high

interactivity or high scalability of players. Therefore, we try to evolve our idea by

implementing the improving network architecture – Peer-to-Peer architecture to adopt in

our game.

 10

2.2 Analysis

2.2.1 Connection Performance of Internet

 The first problem in designing the network protocol will be the poor connection over

Internet. Internet is actually a large pool of networks. Each network is connected with

routers, difference kinds of cables, firewalls or other network hardware. One can send a

message to a person located in the other side of the world through this pool of networks.

However, there is no guarantee that the message will arrive to the receiver correctly and

on-time. In fact, when a person starts to send a message, the message first pass through the

local routers and routed to the outside network. It then travel various channels, visit

numerous routers and then to the destinations. During this trip, it may lose due to several

reasons: router buffer overflow, physically damage to cables, out-dated route table, random

queuing delay in router and many other reasons. It is tested with the ‘ping’ function

provided by the OS. It is usually at least a few hundreds of round trip time from various

locations. And sometimes even has lost packet even the location is actually reachable.

There are some simple results of ping functions:

destination Max

RTT(ms)

Min

RTT(ms)

Avg

RTT(ms)

Packet

sent

Packet

replied

Packet

loss

www.yahoo.com 908 966 932 4 4 0

hk.yahoo.com 15 29 20 4 3 1

www.google.com 494 521 507 4 3 1

Testing Environment: windows XP with home 10Mb broadband

This can be concluded that Internet has the capability to handle message flowing, but no

proof for efficiency and correctness for the transmission. The above result is tested with

ping function in which those are ICMP packets. If for some other packets like TCP or UDP

ones, the result maybe even worse than the table list above.

 11

For an interactive Internet game, losing packet or delay packet will result two main

problems: inconsistency and slow or not real-time response. Let use a very simple example

to explain the situation:

From the above two examples, it is found that maintaining game state and packet in-order

is very important for the game. These two problems should be solved in order to survive in

the poor connection Internet.

2.2.2 Real Time Response

For an interactive game, a real-time response is very important at the view of a player. As

state above, the Internet itself has already produced many different kinds of delay on each

Two players with inconsistent playing due to packet loss

I have shoot
and hit you

Player 1 Player 2 Internet

You have died
in my game,
no action

Nothing
happen to me

I walk right

Send shoot command

Loss due to some reasons

Send walk command

I shoot you

I walk right

I can hit you since
I shoot before walk

You can’t me hit
since you walk
before shoot

You walk right

You shoot me

Send shoot command

Send walk command

Packet delay more

Normal delay

Two players with inconsistent due to different packet delay

 12

message delivery. This already greatly affects the real-time response of the game. Apart

from the poor connection of Internet, the message size transmitted between also play an

important role. If the size of the message is too large, the transmission delay will be larger

for updating from one message. There should be solution that adopts a certain amount of

delay for providing real-time response. In other words, when a player has issued a

command, he may need to wait for a small amount of time in order to let the command

being known by all other players. Then he performed an action as if everyone knows its

action at the same time in order to simulate a real time response.

2.2.3 Client Server Architecture

Nowadays, most Internet games are using the Client-Server architecture as the backend

system. In this architecture, the server is responsible for computing all game state and

distributing updates about that game state to the client. The client acts as a view port into

the server’s state and passes primitive commands such as button presses and movement

commands to the sever. Because this architecture allows most of the game state

computation to be performed on the server, there is no consistency problem. The below

graph show the whole design of this architecture:

However the gameplay is very sensitive to latencies between the client and the server, as

The server

Client Client Client

Client Client

Handle all computation and
game state in server

command

update

Simplified Client-Server Architecture

 13

users must wait at least a round trip time for key presses to be reflected in reality.

And this architecture has another great problem which happens at the position of the red

circle above. That is the connection is too centralized at the server. If the number of clients

keeps increasing, the load at the server will also keep increasing. Although the

computation power and bandwidth of a server is usually much higher than a single client,

it cannot accept infinite or even large amount of clients at the same time. Then there will

be a limit on the number of clients for a particular server. Also, if the server fails during the

game, all clients will be disconnected and cannot play the game anymore. This is so-call

the single point failure. In order to solve this problem, a different architecture should be

adopted in our game.

2.2.4 Communication Subsystem

In a game, communication is one of the most important issues. Imagine that you are

playing the game with a robot walking around. If you do not communicate with others

with your movements or actions made during the game, others will not realize that what

you are doing in the world. Then, they cannot act accordingly to perform some interactions.

Then, you are just running the program with a robot walking around a terrain without any

events happen. Therefore, it cannot be said that you are playing a game. So, designing a

subsystem for all kinds of communication cannot be missed out during the development of

the game. In our game, we have categorized the types of communication into three

different kinds:

1. Getting data stored in the server when starting the game.

2. Each client needs to recognize the state of the game

3. Broadcasting the controls and position to other peers

The first one is the communication between a client and the server when initializing the

 14

game. So, the steps of starting a game is defined as follow:

1. Try to establish a connection with the server before doing anything

2. Login the game by sending the user id and password to the server through the

connection established.

3. If the login data is correct, the server will get the corresponding data from the

database and send it to the client who is going to play the game.

4. Apart from sending those data, the game state of the peer group, which the client is

going to join, is also sent in order to let the game start correctly.

So, it is very clear that this kind of communication needs a connection between the server

and the client. And the transmission should be very reliable in order to let the client

logging in the game and playing the game correctly without any errors. Also, the

acceptable delay is quite high because when the client is going to start a game, it is usually

very slow at the very beginning. Any users will feel acceptable even the start of the game

is very slow.

The second kind of communication is the awareness of a game state for each client. Again,

this is also very important, as all clients should have the same piece of game state for

playing a game fairly. Also, clients should have a way to realize that who are playing with

him at a certain moment. This kind of communication can involve both client and server,

or clients only. We need to consider the different between these two kinds of awareness in

the flow of the game.

The third kind is actually the most important kind of communication in the game. The

controls made by one robot must tell other peers who are also playing within the same

partition. Other peers should then update the player state according to the controls received.

 15

The main requirement of this kind of communication is the little delay of delivery. If the

delay is too high, inconsistency will arise similar to the case discussing above. Another

concern is of course the accuracy of each delivery. Ideally, the command being sent and

received should be the same without loss. However, to guarantee that the command being

sent is in-order and arrive correctly will involve some mechanism like re-transmission and

timeout. It will definitely make the delay of each command higher. Therefore, we need to

make a deal with the delay of transfer as well as the accuracy.

 16

2.3 Theoretical Principles Comparison

2.3.1 TCP vs UDP

As state above, the design of the game network protocol should make use of low level

protocol in order to make a suitable one. In the five layer network protocol stack, we can

make use of either transport layer or network layer protocol. However in Java, only

transport layer is available, and therefore we try to research the two main protocols of

transport layer: TCP and UDP.

Transmission Control Protocol, in short TCP, is a connection-oriented, reliable protocol.

The meaning of connection-oriented is that it establishes an end-to-end link before any

data moves. Both the sender and the receiver are aware of the connection. For reliable

protocol, it safeguard against several forms of transmission mishaps. It will compare

checksums included with a packet’s data payload with a recalculation of the checksum

algorithm at the destination to detect corrupted data. It will retransmit corrupted or lost

data by providing methods for the destination to signal the source when retransmission is

needed. If the data arrive out of sequence, this protocol will have a way to detect

out-of-sequence packets, buffer them, and pass them to the Application layer in the correct

order. During this process, it will detect and discard duplicate transmissions. The timeout

of various acknowledgements is limited.

The advantage of TCP is of course the

reliability of delivery over any connection

like Internet. However, the start of TCP is

slow because of the three-way

handshaking. Also, the congestion control

TCP packet format

 17

and the flow control of TCP also make the transmission slow when the network

environment is not very good.

User Datagram Protocol, in short UDP, is a connectionless and unreliable protocol. It does

not have an end-to-end link before any data delivery. All data are formatted into packets

and then send out to the destination.

There is no guarantee that the

packets will arrive in-order at the

receive side. Although it does not

provide any reliability of delivery, it is relatively much faster at the start of delivery. It does

not need any establishment and re-deliver for lost packet. UDP is the transport protocol for

several well-known application-layer protocols, including Network File System (NFS),

Simple Network Management Protocol (SNMP), Domain Name System (DNS), and

Trivial File Transfer Protocol (TFTP).

In order to decide which kind of protocol for the game, some tests were conducted in this

aspect. We have implemented a ‘ping’ function for both the TCP connection and UDP

connection. The idea of ping is rather simple. Each ping packet is formatted into a very

small packet. The data contained in this packet is first an integer to indicate whether it is a

ping message or ping reply message. The next component will be the timestamp. For a

ping message, it contains the start time of the packet formation. For a ping reply message,

it contains the timestamp of the ping message it received. The next step will be creating a

thread to ping the peers periodically. It is set to ping every period of four seconds. The

maximum timeout of one ping message is three seconds. If there is no message reply after

this timeout limit, the message is treated to be lost and try ping again. Finally, establish a

TCP connection with two hosts locating in a LAN environment and at the same time

UDP packet format

 18

running a datagram socket that accept UDP datagram for testing. The network environment

is a simple Internet environment with two hosts. The set up is shown in the following

figure:

The test is conducted by start the ‘ping’ function from host 1 to host 2. We first test with

the TCP connection, ignore the start time of a TCP connection. After ten trials, we start the

UDP ‘ping’ function with the same ping message being transferred in TCP. All values got

from the program are generated from the method under Java class System, the method is

called System.currentTimeMillis(). The result was as follow:

Trials TCP Connection RTT (ms) UDP Datagram RTT (ms)

1 261 40

2 311 100

3 300 120

4 891 60

5 300 timeout

6 241 30

7 321 141

8 261 110

9 651 timeout

A host connecting
with 10Mb cable A host connecting

with 10Mb cable

Internet

TCP connection establised

UDP socket listening
UDP socket listening

 19

10 901 80

Base on the result, it was found that TCP is relatively slow compare with fast response

time of UDP. However, lost of packet of UDP does happen frequently when the network

traffic condition is poor.

2.3.2 unicast VS multicast

Another issue will be the delivery of UDP packets. The most common and traditional way

of using UDP was to first create a datagram packet containing the message that was going

to send to others, then add the IP address and port number of the destination host and

finally send out through the UDP socket. This

method is called unicast of UDP. Therefore, if one

wanted to send a piece of data to many others, he

would have to prepare many copies of that piece

of data and enveloped with the UDP datagram

packet and then send them out one by one. Each

packet is then routed to various destinations by list of routers. It was actually a waste of

time and bandwidth when both sender and receiver were in large amount, where exactly a

multiplayer network game was. Therefore, there was another way of sending out the status

of a client to other clients in the peer-to-peer network and that was the UDP multicast. The

idea was that instead of duplicating the copy of data and the packet, there was only one

copy for all hosts receiving that piece of data. The main principle of multicast is that some

clients join to a class D IP address (224.0.0.0 to 239.255.255.255 inclusive) to form a

‘group’. Any member who wants to broadcast the message to his group members just need

to send a message to the group he has joined with correct port number. Then the router will

Server

Client

Client

Client

UniCast

Server

Client

Client

Client

MultiCast

 20

recognize that it is a multicast message and forward to all other members automatically.

The diagram shows the main difference between unicast and multicast. It can be seen that

with the use of multicast the bandwidth of the channel can be saved a lot when the number

of clients grow larger. It is no doubt that the performance of the game will be higher with

this faster delivery. Therefore, some tests have been conducted based on these two features

as Java provides libraries ready for both unicast and multicast.

2.3.3 Frame per second System VS Event-driven System

Since a game is a very complicated system involving many different components such as

network, graphics, sound … etc. Then every part of operation may not all done in a

sequential manner. For example, the 3D engine needs to update the graphics in every

frame to produce some animation. At the same time, there are some messages passing

through the network to other hosts. If all the works are done sequentially, this may result

late send message to the network or poor performance on smooth animation. Therefore,

concurrent programming is needed for a game engine. There are two common ways for

concurrency: FPS and Event-driven.

Here is the graph explaining what the flow of FPS design is:

Start of game

Start of a new frame

If the job is too large or cannot be
finish in the time, left for next frame

End of a frame

Perform any jobs that needed to
handle. E.g. send and receive a
message from network

Within fix time
period

 21

Here is the graph explaining what event-driven design is:

The main different is that the FPS design only involve one main thread while Event-driven

one has various threads for handling events. Both designs will be investigated in the area

of game design as well as the feasibility of Java.

Trigger from a
key board event

Start of game

Trigger from a
network event

Appropriate
methods are called
in order to update
the position

Recognize the message;
call methods provided
by the game engine

Initialization

Provides a set of
methods for operation,
listen to events from
various channel

Event 1 Event 2

Back to listen event Back to listen event

 22

2.4 Feasibility of Java

Since our implementation will be based on programming language Java, it was first

investigated whether Java can support for the network components implementation as well

as different kinds of concurrent programming.

The basic network components provided by Java is under the java.net package. It has

the libraries support for TCP and UDP implementation. For TCP, there are two kinds of

socket, one is called ServerSocket and the other is called Socket. ServerSocket

is the TCP server implementation in Java. It supports the method like listen() and

accept() in order to let TCP client to establish a connection. Socket is for a TCP

client to connect to the server. In Java, TCP is treated as a streaming protocol and all

transmission is done through a stream. Therefore, both sockets have the methods send()

to pass some data into that stream in order to send to the receiver. For UDP, then socket

classes are DatagramSocket, the most basic one, and MulticastSocket, which

support the basic operation of multicast transfer. Therefore, it is possible to test for the

UDP unicast and multicast in Java easily and readily. Java also defines the data structure

for flowing in and out these two sockets, which is DatagramPacket. However, Java

does not support any lower level implementation on network stack. Therefore, the testing

of network is limited to the transport layer only.

Another point of is the concurrent support of Java. In Java, the class Thread is the main

idea of concurrency. A thread in the run-time interpreter calls the main() method of the

class on the Java command line. Each object created can have one or more threads, all

sharing access to the data fields of the object. The method for implementing a thread in

Java is to extend the class Thread for a new object. Then child object will need to override

 23

a method run() to start working as a thread. There is another method to have the same

effect as extending the Thread class. An object can choose to implement the interface

Runnable and then again override the method run() to produce the same result as

before. However, the scheduling of multi-threading in Java is not well performed in the

latest version Java virtual machine. Therefore, it will be a problem in multi threads

scheduling. Despite of lack of scheduling, Java provides various methods and utility of

thread handling. For example, there are methods like Thread.sleep() and

Thread.interrupt() for suspending a thread or stop a thread respectively. Although

there are no well-implemented libraries for timer in Java, it is possible to produce a FPS

system based on the suspension and other operation on Threads.

All events handlings are provided by 2D graphics java.awt package. There are many

examples like KeyEvent or MouseEvent. And it is possible in Java that make a

customized event and so the event handler. The steps are as follow:

1. Build a new class that extends EventObject in Java. This is the main event class.

All data that happens in an event are stored in this class

2. Build a new interface that extends EventListener in Java. This is going to tell

others what event it is now happening and act as a bridge between the event and the

object that perform certain actions based on the event.

3. Implement the listener interface at the desired object in order to listen to that event.

Override the method provided by this listener and perform the job.

Therefore, it is possible for Java to write an event-based system based on the readily

formed event system.

 24

It is also found that Java is also suitable in designing an Object Oriented Game System

with high productivity and suitable for 3D graphics and collision detection. For detailed

tests and analysis, please refer to Section 5.

 25

2.5 Design and construction

2.5.1 Game Engine

 Below is the diagram showing the whole game engine design:

All components are connected and some of the components will be explained below.

2.5.2 Network Architecture

In order to start the implementation of the game, we must first decide for the main network

architecture of this game. Since our main purpose is to enhance the scalability of the game,

we decide not to use the traditional Client-Server architecture as it is already proved for the

limit of players and the limit of server calculation. Therefore, we decide to use the

peer-to-peer architecture. However, typical peer-to-peer architecture is not exactly what a

game can apply on. A server should be present in order to provide the game details for

each players of this game. On the other hand, this server should not handle the updates

from clients and maintain game state. Instead, it is going to be a supervisor of each client

for their details update. Therefore, there should be a channel between clients and server,

provided that this channel will not be busy over the game running. Then, all clients should

connect in a peer-to-peer way in order to communicate with each other. However, as state

above, this will be a problem if the number of clients is growing. That is mainly due to the

Main game, FPS
flowing system

Game model including
the application protocol

Sound engine Graphics rendering the
whole scene

Network protocol Synchronization

 26

limited bandwidth of each client. In order to solve this problem, all clients are partition

into different groups in the network. There were no direct communication between each

partition and thus limit the bandwidth workload to the number of only one partition. In

order to provide management of a partition, one client is chosen to be the coordinator of

one particular partition. He is responsible to communicate between clients and server. For

more details of partitioning, please refer to the another report from one of my partners

concerning partitioning. Below is the rough graph for the whole design of network

architecture:

In order to cope with this design, the first step is to determine what kinds of protocol

should be used in each different channel. And then set up suitable application protocol for

the game playing in this architecture. The next paragraph will show the basic protocol built

between different components.

2.5.3 Network Protocol

Server

Client

Client

Client

Client

Coordinator
(also a client)

Coordinator
(also a client)

Client

Client

Client

Coordinator
(also a client)

Client
Client Client

Diagram showing the whole network architecture

Each client has a
connection with server,
which have not shown in
this diagram

 27

We have discussed before that there are three main types of communication needed. Each

one is having different properties with different usages. Therefore, we have implemented a

hybrid approach of these two protocols. The first one is the initialization of a game. At the

start of the game, since all data must arrive to the client in order to start the game, we use

TCP connection from one client to the main server. There were two kinds of socket, one

was the server and the other was the client. The TCP server was running at the game server

only. It could support multiple connections simultaneously from many clients. Whenever a

client wanted to establish a connection to retrieve some data, a new thread would be

produced for handling that particular client. Each of these threads would be recognized by

the client’s IP address. In order to preserve the uniqueness of each connection, we avoided

the situation that hosts with the same IP run two copies of the game at the same time. Apart

from getting game details at the start of the game, TCP is also useful for the channel

between a coordinator and the server. The main usage of this channel is periodic updates of

game state of each partition. Therefore, this channel requires a reliable transfer rather than

a fast one. As each client must establish a connection with the server at the very beginning,

it is convenient to use this TCP connection for the coordinator usage. Also, it will not

result network congestion at the point of server. Another advantage of using TCP for this

channel is that the server can change the coordinator very conveniently. Consider that one

coordinator leaves the game suddenly. If a connectionless protocol is used, it needs more

time to determine correctly that this coordinator has left the game due to the lost packet.

Therefore, a connection-oriented protocol can tell the server at once when the coordinator

leaves the game. Then the server can act quickly to choose a new client as the coordinator.

For the bi-directional connections within peers, it is clear from the diagram that the density

of connection is quite high. It is not feasible to use TCP for those connections, as this will

make the workload on network part too heavy for every client. Another point is that clients

 28

will keep on moving to any places in the game world. The partitions it belongs to change

with time. Once it has joined a new partition, he will need to disconnect with the old

partition and then connect to the new partition. If TCP is used in this situation, the slow

start of TCP will be significant to client. We would like to maximize the efficiency of

changing partition. If UDP is used, there will be no connection overhead no matter where

the client has been to. Only one thread is needed for the UDP socket in order to listen to

packets flowing in. Another reason is of course the faster round-trip time of UDP over TCP.

To produce a real time response of a game, the delay of any messages should be minimized.

Although the delay is still there for UDP, smaller value of delay will result a better

synchronization within the network. For more details, it can refer to the synchronization

part of the game.

After the use of UDP is confirmed, the next step is choosing whether unicast or multicast

should be applied to the architecture. In the view of performance, multicast is better than

unicast as it can save the bandwidth of the channel and so reduces the chance of

congestion. Consider a case that there are eight clients within the partition. If they are all

using multicast communication, assuming the packet size is 1KByte, then the send channel

will have a rate only 1KByte/sec if the packet is sent within 1 seconds. But for unicast, the

rate will become 1*8 KByte/sec. If there is a congestion rate bound set for the game, say

20Kbytes/sec, it is obvious that unicast will reach much faster then multicast. In order to

investigate this proposition, we have implemented both the system of multicast and unicast.

We try our test in a LAN environment with four players connected to the game. The

implementation of these two methods is shown as follow:

 29

It was found that multicast has never reached the congestion rate limit while unicast has

sometime above that rate. Therefore, in the view of performance, multicast is much

preferable than unicast. However, there is a main disadvantage of multicast. It is not well

supported by the Internet. Although there are some applications of on the Internet making

use of multicast, there should be some special design routers located in the routes. Another

problem is that it is difficult to avoid multiple receiving of one message. For example,

consider two players are at the margin of two partitions. Then according to the partitioning

algorithm, they both at the same time belong to two partitions. If one of them wants to tell

others what action they have taken, they need to send a message to the multicast group.

Since he belongs to two groups, it needs to send to two different multicast groups.

However, at the same time another player who is also belonging to two groups will

therefore receive this message twice. This is a problem for updating a state of a robot as

action will be taken twice. If unicast is used, since it is to access the game state first in

order to get the IP addresses, some precautions can be taken to avoid sending an identical

message to the same player even they are belonging to more than one partition. Therefore,

we concentrate on the application and improvement of unicast delivery in order to let the

Multicast Unicast

Player Player

Player

Multicast
group

Player

Player
(Sender)

Player

Player Player
(Sender)

Sender send to each client by
getting their IP addresses
from game state. Sender only sends to the class

D address, does not recognize
any receivers.

 30

game survive in the Internet. The two main classes that handle TCP and UDP respectively

in a player are TCP_Client and UDP_Client. For the server, there two classes to

handle the connection from clients by TCP, and they are TCP_Server and

TCP_serverThread. The former class is going to handle any new connection from a

new comer, while the latter class is the return of each connection. Once a new thread is

formed, the client will use that thread to keep the connection with the server.

2.5.4 Reliable UDP design

Since the communication between peers in the network must be done by UDP, there is no

way to communicate in a reliable manner. For example, a player wants to send a secret

message to a particular user, then the message should not be lost if it is some mission

command. Another case is that a client may need to update its game state from other client

due to some reasons like out-of-sync or corrupted state. Then one client in the peers should

try to send the game state to that particular client for updating. This transmission should be

no error and fast delivery. Therefore, a reliable protocol is needed.

In order to provide a

reliable one, either TCP or

customized reliable UDP

can be used. As tested

before, the round trip time

of a TCP packet is much

larger than a UDP packet, and connection establishment also needs some time. Therefore, a

reliable UDP protocol is needed to co-operate with the original unreliable UDP. The most

basic reliable protocol will be the stop-and-wait protocol. The main idea of this protocol is

that after transmitting a frame from the sender, it waits for the acknowledgement from the

ACK

ACK

frame
frame

frame

lost

Sender Receiver Sender Receiver

time

Normal case Lost frame

 31

receiver to indicate that it has received the frame correctly. If the sender cannot receive this

acknowledgement in a certain period, it will consider the transmission as lost and

re-transmit the last frame. But this idea is not enough for a reliable transfer. If an ACK is

lost on delivery, the sender will certainly consider its last transmission as a lost. However,

the frame actually arrives at the receiver correctly. Then the receiver side will have

duplicate copy of the frame. If this problem exists, the final re-assemble data will be

corrupted. Therefore, a sequence number is needed to indicate the order of the frames. This

sequence number can be simple as 0 or 1. If consecutive frames at the receiver have same

sequence number, it must be a duplicate frame and therefore discarded. This protocol is

so-called the one bit stop-and-wait protocol.

When implementing this reliable protocol, since it is also a UDP design, it should not mix

up with the unreliable one, as there is no sequence number and acknowledgement. In order

to separate these two different channels, the port numbers of them are difference.

Therefore, if one packet is coming from the reliable port, it is treated as a reliable packet

and performs data integration on that. The diagram below shows the operation of the

network

components:

ACK 0

ACK

Frame 0
frame

frame

lost

Receiver

Sender Receiver

ACK

frame

frame

Sender Receiver

delay
ACK

Delay or lost acknowledgement

One bit sequence number

ACK 1

Frame 1

ACK 0

Frame 0

Sender

 32

The implementation again is located in the UDP_Client class. There are two methods to

handle reliable delivery. They are sendReliableData() and

receiveReliableData().

Another challenge is the outburst of controls being made by the player. If the player keeps

on pressing the key continuously and very frequently, a lot of commands will be formed.

From the view of a game, it is unable to determine whether the commands formed is

needed or is just duplicate commands. Therefore, all those commands or most commands

will need to be sent to other peers as the most basic communication. Then, the

communication channel of this client will be full of packets containing those commands. It

can be imagined that when the channel is full of packets, those packets do not have much

work done on flowing, as there are too many packets. It will definitely make the delivery

more slow. Therefore, the network protocol should have the function on congestion control.

A simple congestion control called rate-based control is implemented in the game. First set

a limit for the send channel rate, say 20Kbytes/sec. Then, calculate the rate of the send

channel at a certain time interval. If the number of packets sending out at a moment

exceeds this value, the number that is available for sending out in the next frame will be

TCP Client
connection with
server

Two UDP sockets:
-Port number 1
-Port number 2

Listen to any
command sent
from server

Take action base
on the preset
commands

Thread listening to
unreliable packets

Thread listening to
reliable packets

e.g. controls
from keys, robot
location

e.g. Important
message, game
state

Rough diagram on the design of network

 33

less. The excess packets will be waiting at the buffer of the sender. If the sending rate is

lower again, the number will be increased again. In our game, the value is adjusted to be

20Kbytes/sec because this value is acceptable for an Internet connection nowadays and at

the same time maximize the channel for communication.

2.5.5 Application Protocol

The application protocol of this game includes various operations of the game. For

example, when a player wants to start a new game, he must first send his login details to

the server. Then the server will authenticate this player and retrieve the details that the user

has got before. It sends all these information to the player in order to let him to start the

game. Then the server should also send to the new comer that the details of existing

members in the partition it is going to join. Next, it also needs to send the new comer’s

details to those existing members. All actions are treated as a method in either the game

server or the client. The main principle of the application protocol is a bridge between

player and all of the other components. Each method in this protocol consists of various

kinds of lower layer methods like calling the network to send reliable data and then update

the state of the game.

One important function of the application protocol is to recognize whether a client is still

playing the game.

Application
protocol

Main Thread
needs to perform
an action

Combination of
lower layer protocol

Main role of application protocol

Various updates after
method call

 34

2.5.6 Game Server

A game server is essential in many games, including ours. The responsibility of the server

is not updating game state or calculating the game logic of our game. Instead, it is a

supervisor on clients and also the database of all clients’ details. As stated above, each

client will establish a TCP connection with the server when they are going to start the

game. Therefore, there is a thread that listening all the time to see if there is any new comer.

The class TCP_Server will be responsible for accepting connections. It then checks if

this IP address has already be used. If yes then do not start the connection with that player.

The next thing the server will do is to authenticate the user id and password in order to find

the appropriate data of that player. The database control is relatively simple and all data are

now stored in a plain text file only. Server also keeps track of what ID has joined the game

at a certain moment to prevent duplicate ID from happening in the game. The method of

realizing whether the client is still alive in the game is determining the connection status of

the TCP connection established at the beginning. If the connection is closed at the client

side, the client is considered as leaving the game. Also, the server is acting as the backup

of the network and the game. It will request the coordinator of each partition to upload the

game state to it periodically so as to keep an update copy of game state. If there is any

problem happens in one partition, server can load back the previous game state to restore

the game accordingly.

 35

2.6 Method of Investigation

The main investigation method is separated into two parts. The first part is to run the game

in a LAN environment which a server is running in one of the machine in the LAN.

Another part is testing in the Internet environment by connecting some clients in local to a

server that located somewhere in the Internet.

In the LAN environment, first setup the server in one of the workstation. Then several

clients start at the same time and connect to that server by knowing the IP address of that

server. In order to check for the scalability of the game, we run a copy of the game in a

computer in the LAN. Then we start playing the game with each other and monitor the

message flow and the reaction of each player based on the command sent. Also, monitor

the statistics produced during the game run on

1. round trip time from each client

2. send channel rate

3. status of each client and consistency

For Internet connection, all works are just same as the LAN environment setup. However,

we concentrate more on the network status and also provide a method to compare statistics

from different players. As it is an Internet environment, each player is not able to view

others directly. All necessarily data will be shown on the screen with some debugging

message. We record the data from the debug message as the same time observer the whole

game flow of each player.

 36

2.7 Analysis of approach and results

2.7.1 UDP reliable transfer performance

There is a comparison between the TCP file transferring and the UDP one bit

stop-and-wait protocol file transferring. Two files are going to be sent out, which has two

different sizes, one is 10K Bytes and the other is 100K Bytes. First we test with the LAN

environment for comparison. The timeout value set for the UDP reliable protocol is 1

second and the packet size is set to be 1K Bytes. Then, at the second phase we try to send

in an Internet environment. The result is as follow:

 LAN environment (ms) Internet environment (ms)

 TCP UDP reliable TCP UDP reliable

File 1 (10K Bytes) 198 220 400 3412

File 2 (100K Bytes) 23724 3451 45564 43887

File 1 (10K Bytes) 341 202 3114 5089

File 2 (100K Bytes) 25286 1054 23293 46768

File 1 (10K Bytes) 187 190 3135 2744

File 2 (100K Bytes) 26057 2791 42880 37504

File 1 (10K Bytes) 241 201 3204 4576

File 2 (100K Bytes) 23553 5992 39456 38475

The time calculated for TCP is the time difference that starts from forming a connection to

finishing the whole transfer. For UDP reliable, it is measured from start sending the whole

data from finishing the whole transfer, includes cutting the data into packets as well as the

timeout. It was found that when the size of the packet is not large, the efficiency of TCP is

even better than UDP reliable. This is mainly due to the lost packet of UDP in Internet and

the time needed for re-transmission and also the splitting of whole punch of data into

 37

packets. However, when the data size is large, the performance of UDP is better than TCP

as the re-transmission and flow control of TCP give more contribute on the delivery.

During the test, it was also found that the performance of UDP reliable was not very

constant comparing with TCP. That was mainly due to the re-transmission of packets. If

that particular transfer consists of little lost packet or acknowledgement, the efficiency will

be much higher than a TCP one. Therefore, we can get a conclusion from the result: If the

network condition is excellent with very little packet loss of UDP, the performance of a

customized reliable transfer is much better than a traditional TCP. However, if the network

condition is not very good, the number of re-transmission of UDP will increase and thus

the performance will be affected greatly. One reason why the efficiencies of UDP reliable

and TCP have no much difference when tested in Internet environment is that the

implementation of UDP is not optimized. The one bit stop-and-wait protocol has a

drawback that each time only one packet can be sent out to the network. If this packet is

lost, the whole system should wait for at least the timeout time in order to determine it has

been lost and re-send the packet. The channel is clearly not fully utilized with the flow of

packet. Another method that can solve this problem is called sliding window protocol.

Actually this protocol is what a TCP is using nowadays. Both the sender and the receiver

will have a group called window, which the size are the same. Below is the graph

explaining the use of sliding window:

This method allows the sender to send packets up to the window size before an

 38

acknowledgement is required. However, this method is efficient only if the channel

involves a one-to-one file transferring. If one needs to send a file to several receivers, then

the available channel of the sender will easily be congested and thus result a waiting at the

sender. For a network game, a player always need to send a command to many others and

so sliding window protocol is not very suitable for a game. Also, the size of a message is

not very large at one time. Then it is no need to split a piece of data into many packets and

thus cannot make the most use of sliding window. This is recommended to adjust the

windows size so as to get a size that can have good performance at the same time not make

the channel congest.

2.7.2 Updates of the communication system

Another important issue is the status of a game state in the peer-to-peer architecture. Since

all players have their own copy of game state, it is hard to maintain the consistency of all

game states. As this is related to the synchronization part, the result of synchronization can

be referred to that part. Here we show the result that is without applying the

synchronization mechanism. In a LAN environment, the result was satisfactory on the

consistency even without synchronization. The delay of one command was very little and

peers can show updates instantly. It was easy for any peer to recognize whether one of a

peer is still alive in a partition. The round trip time show between each client was very

small and the lost of packets seldom happen. Same work was performed under the Internet

environment. The result was not as good as the LAN one in the area of consistency. Some

control packets often lost and result a different action of a robot in the game. For example,

the ‘start moving’ packet from a remote player is lost during transmission. However, the

action has performed locally at the local machine and thus the state of these two players is

different. Although the state is consistent again by means of the later updates from clients

 39

that the position and orientation of the robots, the game did not run smoothly. In fact, the

delay of UDP packets is quite small during the testing even in the Internet. The round trip

time showing in the ping functions provided by the application protocol is relatively small.

Therefore, the application of UDP is more suitable for a highly interactive game over TCP.

One more point to point out is that the serialization of Java is quite fast comparing with the

network delay of sending that packet.

Another aspect of this architecture is the awareness of connection of a player in the

network. Although the ping implementation is available at the UDP clients, lost of ping

message is possible to happen. In the first trials, a player treat a peer to be disconnected if

cannot ping that peer only one time. It is tested with only two peers connected to each

other through Internet. It was found that there was an occasion player one cannot ping

player two but in fact player two was still running. Therefore, we should tune the value of

re-try on ping mechanism. Here is the list of number of times needed for retry on ping to

produce correct result:

No. of Times sending a ping message Time for failure of a ping (min)

1 3

2 14

3 29

4 No failure in testing time

Testing time: 30 minutes, Timeout for Ping: 3sec, Time period for retry: 4sec

Therefore, sending four times for a ping message to determine the connection of a client is

the most suitable one.

2.7.3 Congestion Control Comparison

 40

In our game, the congestion control being applied is a simple sending rate detecting

mechanism. Whenever the sending rate is too high in certain period, the available number

of packets will decrease in the next frame. It is comparable with some other congestion

control mechanism. One of them is called the AIMD congestion control. AIMD stands for

Additive Increase Multiplicative Decrease, which is used by TCP. The idea is that

whenever the channel is congested, it will decrease the sending rate by half. Afterwards,

the rate will be increased gradually by a certain amount each time. Since the rate is

reduced by half any time the channel is congested, it will make the delay of a command

change rapidly, which will make the game suddenly move slowly because of this sudden

change. We want to avoid this situation. Another one is the equation-based congestion

control, which the optimal sending rate is calculated based on the sending channel

situation. It is good at finding a suitable sending rate without a sharp change. However,

this may not suit our game as it involves heavy calculation on find the rate each time. The

game engine itself is actually very complicated. If the network protocol is also very

complicated, the delay of a command may also higher. We would like to keep our

congestion control mechanism to be a simple one and will not increase the load of the

game engine much.

 41

2.8 Conclusion

Network protocol plays an important role in an Internet game. Although a player cannot

realize the situation from the screen, network has done a lot of communication with other

players. The implementation of a peer-to-peer architecture is rather complex and need time

for testing. However, this can really solve the problem that the workload of the server is

very high. Many nowadays Internet game depends too much on the server computational

power. Although computational power of a server is increasing by some techniques like

clustering, there is still a limit on that. The potential of peer-to-peer architecture on this

aspect is growing with the advance of network protocol. The idea of separating the

computation among several computers is actually what a network is going to do. Problems

in a peer-to-peer network are still here and are not easy to solve. Yet developing this is a

must in the future trend. Therefore, we need to do and try more to reveal the true power of

this architecture.

 42

3 Partitioning System and Sound Engine

3.1 Introduction

In order to support the large scale of the game, the fundamental network architecture

should be carefully designed. There are mainly two type of network architecture we may

use.

Client-Server Architecture

This architecture is commonly used in current game industry. Under this type of

infrastructure, every player is acted as a client and is connected to a server. The control of

game logic, flow of messages, maintenance of a consistent game state are all done by the

central server. After the player has login to the server, the server will issue the existing

game state to the new players. When the player move or take an action, its command

would first be transferred back to the server, the server would then calculate the new game

state and then update every client upon the changes.

Since the server would keep a central game state and every client updates their own game

state from it. . The only copy of precise game state is stored at the server. Every client only

requires updating their own based on it. So the major benefit of this architecture includes

the ease of game state synchronization. Other benefit includes the protection of the game

from cheating, etc.

However, since every message transfer must be passed through a server, the client-server

bottleneck is significant and therefore, it is not favored for a scalable internet game.

 43

Moreover, it takes at least a round trip time between a player pressed a button and the

screen was updated. Therefore, if the game requires instant response, such as our

robot-fighting game, this is unacceptable.

Peer to peer Architecture

This architecture does not require the existence of a server. Each client maintains its own

copy of the game state based on messages from all the other clients. The clients will

contribute its own computational power in calculating various kinds of data within the

game. This can solve the problem that the messages need to first send to a potentially

distant server and then propagate back to the clients for updates. Since they communicate

with each other directly, this simplifies the transfer mechanism and could eliminate the

client-server bottleneck. So it is favored for a scalable game.

However, the major drawbacks of it include the difficulties to maintain a user data for the

internet game, and keep a synchronized game state.

 44

Hybrid Architecture

In our game, we decided to implement hybrid architecture. That is, we implemented both

the client-server network architecture and the peer to peer architecture. When concerning

messages which are critical and permanent to the game, such as registration/login, update

of player’s information, then client server architecture was used. However, when users

interacting with each others, such as the update of position of robots, the message would

be transferred using a peer to peer approach so as to reduce the time cost.

Transfer of critical data (Client-server architecture)

Server

Client Client Client Client Client

Client-Server communication

Peer to Peer communication

 TCP Server

Client

TCP Client

Client

TCP Client

Client

TCP Client

Multiple threads in
game server

Client
UDP unicast Client
UDP multicast Client

Client
UDP unicast Client
UDP multicast Client

Client
UDP unicast Client
UDP multicast Client

Client
UDP unicast Client
UDP multicast Client

The client-server architecture

The peer to peer architecture

 45

Transfer of client messages (Peer to peer architecture)

Server

Client Client Client Client Client

Client-Server communication

Peer to Peer communication

 46

3.2 Partitioning System

3.2.1 Overview

As mentioned in the above chapter, since we were using peer-to-peer network architecture

in the communication among players, most of the messages in the game were sent to other

clients directly. However, this might be resulted in message flooding in the network. Let

me use an example for illustration.

It is assumed that there are 100 players playing in the game now. In every second, every

player is required to update it new position to others players. So in every second, there are

100 * (100 – 1) messages flowed in the network. As our game is stressed on the scalability,

the number of players is expected to be large. It is essential for us to minimize the message

transferred in the game.

Total massage in unit time = 100 * (100 – 1) = 9900 messages

Fortunately, after investigation, it was found that we could minimize the network traffic by

the game nature. Since the visible area of a robot should be limited, it is natural that they

could not see robots far away. In other words, every robot in one place need not take notice

of others that are far away from him.

Because of this reason, we had implemented a partitioning system. It aimed at grouping

‘related players’ together. When messages are transferred, they will only be transferred to

those ‘related players’. It is believed that this could minimize the network traffic by a huge

amount.

3.2.2 Theoretical principles

 47

Partitioning system here refers to the grouping of players in such a way that essential

network communication must be made between them. The game world is partitioned into

different regions. Each region is named as a partitioned area, or a cell.

In doing so, the network architecture could be further modified as follows.

Transfer of critical data (Client-server architecture, w/ partitioning system)

Transfer of client messages (Peer to peer architecture, w/ partitioning system)

Let us discuss our example back. Assume those 100 players are now separated in 10 cells.

Each cell contains 10 players. At each time interval, every player need to send its message

Server

Client Client Client

Client-Server communication

Peer to Peer communication

Client Client Client

A cell

Server

Client Client Client

Client-Server communication

Peer to Peer communication

Client Client Client

A cell

 48

to other players that belong to the same cell, that is, (10 – 1) players only. Therefore

theoretically, the network traffic could be reduced as follows.

Total message in unit time = 100 * (10 – 1) = 900 messages

3.2.3 Partitioning Mechanism

There are two main types of mechanism to perform partitioning of the game world. The

first one is the static partitioning mechanism. The other one is the dynamic partitioning

mechanism.

Static partitioning mechanism

As the name implies, the partitioning structure is pre-defined. That is, the number of cells,

the size of each cell is fixed and unchanged after the game has been started. The main

advantage is its high efficiency as most of the setting could be pre-calculated and

pre-loaded. The only thing concerning partitioning when playing the game is to load the

related static data and perform corresponding actions.

Dynamic partitioning mechanism

This partitioning method initiates the game world with only one cell. When the number of

player in this cell increases and reaches a maximum, the cell would be split into smaller.

By performing this recursively, the number of cells increases as the number of player

increases. It is obvious that dynamic partitioning mechanism allows control of maximum

number of players in the cells. It is theoretically extensible as well.

Comparison

 49

When comparing the two approaches, it is shown that the dynamic mechanism provides

control on the maximum number of player in each cell, so the amount of traffic in every

cell could be predicted and in control. However, the static mechanism generates faster

response on sending message to adjacent cells, as no calculation is involved at run time.

In short, we could summarize their characteristics in the following table.

 static mechanism dynamic mechanism

Determination of adjacent cells Pre-calculated Calculated at runtime

Control of maximum traffic in

cell
Not supported supported

Since we decided to use P2P architecture, every client should know whom he or she would

need to communicate with. For a dynamic system, updating all players upon change of

cells is required. That is, there could be frequent update of all clients by the server from

time to time.

However, if a static system was used, the partitioned world could be pre-calculated and

loaded to every client at compile time. Therefore, we need to to handle any more runtime

calculation.

As a result, the time saved in a static partitioning mechanism outweighs the benefits of the

dynamic partitioning mechanism. Therefore, a static partitioning mechanism was used. In

other words, a static partitioning is preferred in P2P architecture, while dynamic

partitioning is preferred in client-server architecture, as the clients need not to know whom

he or she is required to communicate with. The only machine they communicate with is the

 50

server.

Justification

Since we had confirmed to use a static partitioning mechanism, we have to sacrifice the

control of maximum number of players at a cell. We would like to minimize this weakness.

We adapted the partitioning system in such a way that when a new player enters the game,

we would place it to a selected cell by a screening process. The screening process focuses

on the number of player in the cells at that time. In so doing, we hope to minimize the

number of players entering that heavily occupied cell.

3.2.4 Design and construction

We had implemented a static overlapping partitioning system. Each cell is overlapping

with each other. When a robot is at private area, it sends its message to robots in its own

cell. When a robot is at the overlapped area, it sends its message to all the cells associated.

Our design could be summarized by the following diagram –

The Blue Area – the area without any overlapping. Robots here

only send message to its cell.

The Red Area – the area that is overlapped by other cells. Robots

here need to send message to its cell, and other associated cells.

The Green Area – the area that this cell overlaps its adjacent cells.

Robots over there need to send their message not only to their cell,

but also to this cell.

The detailed implementation was as follows.

 51

The whole world was implemented as a 2D array of cells. The number and the size of the

cells are predefined.

Each cell was implemented as an object. It stored the pointers of the all the robots belong

to it.

Each robot would store a list of robot pointers that are visible. A robot also stores the

associated cell information that it reserved. The information is in the form of an array of

pointer of the game state of the cell. In every location of the world, there are at most four

game states that the robot need to store:

Ø 1 game state when the robot is in the central area of the cell

Ø 2 game states when the robot is in the edge of the cell

Ø 4 game states when the robot is in the corner of the cell

In deciding the data structure for the whole world, there could be other choice such as a

tree structure instead of the 2D array. However, the array structure was preferred. It is

because,

(i) The tree structure could provide an efficient search time for a particular node.

However, all the nodes in my game design are well defined. In other words,

there is no need to search in the tree.

(ii) Since the viewable area for a robot is fixed, the number of cell that a robot

should send its message to was also fixed at every point. Therefore, no matter

which data structure was used, same number of cells should be retrieved. As a

result, in our game design, the use of 2D array is preferred as the access time of

the array is much shorter than the traversal in the tree structure.

 52

Algorithm – Robot Joining

When a player joined a game, it would first connect to the server. The server would assign

a cell to it and send the game state of that cell to the player. At the same time, the server

would add this player’s robot in its cell data structure, and then update other robots the

existence of this new robot in the corresponding cells.

Algorithm – Robot Movement

When the robot moves, it needed not to notice the server so as to achieve the peer to peer

design. Since the size and the number of cell were fixed at compile time, it was easy to

find out which cell(s) the robot should send its messages to, according to their position at

that time.

For me, I had implemented a mapping of position to the associate cell(s) in a class. A client

could simply load it and retrieve the cell ID in every move. There is no need for any

calculation, so time could be saved.

Algorithm – Cell Transition

As the robots moved, it is very often that a robot changes its cell from one to another. This

is monitored by the server. There are frequent updates of the game state of each cell to the

server by the coordinator. When the server receives an update of the game state, it checks

if there is any robot that its belonging cell has been changed. If so, the server would notice

that robot to change its cell and push the game state for the new cell to that robot. Then it

would notice the robots at the original cell to remove that robot from their visible robot list.

And finally, the server would notice the robots in the new cell to add this robot in their

 53

visible robot list.

Algorithm – Robot exiting

This is rather simple. When a robot drops, the server need only to notice all the robots in

its cell to remove it from their visible robot list.

Obviously, the cell transition part is comprised of pretty heavy calculation and in fact is the

bottleneck in the whole partitioning system. However, this calculation was unavoidable.

3.2.5 Results

The implementation of a partitioning system definitely makes the game more efficient and

reduces the network traffic. Its significance grows exponentially when the number of

players increases. Therefore, the existence of such a partitioning system is crucial for a

scalable online game.

3.2.6 Discussion of the partitioning system

As far as the performance of the partitioning system is concerned, it is found that the heavy

calculation in cell transition should be put under discussion. Since robots are moving

frequently, in order to keep precise determination of the cell that every robot belongs, a

frequent update of the game state from the coordinator to the central server is necessary.

Moreover, after the server receives each new game state, it has to keep checking all robots

overthere to sort out those requiring a cell transition. So this arises two problems:

Ø The increase of network traffic between coordinator and server, so the client

server bottleneck is made significant.

 54

Ø The determination of cell transition involves heavy calculation of on the

positions of every robot. This makes the central server heavily loaded and is

not preferred.

Therefore, another mechanism is suggested. We can allow the checking of cell transition

be done at the coordinator. Every coordinator only deal with the robots at its own cell.

Since now the server is no longer responsible for the checking of cell transition, less

frequent of game state update could be allowed. Also, the calculation work is now

decentralized. Therefore, it seems that the 2 problems above could be solved at first

glance.

However, when we look at the suggested method more deeply, it contains its own

drawback:

Ø After a robot is determined as ‘transition required’, the coordinator should

report this case to the server side. It is because the update procedure

consists of other cell and this cell does not get information of. As a result,

the server role could not be avoided in the mechanism.

Ø Coordinators are actually normal player’s computers. If the computation

power of his/her computer is low, then the downgrading of its performance

is considerable.

Ø It is also unfair for one particular player be selected to perform such a

heavily loaded computation work, as the game performance could be

adversely affected.

 55

In conclusion, there is no better method to perform the checking of cell transition at this

moment. As the computation power and the bandwidth of the server are controllable, we

might increase the overall performance by using cluster server and larger bandwidth.

Therefore, the first method is still in use in our game design.

We had discussed and compared the usage of the dynamic partitioning mechanism and a

static partitioning mechanism. It was concluded that since time saved in static partitioning

mechanism outweighs the flexibility of the dynamic partitioning mechanism, we used the

static partitioning mechanism in our game design. However, actually we might try to joint

the two advantages together and consider a hybrid approach.

The idea is that at the compile time, the number and the size of cell are pre-calculated as

usual. However, when the number of players grows and reaches certain upper limit, we

may expand the game world by adding certain number of fixed size cell.

 56

 Original game world

 New game world

 (With more fixed-size cells)

In this way, the game world could be extensible. In other words, if the game engine is well

designed and supported, the game could virtually support unlimited number of players.

However, it was foreseeable that the following problems could be resulted.

Number of player reach upper
limit.

 57

(i) In order to support the expansion of the number of cells, the game terrain

should be expanded as well. Therefore, a mechanism to generate and load the

terrain dynamically is required.

(ii) Since the cell map was now pre-loaded in the client size, once the game world

expands dynamically, there should also be update on the cell map in the client

side.

(iii) From the viewpoint of players, it would be strange if the game world expands

suddenly when playing. Therefore, we may have to design a suitable story so as

to suit the sudden expansion.

(iv) Other data structure and algorithm of the game may be required to modify in

other to adapt it.

Unfortunately, due to the limited working time for this project, I could not implement this

design and work out its feasibility. So, further study towards this direction is suggested to

take.

 58

3.3 Sound Engine

3.3.1 Introduction

In today’s game industry, a remarkable sound entertainment is of equal importance as an

outstanding graphic engine. A good sound engine is not necessarily representing the

success of a game. However, a good game must include a quality sound engine. Therefore,

for the sake of the players’ interest, sound engine is indispensable in out project.

After investigation, it is found that there are many ways in implementing a sound engine in

java.

(i) Using JDK 1.2 (making use of java.applet.AudioClip)

(ii) Using Java Sound API

(iii) Using Java Media Framework (JMF)

3.3.2 Theoretical principles

Java Sound provides a high-quality 64-channel audio rendering and MIDI sound synthesis

engine that

Ø Enables consistent, reliable, high-quality audio on all Java platforms

Ø Minimizes the impact of audio-rich program on computing resources

Ø Reduces the need for high-cost sound cards by providing a software-only solution

that requires only a digital-to-analog converter (DAC)

Ø Supports a wide range of audio formats including AIFF, AU, WAV, MIDI and RMF

files

Java Sound can handle 8- and 16-bit audio data at virtually any sample rate. In JDK 1.2

 59

audio files are rendered at a sample rate of 22 kHz in 16-bit stereo. If the hardware doesn't

support 16-bit data or stereo playback, 8-bit or mono audio is output.

Java Sound also minimizes the use of a system's CPU to process sound files. For example,

a 24-voice MIDI file uses only 20 percent of the CPU on a Pentium 90 MHz system.

The package of java.applet.AudioClip in JDK 1.2 is actually a built-in Java

Sound Engine. It allows us to playback, loop and stop the corresponding audio clip.

JMF is a high-level API, designed mainly for easy playback of multimedia files, video as

well as audio. Java Sound API, on the other hand, is a rather low-level API, designed for

detailed control of the audio hardware.

The 'performance pack' versions of JMF use Java Sound to play and capture sound data.

Because of this, they include the Java Sound implementation. This implementation is the

same as in the jdk1.3.X. The 'all-java' version of JMF uses sun.audio classes to

playback sound (capture is not possible here). So this version doesn't include a Java Sound

implementation.

JMF has several features that Java Sound doesn't have:

Ø Much more codecs

Ø Support for synchronization between media streams, for instance syncing audio and

video playback

Ø Support for streaming protocols like the Real-time protocol (RTP)

 60

3.3.3 Choice of sound engine

In out project, the usage of java.applet.AudioClip in JDK 1.2 is finally chosen. It

is because in our project, we need only to loop the background music and playback some

sound effects. There is no need for us to handle the low-level control and manipulation of

the audio clip.

JMF could be another choice. It is, however, a large package that supports also other media

files like video. Since we would not use these features in our project, it is not chosen.

If there were further extension of the game such that some video clips will be playback,

then JMF would be a better choice at that time.

3.3.4 Design and construction

First of all, we have to collect the media files for our game. We had downloaded many

useful wav files from the free internet sources. The sound effect includes the walking of a

robot, the shooting of a gun, the use of a sword, the explosion of a robot, etc.

For the sake of the playback performance, a little trick on the sound engine had been made.

When the client program runs, all the sound files are pre-loaded. The pointers of the audio

clips are stored in a hash map. Later, when the file are used, the pointer of that clip would

be retrieved and start playing. This little trick could minimize the response time.

The SoundEngine.java provides public methods for the client program to call. When

those methods are called, pointer of those audio clips is retrieved and corresponding

 61

actions will be performed.

The SoundList.java contains a hash map which stores the pointer of the pre-loaded

audio clips.

The SoundLoader.java load a media files to an audio clip and then add the pointer of

the clip to the hash map.

There are three operations for an audio clip:

Ø play – Play the audio clip once. Use in most sound effect.

Ø loop – Loop the audio clip until a stop method is called. Use in background music

Ø stop – Stop the audio clip

The calling of these three method are event-driven, when the robot start to walk, then the

sound engine is called to loop the walking sound for the robot. Once the robot stop moving,

the sound engine is called to stop that sound.

Through these three functions, a simple sound engine for the game had been implemented.

3.3.5 Result and Conclusion

The performance of the sound engine is satisfactory. However, as we could not control the

low level characters for an audio clip like volume, the sound given out is a bit soft.

 62

3.4 Evaluations and Conclusion

Network architecture is ‘invisible’ but very important in an Internet game, even though a

player cannot take notice of it from the screen. Owing to its importance, it is worthwhile

for us to design a suitable and efficient infrastructure. The implementation of a

peer-to-peer architecture is rather complex time is required for testing. However, this can

really reduce the workload of the server and therefore, the client server bottleneck is

minimized. Many nowadays Internet game depends too much on the server computational

power. Although computational power of a server is increasing by some techniques like

clustering, there is still a limit on that. The potential of peer-to-peer architecture on this

aspect is growing with the advance of network protocol. The idea of separating the

computation among several computers is actually what a network is going to do. Frankly,

there is still room for improvement in a peer-to-peer network architecture. Yet developing

this is a must in the future trend. Therefore, if we could try more on this area, we could

become the pioneer of this future trend.

Besides the basic network infrastructure, other factors such as game protocol, partitioning

in the game world and synchronization mechanism are also the main aspects of research to

tackle the constraints of unreliable Internet communications.

In our project, we successfully implemented a static partitioning system to our game.

However, as suggested in the previous chapter, this design was not perfect. It got its own

weakness. There are two key points that we could further investigate so as to fine tune the

system and make it even better.

 63

The first one is the place where the determination of cell transition should be made.

Currently it is done at the server side. Implementation at the coordinator could be another

possible way, although it is not a good approach after analysis. However, as stressed before,

since it is the bottleneck of the whole partitioning system. Further investigation is suggested

to take. The second key point is the extensibility of the partitioned world. It is shown that an

extensible world could be feasible which would result in unlimited number of players

joining the game. This is obviously one of the goals in the present gaming industry.

Therefore, further study towards this direction is recommended.

When it comes to the sound engine implemented in our project, I would regard it as ‘just

enough’ for our game. If more sound operations are required to make in our game, then the

low level Java Sound API would be a good choice among them. If apart from the audio,

there are other media files that could enhance the competitiveness and the attractiveness of

our game, then the JMF could provide more supports.

 64

4 Synchronization System

4.1 Introduction

4.1.1 Scope of investigation

The present capacity of interactive Internet game is limited. The boundaries arise from the

high consumption of client bandwidth and the unreliability of Internet. Transport and game

protocol, partitioning in the game world and synchronization mechanism are the three main

aspects of research to tackle the constraints of unreliable Internet communications to give

response as close to reality.

As the nature of rapid responsiveness of real-time interactive game, the needs of eliminating

network delay is indispensable to providing the human sense of “virtual reality”. Adding to

the quandary is the unreliable underlying Internet transportation. Synchronization evolves

crucially to removing any discrepancy among clients and, simultaneously minimizing the

response time.

The main and only investigation of this report pivots at the synchronization mechanism.

Synchronization mechanism defines a software architecture and implementation which

detect and resolve inconsistencies revolving from the latency and loss of computer network

communication. The synchronization mechanism deals with the details of maintaining

consistent state with Internet communication underneath.

4.1.2 Current design and implementation trend

In turn-based or latency-insensitive games [4.1], conservative synchronization algorithms are

adopted which perform poorly in fast-paced games where a constant rate of simulation is

important. In fast-paced multiplayer game [4.1] like Mecha Zeta, therefore, optimistic

 65

synchronization algorithms evolved to resolve the latency of conservative algorithms.

Optimistic algorithms execute events or commands optimistically before they know for sure

that no earlier events could arrive, and then repair inconsistencies. The speed at which game

state changes causes the dead reckoning(rollback) to quickly multiply to resolve large

divergences among clients.

The inadequacies of current optimistic algorithms are the anticipation of divergences and

dead-reckoning when performing corrections of state.

4.1.3 Significance and Objectives

Since Mecha Zeta aims to accommodate an extensible capacity of client players under

Internet, synchronization has to digest a large number of messages fired from rapid, frequent

but delayed events. The project focuses on the “responsiveness” and “consistency” of the

synchronization mechanism.

l Responsiveness vs Consistency

l Minimal disturbance to simulation

l Computation and storage overhead of error recovery

 66

4.2 Analysis of Synchronization mechanisms

4.2.1 Synchronization mechanism

A shared view of a virtual world (game world) is often enhanced by replicating the

information at each participant’s site since replication allows local access which improves

interactive performance [4.4, 4.5]. However, every update at each participant’s site should be

propagated to and its execution be synchronized with other participants to keep his view

consistent with them.

As participants are geographically distributed over large networks like the Internet, the

probability of view inconsistency among participants grows due to the increase of network

delay [4.6].

Therefore synchronization of updates is a key to maintaining a consistent, shared view

among participants in the game world.

Synchronization mechanisms are defined here 2 areas of study “Consistency Protocol” and

“Synchronization algorithm”. They are tailor-designed for specific applications upon the

requirements of “responsiveness” and “consistency”. The dilemma is due to the latency

and loss of packets flowing in computer networks. “Responsiveness” defines the latency

from the events generated by the system to the events be received and performed in the

clients. The graphical rendering delay contributes to the latency but is not taken into

account of “responsiveness” in synchronization.

Consistency protocol is roughly categorized as “state-based” and “command-based”.

“Stated-based” multicasts the client-generated game state from the client to all fellows.

“Command-based” multicasts every command from the client to fellows. Presumption is

the underlying Reliable Internet multicast protocol (no packet loss). The mechanisms to

accomplish this should be as efficient as possible, both in bandwidth and computational

 67

load.

Algorithms of synchronization are roughly being classified into 2 classes for virtual reality

applications – conservative and optimistic [4.2]. “Conservative" algorithms perform poorly

in fast-paced games where a constant rate of simulation is important, although they are still

suitable for turn-based games. On the other hand, “Optimistic” algorithms execute events

optimistically before they know for sure that no earlier events could arrive, and then repair

inconsistencies when they are wrong.

4.2.2 Consistency Protocol

4.2.2.1 State-based Consistency Protocol

Game state is generated upon command execution. For a successful consistency protocol,

each client should be able to generate the same game state from what to be popped from the

protocol. It is, therefore, the direct incentive to multicast the individual game state generated

at each client to fellows.

þ Easy to discover errors - by comparing the game state received and generated

þ Correction is simple – only to restore game state

ý Large consumption of bandwidth – game state is normally larger than command

ý Large consumption of computation – restoring a game state requires not only memory

allocation but also repairing dynamic memory linkage.

4.2.2.2 Command-based Consistency Protocol

Each client timestamps commands, with reference to game world clock, reliably multicasts

them on to fellows. Given the commands from each client and the time at which they were

 68

issued, every client can compute the correct game state. No game state transmission is

required in this protocol unless a global recovery occurs . The command-based consistency

protocol is simple and provides low latency, reliable delivery of all commands. However, it

does not distinguish between different classes of events and requires a many-to-many,

low-latency, reliable multicast protocol.

þ Simplicity in implementation

þ Without the need for a third-party trusted server to generate global game state.

þ Efficient bandwidth usage - small command packets.

þ Lowest possible latency – commands packet flow around partition only

ý Require a low-latency Internet multicast protocol

By using a reliable multicast protocol, we ensure that all commands eventually reach each

fellow client. Each client can compute the correct game state by executing the commands in

the order in which they were issued. In case there is discrepancy in execution of command

packets, we must correct the game state when commands are received out of order. These

corrections, or rollbacks, can cause unexpected jumps in the game state, severely degrading

the user experience. Therefore, we must at all costs minimize the frequency and magnitude

of rollbacks.

4.2.3 Synchronization Algorithms

Algorithms of synchronization are roughly being classified into 2 classes for virtual reality

applications – conservative and optimistic. “Conservative" algorithms perform poorly in

fast-paced games where a constant rate of simulation is important, although they are still

 69

suitable for slower turn-based games.

4.2.4 Conservative Algorithms

“Conservative" algorithms perform poorly in fast-paced games where a constant rate of

simulation is important, although they are still suitable for slower turn-based games.

4.2.4.1 Lockstep synchronization [4.2]

No member is allowed to advance its simulation clock until all other members have

acknowledged that they are done with computation for the current time period.

4.2.4.2 Chandy-Misra synchronization [4.7]

Each member is allowed to advance as soon as it has heard from every other member it is

interacting with. Additionally, it requires that messages from each client arrive in order.

[Lemma: Most updates come from interacting members]

 Responsiveness Consistency

Lockstep

Extremely slow – Fast client has

to wait for slow client for every

move.

Absolutely high – No rollback

Chandy-Misra

Slow – An advance version of

lockstep but also depends on

clients which are potentially slow.

High – Depends on the group size

of members

Table 4.1 Comparisons of conservative algorithms

4.2.5 Optimistic Algorithms

 “Optimistic” algorithms execute events optimistically before they know for sure that no

 70

earlier events could arrive, and then repair inconsistencies when they are wrong.

4.2.5.1 Time-Warp Synchronization [4.8]

Taking a snapshot of the state at

each execution, and issuing a

rollback to an earlier state if an

event earlier than the last executed

event is ever received.

ý Explosion of anti-messages

As part of the rollback, anti-messages are sent out to cancel previously generated

events that have become invalid

ý Great processing overhead

Copying a context involves not just the memory copy but also repairing linked

lists and other dynamic structures.

ý Less snapshots = More costly rollback

4.2.5.2 Breathing algorithms [4.9]

Solve the problem of excessive rollbacks by setting an “event horizon” - Events

beyond the horizon can not be guaranteed to be consistent, and are therefore not

executed.

4.2.5.3 Bucket Synchronization [4.3]

Fig 4.1 Time-Wrap Synchronization

 71

Events are delayed for a time that

should be long enough to prevent

disordering before being executed.

An event is held in a bucket at

each participant’s site if it is

received before a given time limit

called playout time and otherwise,

the event is dropped. This allows an event to be played out at the same time at all

participants.

 Responsiveness Consistency

Time-Wrap
Instant response – events are

executed without checking

High – rollback whenever error is

detected

Breathing
Instant response – an extended

time-warp.

Depends on the “event horizon”

Bucket
Adjustable delay – subject to the

interval of buckets

Low – events may be dropped

Table 4.2 Comparisons of optimistic algorithms

4.2.6 Summary of synchronization mechanisms

4.2.6.1 Consistency Protocol

Since Mecha Zeta eyes surviving on the unreliable Internet, latency comes first in

consideration. “Command-based” consistency protocol consumes the least bandwidth

which is favorable to enhance the responsiveness of Mecha Zeta. On the other hand,

Mecha Zeta eyes to entertain a certain large group of clients; the size and manipulation of

game state is expensive. Therefore, higher consistency “State-based” protocol suits less.

Fig 4.2 Bucket Synchronization

 72

The function of serving consistency is preserved by introducing classification of

commands and events, which will be explained in the following chapter.

4.2.6.2 Synchronization Algorithm

Obviously, optimistic algorithms place emphasis on responsiveness while conservative

algorithms aim to preserve consistency to responsiveness. For an interacting environment

like Mecha Zeta, optimistic algorithms suit better to enhance the responsiveness.

However, in order to retain consistency among all clients, error correction and recovery

must exist. The 3 different optimistic algorithms give almost instant response but the

consistency and performance differ. Consistency of optimistic algorithms always

contradicts the disruption of simulation.

It is the goal of optimistic synchronization to minimize the “flickering” effect caused by

rollback or dead-reckoning when performing error corrections. To solve the problem, the

performance of pre-processing and game state recovery should be investigated.

 73

4.3 Investigations

4.3.1 Incentives of investigations

As Mecha Zeta is performing real-time interactions in the virtual game world, the direction

of synchronization mechanisms is straight to optimistic algorithms. The investigations of

these synchronization algorithms look into the following areas

l Responsiveness and Consistency

l Smoothness of the simulation

l Computation and storage overhead of error recovery

on the 3 commonly adopted optimistic algorithms - Bucket Synchronization, Breathing

Synchronization and TimeWrap Synchronization.

4.3.2 The choice of Bucket Synchronization

4.3.2.1 Responsiveness and Consistency

With the study of the 3 algorithms in the previous chapter (Table 4.2), they all give

satisfactory responsiveness because commands and events are not executed until absolute

consistency is achieved. Most importantly, Mecha Zeta needs instant response which

tolerates unnoticeable delay (informally, by experimental testing, 250ms). Here is the

analysis of consistency. TimeWrap executes commands and events after taking snapshot of

the game state. It does not guarantee the commands are in-order and performs rollback

whenever faults are detected. The consistency is finally preserved since every fault is to be

corrected. Breathing imposes a “horizon” to keep copies of events and commands where

commands and events out-of-bound delayed cannot be detected. The consistency is subject

 74

to the length of the horizon. Finally, Bucket bears the lowest consistency because events

and commands arriving later than the bucket time, it will be dropped.

4.3.2.2 Smoothness of the simulation

The smoothness of simulation depends on 2 factors – synchronization delay and frequency

of error corrections.

TimeWrap provides the least synchronization delay but no pre-ordering of commands and

events. The frequency of error corrections is very high but the smoothness is fair because

time-wrap points are unit. Breathing has no restriction on the synchronization delay but

pre-processing of commands and events are not specified. Therefore, the frequency of

error corrections is undefined. Bucket synchronization imposes a delay for each bucket but

the frequency of error is reduced because pre-processing is taken place in each bucket. The

flickering effect will be greater because intervals between buckets are larger than

time-wrap.

4.3.2.3 Computation and storage overhead of error recovery

TimeWrap has to store up game states and commands of every execution which will

eventually slump up the memory allocation. Breathing limits the boundary of commands

and game states storage. Bucket slashes the storage of game states and commands because

no backward restoring is performed.

For the computation issue, it depends on the size of game state when performing restore

and re-execution. A high computational overhead may “halt” the “screen” of the client.

 75

4.3.2.4 Conclusion

Within the 3 optimistic algorithms discussed above, none of it perfectly suits the needs of

Mecha zeta – high responsiveness and consistency, smoothness and minimal overhead of

error recovery. This project, therefore, focuses on other hybrid approaches.

 76

4.4 Overall Architecture

4.4.1 Synchronization architecture

For the ease of scalability and development, commands and all the driven events are first

handled by the synchronization engine before being directed to the game engine for

rendering. The events and commands are timestamped with reference to the same game

world clock when they are issued. While executing the commands and events, the game

engine throws the same copy to game-state engine to take “snapshot” of the game world.

The corresponding game state is saved in the synchronization engine. In case there are

inconsistencies occurred, rollback of game states is activated. The synchronization engine

is responsible for re-ordering the incoming commands and events as well as recovering

from inconsistency.

Synchronization algorithm, which is the main context of this project, is to be adopted in

the synchronization engine. In this project, 2 different algorithms are being tested in the

synchronization engine – Bucket Synchronization (Section 4.5) and Multi-States

Synchronization (Section 4.6).

Fig 4.1 Synchronization architecture

Rollback

Game States (G1)

Game States (G1)

Commands + Events (E0)

Commands + Events (E0)

Game States (G0)

Commands + Events (E0)
Synchronization

Engine

Game Engine GameState Engine

 77

4.4.2 Game World Clock

The synchronization engine also has to synchronize the game world time of all clients so

that commands and events from different clients can be absolutely ordered.

The main difficulty of synchronizing the game world time is the add-on network

transmission delay. When the server tells a client the game world time t in initialization,

the client receives the timestamp t at t+d, where d is the network delay. The client,

however, can never be able to verdict if the world time received synchronized with the

server.

Here the project adopts a common approach – NTP (Network Time Protocol) [4.10]. NTP

provides algorithms to remove network jittering. The Network Time Protocol (NTP) is

widely used in the Internet to synchronize computer clocks to national standard time.

4.4.3 Classification of commands

Mecha Zeta adopts the command-based consistency protocol to minimize the bandwidth

consumption because the p2p traffic of Mecha Zeta is very large and frequent.

There are 2 categories of commands in Mecha Zeta defined. It is consistent command and

real-time command. Consistent commands are those must be strictly synchronized among

members and allow no loss. It includes FIRE and HIT event. For real-time command, it

allows delay and loss but immediate delivery. MOVE is one of the examples.

Consistent command are sent over reliable protocol while real-time are sent over

unreliable protocol. Synchronization engine only performs error correction with the

consistent command.

 78

4.5 Bucket Synchronization

It employs the bucket mechanisms to buffer the incoming events and commands. The

executed bucket is then achieved to serve the function of future rollback like TimeWrap.

The difference is that game state of every bucket is achieved instead of every command or

event. A threshold of error recovery is imposed when there is an arriving command with

timestamp older than the threshold limit borrowed from the Breathing algorithm.

There will always be a forward buffer bucket ahead of the current execution. The bucket

serves as a buffer which stores up and sorts the commands or events inside the bucket.

When the execution time of the bucket, with a synchronization delay added, expires, the

bucket is achieved and the content of the bucket will be poured out for execution. Then,

the synchronization engine will acquire the respective game state and achieve it for the

next bucket.

Error is discovered from out-of-time commands or events arriving. The engine will still

accept and store any arriving command or event but the execution is suspended until

rollback is finished. Rollback is started by placing the late command or event into the

respective bucket. The game state of that bucket will be restored and all the commands and

events inside will be re-executed.

If a command exceeds the threshold limit, the synchronization engine will request the

up-to-time game state from the coordinator of the partition, which is supposed to maintain

the most consistent view of the partition.

4.5.1 An Example of Bucket Synchronization

Fig 5.1 demonstrates the normal execution and rollback of bucket synchronization. Three

FIRE commands (with timestamp 260 (host 3), 430 (host 2) and 470 (local host)) are

 79

Fig 4.3 An example of Bucket synchronization

high-lighted. The current game world clock time is 500. The synchronization delay

(interval of buckets) is 200ms. Assume that the command 260 arrives after the execution

of the grey bucket (forward buffer bucket) to illustrate rollback.

For the sake of providing buffer to reorder commands and events, each command and

event will be re-timestamped a playout time in local host.

Playout time = World clock timestamp + Synchronization delay

Therefore, the 3 commands will be re-timestamped as 460, 630, 670 respectively. Suppose

command 460 has not arrived yet. Current Time of local host is 500. Command 630 and

command 670 are put into the forward buffer bucket at time 600 because they are on time.

They are being sorted in the bucket. When the current time comes to 600, the forward

buffer bucket expires and pours out command 630 and 670 for execution. The content of

the forward buffer bucket is achieved and the forward buffer bucket is re-initialized with

470

260

Local Host

Bucket

Simulation Time

400 ms 600 ms 200 ms

Current Time

400 ms 600 ms 200 ms

400 ms 600 ms 200 ms

Host 2

Host 3

430

 80

Fig 4.4 UML Inheritance and association diagram of Bucket synchronization

timestamp 600+200=800. After the execution of 670, the synchronization engine acquires

the game state from game state engine and achieve in the history bucket 600.

At time 700, while bucket 600 is executing, the command 260 arrives with playout

timestamp 460. Rollback is called on action because current execution time is 700. Then,

the execution of forward buffer bucket (600) is suspended until rollback is finished. The

command 460 is placed into bucket 400 and is sorted there. The game state in bucket 400

is restored and all commands and events in bucket 400 and bucket 600 are re-executed

in-orderly.

It is possible that inconsistencies still exist when performing rollback. For example,

another late command arrives when rollback is taken place. The rollback will be

interrupted immediately and re-ordering of is taken place.

4.5.2 Software Architecture of Bucket Synchronization

The full inheritance UML diagram is displayed in Appendix. Here shows an abstract

inheritance and association UML class diagram.

 ::mz.sync

::<<Unknown>>::Thread

GameClock

::<<Unknown>>::Date

Sync

InputKeys

StateThread

<<interface>>
::<<Unknown>>::Cloneable

Bucket

<<interface>>
ExecGameStateListener

<<interface>>
::<<Unknown>>::EventListener

<<interface>>
ExecCmdListener

ExecInputTask ::<<Unknown>>::TimerTask

::<<Unknown>>::EventObject

ExecCmdEvent ExecGameStateEvent

 81

When commands (InputKeys) arrives in Sync, it is passed into StateThread where

the Bucket Synchronization takes place. StateThread has an ArrayList to provide a

series of forward buckets for buffering. The reason of using ArrayList is because the

searching time is O(n) and the n is number of forward buckets. The number is extremely

small, say 1 to 5.

The command is inserted to respective bucket after being re-timestamped the playout time.

As StateThread is implemented as a thread, it will check if there is any bucket expired

in every loop.

The Bucket bears a playout timestamp and a TreeMap for containing all commands.

TreeMap has O(log n) seaching time and insertion time. In addition, the retrieval of

commands from TreeMap is already sorted.

Every command is executed as an object of TimerTask which runs on a background

thread Timer. It schedules the execution of each command according to its timestamp.

When it executes, it is embed in ExecCmdEvent which is thrown out of the Sync. The

game engine listens to this event and executes the command when Sync throws out the

ExecCmdEvent.

Rollback is detected in StateThread when a command cannot be inserted into any

forward buffer bucket. The achieved bucket is stored in another ArrayList because the

searching algorithm starts at the “newest” achieved bucket until the respective bucket is

found. The commands are handled as normal execution but restoring game state precedes.

The game state in the selected bucket is thrown to game engine by

 82

ExecGameStateEvent. After that, ExecCmdEvent carries the commands to the

game engine for execution.

4.5.3 Analysis of Bucket Synchronization

Bucket Synchronization is clearly very different from any of the conservative algorithms,

since its scheduling of execution is based on synchronization delay and not when it is safe.

It is also clearly different from traditional bucket synchronization since it provides

absolute synchronization for events delayed no later than the longest synchronization delay.

Bucket synchronization is a little more optimistic than Time Warp in the sense that it does

not keep a snapshot of the state before executing every command so that it can recover as

soon as a late command arrives.

4.5.3.1 Responsiveness and Consistency

The responsiveness of Bucket Synchronization depends on the synchronization delay

(playout time). Less synchronization delay means faster response and vice-versa. Bucket

Synchronization improves the consistency by allowing a synchronization delay for

pre-ordering and error-correction while being strict to consistency when error is discovered.

The key to achieve a more satisfactory performance is to determine the synchronization

delay dynamically with the network status.

4.5.3.2 Smoothness of the simulation

Recall that smoothness depends on 2 factors - synchronization delay and frequency of

error corrections. Again, the synchronization delay plays an important role not only on

 83

responsiveness and consistency but also the smoothness. On the frequency of error

correction, it also subject to the synchronization delay to minimize the error probability.

4.5.3.3 Computation and storage overhead of error recovery

The storage overhead of buckets (commands, events and game state) in the achieved

history is much less than TimeWrap because achieving game state is of each bucket instead

of each command. The storage of game state is further reduced to the threshold binding

where unlimited use of storage to preserve consistency is avoided. The error recovery

procedure makes no difference as normal execution except that game state is to be

restored.

The computational overhead of restoring game state is quite high. It is because Mecha Zeta

aims to accommodate large group of clients, though it partially depends on the game

engine’s design of memory management. A high computational overhead may “halt” the

“screen” of the client.

 84

4.6 Multi-States Synchronization (MSS)

Although Bucket Synchronization has improved in the 3 aspects in problem, the

computational and storage overhead is not improved. Multi-States Synchronization is the

second approach to the problem by running the game concurrently in different delays. It

preserves the responsiveness from “optimistic” algorithm with the consistency from

“conservative” algorithm.

The main philosophy of MSS is to minimize the computational overhead of game state

recovery so as to accelerate the recovery process. MSS is an optimistic algorithm, and

must execute rollbacks when inconsistencies are detected. However, it does not suffer from

the high memory and processor overheads of Time Warp. When rollbacks are required,

instead of copying the state from a snapshot taken just prior to the offending command as

TimeWarp does, MSS copies the state from a second copy of the same game which is

running at a delay relative to the inconsistent state. This second copy of the game state,

since it is following the 1st state in execution, has had more time to reorder commands and

does not have the inconsistency that is to be repaired. Instead of keeping snapshots at

every command, MSS keeps multiple copies of the same game state, each at a different

simulation time. MSS is able to provide consistency because each trailing state will see

fewer mis-ordered commands than the state preceding it by waiting longer for delayed

commands to arrive before executing.

There is also a threshold of synchronization “horizon” where consistent commands arrive

later than the horizon will request an absolute game state restoring from the coordinator of

the partition.

 85

Simulation Time

200 ms

Pending S0

S1

S2

Executed

Executed

Executed

Pending

Pending

Execution time

300 ms 100 ms

Fig 4.5 MSS Runtime Execution

4.6.1 An Example of MSS

For example, in Fig 6.2, there are 3 states with synchronization delays of 100ms, 200ms and

300ms each. Two commands are used for demonstration. Command A is a MOVE, a

real-time command, issued locally at t=150ms and executed at 250ms in the leading state

(the only game copy for rendering). At time t=350ms, the first trailing state reaches a

simulation time of 150ms and executes command A. Since A was on time, its execution

matches the leading state and no inconsistency occurs. Similarly, at t=450ms, the final

trailing state reaches simulation time 150 and executes command A. It too finds no

inconsistency, and no state is left to check it. In the other words, inconsistency could not be

discovered for simulation time t<150ms.

Command B is a FIRE issued at time t=150ms by another member. By the time it arrives, the

game world time is 275ms. The command is executed immediately in the leading state at

t=275ms. At t=350 ms first trailing state executes B. When it compares it’s results with the

leading state’s at t=250ms, it is unable to find FIRE from the same player at time t=250ms,

 86

Fig 4.6 MSS software architecture

and signals the need for a rollback. The state of the trailing state becomes the leading state

by placing B at time 250ms. The leading state then marks all commands after time 200 as

unexecuted and re-executes them up to the current simulation time.

4.6.2 Implementation of MSS

MSS is built on multi-thread. MSS allows flexibility on the implementation of the trailing

states thread. All the threads, of individual synchronization delay, are implemented as

“forward execution” – executing commands directly with the playout timestamp.

Sync provides the storage and sorting of all commands and events. It is implemented in a

TreeMap where searching and insertion cost are O(log n). Each state thread is

implemented using threading with a different synchronization delay. In each state thread, a

TreeMap stores reference to respective commands in Sync.

The execution of each command and game state recover is the same as the implementation

of Bucket Synchronization – using TimerTask and EventListener.

State thread Sk

State thread S1

State thread S0

State
thread State

thread
Command

State
thread State

thread
Command

State
thread State

thread
Command

Command
repository

Sync

 87

MSS requires an additional function on game state – comparison between game states.

Moreover, since the trailing states compare the leading state’s game state respective to

each command, storage of game state of every command is needed.

In order to reduce the storage overhead, it is implemented that only the first state thread

keeps all the game states. It is because if trailing state Sk executes a delayed command at

time=t and gets the game state after this execution, Sk compares it with the game state in

Sk-1 at t. Sk-1 must share the same game state as S0 at t because inconsistency would have

been discovered by Sk-1 instead of Sk. .

4.6.3 Analysis of MSS

TSS performs best in comparison to other synchronization algorithms the situation is present

in the game:

l game state is large and expensive to snapshot

Mecha Zeta is designed to be large in game state because of the large capacity of members.

The time and storage of taking snapshot of game state is therefore expensive. MSS

minimizes the computational side-effect of error recovery by switching the trailing state

thread to be the leading state thread.

4.6.3.1 Responsiveness and Consistency

Same as Bucket Synchronization.

4.6.3.2 Computation and storage overhead of error recovery

Storage overhead depends on the number of states thread but computational overhead

depends on the efficiency of game state comparison. Yet there is concern that running the

game in multiples adds to the computational overhead.

 88

4.6.3.3 Smoothness of the simulation

Computational overhead when error recovery is reduced. Hence, the performance of error

recovery is enhanced.

 89

4.7 Experimental Results

4.7.1 Scope of experiment

In order to test the performance regarding to the 3 objectives of this project, the 2

synchronization algorithms were tested under the same environmental parameters. The

topics of experiments entail error recovery in the following aspects:

l Number of Rollback vs Frequency of command

l Number of Rollback vs Synchronization delay

4.7.2 Number of Rollback vs Frequency of command

The frequency of issuing commands tests the ability of handling commands in bursting

manner. It happens very frequently in Mecha Zeta where several client robots may come

into close and frequent attack. It is an aspect of testing consistency of the 2 algorithms.

System Settings Network Settings Program Setting

Intel Pentium 700 on Windows XP

platform

l System link bandwidth:

100Mbps

l Number of clients: 2

l Average ping RTT: 66 ms

l Synchronization delay:

100 ms

4.7.2.1 Testing result

 90

Fig 4.7 Bucket Synchronization Results

Fig 4.8 MSS Results

 Rollback times Total commands Period of commands (ms) Rollback costs(ms)

Run 1 11 500 150 26.01

Run 2 15 500 100 27.43

Run 3 14 500 70 31.25

Run 4 33 500 50 36.58

Run 5 53 500 25 49.46

 Rollback times Total commands Period of commands (ms) Rollback costs(ms)

Run 1 13 500 150 11.93

Run 2 17 500 100 19.01

Run 3 15 500 70 18.32

Run 4 27 500 50 26.18

Run 5 41 500 25 28.45

4.7.2.2 Result Analysis

Bucket Synchronization - The result demonstrates an average trend of growth of errors

from the reflection of frequency of command. The rollback cost also grows with the

frequency of commands. It is because more commands to correct in each synchronization

period. When the frequency of command is about the same as RTT, the number of rollback

is about the same as lower frequency.

 91

Fig 4.9 Bucket Synchronization Results

MSS – The result approximates the result of Bucket Synchronization except the rollback

costs are greatly reduced. It can be deduced from the avoidance of restoring game state by

switching the rendering thread.

4.7.3 Number of Rollback vs Synchronization delay

Synchronization delay in both algorithms plays crucial role in the performance. It is the

balance between responsiveness and consistency. Here gives an experimental result. From

experience, a max synchronization delay of 500ms gives the max tolerable reaction delay.

System Settings Network Settings Program Setting

Intel Pentium 700 on Windows XP

platform

l System link bandwidth:

100Mbps

l Number of clients: 2

l Average ping RTT: 102 ms

l Command period : 100

ms

4.7.3.1 Testing result

 Rollback times Total commands Synchronization delay (ms)

Run 1 18 500 100

Run 2 17 500 150

Run 3 14 500 250

Run 4 14 500 350

Run 5 7 500 500

 92

Fig 4.10 MSS Results

 Rollback times Total commands Synchronization delay (ms)

Run 1 14 500 100

Run 2 15 500 150

Run 3 11 500 250

Run 4 9 500 350

Run 5 8 500 500

4.7.3.2 Result Analysis

The synchronization delay close to the RTT gives the least performance while larger delay

gives better performance by removing jittering for a longer period. The result illustrates

synchronization to be set statically gives no optimization.

 93

4.8 Evaluations and Conclusion

In this report we have presented the synchronization mechanisms and put the focus on 2

optimistic synchronization algorithms – Bucket Synchronization and Multi-States

Synchronization. These 2 are for multiplayer games with low latency but strong consistency

requirements like Mecha Zeta. Low-latency consistent gameplay is guaranteed through the

use of rollbacks while unnoticeable delayed response is achieved for the sake of buffering.

The report illustrates that because of the use of command-based consistency protocol, these

synchronizations can perform well in high-speed games where there is a large game state

and many commands to be synchronized.

MSS performs smoother than Bucket Synchronization by switching between

already-running game copies. However, Bucket synchronization saves the computational

overhead by taking 1 snaphot in every bucket instead of every command in MSS. The

storage overhead of both algorithms are fairly the same, which are both subject to designer’s

choice.

There are still a number of unexplored areas for future work. As discussed above, a more

thorough examination of the parameter space for synchronization delays is

needed, as well as dynamically determining the number of, and delays for, needed states.

In addition, the throughout and intensive study of command classification helps the

performance of the synchronization algorithms. In this project, only 2 types of command

are being classified.

 94

5 Graphic Engine and Collision Detection

System

5.1 Introduction

The aims of this project is to investigate the feasibility of multiple-player Internet

action game with high scalability, intensive interactivities and realistic experiences

such as accurate collision detection and model simulation, implement and evaluate

them. The project is divided into five modules and this part belongs to the module

“Graphic Engine and Collision Detection”.

Analysis of the problems about graphic engine and collision detection has been

carried out, and robust and high extensibility graphic engine and accurate collision

detection system are main focuses in this module. Feasibility studies have been

carried out and the game is implemented using Java and GL4Java[5.1] for OpenGL

programming. The accurate collision detection is carried out by external C++ library

ColDet[5.2] with the help of Java Native Interface (JNI).

After implementation and testing, the graphic engine is found to be extensible and

object oriented, with ease of adding new kinds of objects to be rendered. It is also

made more robust by several performance optimizations. Accurate collision detection

is implemented in checking attack collision with accuracy 100% from test results and

co-operative collision detection system is used to reduce the amount of duplicated

detection by doing collision detection co-operatively among all players.

 95

5.1.1 Responsibilities of this module

- Research on feasibility of graphics programming using Java

- Overall graphic engine design and implementation

- Design and implementation of collision detection system

5.1.2 Scopes of investigation of this module

The main scope of investigation of this module is to study the feasibility, design, and

construction and evaluate:

- Graphic engine that is robust, extensible and able to produce realistic output

- Collision detection system that has high accuracy, robust and able to use in

high scalability scenario, and most importantly, to be useful in real time.

5.1.3 Structure

In each of the area (Graphic Engine and Collision Detection), problem analysis,

feasibility studies, challenges and solutions in the design and construction phases,

evaluations are done and mentioned in detail.

 96

5.2 Methods of investigations

To carry out the project, several methods of investigations have been carried out to

investigate the various sections of the project, including feasibility studies before the

project design and construction, as well as testing the functionalities, effectiveness

and performance of various modules of the projects during the development. In this

chapter, various methods of investigations used, for this module, are going to be

introduced.

5.2.1 Feasibility studies

The methods used to carry out the feasibility studies include:

- Researches on related topics in the Internet

The Internet provides us a large resource and information pool for various

topics. For example, researches about the feasibility of using Java as game

programming language, possibility of doing accurate collision detection in a

real time game, as well as using OpenGL in Java have been conducted

before the game design stage. Projects, demos and reports related to the

issues above have been found and studied in detailed to estimate the

feasibility and practicability of the issues.

- Functionality tests

Simple test programs have been built to test the required functionality,

feasibility of core purposes as well as performance, such as simple OpenGL

rendering program using Java, accurate collision detection of simple

polygons.

 97

5.2.2 Prototypes

During the design and construction stages, prototypes have been built to test various

functionalities achievements. By making prototypes at different phases of

development, it can ensure that the functionalities have been achieved progressively

as well as testing the effectiveness of the implementation. Moreover, it also helps to

prepare the next phase implementation as well as testing the co-operation between

other modules.

5.2.3 Tests and Benchmarks

At various stages, different tests and benchmarks have been conducted to test the

performance and functionalities of various ways of implementations. Such tests help

to determine the appropriate ways of implementations. In addition, various tests have

also been conducted to test the functionalities and performance of the implementation,

as well as comparing with different implementations to analysis the arguments of the

project.

5.2.4 Specifications of benchmarks and tests

Unless otherwise specified, all the benchmarks and tests carried out in this report

follow the specification below:

CPU Intel Celeron 850MHz

RAM 192MB

Display adapter NVIDIA GeForce2 MX 400 with 32MB RAM

Operating System Microsoft Windows XP Professional

Display Driver NVIDIA Detonator XP 43.45

OpenGL Version 1.4.0

 98

Resolution 800 x 600

Color depth 32bit

Vertical Sync Off

Java compiler J2SE 1.4.1_02

C++ compiler Microsoft Visual C++ .NET

Additional specifications are accompanied with the test specification when

needed.

 99

5.3 Graphic Engine

5.3.1 Analysis of Problem

Requirements

For graphics rendering in a real time game, high speed and fast response are critical

factors to success, since the game is not joyful to the player if the graphic output

cannot give the player immediate response as well as non-smooth graphic output. At

the same time, realism is another critical factor to make the players feel more joyful

when playing. As a result, the graphic engine requires:

- rendering the objects in the game world on to the screen

- high performance as well as produce realistic output

Analysis

The graphic engine is responsible to render the objects in the game world onto the

screen. From the above requirements, it should have high performance as well as

produce realistic environment. In addition, as the project is divided into several

modules, the graphic engine should be able to use by other modules easily. Moreover,

it should be easy to be extended to display other kind of objects for possible future

development.

After fetching all requirements and analyzing them, the following are concluded to be

focused for the design and construction phase:

- Make use of optimization to boost up the performance

- Employ various techniques to improve the realism of the environment

- Design and object-oriented structure for object representation in the graphic

engine, so that new kinds of objects can be easily added and inherited

- The interface to other modules should be kept as simple as possible for ease

of use by other modules

 100

5.3.2 Feasibility Studies

5.3.2.1 The use of programming language

From above, it is believed that using an object-oriented programming language can

facilitate our development as well as making our game having a much higher

extensibility as well as flexibility, which should be an important aim of our graphic

engine. Java and C++ are both of our choices. Before the decision, I have conducted a

wide range of researches and small tests to facilitate the decision.

First of all, several criteria of the programming language used in our project are listed

below:

- Able to offer great productivity and facilitate the coding phases

- Highly extensible and being Object-Oriented in nature

- Able to facilitate the graphics, network and logic programming

- Offer robust performance

A brief introduction of characteristics related to the programming of this project of

Java and C++ have been listed below:

Language Java C++

API Coverage Wide range of useful and

organized API covered and

available in term of Java classes

Large amount of system

functions but rather

unorganized.

Standard Template

Library (STL) provides a

limited amount of useful

containers

 101

Object-Oriented

Programming

Feature

Java is actually designed for

OOP, functions like inheritance,

abstraction, polymorphism is

built into the language

C++ is Object-Oriented

version of its decedent

C.

Same as Java, all kind of

OOP features are

supported.

Portability If the program is implemented

in 100% Java Code, it is

portable to any platform that

has Java Virtual Machine port

with any recompilation.

Several standard of C++

exists (GNU, ANSI,

ISO, Win32, etc). To

port the code to another

platform that bind with

different standards need

modification before

compilation

System Features The Java API acts as a layer of

abstraction of system level

implementation. Calls to native

system call is possible by Java

Native Interface (JNI)

Extensive amount of

system calls that can

facilitate the

development and have

greatest performance

Graphics

Programming

Several JNI implementation of

Graphics Library mapper such

as GL4Java which making use

of JNI to call system OpenGL

calls.

Java3D, by Sun Microsystems,

Able to call system

OpenGL System call to

build OpenGL

application

 102

is also available as 3D API to

call system graphics library like

OpenGL or DirectX

Network

Programming

Numerous network API is

bundled with Java SDK to serve

as various functionalities

Socket Programming

and direct call to system

network libraries

*Tests of JNI and GL4Java with counterpart C++ have been carried out and are going to

analyzed and report in next section

Analysis

From above, we can see that Java is providing a rich set of API which can facilitate

the productivity of coding as well as offering a better object oriented structure than

C++ since Java is decided to be used as object oriented design. It can be referenced

from the article of “Java offers Increase Productivity” by Wells[5.3]. The author

analyzed various reports investigating and comparing the productivity of Java with

C++ and found that Java usually yields 10-20% productivity higher than using C++

and even 30%-40% coding phase is shorten. In addition, it is mentioned that the

object oriented framework of Java can lead to a more bug-free development. As we

need to finish a project within an academic year, using programming language likes

Java that yields a higher productivity is definitely helpful.

On the other hand, C++ provides us direct implementation in both graphical and

network programming since no middle abstraction is presented which can give more

robust and effective performance, with the trade off of ease of programming and high

productivity, as well as the portability. The performance of Java is slower than C++

for pure logical computation. In Section 8.8 of the report “Evaluating Java for Game

 103

Development” by Jacob Marner [5.4], the author concluded that Java is averagely

around 20% lower than C++ counterpart. It is not a surprising figure since the Java

bytecode is run in a virtual machine that acts as an intermediate layer comparing with

binary code of C++ that directly ran by the kernel of operating system.

So we see that Java has advantages on project productivity as well as object-oriented

in nature while C++ is relatively better in term of performance and has direct

implementation to graphics and network without intermediate layers. Since both of

programming language satisfies around half of criteria stated above, as well as there is

some difficulties for Java in programming graphical side and networking side, some

demos and tests have been conducted to evaluate the use of Java for graphical

programming.

5.3.2.2 The use of graphic API

In Java, there are two main streams to do graphical rendering. The first way is using

external wrapper packages to call OpenGL system library directly to do the rendering

via Java Native Interface. There are a number of such packages available but only

GL4Java[5.1] by JauSoft is most comprehensive as well as complies with OpenGL 1.3

standard (others are complying older versions). The latest version of GL4Java is

2.8.2.0. The second way is to use Java3D[5.5] by Sun Microsystems.

Introduction to GL4Java

GL4Java is a set of Java API that maps the whole OpenGL library call to be callable

in Java. It complies with OpenGL 1.3 standard. It makes use of Java Native Interface

(JNI) to call to underlying system library. Programming OpenGL in Java using

GL4Java is very similar to do so in C++ counterpart since most of the GL methods are

 104

mapped. For detail of implementation please refer to GL4Java homepage[5.1]. It has

several ports to different systems such as Linux, Windows, etc.

Introduction to Java3D

Java3D is a scene-graph API that is developed by Sun Microsystems. It aims at giving

the functionality of 3D rendering using Java. It also uses Java Native Interface to call

native system graphic libraries. It supports both OpenGL and DirectX (Windows

only). However, it uses a unified layered architecture that all the call to that API is

independent to the graphical API using underlying. That is, to use Java3D you need to

use a set of API that is different from and abstracted above OpenGL or DirectX. For

detail implementation and other information, please refer to Java3D Homepage[5.5]. It

should be a good idea to make the things easier to be implemented. However, though,

its performance is not that robust since an abstract layer is presented. It is found that,

in Section 8.4 of report “Evaluating Java for Game Development” by Jacob

Marner[5.4], using Java3D to implement an OpenGL program is roughly 2.5 times

lower than that using GL4Java to render the same scene. Such a slow down maybe

due to the complicated structure of the implementation of Java3D. As a result, our

target has been focused to the comparison between Java with GL4Java and C++.

Comparisons between OpenGL in Java and C++

A simple test has been conducted to see the overhead of calling OpenGL commands

through GL4Java in Java with direct implementation in C++. I would like to remind

that all the tests and benchmarks are being untaken in the specification stated in

Section 1.4.

 105

Results and Analysis

In order to test the feasibility of using Java with GL4Java in our game, we need to

find that whether it can support up to high amount of polygon as our game is expected

to have a relatively high scalability. The 1000 polygons are represented as 250

pyramids which are drawn is the exact position to increase the complexity of drawing.

The results are represented in frame per second (FPS) as the following table with the

specifications of this test.

 Test Case 1 Test Case 2 Test Case 3 Test Case 4

Language and API Java with GL4Java C++

Number of

polygon

40 1000 40 1000

Transformation Transform and Rotate

Display List Used

Result in FPS 250 25 280 29

Comparing with Java with C++:

Performance slow down for small polygon counts: around 11%

Performance slow down for high polygon counts: around 13%

From the result above, it can be observed that programming in OpenGL in Java using

GL4Java is around 11% – 13% slower than that of C++. And as polygon count

increases, the slow down remains in similar percentage. However, as mentioned

above, Java is on average 20% slower than the C++ in logic intensive program and

such a slow down should also be accounted in the results above. By the way, a 10%

 106

performance slowdown is acceptable given the high productivity it yields.

Based on the analysis in Section 5.3.1 as well as the test result above, we found that

Java has a very good productivity and object-oriented in nature. It is very suitable to

be used for implementing a game in several modules since Object-Oriented

architecture facilitate the abstraction and such the underlying implementation of

individual module can be abstracted and hidden to other modules. In addition, using

GL4Java with Java to build OpenGL program has just a 10% overhead comparing

with OpenGL program in C++. As a result, even though Java has a performance

average lower than C++, it is chosen and it is believed that its advantage can

overcome such difficulties as it provides a much higher productivity as well as the

computational power nowadays is high and a slight performance lag is acceptable.

 107

5.3.3 Design and Construction

5.3.3.1 Overall design

In our game Mecha Zeta, the graphic engine is designed to be capable to display the

following:

- 3D Objects:

n A Terrain Landscape (ground and skybox)

n Static objects like trees, buildings, etc.

n Dynamic objects like mechas (robots), missiles, laser, etc

- 2D Objects:

n GUI components like icon, status bar, radar map, etc.

n Texture fonts like various statistics (e.g, FPS, player’s position)

Since one of the requirements of the graphic engine is high extensibility, that is, it is

easy to add on new functionalities and easy to use in different situation, the graphic

engine is designed such that it accepts a range of objects to be processed and rendered

and it is easy to add other types of objects being rendered.

The following is the graphic engine design architecture:

 108

Fig. 5.1 Graphic engine design architecture

As expressed above, the renderer accepts different kinds of displayable objects,

including 3D Terrain Object, 2D Object and the terrain. Actually the renderer itself

maintains lists of displayable objects and renders the scene based on those objects. All

the objects are having parameter like position, state, and other characteristics. There is

no hard coding in the renderer and it just base on the objects to render, which offer

great degree of flexibility.

5.3.3.2 Terrain generation and rendering

Initial implementation

Terrain rendering is the first functionality I implemented in the renderer. The terrain

generation concept is referenced from a Landscape Demo in GL4Java website[5.1]. The

terrain is generated using fractal midpoint displacement algorithm. Vertices are

generated with different height levels and color levels according to the algorithm

Graphics Renderer

TerrainObject

2DObject

2DGraphics 2DText

MZMecha MZBullet

extends

extends

MZSceneObj

Terrain
detail

 109

above and forming lot of triangles to render. There is also a function to get the height

level of any point on the terrain. Those non-vertex point will be interpolated and give

out the height level. The height level is used to accurately place the static objects as

well as dynamic objects like robot on the terrain.

However, in order to have lighting effect smoothly on the terrain, normal of each

vertex is needed but it is lacked from the algorithm. So in the terrain loading process,

I have implemented a two-pass normal calculation routine using vector cross product.

The first pass calculate the normal of each triangle while the second pass calculate the

normal of each vertex by taking the average of normal of all nearby triangles sharing

that vertex. The normal calculated are normalized so that OpenGL can display the

lighting effect properly.

Afterwards, the vertex and normal information are maintained in two arrays and they

are rendered in each frame. However, to render the terrain effectively, it is impossible

to render the whole terrain since it will slow down the rendering process very much.

In order to speed up the process, frustum culling is used. Only the triangles of the

terrain falling in to the viewable frustum will be drawn. For detail of implementation

of frustum culling, please refer to Section 5.3.3.5 – Performance optimization.

Realism improvement

The terrain generated is of color of sand as well as terrain vegetation, which gives a

quite realistic landscape environment. However, the realism is not high as the

background of the environment is only expressed in single colour. In order to increase

the realism, fog is used to make the distant objects not showing suddenly but

progressively. In addition, a skybox is made with texture mapping to produce the

 110

effect of sky and distant landscape, and the player can never reach the edge of the

skybox to retain the realism. Below are some screenshots for the beginning stage of

the implementation:

 Fig. 5.2 Screenshot without skybox Fig. 5.3 Screenshot with skybox

The skybox is made by cube with a texture mapping on each face. The texture is

arranged in a way so that the player cannot notice the edge of the skybox. The

skybox is made by flipping up the above texture to form a cube and surround the

world. Actually if we dissemble the skybox we can see the texture is look like:

Fig. 5.4 Dissembled skybox

 111

However, there is some display flaws in the edges of the skybox. It is because,

normally, OpenGL renders polygon with texture mapped not covering the edges of the

polygon, that is, we can see the pixel-edge of the texture-mapped polygon having the

color of the polygon itself. This problem seriously lowers the realism of the skybox

since edges are noticeable by the player. In order to solve the problem, OpenGL

texture extension GL_CLAMP_TO_EDGE need to be used to make sure the texture

also covers the edges of the polygon. Since this extension may not be available in

certain hardware implementation but available in others (like NVIDIA GeForce), a

checking is made before enabling this extension.

5.3.3.3 Object-oriented world container

In the world, apart from the terrain, all other 3D objects including the robots, bullets,

trees, etc are displayable objects and maintained in a list in the renderer. The use of

such object-oriented structure is to maximize the flexibility of the renderer such that it

can display another type of objects easily and with fewer modifications.

All those objects are belonged to a parent class called TerrainObject. It has some

common parameters that are essential to represent objects on the terrain such as

position, forward vector, 3D model, etc. Additional object class MZMecha which

extends TerrainObject is used to store robot, which has additional properties like

animation, control, etc. Similarly, MZSceneObj is used to store scenery objects like

trees and MZBullet is used to represent flying bullets in the environment.

Since all the entities in the renderer are objects, we can set individual parameters to

them so that they can behave what they should. For example, after the game logic can

 112

set the position, movement, animation of individual robots in the scene, the renderer

can readily render the output and effect. For the detail of model animation and control,

please refer to the report “Modeling, Animation and Special Effects”.

Similar to the terrain, it is an extremely slow process to render all the objects on the

terrain. Frustum culling is employed to render objects that fall inside player’s

viewable frustum, while other objects will not be rendered. For detail of

implementation of frustum culling, please refer to Section 5.3.3.5 – Performance

optimization.

The use of object-oriented world container also facilitates the collision detection

mechanism, we can easily fetch two objects to test whether they are in contact or not.

For detail implementation of collision detection, please refer to Section 5.4 of this

report.

5.3.3.4 2D objects

There are 2 kinds of objects, text and graphics. Texture mapped font is used to render

the font. At initialization stage, a font texture which having all the alphabetic

characters, numbers and commonly used sign will be loaded and display list will be

built for each of the character. For 2D graphics, they are quadrilaterals in shape and

mapped with texture for specific use such as GUI. The texture is in TGA format such

that an additional alpha channel is stored in the texture, so that some of the texture

area can be transparent so that any shaped graphics can be produced by just mapping

to a quadrilateral. In the class 2DObject, position and size is stored to be drawn on

the screen. Fig. 5.5 is a screenshot with 2D objects like text and graphics.

 113

Fig. 5.5 Screenshot with 2D object rendering

5.3.3.5 Performance challenges and solutions

Analysis

Performance should be a major concern on the success of a graphic engine because

performance is crucial to give realistic and smooth visual effects to the player. In

order to boost the performance, the first aim is to reduce the number of objects to be

rendered. Actually those objects that are not viewable to the players are not need to be

rendered. Another way to boost the performance is to dynamically adjust the number

of objects to be rendered in order to keep the frame rate high. As a result, several

optimization techniques have been employed to boost the performance of it.

Frustum culling

For the rendering process above, if we exhaustively render the whole terrain and all

the objects on the terrain in every frame, it is a redundant operation since not all of the

objects and terrain are visible to the player. In addition, such operations will slower

the speed of rendering by a large degree.

 114

In order to solve the problem, frustum culling is employed. The idea of frustum

culling is to make the renderer to display the polygons inside the viewable frustum of

the player viewport. Any other polygons outside the frustum will not be rendered.

Theoretically frustum culling should not bring any experience degrade to the player

sin it only discard the polygons outside the frustum that originally invisible to the

player.

The implement frustum culling, we need to find the specification of the viewable

frustum of player’s viewport before render anything of each frame. The frustum is

extracted using the current projection and modelview matrix. The frustum is a 6-plane

object that has near, far, left, right, top, and bottom plane, and represented as 6 plane

equations. The algorithm of preparing viewable frustum from projection and

modelview matrix is reference from the article “Frustum Culling in OpenGL” by

Mark Morley[5.13].

After the frustum specification is prepared, the terrain polygons and 3D objects are

tested whether falling inside the viewable frustum and rendered if so. To carry out the

frustum test, the distances between the testing position and each of 6 frustum plane

are calculated. If the testing point is in front of all frustum planes then the point is in

the frustum.

Limit the amount of objects to be displayed

If we just use the frustum culling technique above, the performance of the renderer

will still be quite slow if there are many objects in the viewable frustum. In order to

maintain a smooth frame rate to the player in order to maintain the playability, the size

of the frustum is dynamically adjusted by the previous history. As a result, if there are

 115

too many objects to be rendered, those farther objects will not be rendered. However,

if the objects in the frustum are few, all of them will be rendered.

Display lists

Since many objects are having identical model but have different positions and view

such as trees, rendering them in duplication is a very slow process. As a result,

OpenGL display lists are built in the initial stage. Take the trees rendering as an

example, the tree rendering process is compiled into a display list when the game

initializes, so that those OpenGL vertex and color call do not need to be called in each

frame. Instead, glCallLists() is called to draw the precompiled display list.

 116

5.3.4 Test Results and Analysis

In this section, it is going to list out a set of benchmarks that investigate different

implementation of graphic engine as well as the effectiveness of implementation of

performance tuning, as well as the analysis. In this section, various benchmarks are

going to be conducted to investigate the effectiveness of using frustum culling and

display list.

5.3.4.1 Frustum culling

The use of frustum culling is to make sure than the polygons that are visible in the

player’s viewport is rendered. Two performance tests are going be carried out to

investigate the usage of frustum culling and its effectiveness:

n Cost of extracting frustum in each frame

n Speed up with frustum culling enabled

Cost of extracting frustum in each frame

To use frustum culling, a frustum specification needs to be prepared to test whether a

point is fall inside the frustum. The frustum needs to be built in every frame from the

projection matrix and modelview matrix. This test is to find the cost of frustum

extraction. Below are the specifications of the test as well as the results in FPS:

 Test Case 1 Test Case 2

Terrain Rendering Disabled Disabled

Objects Rendering Disabled Disabled

Extract frustum in

each frame

Yes No

Frustum culling Disabled Disabled

 117

Result (in FPS) 230 231

The only difference between two test cases is whether it extracts frustum in each

frame or not. For the result, the high frame rate achieved in the above tests is due to

nothing is rendered actually. The difference between 2 test cases is not significant and

it can conclude that the cost frustum preparation process in each frame is

unnoticeable.

Speed up with frustum culling

This test intends to investigate the effectiveness of frustum culling. Below are the

specifications and results:

 Test Case 1 Test Case 2

Terrain Rendering Enabled

Objects Rendering Trees and player robot

Frustum culling Enabled Disabled

Display List Used for trees

Result in FPS 57 34

From the above result, the speed up of frustum culling reaches the percentage of 67%.

The speed up is very significant. It is because those objects and terrain fall outside the

viewable frustum is not rendered.

As we can see from above benchmarks, frustum culling really improves the

performance very much without any visual quality degrades. It is because frustum

culling only discards the objects that fall outside the frustum. Moreover, the

 118

performance boost is more obvious when the number of objects increase. It is because

the number of objects that can be culled also increases. As a result, frustum culling is

a very effective way to boost the performance of the graphic engine, especially in high

scalability scene that has many objects around the world, since more objects will be

culled.

5.3.4.2 Display List

The use of display list is to pre-compile of static objects into list in OpenGL so that no

vertex and color calls are needed when drawing them. The test is going to show the

effect of using display list in drawing a small amount of trees and large amount of

trees.

 Test Case 1 Test Case 2 Test Case 3 Test Case 4

Terrain Rendering Enabled

Objects Rendering Enabled

Amount of trees Few trees Lots of trees like forest

Frustum culling Enabled

Display List Used for

trees

Disabled Used for

trees

Disabled

Result in FPS 55 26 52 14

From the results, the performance drop from few trees to forest is just 5% when using

display list while the drop is around 46% when display list is not used. In addition, the

display performance speed up the around 112% using display list in few trees area and

the speed up in dense trees area is even 271%.

 119

From the test above, the benefit of using display list is more obvious if the number of

duplicated objects increased. In a high scalability scenario, duplicated objects in the

game world are very common. The use of display list effectively optimizes the

graphic engine, boost the performance and give the player a smoother graphics for

better experience.

 120

5.3.5 Discussions and Evaluations

5.3.5.1 Using Java as game graphics programming language

Java was chosen to be the programming language in this project. During the

implementation phase, it offers many conveniences to us such as providing a rich set

of useful API for us to use, use of object-oriented methodology. The project is divided

into several modules which serving different functions, and making use of interface

and abstraction, the connections between different modules have been simplified and

minimize to keep the abstraction high.

During the feasibility studies, we assume that Java has performance, on average, 20%

slower than the C++. However, after the game implementation, it is found that the

performance is still very satisfactory, having around 40 – 50 fps.

Moreover, the game can be ported to various operating systems very easily. For the

Java code itself, it can be left unmodified. What we need to do is to use other ports of

GL4Java[5.1] as well as collision detection library, and that is enough.

However, Java does also impose several inconveniences to us during the

implementation, in term of graphics rendering and collision detection. Firstly, it

cannot make use of native OpenGL library directly but need to making use of external

package (GL4Java in this project). Extra effort needs to be spent on investigating the

feasibility of using it as well as making use of it during game development. However,

using OpenGL in Java with GL4Java is very similar to that using in C++ and its

performance is very satisfactory indeed.

 121

However, in view of the module graphic engine and collision detection, Java does

help me to implement them in a faster and effective manner. Even extra efforts need

to be made to make Java feasible in doing OpenGL programming and accurate

collision detection, those effort is not very great and having much difficulties and they

are worthwhile. The most important thing is that those extra work has not lowered the

performance of the game very much. Java is still considered as suitable after the

implementation.

5.3.5.2 Functions achieved

The graphic engine is implemented with the following functionality:

n An object oriented renderer that maintains a list of displayable objects

n Terrain generation and rendering

n Interface for game logic to manipulate the states of objects in the world

n 2D components rendering

n Various optimizations to cope with high scalability

The achievement of graphic engine design is found to be sufficient to this game.

Objects are arranged in the renderer and the game logic can manipulate different

parameters of them to represent the world situation. Performance optimizations have

been done to boost the performance.

5.3.5.3 Importance of optimization

During the implementation of the graphic engine, it is found that performance

optimization always plays an important role to make the development to be succeeded.

In the initial stage of development, without the uses of performance optimization such

as frustum culling and display list, the speed of rendering is slow to be unacceptable.

From the tests result above, it is found that those optimization techniques improve the

 122

performance by a very large degree, especially when the world has many objects in it.

So it is obvious that performance tuning is very important to graphic engine that needs

to support high scalability.

Except the optimization techniques employed in this implementation, there are many

others techniques that can boost the rendering performance. One example is Level Of

Detail (LOD). The main purpose of LOD is to render an object with different level of

detail depending on the position of that object to the user viewport. The farther away

the object is, the less detail that object will be rendered. On the other hand, the object

will be rendered in much detail when it is closer to the viewport. However, since time

is limited for this project, it is not possible to implement other optimization methods

as there are another important focuses of this module of the project, that is, the

collision detection system.

5.3.5.4 Extensibility of graphic engine

One of the purposes of the graphic engine is to make it easy to make new kind of

objects to be rendered. According to the overall design of graphic engine in Chapter

6.4, all the 3D objects are belonged to TerrainObject which are fed into a list of

displayable object and render in each frame by the renderer. Any kind of 3D objects

that need to be rendered can extend TerrainObject with their own characteristic,

having different models, properties, path, etc. Such operation does not need the

modification of graphics engine since it is designed for render object of class

TerrainObject. As a result, it is easy to make the renderer to render other kinds

of objects when need.

 123

5.3.5.5 Use of GL4Java

GL4Java is used for calling OpenGL library in Java. During the implementation stage,

there is no special problem using GL4Java and using OpenGL with GL4Java in Java

is very similar to that of using C++. Further, according to the tests being carried out in

Section 5.2, it is found that the performance overhead using GL4Java is not great

comparing with calling OpenGL functions directly in C++. There are also no specific

difficulties to code OpenGL using GL4Java Java, unless there is some difference in

setting some initial parameters since GL4Java, likes other Java API, and is

represented in an object-oriented style.

 124

5.4 Collision Detection System

5.4.1 Analysis of Problems

Requirements

It is no doubt that realism is a critical factor for a game to success. As this is an action

game accompanying with various close attacks and near attacks, high accuracy

collision detection is required to give high realism experience to the player.

As result, the collision detection system requires:

- detecting collision to prevent objects from penetrating through others

- detecting collision to judge whether an attack is successfully hit the target

- high accuracy detection

- high performance, even in complex scene with many objects such as high

scalability scenarios

Analysis

Collision detection is the process that detect whether two objects collide together

geometrically. In above, high accuracy and maintaining high performance in high

scalability are the main requirements of the collision detection system in the game. In

order to achieve high accuracy, traditional bounding shape methods cannot serve the

function. External geometric collision detection libraries are required to do so. For the

requirement of maintaining high performance in high scalability scenario, a

co-operative collision detection system can be investigated in which different players

share the collision detection of whole world, such that no player needs to do all the

detections in the whole world.

 125

After fetching all requirements and analyzing them, the following are concluded to be

focused:

- Use of external accurate collision detection library to perform the collision

detection with high accuracy.

- Implement the collision detection system in a co-operated manner, so that

no members in the game need to do collision detection for entire world, in

order to achieve high scaliblity.

- Performance optimizations such as pruning out all unnecessary detections

before accurate collision detection take place, and decide whether accurate

collision is employed for all collision checking

 126

5.4.2 Feasibility Studies

The term collision detection is referred to the detection of whether two objects are in

contact or not. Collision detection plays an important role in computer games. For

example, collision detection is used to detect whether a player can hit others in an

action game, whether a player can shoot another in a shooting game. Many

commercial games are making use of some sort of simplified collision detection such

as bounding boxes, spheres or cylinders to do collision detection by checking their

intersection. For example, the game MDK2 uses bounding cylinders to check the

collision between the player and the environment mentioned in an article in

gamasutra.com by Stan Melax[5.6]. Using simplified collision detection system can

give the players a fair experience but can increase the performance. However,

accurate collision detection can give the player a very high degree of realism since the

players will never experience the situation like he is going to hit the enemy but the

game judges cannot. This section is going to investigate the feasibility of using

accurate collision detection in game development.

5.4.2.1 Availability of external libraries

After conducting an extensive research about accurate collision detection, several

libraries of accurate collision detection do exist. For example, the gamma team of the

University of North California[5.7] has published numerous collision detection libraries

such as RAPID[5.8], SWIFT++[5.9], etc. Apart from them, other collision detection

library such as ColDet[5.2] is also being available. After studying their usages and

mechanisms, it is found that most of them are having similar interface for user to use

while they are using different implementation inside.

 127

Most of them are model-oriented. That is, before doing any detection, you need to

build a collision model by feeding in the polygon organization of the model and some

of them even accept triangular polygon meshes. They supplies functions to detect the

collision between two collision models as well as to set transformation to the model.

Examples of using such interfaces are RAPID and ColDet.

Take ColDet as an example, it accepts any model even polygon soups. It uses

bounding box hierarchies for fast detection and additional triangle intersection test. It

is claimed that ColDet has accuracy for 100%. It provides checking functions like

model-model test, ray-model test, sphere-model test, etc.

5.4.2.2 Usage in game

Since our models are designed to be built using triangles and each robot is making up

from several parts that having different transformations in motion, it is feasible that a

robot can be made up of several collision models such as head, arms, body, legs, etc.

For detail of modeling and robot organization, please refer to Section 6.

5.4.2.3 Programming languages restriction

From above, accurate collision detection using the libraries above should be feasible

in our game. However, since nearly all of the collision detection libraries are

implemented using either C or C++, it may cause problem as our game is going to

implement in Java. To solve it, we should either:

- port our collision detection packges from C/C++ to Java

- using Java Native Interface (JNI)to let the game engine (Java) to call

the collision detection library (C/C++)

 128

It is obvious that the latter solution has a greater feasibility. The reasons are:

- As mentioned above, Java is around 20% lower than C++ in logical

intensive computation program. Collision detection is a logical

intensive task.

- Porting a library take a relative large amount of time, as well as the

time for debug and optimization.

- By using JNI, different collision detection libraries can be tried without

expensive porting work.

However, the efficiency of using JNI to do the collision detection is not yet

investigated. A demo program is used to detect the collision between two pyramids

using ColDet. The demo is implemented in both C++ and Java where JNI is used to

call ColDet library from Java. Below is the specification of the test and results of the

tests:

 Test Case 1 Test Case 2 Test Case 3 Test Case 4

Language Java / JNI C++

Collision

detection

Enabled Disabled Enabled Disabled

Number of

triangles

8 (2 pyramids)

Results

(FPS)

376 382 414 418

Collision models are built in the beginning of the models while the collision models

 129

are being transformed in each frame with corresponding modelview matrix. In each

frame, collision between 2 collision models is tested. Two pyramids are kept rotating

and their positions are reset after collision is occur.

Analysis

Ratio slower after enable ColDet in Java / JNI: around 1.6%

Ration slower after enable ColDet in C++: around 0.9%

From the test results above, it can found that the percentage slowdown after enabling

ColDet in Java is 0.7 % higher than that C++. However, the extra slow down is so

small that it is not significant to the whole performance of rendering process. As a

result the overhead of JNI in this scenario is very small and not significant and it is

feasible to use JNI in accurate collision detection in this game.

As concluded from above, accurate collision detection should be feasible in the game

development. However, due to the computational intensive nature of accurate

collision detection, exhaustive pair-wise detection is not feasible in a real time game.

 130

5.4.3 Design and Construction

Collision detection is the process that detect whether 2 objects are in contact. The uses

of collision detection in this game include:

n Prevent robots to pass through other objects like terrain, trees, and other

robots.

n Detect whether the player successfully attack others or not, by means of

close attack and shooting

Accurate collision detection is used in implementation some of the functions above.

Moreover, the implementation of collision detection system should support a high

scalability without lower down the performance very much.

5.4.3.1 Overall design – Cooperative Detection System

One of the uses of collision detection is to prevent the robots from penetrating into

other objects. Actually the position of each object in the renderer is updated in every

frame depending on the game logic. For example, the robots move according to

external control, animation, and other factors. Bullets are also moving a predefined

path and their positions are updated. Below show an extremely simplified loop when

the game is running:

while(1) {

 backup_position();

 update_position();

 for (all_object) {

 if (collision) {

 restore_poisiton(object);

 }

 131

 }

 render_scene();

}

Problem: Exhaustive pair-wise detection

The above loop is very much simplified, but it can demonstrate the use of collision

detection in preventing the objects in the environment from penetrating each other.

The collision checking is done for each object with all other objects on the

environment. So the time complexity of the above checking method, which is a

pair-wise method, is actually in a O(n2) time. The above method is only useful and

possible for game that has a small and limited number of players so that the number of

iterations in the above for-loop is limited. However, for our game, it is supposed to

have a large number of players playing together, it is a very expensive task to

check the collision using the above exhaustive pair-wise method since n will be

very large. A different method should be used in order to make the collision system in

this game feasible.

Solution: Co-operative collision detection system

By the nature of network game, there should be different computers running the game

with different views since different players are playing. As a result, if we use the

above method, each of the computers joining the game actually doing duplicated

collision detection, not to mention the poor performance of this method. Using this

way is just a waste of resources in doing collision detection that is not related to

player itself as well as doing the same detection with others. As a result, making use

of the nature of network game, the collision detection system of each player running

the game only detects the potential collision involving the own player, while no

 132

detection will be done with the objects that is unrelated to the own player. Once

collision is happened, a message will be sent to other players that are nearby the self

player in the game to notify the collision to take appropriate action.

By using this method, each player is only doing collision detection related to

them while not doing other unrelated detection. All the computers that join into the

game can cooperate together to do all the collision detection needed in the world. The

time complexity is shrink to O(n) since the number of checking for each player is

just depend on the number of objects needs to be checked with own robot.

However, such kind of implementation which depends on network transfer may suffer

from problems such as network delay, congestion, etc. Detailed analysis of this

method comparing with traditional method for high scalability network games will be

done in the “Result and Analysis” and “Evaluation” section later.

5.4.3.2 Candidate Pruning System

Problems: The number of detection needed is still high

There are two main types of detections in this game, they are:

n Detection with environment objects

n Detection of attack (close and distant attack)

Even though the co-operative detection system can effectively lower the number of

detection need by letting each clients to handle the detection on their own, there are

still many collision detections need to be done for each client in high scalability

scenario as number of players in the game increases. However, majority of the

detection being done is actually checking for impossible collision. For example, it is

 133

impossible for the player’s robot to be collided with a distant tree, or it is also

impossible for a robot to be hit by a bullet where the robot is not on the path of the

bullet. Since our aim is to design a robust and accurate collision detection system, we

need to minimize the number collision detection need, especially for the expensive

accurate collision detection used in attack collision, which is going to be covered in

detail later.

Solution: Candidate Pruning System

No matter for which type of detection, we just want to check the potential collisions

but not the others. The use of candidate pruning system is to eliminate all impossible

candidates for collision and make sure that only essential collision will be done in

order to save the time for collision detection in each frame.

The candidate pruning system handles static and dynamic objects in different manners,

as shown below.

Static object

For static objects like trees, their positions are predefined in the terrain detail. In the

candidate pruning process, we can select out the static objects from the terrain detail

nearby the player’s robot. The range is a small radius since the robot cannot suddenly

move from one place to another place faraway in a frame. After this pruning process,

the player’s robot will be only checked for collision with nearby trees.

Dynamic object

For dynamic objects, the candidate pruning process is a 2-level process.

1st Level – Selecting candidates from nearby partitions

 134

For dynamic objects such as other robots on the terrain, their position are not fixed but

varied. Since our game has partitioning system that allocates different players into

different partitions depending on their position in the game world, the robot in the

same and nearby partitions can be obtained and selected from the partition module.

Thus nearby robots can be selected for detecting environment collision.

2nd Level, - Selecting potential candidates within the partitions

However, most of the candidates in the nearby partitions are not possible to have

collision with the players actually. As a result, a 2nd level candidate pruning process is

carried out to further select the potential candidate. There are two approaches to

different type of collisions. For the environmental detection and close attack collision

detection, only candidates who have a distance with the player’s robot smaller than a

threshold will be selected since it is impossible for the player’s robot to be collided

with distant objects in the same partition. However, for the distant attack collision

detection, a different approach is employed since it’s the detection between the bullet

with other targets but not involving the player robot. For such collision, Ray-Model

Collision Detection is used to select the candidates. It aims at fetching the candidate

that fall on the path of the bullet so that no excessive collision detections will be done.

Detail of such collision pruning technique will be mentioned in later part.

As a whole, the goal of the candidate pruning system is to minimize the number of

collision detections need to be done in order to fulfill the real time detection

requirement, as well as eliminating all unnecessary detections that waste the time,

especially the accurate collision detection techniques used in the attack collision,

which is expensive. For the test results and analysis of the success of this pruning

system, please refer to Section 5.4.4 “Test Results and Analysis” .

 135

5.4.3.3 Detection with environment objects

Overview

In the game environment, there are many objects in the game world that need to be

checked whether collision is occurred and prevent the user’s character to penetrate

into them. As mentioned above, each player is only checking for collision for his own

robot but not others. The flow of the process is listed as follow:

1) Backup the position of the robot

2) Update the position of all objects in the world

3) For each potential objects that may have collision with the player’s robot,

perform detection with it.

4) If there is any detected collision, restore the last position of robot and send

the incidents to nearby players.

The process of collision detection with environment objects is intended to be

rather simple. It is because collisions between the players and environment

objects are very likely to be happened and it should be a very frequent

operation. Keeping it simple is essential to keep the performance high.

By the use of Candidate Pruning Process above, such detection will only be

done for nearby objects but not the others.

Detection implementation

As mentioned in overview, simplicity should be the first concern of this part. As a

result, accurate collision detection is not employed in this level of detection in order

to keep this part fast and simple, in order to get these frequent operations simpler.

 136

In many commercial games, a bound is usually used to cover the player character to

check environment collision with other objects. One of the examples is MDK2[5.6].

The examples are bounding box, bounding cylinders, bounding spheres, etc. In this

case, bounding cylinder should be most appropriate since it can tightly cover a robot,

as well as no change need to be made when the robot is rotating. Other objects say

trees are also having a bounding cylinder. The cylinder is always upright.

The cylinder property is expressed as a radius and height and accompanied with each

objects. To check the collision, we just need to check whether 2 cylinders collide or

not. To check whether 2 cylinders collide or not, we need to check whether:

u The distance between the top of the cylinder and the xz plane of the

lower situated cylinder is greater than the distance between the bottom

of cylinder and the xz plane of another cylinder; and

u The distance between the projections of center base of both cylinders

are less than their sum of radius

If the 2 selected cylinders are both satisfied the above conditions, they are

collided together. By using such bounding cylinder method, the robots can

prevent penetrating through other objects in the environment.

5.4.3.4 Collision Detection for Attack (Accurate Detection)

Overview

In this game, accurate collision detection is used to detect the collision for attack

actions. For example, it is used to test whether the player’s robot can successfully hit

the enemy by the sword as well as whether my robot can shoot the distant enemy

successfully.

 137

With the Candidate Pruning process mentioned above, the number of detections

needed to be carried out is greatly reduced to keep the performance high especially in

environment with many players. In addition, the use of Ray-Model Detection in

Candidate Pruning is going to be covered in detail.

5.4.3.4.1 Use of external library and JNI

Feasibility studies on accurate collision detection in this game is carried out and some

external libraries that perform accurate collision detection which suitable to this game

were chosen. They are ColDet[5.2] and RAPID[5.8].

For both ColDet and RAPID, they are both implemented in C++ in object-oriented

way, as well as having very similar structure and functions. The basic structure is

collision model, and triangles can be added to the model to supply the geometric

structure of the model. After adding all triangles and finalization, they provide

functions to transform the model, to test whether two collision models are collided, as

well as many other checking functions.

Since they are C++ libraries and our game is implemented using Java, the game

program cannot directly make use of those libraries to use their functions. In order to

make them available in Java, Java Native Interface (JNI) is used. Actually what JNI

does is to enable Java Program to call native system function (e.g. C/C++) as well as

enable native system program to call Java methods. In this scenario, only the former

function is used.

In order to use a C++ class in Java, interfaces in both Java and C++ sides are made.

 138

On the Java side, a reflect class is made with method you want to call to the C++

library with native keyword. Those native methods do not have implementation

because the Java Virtual Machine will forward the call of those functions to the

corresponding C++ function, with the help of wrapper program. Java SDK has a

built-in program to generate a C header file from the reflect class above. The C

program implemented from this header file is called wrapper. It diverts the call from

Java to C++. This program can access both variables in Java and C++. For example,

when a collision model is created on Java side, native method init() is called, then

init() in wrapper program is called. In the wrapper program, it creates a new C++

collision model and sends it back the pointer to Java side for storage (as an integer).

Afterwards, Java side can call different native methods to call different functions of

this C++ object and get required functionality.

As a result, Java reflect class of ColDet and RAPID can be built and use them just like

in C++ with the help of the wrapper program implemented for the purposes. After

testing, it is found that RAPID is around 2 – 3 times lower than ColDet when using in

this game for collision detection. So ColDet is chosen for the accurate collision

detection library for this game.

5.4.3.4.2 Collision model manipulation

In order to detect collision accurately between two robots, they need to have

corresponding collision models. Collision model in ColDet is built by feeding a

number of triangles for that model, and the detection can only be made after finalize

the collision model. However, after finalizing the model, the triangle structure can not

be changed anymore but only able to transform the model, by a 4x4 modelview

matrix.

 139

But robots in this game are usually undergoing continuous animation and movement.

If only one collision model is built for one robot, the animation and movement of the

robot definitely cannot be expressed as a modelview matrix that can be used to

transform the collision model. It is because the whole model is not rigid, that is, the

polygon structure is changing over time. However, it is not feasible to build the model

in each frame to test for collision since collision model building of ColDet is not

designed for run time as it is a relatively slow process.

However, the robot itself is formed by various smaller models, such as head, arms,

body, legs, and weapons. In addition, those smaller models are all rigid and their

polygon structure will never change once they are in the game. The animation and

movement of the robot are the results of geometric transformation of all its smaller

models. As a result, those smaller models can be used to build collision models as

well as transforming them in each frame by modelview matrix, depending on the

robot’s animation.

So when the robot is loaded into the game in the initialization stage, several collision

models are made and bound to the robot. In order to transform the collision models

when the robot is moving, before drawing each small part of the robot, the current

modelview matrix is fetched and used to transform the corresponding collision model.

As a result, the robot’s movement can readily reflected to the collision model without

the needs of rebuilding of them. Such transforming manipulations are done in every

frame.

5.4.3.4.3 Close Attack

From the candidate pruning system, only candidates closed to the player’s robot will

 140

be selected for detection. The weapon is a part of model of the robot. As a result, there

is a collision model for the sword and bound to the robot. In order to determine

whether the sword can hit the target, the detection is implemented as:

S = collision model of sword of player robot

for (each of potential robot from pruning process, Ri)

{

 for (each of collision model of that robot Cj) {

 if (S collides with Cj) {

 // hit and break the loop

 }

 }

}

The library ColDet can readily compare whether two collision models are collided.

After the implementation, it is found that the game can accurately determine whether

the player’s sword can hit other robots.

5.4.3.4.4 Distant Attack

The distant attack in this game means the player robot shooting other robot. When the

player shoots, a new object of class MZBullet, which also extends

TerrainObject, is created to represent the bullet the player’s gun fired. The bullet

has its own straight-line path which is determined by its forward vector. Under the

concept of co-operative collision detection system, each player only detects its own

collision. For far attack, each player only detects the collisions between bullets fired

by him and other enemy robots. Once there is a collision event will be sent to other

players in the same partition (through the network module).

 141

5.4.3.4.5 Ray-Model Collision Detection for Candidate Pruning

Since the bullet is going through a straight line, the potential robots that can be hit by

it should be fall on the path of the robot, and it is the concept of Ray-Model collision

detection used in the candidate pruning process for distant attack.

From the ColDet library, there is a function that can be used to check whether a ray

passes through a collision model. The ray is represented as a starting point and a

forward vector. As a result, all candidate robots are being tested for the ray-model

collision and only robots which the bullet’s path passes through are selected. Then the

prune step is done. The pruning step is represented by the following diagram.

Fig. 5.6 Ray-model collision for candidates selection

To detect whether a bullet collides with a robot accurately, the follow routine is used:

B = collision model of the bullet;

for (each of potential robot, Ri) {

 for (each of collision model of that robot Cj) {

 if (B collides with Cj) {

Pruned candidate

Pruned candidate

Player robot
bullet

 142

 // hit and break the loop

 }

 }

}

It is very similar to the detection routine of close attack with the collision model of

sword being replaced by that of bullet.

Problem Encountered on Accuracy – Missing Frame Problem

However, during implementation, it is found that the system cannot detect collision

occasionally. Even when the player robot and target robot are remained in same

position and the player robot continue to shoot the target, sometime the hit can be

detected while sometime cannot but it should already hit the target.

After investigation, it is found that there is a flaw in the above routine. Consider the

following case:

 Fig. 5.7 Flaw in shooting attack detection

Although the bullet should hit the target, but the bullet really does not have any

contact with the target in both of frames above. As a result, the above routine cannot

Previous frame Current frame

Robot

Bullet Bullet

 143

determine the collision. This problem happens because the bullet is moving in a very

high speed comparing with that of robots, and this problem happens more frequent

when the frame rate is slow.

Solution to Missing-Frame Problem

In order to solve this problem, an additional checking is performed if the collision

detection between the bullet collision model and all collision models of other robot is

failed, as shown below:

B = collision model of the bullet;

for (each of potential robot, Ri) {

 for (each of collision model of that robot Cj) {

 if (B collides with Cj) {

 // hit and break the loop

 }

 }

 if (bullet is approaching to Ri in last frame and

 bullet is leaving Ri in this frame) {

 // consider as hit and break the loop

}

}

The additional test checks whether the bullet is approaching that robot in previous

frame while leaving the robot in the current frame. If it is the case, then it should also

hit the robot. Recalls that a prune step is carried out before the above routine and all

potential robots in the list should be being penetrated by the bullet’s forward vector.

Given the bullet is just started leaving the robot in current frame while approaching in

 144

last frame, it should have already hit and penetrated through the robot. After the above

modification to the detection routine, the problem is successfully eliminated.

5.4.3.5 Collision response

Collision response is the action being taken after collision is detected. In this

co-operative collision detection system, each player only focuses on his own collision

and thus once collision is detected, an event with specific information of collision is

sent to the network module to it will broadcast the message to all other robots that

should get aware of this event.

For environment collision detection, the last position of the player robot is restored as

well as other players in the same partition are informed of the event and restore the

position of corresponding robot in their worlds.

For attack collision detection, the action needs to be undertaken are:

n Notify System Logic a hit is occurred to do corresponding logic

computation such as increase scores, decrease live of the target robots, etc.

It will further notify the network module to broadcast the event to other

robots that should be aware of.

n Notify the animation module to carry out appropriate animation

Actually it can be seen that the network reliability is very important to the broadcast

of collision event. It is because, for each player, any collision that does not involve the

player robot will be done by others. Those information sending is very critical to

maintain the realism of the game.

5.4.4 Testing Results and Analysis

 145

The effectiveness of collision detection implemented in this game can be investigated

for 2 directions, accuracy and performance. Accurate collision detection is one of the

focuses in this game and such technique is employed in the detection of attack

collision. Extensive accuracy test is carried out. In addition, performance analyses of

different implementation of collision detection systems that differ from the current

implementation are going to be conducted and analyzed with current implementation.

5.4.4.1 Accuracy test

As accurate collision detection is one of our focuses, the accuracy of collision

detection is an important measure to the success of the project. One of the game

features is target locking such that once a target is locked the bullet will be shot in a

direction that going to the target. Given that the target is fixed in the position when the

bullet is fired, the bullet must hit it. The test below setup 1 enemy robot in the world

and let the player robot to shoot to it continuously, in order to measure the accuracy.

 Test Case 1 Test Case 2

Terrain Rendering Enabled Enabled

Object Rendering 2 Robots, one player

and one target

2 Robots, one player and

one target

Target Locking Enabled Disabled, shoot next to

the target (e.g. spaces

between the legs)

No. of shoots made 100 100

Result

Hit detected 100 0

 146

Misses 0 100

The result is yield an accuracy of 100% for shooting collision detection with target

locking enabled. On the other hand, for the shoot that made not directly to the target

robot but shooting next to it, no hit is detected throughout 100 shoots. Thus the

collision system yields a very excellent accuracy in both determining hit as well as

having no false detection.

5.4.4.2 Performance benchmarks

In the current implementation, co-operative collision detection system is used. That is,

the player only detects the collision that is related to self robot. The following test

investigates the performance of different detection libraries as well as the effect of

such collision system with the traditional collision detection that detects all objects’

detection.

5.4.4.2.1 Accurate collision detection libraries

During the implementation, ColDet is chosen over RAPID for the accurate collision

detection functions. A test has been carried out between ColDet and RAPID for do

environment collision detection with accurate collision. Below are specifications of

the test:

 Test Case 1 Test Case 2

Library ColDet RAPID

Terrain Rendering Enabled

Object Rendering Trees and player robot

 147

Result (in FPS) 55 18

It is obvious that ColDet offers a better performance then RAPID and the difference is

very large. It may due to RAPID has not been updated for a number of years as well

as ColDet is designed for game as quoted in its homepage[5.2]. As a result, ColDet is

chosen for accurate detection library for development onward.

5.4.4.2.2 Co-operative collision detection system

The test is going to investigate the difference in performance of collision detection in

using co-operative collision detection system and traditional exhaustive method.

Bounding cylinder collision detection will be carried out for the collision test. A

number of robots are placed on the terrain and checking for environment collision

should be done. For co-operative collision detection system, only collision with the

player robot is carried out. For traditional collision detection, all environment

collisions in the world will be checked. Both few number of robots as well as large

number of robots case will be tested and investigated. Below is the specification of

this test and results:

 Test Case 1 Test Case 2 Test Case 3 Test Case 4

Detection System Co-operative Traditional Co-operati

ve

Traditional

Detection Method Bounding cylinder

Number of robots 2 2 200 200

Terrain Rendering Enabled

Objects Rendering Disabled

 148

Frustum culling Enabled

Result (in FPS) 120 120 114 20

Please note that the robots will not be rendered and models are not loaded because we

are only interested in the effect of collision system uses. Object rendering will lower

the significance of the difference for different system, especially in the cases that have

many robots, in which rendering of robots will take a large amount of resources.

Analysis

From the above result, we can see that the speed up bring by co-operative system is

great comparing with traditional way. However, the speed up is unnoticeable when

there are only few robots on the terrain. But the speed up is much greater when the

number of robots in the worlds increase, which better simulate the environment of

high scalability. It is obvious that if traditional way has a bottleneck in checking

environment collision if the number of robots in the world keep growing. As a result,

the current co-operative implementation is suitable for high scalability network game

like the one in this project, and it brings satisfactory performance to this game.

5.4.4.2.3 Candidate Pruning System

Similar to above, during the testing, no robots will be rendered. There are 200 robots

distributed nearby the player robot and it keeps continuously shooting so that accurate

collision detection for distant attack is continuously taken place.

 Test Case 1 Test Case 2

Candidate Pruning On, using Ray-Model Off

 149

detection as pruning

Detection System Co-operative

Detection Method Accurate Model-Model Detection

Number of robots 200 around the players

Terrain Rendering Enabled

Objects Rendering Disabled

Result (in FPS) 114 30

Analysis

Without candidate pruning, the bullet’s collision models needs to detect with ALL

other robots in the scene while candidate pruning mechanism can eliminate the

majority of them since only the robots fall on the path of the bullet (checking by

Ray-Model Collision Detection) will be selected for accurate detection. As a result,

there is a huge performance boost, around 4 times, for the candidate pruning system,

which is also crucial to let the accurate collision detection to be feasible in real time.

Conclusion

From the above benchmarks, it shows that the current implementation is always using

some methods to improve the performance of the overall collision detection system.

For example, the co-operative system eliminates all redundant and duplicated

detections and leaves them for their own players. In addition, although accurate

collision detection yields a very good experience to user, extensively use of it lower

the performance of whole game and finally lower the playability of the game. As a

result, accurate collision detection is only used in detecting attack collision that the

players find it most important, since the accuracy of it affects the game results and

 150

playability heavily. More importantly, the Candidate Pruning process can greatly

reduce the number of collisions, both bounding box detection for environment

collision and accurate detection for attack collision, to cope with the real time

requirement.

 151

5.4.5 Discussions and Evaluations

5.4.5.1 Functions achieved

The collision detection system implemented in this game is divided to 2 main areas:

n Detection with environment objects such as robot-tree, robot-robot.

n Detection for the attack collision

With the environment collision detection, which makes use of bounding cylinder

checking, dynamic objects like robots and static objects likes trees will never

penetrate with others. For the attack collision, including close attack and far attack,

accurate collision detection technique is employed and all attack collisions are being

detected accurately to improve the realism of the game.

A co-operative collision detection system is implemented in this game and each player

only focuses to detect collision involving their own robot. By taking this co-operative

approach, the players co-operate together to do the detection for the whole virtual

game world. Candidate pruning mechanism also helps to minimize the number of

detections needed to be done in each frame.

5.4.5.2 Accuracy achieved

One of the purposes of the module of this project is to implement accurate collision

detection system in the game. The test above completed with result of 100% accuracy

if accurate collision detection library ColDet[5.2] is used to do the detection. The

accuracy achieved is very satisfactory and there is no wrong detection resulted. As a

result, for checking collision, the system yields an excellent accuracy of detection.

For the environment collision detection, accurate collision detection is not used in

 152

order to increase the performance. An approximated bounding cylinder is used to

cover the object. So, it is possible that a robot cannot walk further even it has not yet

collided with the tree. However, implementing accurate collision detection in all of

the collision including environment collision detection is not feasible in this project,

since it drastically slows down the performance of the game. As a result, accurate

collision detection is used only for attack collision detection while bounding cylinder

is used for environment collision detection. The bounding cylinder’s parameters are

chosen according to the model of the object and keep the cylinder as tight to the

model as possible.

In conclusion, the accuracy of collision detection in this game achieved is very high,

especially for the attack collision, which having 100% accuracy.

5.4.5.3 Choice of accurate detection library

In the current implementation, ColDet is used for accurate collision detection. It

provides a number of collision detection functions such as model-model detection,

ray-model detection, and sphere-model detection. Model-model detection is used

extensively in both close and far attack collision detection. In addition, the ray-model

detection is very useful to select candidate when doing shoot attack collision, by

selecting which robots have potential being hit by the bullet. After the game is

implemented, it is found that ColDet provides enough functionality to the game as

well as providing excellent accuracy. In addition, its performance is very satisfactory

and having performance better than RAPID, another accurate collision detection

library which provides similar functions and structures.

Actually there are many other libraries that provide the functionality of accurate

 153

collision detection, some of them even make the user to be able to select pair of

collided objects within a group of objects. However, the project only requires simple

functions as above so they are not selected to maintain the simplicity.

5.4.5.4 Use of Java Native Interface (JNI)

Since the collision detection library ColDet is implemented in C++ while Java is used

to code the project, the program cannot make use the library directly. Java Native

Interface (JNI) is used to map the functions in libraries in C++ being callable in Java.

From feasibility studies, tests have been carried out to investigate the overhead of

calling C++ library through JNI comparing with calling directly from C++. The

overhead is very small and the result is satisfactory. Performance is not a problem in

using JNI in this project.

However, after finished the JNI wrapper program for ColDet library, it is found that

there is a small memory leakage problem when the program is running. After an

extensive investigation over the code, it is found that the problem is originated from

the wrapper program. In the wrapper program, variables in Java passed from the

methods needs to be converted to C++ format before calling the C++ functions. In

addition, special treatment is needed in converting array from Java form to C++ form.

In the wrapper program, it needs to call special JNI function to let the Java VM to

prepare the set of array to be available to be copied to the C++ array and pass to C++

functions. The memory leak problem happens because after copying the values of

array to the C++ array, I forgot to release the Java array from the VM, while those

variables prepared by JNI will not be garbage collected. Once the arrays resources in

Java VM are released after calling, the memory leakage problem is solved.

 154

In conclusion, using Java Native Interface is a very convenience method to make

C/C++ libraries available in Java. However, the memory resources need to be

carefully controlled and monitored to prevent the memory leakage problem.

5.4.5.5 Co-operative collision detection system

In this game, each player is responsible for the collision detection of their own. The

collision event of other robots in the world is supplied and sent by other players. Each

player is doing the minimal amount of collision detection. Comparing with traditional

method that check for all collision detections in the world, the performance of this

co-operative system is very high. From the tests above, it is shown that the

performance boost is even more obvious for large amount of players in the world. It is

because the time complexity of traditional method is O(n2) since each of the robot in

the partition are being checked collision with each of the other candidate robots.

However, this co-operative method is just having time complexity O(n) since only the

player’s robot is check against other candidate robots. It is the reason why this system

bring a huge performance boost especially when n is large. It is a key benefit of

co-operative collision detection system that keeping performance high in high

scalability scenario, that is, when n is large.

However, the effectiveness of this method is highly dependent on the network

performance. It is because the collision event messages are sent to other players in the

partition to take corresponding action. Reliable protocol and synchronization are other

focuses in this project and they provide reliable and in order transfer to other players

through the Internet, thus making the transfer of collision event message effective and

robust.

 155

Actually such collision event messages are analogous to the control events like

forward, backward, left, and right, that also need to send to other computers when the

player computer accepts the controls. Collision event messages are treated the same as

the above control messages and send to other players through the network.

5.4.5.6 Degree of use of accurate collision detection

In the current implementation, accurate collision detection is used for attack collision

while not the environment collision detection with other objects. It is because the

performance of the game needs to be kept very high while environment collision

detection is a frequent operation that cannot be expensive. In the player point of view,

what he concerns in the collision detection in the game is that:

n The game judges the player robot successfully attacks another robot when

the player’s weapon geometrically collides with the target.

n The game will never judge the player robot being shot by others if the bullet

is just passing through the player robot very near but not penetrating.

It is because the decision made in attack collision detection affects the players most

and even decides them to win or lose. As a result, to produce high realism, high

accuracy of collision detection in attack is essential. However, for environment

detection, it just uses for prevent the robots from penetrating through the environment

objects and the game players will not take much care about it. As a trade off of

accuracy and performance, bounding cylinder is used to do collision detection for

environment objects, with higher performance but lower accuracy.

 156

5.5 Overall Evaluation

In the view of the whole module, both graphic engine and collision detection system

have been investigated, researched and implemented for the game. Extensive

researches and feasibility studies that being carried out before the construction phase

are useful and valuable. It is because they do not just let me to be more familiar with

the topics, as well as preparing a clear path for the stage of design and development,

that is, the uncertainties during design and construction is minimized.

In this module, a graphic engine that is extensible and having satisfactory

performance is implemented and tested. It has the basic requirements such as

rendering the world, maintaining list of objects to be displayed, some tricks to

improve realism as well as some performance tuning. It turns out that performance

tuning is a very important step to design and implement graphic engine since it is

found from the tests, that the performance boost after several optimizations in this

game is already very significant. Generally speaking, the graphic engine implemented

satisfies the requirements specified.

For the collision detection system, the use of accurate collision detection in game is

well studied and researched, as well as successfully implemented in this game with

very high accuracy for attack collision. Co-operative collision detection system is also

implemented to lower then computational power need when the number of players is

high. It is shown from tests that such co-operate system is having a greater

performance than traditional one that do all the collision detections on their own. In

addition, Candidate Pruning process successfully minimize the number of detections

needed. Generally, for the collision detection system implemented, it satisfies the

 157

requirements of high accuracy, high performance and adapts to high scalability.

5.5.1 Efficiency of research, design and construction

For this module, overall graphic engine design and collision detection, I have spent

around 40% of time to do researches and feasibility studies of related topics such as

OpenGL graphic programming, methods to carry out accurate collision detection, the

use of Java Native Interface (JNI), etc. All of the researches and studies are carried

out in the Internet. The Internet is really a rich set of resources pool that let me find

the related papers, tutorials and reports. Feasibility studies are carried out after

gathering enough information. The efficiency of this part is good and lot of

information are gathered and studied. It makes me much more familiar with the topics

and can think solutions to the project problems. In addition, information is shared

among all the members and collaborations about OpenGL programming are carried

out with my group-mate, Yuen Man Long, who is responsible for the model rendering

and animation.

For the design and construction stage, since Java is used and it has a set of useful API,

the development is easier than C++. Functions were implemented one by one and

tests were conducted when each functions is finished. Tuning and debugging were

also done if there were any problems. The efficiency is quite good except when

developing the JNI wrapper program for the collision detection program. It is because

inadequate studies about memory management of JNI have been conducted as well as

the unfamiliar with this new style of programming. Recalls the JNI bug I encountered,

quite a lot of time are spent to figure out where the problem was originated, checking

for the errors and code amendment.

 158

5.5.2 Interactions with other modules

The organizations of the graphic engine and collision detection system are in

object-oriented style such that the interface letting other modules to use is keeping

simple as possible, as well as to encapsulate the internal implementations to the

outside interface.

For example, the system game logic can manipulate the objects in the graphic engine

easily such as moving objects, calling the objects to animate, as well as other

manipulations. However, such operations rely on a set of standard function of the

renderer and the implementations of them are unknown to the system game logic.

On the other hand, when there are any events like collision is detected, the collision

detection system also notifies the system game logic so that this message is broadcast

to all players in the same and nearby partitions. With the help of system game logic, it

reads and dispatches the event to network module and send to selected peers. All

those operations are hided from this module.

Apart from that, this module is also closely related to the module of model animation

and rendering. According to different commands set by the system game logic, they

are processed and feed into this module and appropriate action and animation will be

rendered by that module. During the implementation of this project, such kind of

interfaces organization eases the development a lot. It is because the implementations

of modules are changing throughout the construction process. By using this

organization, as long as the interfaces of each module do not change, modules can still

co-operate and interact together properly.

 159

5.6 Conclusion

Throughout various stages of the project, the project matters are being researched and

studied extensively, design and construction have been carried out following by a

series of tests and benchmarks to analyze and evaluate the effectiveness of this project.

In the module of Graphic Engine and Collision Detection, as evaluated extensively in

previous sections, it is found that both of them satisfy the requirements. An extensible,

object-oriented and effective graphic engine and an accurate, co-operative, and robust

collision detection system are successfully implemented in this project and being used

by the game Mecha Zeta. In addition, Java is also found to be an effective

programming language to implement the game in a relatively short period of time as it

yields a better productivity, despite of a small performance lag to C++. However, the

performance of graphic engine and collision detection system is still very satisfactory

according to the test results.

In case there will be any future development, for the graphic engine, it is

recommended that more time should be put on the field of optimization. Actually

there are many optimization techniques that can bring performance boost apart from

those used in this module of the project. As the complexity of the scene increases, the

need of optimization also increase since fast graphic engine can give the players a

joyful and realistic game experience.

For the collision detection, since only two libraries are being investigated and tried in

this project, more can be investigated and tested to see how they perform comparing

with the one which used in this project. In addition, the co-operative collision

detection system incorporated in this project lets the players of this game to do

 160

collision detection in a co-operative manner by doing collision detection related to

own player only and sharing the results to all the others. Actually some other

co-operative methods can be investigated to give more robust performance to the

collision detection system.

 161

6 3D Modeling, Animations and Real Time

Shadowing

6.1 Theoretical principles

6.1.1 Overview

In this section, we are going to look at three theoretical principles. The first one is to

determine whether a point is above or below a plane given a plane equation. The

second one tells us how to obtain the silhouette edges of a 3D object. The last one is

about how to project or cast shadow in a 3D environment onto the drawing screen.

6.1.2 Determining whether a point is above or below a plane given a plane

equation

To determine whether a point is above or below a plane, first of all we need an

equation for the given plane. Given any 3 point: A (x1, y1, z1), B (x2, y2, z2) and C

(x3, y3, z3), the plane equation is obtained as follows (the side with A, B, C in

counter-clockwise order is regarded as the upward face):

 Let a’x + b’y + c’z = 1 be the equation.

 Then we have: a'x1 + b’y1 + c’z1 = 1

 a'x2 + b’y2 + c’z2 = 1

 a'x3 + b’y3 + c’z3 = 1

 i.e. in matrix form:

() 1
321
321
321

''' =

zzz
yyy
xxx

cba

 162

 And the inverse of

321
321
321

zzz
yyy
xxx

)1221(3)3113(2)2332(1

122112211221
311331133113
233223322332

zyzyxzyzyxzyzyx

yxyxxzxzzyzy
yxyxxzxzzyzy
yxyxxzxzzyzy

×−×+×−×+×−×

×−××−××−×
×−××−××−×
×−××−××−×

=

)1221(3)3113(2)2332(1
)21(3)13(2)32(1

'
zyzyxzyzyxzyzyx

zzyzzyzzy
a

×−×+×−×+×−×
−+−+−

=∴

)1221(3)3113(2)2332(1
)21(3)13(2)32(1

'
zyzyxzyzyxzyzyx

xxzxxzxxz
b

×−×+×−×+×−×
−+−+−

=

)1221(3)3113(2)2332(1
)21(3)13(2)32(1

'
zyzyxzyzyxzyzyx

yyxyyxyyx
c

×−×+×−×+×−×
−+−+−

=

 Rewriting the equation into the following format: ax + by + cz +d = 0,

 setting))1221(3)3113(2)2332(1(zyzyxzyzyxzyzyxd ×−×+×−×+×−×−= ,

 we will have)21(3)13(2)32(1 zzyzzyzzya −+−+−=

)21(3)13(2)32(1 xxzxxzxxzb −+−+−=

)21(3)13(2)32(1 yyxyyxyyxc −+−+−=

Note that the normal of the plane with this plane equation is pointing to the direction

obtained by the right-hand rule. i.e. the “counter-clockwise side” is the upward face. If

we try to find the plane equation with the points in reversed order, we will get a plane

equation facing an opposite direction. i.e. –(ax+by+cz+d) = 0.

Substituting the x, y, z co-ordinates of a point into ax + by + cz + d, we will get a

value proportional to the distance of the point from the plane. If the obtained value is

negative, the distance found will be negative and that means the point is under the

plane w.r.t. the normal. On the other hand, if the obtained value is positive, the point

 163

Fig. 6.1 Visible face Fig. 6.2 Invisible face

should be above the plane.

So, we can conclude that, given a point P (x0, y0, z0) with plane equation ax + by +

cz +d = 0, if 0000 >+×+×+× dzcybxa , the point P is above the plane.

This theory is applied in determining whether a face is visible to a point light source

in Silhouette Determination. A face is considered “visible” to the light source if the

light source is “above” the plane. Details about the Silhouette Determination will be

discussed in the next section.

6.1.3 Silhouette Determination

The Silhouette edges for a 3D object are actually the outlines of the object when you

look at the object from a certain point (the reference point) in the 3D environment.

These edges together bound and form the shape of the object when viewing from that

reference point.

 164

Fig. 6.3 Shaded objects and the Silhouette edges for the objects

To obtain the Silhouette edges for a 3D object from a certain view point, we need a

special structure to hold the 3D object. As usual the 3D object should contain a list of

face (say a triangle face). The face consists of three indices for the three vertices. An

edge is identified by a pair of vertex indices. For a closed mesh, there should be a

neighboring face for each of the three edges. In addition, we need the plane equation

for each face in order to tell whether the face is facing the view point.

With the above information, we can start identity the Silhouette edge with the

following steps:

1. Loop through all of the object’s faces (triangles).

2. Determine whether the face is visible (facing) the “view point” given its plane

equation and the co-ordinates of the view point using the theorem.

3. Loop through the faces again

4. If the face is visible, go through all the three edges

5. If the neighboring face is not visible, this is a Silhouette edge. (For non-closed

mesh, if there is no neighboring face for this edge or the neighboring face is not

visible, we will treat it as a Silhouette edge)

 165

Fig. 6.4 Forming Silhouette edges

Fig. 2.5 Shadow volume

Fig. 6.5 Object partially inside shadow volume

For example, in figure 6.4, the only two visible faces

are the two triangles on the top. For the two triangles,

the edge between these two triangles is not a Silhouette

edge as both of the faces containing this edge are

visible. The resulting Silhouette edges are the four

edges bounding the top two faces.

6.1.4 Shadow Volume

6.1.4.1 What is Shadow Volume

A shadow volume is simply the half-space defined by

a light source and a shadowing object. Or you can think of it as a volume in which

object will be shadowed.

 166

Fig. 6.7 Shadowed part on an object Fig. 6.8 Unshadowed part on an object

6.1.4.2 How to determine whether a point on an object is inside the shadow

volume w.r.t. a given eye position

One of the most common and efficient method is the eye-to-object stencil count

approach in Zpass mode. Imagine you are look at a point on an object from a

distance. A light source (e.g. the Sun) is casting a shadow volume from a shadowing

object like in figure 6.5 (Shadow casting will be discussed later). A count is used and

initialized to zero. Traveling from the eye position to the point on the object, if you

enter a new shadow volume, increase the count. If you are leaving one of the shadow

volumes, decrease the count. Stop counting when you reach the pint on the object.

Finally, if the count is greater than zero, that means the point on the object is under

one or more shadow volumes (i.e. the number of shadow volumes covering the point

is equal to the final count) (See figure 6.7). Otherwise, the point is not shadowed (See

figure 6.8).

6.1.4.3 What does that mean by “Zpass”

Z-value represents the depth of the currently nearest point in certain viewing direction

from the eye position. The above approach is a “Zpass” approach, because we start

the counting from the eye position in certain viewing direction to the nearest object,

 167

where depth-test can be passed or the z-value is less than the z-value of that nearest

object.

6.1.4.4 Shadow volume casting

To construct the shadow volume, we have to obtain the Silhouette edges for the

shadowing object using the techniques mentioned in last section with the light source

being the reference point. Then for each edge in the set of Silhouette edges, project

the two vertices of this edge from the direction of the light source to infinity (See

figure 6.5). Implementation will be shown later.

 168

6.2 Design and construction

6.2.1 Overview

The design and construction for which I am responsible can be roughly divided into

five parts: 3D modeling, animation, character control mechanism, game logic and

graphical effects. The role of these five parts can be summarized in the following

diagram (represented in red blocks):

6.2.2 3D Modeling

6.2.2.1 Overview

The 3D modeling involves expressing the objects inside the game, such as robots and

Game
Engine

Player

GUI

Communication
Engine

Display
Engine

3D Model
Loader

Game
Logic

Sound
Engine

…

…

MD3
Objects

Objects &
Animation
Display

Graphical
Effects

Control Interactions,
Response &
Physics

Fig. 6.9 Structural view of concerned parts

 169

scenery objects, in a computer format. The concerns in the modeling mechanisms

include interpretation of the models in Java, mechanism for modeling the animation,

hierarchical structure of the models, flexibility of the model and etc. We aim at

designing robots which are composed of reusable parts (e.g. head, body, arms & legs).

Each robot is actually a combination of these parts. To construct a robot, all we need

is a set of IDs for each of the part.

To build up a model, for example a tree, first of all we need to draw the meshes of the

model using 3D model constructing software. After that we need to do texture

mapping for the meshes. And if the model is a dynamic object, we have to build

animation for it at this stage. And then we export the texture mapped model into an

understandable format (so that we can parse the file in program). We parse the

exported file and read the information into Java objects. Necessary initializations are

done before the object can be displayed.

6.2.2.2 Choice of 3D model constructing software

3D Studio Max 5 is chosen to be the software to build 3D models in our project.

Reasons behind are:

1. High flexibility and power for creating shapes and animations

2. Different plug-ins readily available, e.g. exporter and tools for texture mapping.

3. The .max file format contains high level information, such as animation in vector

format (but not recording all the vertex co-ordinates for each frame).

 170

4. The .max file can be export to the format we need easily with most of the

information we need.

 171

Fig. 6.10 An axe

Fig. 6.11 Texture map Fig. 6.12 Painted texture map

Feasibility for using other 3D model constructing software

The “Maya” is another powerful 3D software. It is not our choice because it is

difficult to find some plug-ins or utility tools (such as “Texporter” which will be

mentioned below) for it. And we cannot find a way to export the model to our desired

format. On the contrary, the “Milkshape” is another good choice as it is easy to use

and pick up. However, due to its limiting functions and plug-ins, it is not chosen.

6.2.2.3 Texture mapping (skinning) in 3D Studio

To map texture onto different parts of the model with exact

position for complex shape, we need to do it in 3D Studio

rather than in programming. First, when we get an object (See

figure 6.10), we need to divide the mesh into several meshes to

make it planar, by rotating the sub-mesh and adjusting the

position of the vertices. Then generate a UVW map using a

plug-in called “Texporter” (See figure 6.11).

 172

Fig. 6.13 Skinned axe

After painting on the texture map generated by Texporter (See

figure 6.12), we can map it onto the object (See figure 6.13).

This mapping can be exported and read into our data structure

in Java. For more details, please refer to Reference.

6.2.2.4 MD3 format

The .md3 format is chosen as the format for holding 3D models. It is the model

format that is directly read into Java objects. The MD3 format is originally the model

format for the well-know 3D online shooting game Quake III. We choose it because

of the following reasons:

1. The bit-wise structure of MD3 format is opened to public so that we can write a

complete loader for it.

2. It makes use of the “tag” concept which allows different parts to be connected

conveniently. This makes it possible to draw the parts separately. Different

combinations of parts can be done at run-time.

3. MD3 stores animation by storing all the faces and vertex positions for fixed time

intervals (e.g. 30fps animation means there are 30 sets of frame in 1 sec. for each

model). Comparing to the method of storing the initial positions and the changes

of positions over time, MD3 has the advantage that extracting an intermediate

animation does not require transforming the initial polygons. Only interpolation

between two frames is needed. This results in better performance.

Limitation of MD3

1. The number of vertices in the model must be fixed through the animation.

2. Frame rate has to be determined at model building time. Real time display

 173

Fig. 6.14 A tag

requires interpolation of frames.

3. Scaling of the model can only be done through scaling the vertices in the model,

but not through the tag.

4. The bounding box of the model is not included thus hindering collision detection.

One of the measures to solve this problem is to roughly estimate a bounding

cylinder for the model or to calculate the bounding box at startup time.

Feasibility for using 3DS or MAX format

1. There are still a lot of unknowns in the bit-wise file format, especially for the

animation information. It is difficult to develop a loader for either of them. We

have even less information on the MAX format.

2. They record animation in the form of initial position, translation, rotation and

scaling of meshes and vertices. This requires more job to be done if we want to

extract an intermediate frame as mentioned before.

6.2.2.5 Design and structure for model

Tag

Before explaining the design of the structure of our

model, first we have to introduce a important concept

called “Tag”. It plays an important role in connecting

different parts of the model. It is actually a vector

with no volume. It is a flat right angled triangle with a

normal pointing upward and perpendicular to the triangle

(See figure 6.14). The position of the tag defines the translation of the part to be

connected and the orientation of the tag defines the rotation. No scaling can be done

through the tag. A tag somehow acts like a joint.

 174

Fig. 6.15 Basic model structures

Data structure for model

The basic part of a model is stored in a class called MZModel in our program. An

instance of MZModel would contain a list of “objects”, a list of links connected by

tags, some information about the texture used and some information about the

animation etc. Each “object” contains a list of faces, a list of non-repeating vertices, a

list of normals and a list of texture co-ordinates. A face in turns contains the indices of

the three vertices that form the triangle face. Moreover, each face will have its own

plane equation, the indices of the three neighboring faces, for the sake of

shadow-casting. All the data will be read by a loader from the MD3 file at startup time

except the plane equation and indices of the three neighboring faces. These two

elements will be computed after reading the basic information about the model. In the

meantime, the texture (skin) will be loaded for each of the parts according to the .skin

file.

Hierarchical structure of robot

Basic on the tag-concept, a hierarchical structure of robot is built.

Original design

The parts of the robot are linked in a tree structure, with the leg as the root (the leg is

in turn linked to the floor, i.e. the terrain). The body is connected to the leg. The head,

left and right arms are connected to the body. The shield and weapon are connected to

the left and right hands respectively (See figure 6.16). When the leg moves, the body

MZModel
object list
link list
texture
animation

Obj
face list
vertex list
normal list
tex-coord list

Face
ndices
uation
neighboring faces
visibility

 175

Fig. 6.16 Original hierarchical structure of

Fig. 6.17 Image for original hierarchical structure of robot

will also move accordingly. When the right hand swings a sword, the sword will

follow the motion of the arm.

All these parts are connected by tags. Each part has its own animation

Critical problem

Robot

Head

Body Right arm Left arm

Legs Weapon Shield

root

 176

For any current approach of doing collision detection, the above implementation is

infeasible. It is because in order to do real-time collision detection efficiently and

accurately, each part of the model (including all the vertices) should remain fixed. We

can only inform the collision detection engine that the part has been translated or

rotated (but not transformed freely). With the above implementation, when you swing

a sword, the position for connecting the right hand is basically fixed. The animation is

achieved by having the vertices in different positions in different frames. This violates

the restrictions of the collision detection engine. (For details, please refer to the part of

the Section 5 “Graphic Engine and Collision Detection”)

Solution – a new design

The robot is still connected through tags. The main different to the original design is

that we will separate the animation and objects into different parts. What does it mean?

In the current design, two new parts, namely “lower” and “upper” are created to hold

the animation for the lower and upper body. They are parts that contain no meshes as

all. They are only consisting of tags, translations and rotations of tags. The lower part

contains the tags for the different sub-parts of the legs. The upper part contains the

tags for the head, sub-parts of body, sub-parts of arms, weapon and shield. The lower

part becomes the root of the robot. The upper part is connected to the lower part yet

by another tag. Meanwhile, every individual part has only one frame, i.e. fixed mesh.

This approach makes it possible to have good collision detection.

 177

Fig. 6.18 New hierarchical structure of robot

(For other advantages of using the new design, please refer to the sections for

animation and stencil shadow casting)

Displaying the model

To display a part of the model, we need the following steps:

1. Bind the texture used for this part (glBindTexture).

2. Go through all the faces.

3. Extract the indices for the vertices in each face.

4. Set up the normal and texture co-ordinates for each vertex (glNormal &

glTexCoord).

5. Draw the vertices to form faces (glBegin(GL_TRIANGLES), glVertex & glEnd).

One of the features about our model structure is the recursively connected parts. i.e.

the arms motion is relative to the upper body, and the upper body motion is in turns

relative to the lower body, etc. So, when we display the model, we would draw the

parts recursively. Before we draw a link, we would apply “glTranslate” and

“glMultimatrix” according to the tag for that link, so that the linked part is drawn with

appropriate translation and rotation. This is done recursively until everything is drawn.

After drawing one link, the previous matrix will be restored, preparing for drawing

Robot

Head Body

Right arm

Left arm

Legs

Weapon Shield lower

upper

root

tags only

 178

Fig. 6.19 Robot set 1 Fig. 6.20 Robot set 2

the next link.

Synchronization of the model

In order to prevent the model information (such as current frame) from being

modified during display (which will cause flickering of the screen), update of such

information is buffered and proceeded after each display.

Outlook of models

Current two sets of robot parts are built (See figure 6.19 and 6.20 below).

 179

Fig. 6.21 Different combinations of parts

The parts can actually be combined arbitrary like in

figure 6.21.

Other models such as weapons and shields are also

built. And they can be combined with the robot.

(figure 6.22)

 180

Fig. 6.23A tree model

Beside these dynamic objects, some static scenery objects

are also there, for example, a tree model (figure 6.23).

6.2.3 Animation

6.2.3.1 Overview

Animation plays an important role in a 3D action game. Transition between different

animations and the continuity of frame within an animation is one of the emphases in

Fig. 6.22 Weapons, shields and equipped robot

 181

the graphics part of our project. We have also paid attention to the convenience of the

data structure at the design stage.

6.2.3.2 Comparison of the two hierarchical structure of robot in animation

Original design

1. The robot animation is formed by coordinating the animations of individual parts.

For example, swinging a sword requires the right hand to take action and the

body to turn. This results in high flexibility and reusability of the individual

animations. These individual animations can combine in many ways to form new

animations.

2. Animation is fixed as create-time, i.e. the behavior of the animation is

hard-coded in the model.

3. Display list in OpenGL cannot be adopted since the mesh for each part is not

fixed.

New design

1. The robot animation is formed by coordinating only the animations of the lower

and upper body. Swinging a sword only requires one animation in the “upper”

part. Flexibility is still there as most of the actions require only coordination

within the lower or upper part of the robot. And the animation combination is

also simplified while it is still as expressive as before.

2. Animation can be adjusted more easily through modified translation and rotation

base on the tags.

3. Display list can be adopted with fixed meshes, thus increase performance.

4. Size of the model file is smaller since the mesh for each part is fixed and the

animations are only represented by tags which have no volume.

 182

5. The “lower” and “upper” parts consist of pure tags forming a structure similar to

skeleton or bone structure.

6.2.3.3 The .cfg file

It is a file for configuration of the animations. For each part containing more the one

frame (i.e. having animations), there has to be a .cfg file. This file contains

information about all the animations in the model. The animations for each part are

stored as one long consecutive animation in the MD3 file. To extract an animation, we

need to know at which frame it starts and at which frame it stops.

In the .cfg file, every line represents one animation. For example, for the line:

“1 24 0 30 201 UPPER_PUNCH”,

it is defining an animation called “UPPER_PUNCH” with ID 201 which starts from

frame 1 and stop before frame 24. The fps for this animation is set at 30 and the zero

here means that the animation is not going to be held at the last frame, and must be

proceed to another animation.

6.2.3.4 Interpolation between frames and frame skipping

Interpolation

For each animation there is a preset frame rate (30 fps for the above example).

However, it is impossible to have the display rate the same as this frame rate. And

different animation may have different frame rate. In order to smoothen the animation,

when the display rate is faster than the frame rate of certain animation, interpolation

will be done on the nearest two frames. The interpolation is done on both the tag

animations and mesh animation (no mesh animation in the new design). It is based on

a variable “t” ranging from 0 to 1. When the animation proceeds to a new frame, “t”

 183

Fig. 6.24 Interpolation between frames

will be set to 0. We use the frame rate for this animation to calculate how long each

frame should last. “t” should increase gradually and reach 1 when it is time to display

the next frame.

For example, let V1 (x1,y1,z1) and V2 (x2,y2,z2) be a vertex at frame 1 and 2

respectively. At time just before frame 2 should be displayed, we interpolate the

vertex by V1 * (1 – t) + V2 * t. Every face will be drawn with interpolated vertices

and the motion thus become smooth.

Frame skipping

When if the display rate is too low? In this case, we will skip some of the frames

depending on how much time is elapsed from last changing of current frame. Let T be

the time that each frame should last. If the elapsed time is greater than T, let n =

(int)(elapsed time / T). And we will skip n – 1 frame and proceed to the nth frame.

Also “t” will be updated to (elapsed time / T – n). This will compensate the

inadequacy in display frequency. Although this will cause “jumping” on the screen,

this measure makes slower computer to be able to catch up the game speed with other

players over the internet.

 184

Fig. 6.25 Smooth transition

6.2.3.5 Transition between different animations

When one animation ends and another animation starts, there should be a transition

between the two animations. Since there are tens of animation for the lower and upper

robot, it is quite impossible and not cost-effective to draw the transition frames for

them. For example, for a running robot, you will never know at which frame of the

animation the user will release the key to stop the robot. Sudden interrupting the

running motion and making the robot stands still is not a visually favorable approach.

In order to improve the situation, the following new idea is adopted. The stopping

animation consists of only one frame. The special thing about this method is that this

stopping animation is of much slower frame rate (say 5 fps). The stopping motion will

be done by interpolating the frame at which the robot starts to stop and only frame in

the stopping animation. This is a long interpolation interval as compared to normal

interpolation. The effect with this approach turns out to be good. And a quite a large

potion of animation transitions is making us of this approach.

 185

Fig. 6.26 Attacking Fig. 6.27 Guarding

6.2.3.6 Animations in use

Currently there are more than 20 pieces of animations for each of the lower and upper

robot. Several pieces of animation form a continual action, e.g. raise the shield,

guarding, and letting the shield down. There are many other actions like swinging the

weapon, jumping and getting up. (See figure 6.26 and 6.27)

6.2.4 Character control mechanism

6.2.4.1 Overview

There are mainly two attack modes in our game project, Mecha Zeta. They are the

close attack and ranged attack. The players can control the robot to run, jump, attack,

guard and etc. In this section, we are going to look at the control mechanism in Mecha

Zeta.

6.2.4.2 Control keys

There are currently 7 control keys on the keyboard. They are “up”, “down”, “left”,

“right”, “jump”, “change weapon” and “reset camera”. The mouse is used to control

the shooting direction for the first shoot method. The left and right buttons of the

mouse are for “attack” and “guard”.

 186

6.2.4.3 Control method

The four direction keys are for running in the four directions. For example, when

pressing the left key, the robot will be running

left relative to the screen, instead of just

rotating the robot in an anti-clockwise direction

(figure 6.28). Keep pressing the left button will

cause the robot to rotate in an anti-clockwise

direction gradually while running to the left.

When pressing the “down” button, the robot will be running towards the screen

(figure 6.29).

6.2.4.4 Shooting mechanism

Here I would like to introduce one of the shooting methods in Mecha Zeta. To shoot a

target, you have to change and use the ranged weapon, and move your mouse cursor

to an appropriate place. On the top-right hand corner, there is a small window

showing the current shooting directing for your gun. If you press the attack button, the

gun will fire towards that direction. (figure 6.30)

Fig. 6.28 Running left

Fig. 6.29 Running down

 187

Fig. 6.30 Shooting view

6.2.4.5 Reset camera

When you press the “reset camera” button, the camera will pan towards the view of

the robot (direction in which the robot is facing) in a suitable way.

6.2.4.6 Combo attack

If you press the attack button just before the previous attack ends, a combo attack will

follow. A maximum of 4-hits combo is possible. (figure 6.31)

 188

6.2.5 Game logic

6.2.5.1 Overview

Game Logic is responsible for how the robot reacts with the environment and other

robots, and what to do in response to the control signals. In other words it determines

how the game is played. It will update the robot status upon external events. For

example, if the collision detection engine detects that a robot is hit by a weapon, that

engine can invoke the game logic to take action on the robot upon this event (e.g.

reduce “health points” and let the robot fall down).

6.2.5.2 Update physics

Updating physics is one of the most important jobs of the Game Logic. A list of

terrain objects that need to be updated is held by the MZGameLogic. At fixed interval

of time, it will go into the list to help updating these objects. Types of update include

updating position during running, updating height during jumping, panning the

robot’s view when start running, panning the camera view, updating the position for

bullets and etc. It has the ability to control or limit the changing of the environment,

e.g. how fast the bullet is flying and magnitude of gravity.

Fig. 6.31 The 4 combos

 189

In the case the position of the running robot having to be updated, the game logic

move the robot forwards by a certain amount depending on the running speed and the

time elapsed between last and current updates. As a result, computer which can

achieve different updating frequencies will move the robot in the same rate.

6.2.5.3 Handle the change of animations

When a player releases the “up” key, the robot should stop. This is very natural to all

of us. However, in the world of game, the computer does not know which animation

should be played after the robot stops running. “Which animation to play next” is

actually handled by the game logic. When the game logic knows that the player is no

longer pressing the key, it will change the animation of the lower part to “standing”

animation.

When the robot finished the first hit, should it stop or continue the second hit? This is

also decided by the game logic at the time the robot finishes the first hit (or the

animation for the first hit ends).

6.2.5.4 API to handle control keys

The game logic also provide a set of API handling the control keys. When a control

key is received by the game engine, it will notice the game logic about the key

through the set of API (e.g. upPressed, downReleased and attackPressed). The game

logic will response accordingly. It is actually the place where the control mechanism

mentioned. It abstracts the control key handling job so that other parts in the game

engine do not know and will not interfere what it is doing.

 190

6.2.6 Graphical effects

6.2.6.1 Overview

Different graphical effects are employed in order to provide better the visual effect

and make the scene more realistic. Basic lighting effect is enabled using functions

provided by OpenGL. With the help of the stencil buffer, high quality shadow casting

is also implemented. More lighting effects may be added in the near future if time is

allowed.

6.2.6.2 Lighting

Lighting is an elementary technique which can improve the quality of the rendered

scene significantly.

Before enabling lighting, some attributes about lighting have been set. They are the

ambient light (the background light) and the diffuse light. Currently only

GL_LIGHT1 is used. Every time before we drawing anything, we have the set the

light position once, just after calling “gluLookAt”. The two figures below (figure 6.32

and 6.33) show the difference in a scene with and without lighting.

 191

The smooth shading is achieved based on the normal for each vertex. The color at

each vertex is calculated accurately. And then the color pixels on the edge or inside

the face are obtained by interpolation of the color at the three vertices, i.e. the

Gouraud Shading.

6.2.6.3 Stencil shadow casting

To apply the shadow casting theory in OpenGL, we need the help of the stencil buffer.

First of all we need to add a plane equation for each faces, so that we can determine

whether a face is facing the light source. These plane equations are prepared at the

startup time. Every time before we cast the shadow volume, the visibility of each face

has to be re-determined as the real position or relative position of the light source may

be moving. After drawing objects, the shadow casting starts. For each of the

Silhouette edges w.r.t. the light source, project the edge to infinity virtually from the

Fig. 6.32 Lighting on Fig. 6.33 Lighting off

 192

direction of the light source, forming a quadrilateral. If this quadrilateral is

counter-clockwise from the view of the eye position, increase the stencil buffer in the

area covered by the quadrilateral. If is clockwise, decrease the stencil buffer in that

area. This is actually an implementation of the techniques used. With OpenGL, the

above procedure is done in two passes. The stencil buffer is cleared and set to zero at

the beginning. The first pass is to increase the stencil buffer with those

“counter-clockwise” areas. The second pass is to decrease the stencil buffer with those

“clockwise” areas. The code is as follows:

glFrontFace(GL_CCW);

glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);

castShadowVolume();

glFrontFace(GL_CW);

glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);

castShadowVolume();

Finally the shadow is drawn by placing a large blended black rectangle covering the

whole screen, while only writing to pixels where the corresponding stencil bits is

greater than zero:

glStencilFunc(GL_NOTEQUAL, 0, 0xffffffff);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

drawRectShadow();

The difference between doing two passes of shadow volume casting and one pass

only are shown below. (figure 6.34 and 6.35)

 193

With the current implementation, it is possible to have a light source moving all the

time, with the shadow being correctly displayed.

Near clip plane Problem

There exists a chance that the shadow volume is running out of the near clip plane. In

this case the part of shadow volume will be missed, leading to mistaken count (as in

figure 6.36). This problem is unavoidable for using the Zpass approach.

Fig. 6.34 Two pass Fig. 6.35 One pass

Fig. 6.36 Near clip plane problem for Zpass

 194

Fig. 6.37 Popping

Fig. 6.38 Insetting technique

Popping

Popping is a side-effect generated from the above

implementation. It will cause the faces that are not

facing the light source to be darkened as if a shadow is

on it. When the robot turns around, some of the faces

will become visible or no longer visible to the light

source suddenly. This results in sudden popping or

disappearing of the unwanted shadow (illustrated in

figure 6.37). At this stage two approaches have been employed to minimize the

unwanted effect.

Insetting the shadow volume

When we cast the shadow volume in the two passes,, we

inset the shadow volume by a little amount in the

direction opposite to the normals of the vertices,

shrinking the shadow volume apparently. i.e. use (V - k *

N) for drawing the shadow volume instead of V, where V

is the vector for a vertex on the Silhouette edge or the

vector for the projected vertex, N is the normal vector

at that vertex, and k is a small constant. This act will make the unwanted shadow to

appear gradually, sliding over the faces, instead of popping out (see figure 6.38).

Drawing the real objects in two passes

The second measure to deal with popping is to render the real objects in two passes.

In the first pass, only the visible faces, which are necessary for self-shadowing, are

 195

Fig. 6.39 No popping

drawn. The “not visible” faces are only drawn after casting the shadow volume. In

this way, no unwanted shadow will be marked in the stencil buffer in the “not visible”

area (see figure 6.39).

With this approach, the unwanted shadow in “not visible”

area is eliminated. The performance is not lowered as

compared to when there is popping. This is because the

total number of faces drawn is not increased. They only

difference is that they are drawn at two different time.

However, there are still many other complex methods

that can provide even better effects.

 196

6.3 Feasibility study on shadow algorithms

6.3.1 Fake shadow

It use projection of the center of the object to locate the center of the shadow. Then a

approximated shape of shadow is placed around the center of the shadow.

Pros

- Simple and fast.

Cons

- Can be applied to flat ground only

- No self-shadowing

- Rotation of the shadowing object is limited to a certain axis.

6.3.2 Vertex Projection

It project the vertices of the object onto the ground using exact mathematics

Pros

- Simple but excat

- No limitations on rotation

Cons

- Only suitable to be applied to flat ground

- No self-shadowing

6.3.3 Shadow Z-buffer

 197

First of all render the objects in the light source’s point of view into the z-buffer.

Prepare a transformed mapping of the Z-buffer (transform according to the camera’s

point of view). Shadow the area depending on the Z-value of the transformed Z-buffer.

Render the objects again in the camera’s point of view.

Pros

- Medium effort with medium accuracies

Cons

- Inaccuracies brought by transforming the pixels in the Z-buffer

- The objects are drawn twice

- No slef-shadowing

6.3.4 Static shadow

It is not a real-time Shadow Algorithm and the shadow will not be animating with the

shadow casting object. The shadow is just a pre-calculated map and it is being

rendered like normal polygons.

Pros

- Simple and fast

Cons

- Shape of shadow remains unchanged

- No self-shadowing

 198

6.3.5 Shadowing volume casting with Zfail approach

It is very similar to the Zpass approach mentioned before. The only difference is that,

the “count”, used to determine whether a point is shaded, is increased or decreased

only when a shadow volume face is cast to an area behind the point on the object,

where the depth-test fails. And this time when a counter-clockwise quadrilateral

shadow volume face is drawn, the counts in that area will be decreased instead, and

vice versa. With this approach, there is still a “far clip plane problem”. There will be

missed shadow volume intersection due to far clip plane clipping, leading to mistaken

count (see figure 6.40).

Fig. 6.40 Far clip plane problem

 199

6.4 Performance Analysis

The performance of the program is significantly lowered after adding shadow volume

casting. In view of this, I have noted down the frame rate in frame per second (fps)

under different conditions. The testing is done with an AMD 700MHz computer with

256MB RAM, in Windows XP with window size 800 X 600. The robot contains

around 200 triangles.

Condition fps

No shadow casting 39.5

Shadow casting 14.2

Shadow casting (insetting volume) 14.2

Shadow casting (eliminate popping) 14.2

Shadow casting (one pass) 19.3

Shadow casting (two passes, but without drawing the big rectangle

covering the whole screen for displaying the shadow)

16.2

From this figure, we can conclude that the bottlenecks of performance for drawing

shadow come from:

1. Drawing the shadow volume’s faces. (The number of faces is comparable to the

faces of the object.)

2. Drawing with Stencil Test enabled. (It is time consuming to access, compare with

or modify the stencil bits.)

 200

6.5 Discussions and Conclusions

About the 3D modeling, I think there can be still a number of improvements. For

example, it would be nice if the model loader can compute the bounding box for the

object. This would compensate the inadequacies of the MD3 model. Besides, whether

it is good to use other 3D file format with different features (say allowing the total

number of vertices to change through out the animation) is still unknown.

At this stage, the number of elements in the game is certainly not enough, not to say

to attract any players. In order to improve the playability of our game, more lighting

effects such as laser and explosion should be added. Designing some attractive

playing modes other than merely fighting or developing a story line are good ideas.

In addition, the two current shooting methods, shooting through cursor position and

auto-lock mode, have not been tested properly. There should be some areas for

improvement when we have experienced enough with these controlling methods.

Up till now, the problem on the performance of the Java language has become more

significant, after the introduction of shadow into the rendering procedure. However,

Java has eased the programming job and shortened our debugging time. Some

sophisticated fine tuning on the bottleneck may be needed, so as to lower the

computer requirement for this game.

On the whole, the time for this project is quite tight and there are still many

unexplored areas in which we can develop our game.

 201

7 Testing & Conclusion
After the integration of the different parts, we have conducted a trial for playing the

game. It was found that eight players could play smoothly simultaneously after

joining the server. However, there are quite a number of occasions that the server will

fail when a client wants to join a game where many clients have already join the game,

say about 7 clients. This is mainly due to the implementation error at the server side.

It does not cast a critical problem, as the role of server in peer-to-peer architecture

does not involve in the controls and positions communication between peers. Further

implementation of server in respect to stability is left to future work.

The P2P architecture proves to provide adequate communications channel between

the clients for Mecha Zeta. The ½ round-trip time communication of P2P is crucial to

fast-responsive interactive game environment in order to minimize the transmission

time overhead.

It is recommended that the implementation of the server should be refined in order to

accept more connections at the same time for all peers. Mirror Server implementation

can enlarge the capacity such that the communications between server and clients

become more stable.

 202

8 References
P2P Architecture and Protocol

[2.1] Jake Simpson. Game Engine Anatomy.

http://www.extremetech.com/article2/0,3973,594,00.asp

[2.2] J.F. Kurose and K.W. Ross. Computer Networking: A top-down approach

Featuring the Internet. Addison Wesley, Preliminary edition, 2000

[2.3] IP Documentation. http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/

[2.4] Gary R.Wright, W. Richard Stevens. TCP/IP Illustrated Volume 2: The

implementation

[2.5] Java sdk 1.4.1 API. http://java.sun.com/j2se/1.4.1/docs/api/index.html

[2.6] Java Gaming - http://www.javagaming.org

[2.7] Andrew D. Birrell. An Introduction to Programming with Threads. 1989

[2.8] Doug Lea. Presentation: Concurrent Programming in Java.

http://gee.cs.oswego.edu.

[2.9] Concurrent Programming: The Java Programming Language., Oxford

University Press. 1998

Partitioning and Sound system

[3.1] W. Richard Stevens. Unix Network Programing. Prentice Hall, 2nd edition, 1998

[3.2] James D. Foley et al., Computer Graphics: Principles and Practice. Pearson

Education, 2nd edition, 1996

[3.3] Gaming tutorial http://www.flipcode.com/network/

[3.4] Gaming tutorial http://www.gamedev.net/

[3.5] Java gaming procedure http://www.njnet.edu.cn/info/ebook/java/javagame/

[3.6] Sound engine reference http://www.jsresources.org/

 203

[3.7] Free sound sample http://www.3dcafe.com/asp/

[3.8] Free sound sample http://www.stonewashed.net/

[3.9] Free sound sample http://geekswithguns.com/sounds.html

Synchronization

[4.1] Michael Morrison, “Teach Yourself Internet Game Programming with Java in 21

Days”, ch.17,

[4.2] T.A. Funkhouser. “In Proc. of the SIGGRAPH Symposium on Interactive 3D

Graphics”, pages 85–92. ACMSIGGRAPH, April 1995.

[4.3] L.Gautier and C.Diot, “A Distributed Architecture for Multiplayer Interactive

Applications on the Internet,” IEEE Network, Vol.13, pp.6-15, 1999.

[4.4] M.Ahamad and R.Kordale, “Scalable Consistency Protocols for Distributed

Services,” IEEE Transactions on Parallel and Distributed Systems, Vol.10,

pp.888-903, 1999.

[4.5] C.Sun and D.Chen, “A Multi-version Approach to Conflict Resolution in

Distributed Groupware Systems,” InProceedings of the Twentieth IEEE International

Conference on Distributed Computing Systems, pp. 316-325, Taipei, 2000.

[4.6]. L.Vaghi, C.Greenhalgh, and S.Benford, “Coping with Inconsistency due to

Network Delays in Collaborative Virtual Environments,” In Proceedings of the ACM

Symposium on Virtual Reality Software and Technology, pp.42-49,London, 1999.

[4.7] CHANDY, K.M. AND MISRA, J., Asynchronous Distributed simulation via a

Sequence of Parallel computations, CACM, April 1981, Vol. 24, No.11, pp.198-206.

[4.8] D. Jefferson, "Virtual Time", ACM Transactions on Programming Languages

and Systems, Vol.7, No.3, 1985, pp.404-425.

[4.9] J. S. Steinman, R. Bagrodia, and D. Je_erson. Breathing time warp. In “Proc. of

the 1993 Workshop

 204

on Parallel and Distributed Simulation”, pages 109{118, May 1993.

[4.10] http://www.eecis.udel.edu/~mills/ntp.html

Graphic Engine and Collision Detection System

[5.1] Jausoft, OpenGL for Java (GL4Java), 2002, Available online at

http://www.jausoft.com/gl4java

[5.2] Photon, ColDet – Free 3D Collision Detection Library, 2002, Available online at

http://www.photoneffect.com/coldet

[5.3] Wells R., Java offers Increased Productivity, 1999, Available online at

http://www.wellscs.com/robert/java/productivity.htm

[5.4] Marler J., Evaluating Java for Game Development, 2002, Available online at

http://www.rolemaker.dk/articles/evaljava/

[5.5] Sun Microsystems, Inc., Java3D API Homepage, 2003, Available online at

http://java.sun.com/products/java-media/3D/

[5.6] Melax S., Gamasutra - Features – “BSP Collision Detection As Used In MDK2

and NeverWinter Nights”, 2001, Available online at

http://www.gamasutra.com/features/20010324/melax_01.htm

[5.7] UNC Gamma Research Group, Gamma: Geometric Algorithms for Modeling,

Motion and Animation, 2002, Available online at http://www.cs.unc.edu/~geom/

[5.8] UNC Gamma Research Group, RAPID -- Robust and Accurate Polygon

Interference Detection, 1997, Available online at

http://www.cs.unc.edu/~geom/OBB/OBBT.html

[5.9] Ehmann S., SWIFT++ Speedy Walking via Improved Feature Testing for

Non-Convex Objects, 2001, Available online at

http://www.cs.unc.edu/~geom/SWIFT++/

[5.10] NeHe, NeHe Productions, 2003, Available online at http://nehe.gamedev.net

 205

[5.11] GameTutorials, GameTutorials, 2003, Available online at

http://www.gametutorials.com

[5.12] Sullivan R., OpenGL for Java Tutorials and Demos, 2002,

http://web.hypersurf.com/~sully/OpenGL/DemoBox.html

Modeling, Animation and Real time shadowing

[6.1] Skinning techniques with 3D Studio

http://www.planetquake.com/q3empire/data/tutorials/modeling/skinning/skinning.htm

[6.2] Gouraud Shading

http://freespace.virgin.net/hugo.elias/graphics/x_polygo.htm

[6.3] Shadow volume
http://www.gamedev.net/columns/hardcore/shadowvolume/page2.asp

