
Virtual Reality Fighter – Final Report

- - 1 - -

.
Project Final Report (2002 – 2003)

Virtual Reality over the Internet
Virtual Reality Fighter

CSIS Group

Lee Hoi Sing, James
Leung Shun Kit, Frank

Ma Chi Ho, Denny
Ng Sze Lung, Raymond

Suo Jingji, Alex

Virtual Reality Fighter – Final Report

 - - 2 - -

CSIS Final Year Project (2002 – 2003)
Virtual Reality over the Internet

Virtual Reality Fighter

Final Report

Lee Hoi Sing, James
Leung Shun Kit, Frank

Ma Chi Ho, Denny
Ng Sze Lung, Raymond

Suo Jingji, Alex

Virtual Reality Fighter – Final Report

 - - 3 - -

Contents

1 Introduction
 1.1 Objectives of Project P.5

 1.2 Fundamental Requirements P.5
 1.3 Overview of the Game P.5

2 Overall System Architecture

 2.1 Client P.6
 2.2 Server P.6

3 Game Engine

3.1 Overview P.7
3.2 Architecture P.7
3.3 Game Flow P.10
3.4 Features P.14
3.5 Problems and Solutions P.18
3.6 Future Planning P.22
3.7 Conclusion P.24

4 Network Engine

4.1 Overview P.26
4.2 Architecture P.26
4.3 Features P.27
4.4 Advanced Topics: Synchronization P.29
 4.4.1 Overview P.29
 4.4.2 Features P.30
 4.4.3 Problems and Solutions P.32
 4.4.4 Evaluation P.34
 4.4.5 Future Planning P.35
4.5 Advanced Topics: Partition P.36
 4.5.1 Overview P.36
 4.5.2 Features P.36
 4.5.3 Problems and Solutions P.39
 4.5.4 Evaluation P.40
 4.5.5 Future Planning P.42
4.6 Conclusion P.45

5 Graphics Engine
5.1 Overview P.46
5.2 Architecture P.46
5.3 Features P.47
5.4 Problems & Solutions P.47
5.5 Advanced Topics: Collision Detection P.51

Virtual Reality Fighter – Final Report

 - - 4 - -

 5.5.1 Features P.51
 5.5.2 Problems and Solutions P.52
 5.5.3 Evaluation P.55
 5.5.4 Future Planning P.56
5.6 Advanced Topics: Terrain Modeling P.56
 5.6.1 Features P.57
 5.6.2 Problems and Solutions P.58
 5.6.3 Evaluation P.59
 5.6.4 Future Improvements P.60
5.7 Future Planning P.61

6 Object Definition
6.1 Overview P.62
6.2 Importance of Modeling P.62
6.3 Graphics Model Parser P.63
6.4 Data Model Parser and Generator P.68
6.5 Advanced Topic P.80

7 Future Trends and Possible Improvements P.81

8 Conclusion P.82

Appendix

A1. Pseudo Algorithm for Terrain Generation P.83
A2. Texture Generation P.87
A3. Terrain Culling Techniques P.88
A4. Universal Message Scheme P.90

References P.93

Papers P.95

Virtual Reality Fighter – Final Report

 - - 5 - -

Chapter 1 Introduction

Have you thought of playing an interactive, real-time online game with
hundreds of other players together? Virtual Reality Fighter, an Internet game
applying virtual reality techniques, allows users to interact with other players
in real-time. Players in the game will control their own fighters and join the
fantastic game world at any place and any time. The game is able to support
hundreds of players concurrently and to deliver high quality computer
graphics.

1.1 Objectives of the Project
The objective of the project is to build a scalable, real-time, flexible 3-D
online game with good graphic quality. This project stresses on several key
areas in the Computer Graphic, Internet Communication and Object Definition.
In the field of Computer Graphic, the focus includes collision detection, terrain
generation, performance tuning, and so on; in the field of Internet
Communication, the focus includes Multi-Server Architecture, Synchronization
between clients and servers and Partition of clients. In the field of Object
Definition, the focus is VRML and XML.

1.2 Fundamental Requirements
1. Real-time interaction between clients.
2. Real-time graphics with at least 25 fps.
3. Support large amount of users (hundreds users).
4. Network traffic is minimized and normal broad band users can play this

game at least as clients.
5. Models can be dynamically added to the game (optional in program

implementation).

1.3 Overview of the game
Players can select different fighter models and terrains before the game
started, and they can join any game server on the Internet. After joining the
server, players will control their own fighter, and fly freely in a 3D virtual scene.
Their ultimate objective is to destroy all opponents using laser and missiles.

Virtual Reality Fighter – Final Report

 - - 6 - -

Chapter 2 Overall System Architecture

The game system is applying the client-server architecture. The system is
divided into two tiers: the client side and the server side. The basic
organization of the clients and servers is shown in the figure below:

Fig. 2.1 multiple server architecture

2.1 Server
At the server side, there is one master server which controls and maintains
the global game information such as the number of game servers, number of
clients, etc. The master server is responsible for the co-ordination between
game servers and the initial negotiation with the clients when they join the
game.

For the individual game servers, they are responsible for maintaining the state
and determining the game logic for their individual partitions. Each server will
keep the information of a particular partition. Therefore, the entire game state
is distributed among the game servers.

2.2 Client
At the client side, the client communicates with one particular server at any
time, depends on which partition the client is in. The client is also responsible
for rendering the 3D game environment by utilizing the game state information
received from the server and the static fighter and terrain models in the client
side. Further details for the game client and server will be given in the
following sections.

Internet

Master Server

Game Server 1 Game Server 2 Game Server 3

Client 1 Client 2 Client 3 Client n

…………….

Virtual Reality Fighter – Final Report

 - - 7 - -

Chapter 3 Game Engine

3.1 Overview
The game engine is the core of the system. It is responsible for coordinating
different modules within the system and controlling the flow of the whole game.
Since the overall system is divided into client and server, the game engine for
client and server are different. In the following section, the game engines for
the client and server will be presented individually.

3.2 Architecture

3.2.1 Server

 Fig. 3.1 server architecture

The Game Engine of the server includes the Main Game Loop, the Internet
Controller, the Partition Handler and the Collision Detection Module. Also, the
game engine will collaborate with the Internet Engine and Parser, and
manipulate the data in the Data Store, to achieve the functionalities that need
to be provided by the server.

The basic functionality of each component in the Server Game Engine is:

Game
Engine Main Game Loop

Internet
Controller

Internet Engine

Data Store

Partition
Handler

Collision
Detectio

Parser

Virtual Reality Fighter – Final Report

 - - 8 - -

Main Game Loop: Control the flow of the game and coordinate the game rules.
This loop will process all the game messages and determine appropriate
actions based on the pre-defined game rules. The actions will be carried out
by utilizing the components within the Game Engine and/or modules
cooperate with Game Engine.

Internet Controller: Co-ordinate the internet message communication
between game servers as well as between servers and clients. In the server
side, the Internet Controller contains a synchronizer ensuring that all the
messages exchanged between clients and servers are in proper order. More
detail description on the Synchronizer will be given in section 4.4.

Collision Detection Module: Determine whether two objects in the game world
collide or not. The collision detection module will detect the fighter-fighter
collision, fighter-laser collision, fighter-missile collision and fighter-terrain
collision. More detail description on the Collision Detection Module will be
given in section 5.5.

Partition Handler: Determine which partition the client belongs to and
maintain all the partition information to reduce the network traffic. More detail
description on the Partition Handler will be given in section 4.5.

Data Store: Game database storing all the static 3D-fighter models and
dynamic game entity information. The game state is stored in the Data Store
and will be manipulated by the Game Engine.

Parser: Responsible for parsing the 3D-models in VRML format and the self-
defined XML fighter object into the game system.

Internet Engine: Responsible for handling the internet connection between
different game servers and between the clients and server. It is also
responsible for transferring the game messages between clients and servers.

Virtual Reality Fighter – Final Report

 - - 9 - -

3.2.2 Client

Fig 3.2 Client architecture

The Game Engine of the client is more complicate than the server. It includes
the Main Game Loop, Internet Controller, Graphic Controller and Input
Transformer. The other modules collaborating with the Game Engine are the
Input Receiver, Internet Engine, Graphic Engine, Parser and the Data Store.

The basic functionality of each component in the Client Game Engine is:

Main Game Loop: Control the flow of the game, render the virtual 3D
environment and handle the user input. This loop will process all the user
commands. Some game messages will be processed locally and some will be
sent to the server. Also, the game loop will process the game messages
received from the server and update the game state.

Game
Engine

Graphic
Engine

Graphic
Controller

Main Game
Loop

Internet
Controller

Internet

Input
Transforme

Input
Receiver

Data Store

Parser

Virtual Reality Fighter – Final Report

 - - 10 - -

Graphic Controller: Responsible for coordinating the rending of 3D-game
environment. It acts as a bridge between the game logic and the Graphic
Engine.

Internet Controller: Co-ordinate the internet message communication
between game servers and clients.

Input Transformer: Responsible for transforming the user inputs into the
internal game messages that can be processed by the Game Engine.

Graphic Engine: Render the 3D virtual game environment. It will render the
game environment based on the game information stored in the Data Store.
More detail description on the Graphic Engine will be given in section 5.

Data Store: Game database storing all the static 3D-fighter models and
dynamic game entity information. The game state is stored in the Data Store
and will be manipulated by the Game Engine.

Parser: Responsible for parsing the 3D-models in VRML format and the self-
defined parameters in XML for fighter, missile and terrain objects into the
game system.

Internet Engine: Responsible for handling the internet connection between
different game servers and between the clients and server. It will also
responsible for transferring of game messages between clients and servers.

Input Receiver: Responsible for capturing the user inputs from the keyboard
and mouse. All the inputs will be kept in an internal buffer for later processing.

3.3 Game Flow

3.3.1 Server
The flow of the game at the server side can be described by the following
diagram.

Virtual Reality Fighter – Final Report

 - - 11 - -

Fig 3.3 Game flow of server

At the server side, after the server is started, the clients can connect to the
master server, which will provide an array of peer game servers that the
current game server needed to connect. Also, the master server will
determine the partition which the current server needed to handle.

After the current game server had connected to all the peer game servers, it
can start the processing. There are several tasks the server needed to handle,
they are listed below:

Wait for Client
The server needed to wait for the connection from the clients. After a client is
connected, the server needs to prepare all the necessary information required
to allow the client to join the game. For instance, the server needs to generate
the player ID, the initial position of the player, etc. Also, the server needs to
inform the client about the other players within the same partition.

Connect
to peer
servers

Start
Processin

Server
Exit

New
Client

Accept
Clients

Check
Collision

Update

Update Game
State

Update
Game
State

Receive
Network
Data

Main
Screen

Connected Process
Network
Message

Collision
Detection

Server Terminated

Main
Game
Loop

Send Update to Client

Wait for
Clients

Virtual Reality Fighter – Final Report

 - - 12 - -

Process Network Message
Clients will periodically send the game messages to the server and the server
needs to process the game messages and update the game state. Based on
different message types, the server may be required to perform other tasks
such as collision detection.

Collision Detection
Collision will happen when the client fighters collide with the terrain, the other
clients, the missile and the laser. These collisions are detected by the server
and the server will perform the detection based on the position information of
the clients received from the network and/or the message which indicate a
missile or laser is fired.

Send Update to Clients
The server needed to send the updated game state information to all the
clients so that the client can render the correct scene in real time. The update
is send to clients periodically.

When a server is terminated, it needs to inform the master server it will
terminate and all the clients that the server is handling currently will need to
be transferred to other available servers.

There is a special case that the peer game servers needed to communicate.
The peer servers will only communicate when there is a client went from one
partition to another. Then the original game server needs to inform the other
server that a client is going to change partition and the new server needs to
prepare for this.

3.3.2 Client
The flow of the game at the client side can be described by the following
diagram:

Virtual Reality Fighter – Final Report

 - - 13 - -

Fig. 3.4 Game flow of client

On the client side, when the program is started, a main menu will be shown
on the screen. The player can change the game options on the option menu.
The player can choose different fighter models in the option menu and change
the key mapping that is used to control the fighter.

Before the player can start the game, he/she needed to connect to one of the
game server on the Internet. The following shows the procedures to connect
to the game server.

1. The client connects to the master server on the Internet.
2. The master will generate a player ID for the client and a list of game

servers that are available on the Internet
3. The client performs internet connection delay test to find out which

server on the server-list with the minimum delay.
4. The client will connect to the server with minimum delay.

Continue

Update

Start
Game

Connect
to

Update Game
State

Update
Game
State

Receive
Network

Client
Destroyed

Receive
User Input

Render

Return
Change
Option

Main
Menu

Option
Menu

Connected

Render
3D

Process
Network
Message

Process
User
Inputs

Game

Main
Game
Loop

Send Update
to Server

Virtual Reality Fighter – Final Report

 - - 14 - -

After the client is connected to one of the server, the player can start the
game. The client will perform the following tasks during the game:

Process Network Message
Server will periodically send the most update game state to the clients. The
client needs to process all those messages and update its game state.

Process User Input
The player will input commands through the keyboard or mouse in response
to the change in the game environment. The game loop needs to handle all
the user input and reflect those inputs into the game world.

Render 3D scene
The game environment change in real time and the game loop needs to
render the updated 3D environment periodically. Otherwise, the player may
give incorrect response due to the delay on the rendering of the environment.

Send Update to Server
The game state on the client side will change according to the player’s input.
Those changes in the game state need to be reflected in the server’s game
state as well as other client’s game state. That means all the game state on
the server and client should be synchronized. Therefore, the client will send
the update to the server frequently.

During the game, the player can control his/her fighter and try to destroy as
many opponents as he/she can. The game will end when the player’s fighter
is destroyed by the other player. Then the game will return to the main menu
and the player can start over again.

3.4 Features

3.4.1 Real-Time Interaction
The design of the game engine and game flow allow the real-time interaction
between clients. All the change in the game world will be immediately
broadcast to all the clients. Clients can obtain information on the most
updated game world and interact in real-time manner.

Virtual Reality Fighter – Final Report

 - - 15 - -

3.4.2 Dynamic
The system architecture allows the clients join the game dynamically without
creating any session or need to wait for other players. The master server
provides information for the client to find out the game servers on the Internet
and once a game server is available, the client can join the game immediately.

3.4.3 Modularized Architecture
The game engine is design as a module within the system. Also, the game
engine itself is composed of several modules that co-operate to provide all the
function. This design allows more modules to be added to the system easily.

Besides, the modularized architecture allows the developer to replace any
modules as long as the API remains the same.

3.4.4 Scalable
Since the system uses the multi-server architecture, it allows more and more
game servers to be dynamically added to the game server group. Therefore,
the scale of the game can be extended unlimitedly in theory. If more clients
join the game, more servers can be use to handle the clients. On the other
hand, when the number of clients in the game decreases, some servers can
be terminated and all its clients can be transferred to other servers. With this
feature, the game can be much more scalable.

3.4.5 Extensible
Extension can be added to the game platform as required. Since the game
uses modularized architecture, many different extensions can be added to the
game by inserting new modules to the current game platform. As the game
may evolve over time, this can be achieved only when the game platform
allow different extension to be added.

3.4.6 Flexible Application Layer Protocol
The application layer protocol is described in the diagram below:

Virtual Reality Fighter – Final Report

 - - 16 - -

Fig. 3.5 application layer protocol

The application protocol consists of different game message types:

Server Time Request: Client asks the server for the server system time

Game Ended Message

Client Exit Acknowledgement

Update Missile Status

Update Fighter Status

Client Exit Request

Fire Laser Request

Fire Missile Request

Update Fighter Status

Session Data

Server Time Acknowledgement

Start Session Request

Change Partition

Message

Change Partition Message

Client Server

Player ID Request

Player ID Acknowledgement

Synchronize Data Request

TCP

UDP

Peer

Start Game Message

Virtual Reality Fighter – Final Report

 - - 17 - -

Server Time Acknowledgement: Server sends back the system time to the
client

Player ID Request: Client asks the server for the player ID that uniquely
identifies the player in the game world.

Player ID Acknowledgement: Server sends the generated player ID to the
client.

Synchronize Data Request: Client asks for the server to send the current game
state information.

Synchronize Data Acknowledgement: Server sends the most current game
state information to the client. The information includes the fighter and missile
information.

Start Game Message: After all the game state information has sent to the
client, the server will send the start game message to the client.

Update Fighter Status: The client sends the most updated status of the fighter
to the server. Also, the server will send the updated status of other fighters to
each fighter.

Update Missile Status: The server sends the most updated position of the
missile to the client.

Fire Missile Request: When the client fires a missile, it will send a fire missile
request to the server.

Fire Laser Request: When the client fires a laser, it will send a fire laser
message to the server.

Client Exit Request: When a client wants to quit the game explicitly, it will
send a client exit request to the server.

Client Exit Acknowledgement: After the server receives the client exit request,
the server will send back a client exit acknowledgement to the requested
client as well as the other clients

Virtual Reality Fighter – Final Report

 - - 18 - -

Game End Message: When the last game server on the internet going to
terminate, it will send a game end message to all the clients so that all clients
will terminate.

Change Partition Message: When a client changes from one partition to
another, the server of the original partition will send a change partition
message to all the clients within the same partition. Also, it will send a change
partition message to the server of new partition.

The application layer protocol can be extended by adding different message
type and corresponding handler to the main game loop. New message type
can be defined as long as it is compatible to the message format that is
defined in the Network Engine. Therefore, the application protocol is very
flexible and more message types can be added if more features need to be
supported.

3.5 Problems and Solutions

3.5.1 Multi-server architecture
In the early design stage, the single server model is the proposed architecture
for the game system. However, if only one server on the Internet can support
the game, there will be several drawbacks:

Network traffic
If only one server is used to handle all the clients at the same time, the
network traffic at the server side will be very heavy. The network traffic of
single and multi-server architecture will be presented in the Evaluation section
below.

Server Loading
Since the server is responsible for control the whole game world and the
server needs to process all the client messages. All the computation tasks
except the graphics rending are carried out at the server side. If only one
single server is used to handle all the clients, the loading of that server will be
very high.

Virtual Reality Fighter – Final Report

 - - 19 - -

Scalability
With only one server, the number of clients allowed to join the game is limited
since the computational power and the network bandwidth is limited.
Therefore, with only one single server, the scalability of the game will be
restricted.

With the multi-server architecture, the drawbacks described above will not
happen. Actually, the multi-server architecture is a typical kind of distributed
computing. The distribution of tasks over a group of game servers can:

Distribute the Network Traffic
Since a client will only communicate with one game server at a time, this
means the clients are divided into group and each group will be handled by
one game server. Then, the network traffic will also be divided among the
game server group and will not be as intensive as the single server
architecture.

Although the multi-server architecture will introduce the inter-server network
traffic, the inter-server traffic is very small as it only consist of the change
partition messages and the change partition message will not be as frequent
as the update position messages of the fighters and missiles. Therefore, the
multi-server architecture can reduce the network traffic demand for the server.

Fewer Requirements on the Servers
Since the computation is distributed over a group of game servers, each
server needs to handle the clients belonging to it and the number of
messages needed to be handled will be much smaller compared with the
single server case. Therefore, the computational power requirement is less for
the server.

Distributed Game State
Each server need to keep a fraction of the whole game state. In order to
obtain the whole game state, all the game states on the servers need to be
combined. This is the essential reason for inter-server messages.

More Scalable
The multi-server architecture allows new game servers to join the server
group dynamically without termination of all current servers. That means

Virtual Reality Fighter – Final Report

 - - 20 - -

infinite servers can be added to the server group and the game can scale to
support infinite number of clients theoretically. However, in the single server
architecture, there is a limit on the number of clients.

Avoid Single Point of Failure
If the server in the single server architecture failed, the whole game system
will fail. In contrast, the multi-server system will not fail if only one of the
servers is down.

However, one may argue that if the master server on the Internet is down, the
whole game will also down. Actually, if the master server on the Internet is
down, the game will not terminate. The only consequence is that no new client
can join the game. Since the master server only perform the initial negotiation
between the server group and the client, once the game is started, the master
server will not involve in the communication between the clients and the game
servers. Therefore, if the master server is down, the current game can still
continue.

Efficient Static Partition
With the multi-server architecture, the static partition can be done efficiently.
Each static partition can be handled by one game server and more detail
description on the static partition will be given in section 4.5. All the
requirements are examined in real tests with PCs in LG103, CYC.

 Single-Server Multi-Server
Network Traffic > 5Mbps > 1.5Mbps
Server Loading High Low
Server Requirement Powerful PC Ordinary PC
Scalability No Support infinite clients
Game State Centralized Distributed
Static Partitioning No Effect Reduce more than

50% traffic
Inter-server messages No Within 1Kbps
Availability Single point of failure Better

Fig. 3.6 Comparison between single-server and multi-server architecture

To conclude, since the multi-server can overcome the drawbacks in the single
sever architecture, the multi-server architecture is chosen to be the system
architecture.

Virtual Reality Fighter – Final Report

 - - 21 - -

3.5.2 How to allow dynamic joining of the game
When designing the multi-server architecture, one of the problems is how to
let the clients join the game dynamically. Since most real-time Internet games
require the users to create and join a session before they can play the game.

In order to allow the players to join the game directly without the session, the
server need to generate an initial position for the client that is not occupied by
the other clients. After the server find out such a position, the client can start
the game at that position. Before the player can start playing the game, the
client need to synchronize with the server so that the client can get the most
current game state and start the game. These message exchanges have
already been captured by the application layer protocol design.

3.5.3 How to increase the scalability and extensibility
Scalability and extensibility are very important features of this game.
Therefore, some techniques have been employed to increase the scalability
and extensibility of the game platform.

The multi-server architecture contributes most to the scalability of the system.
This allows the system to be changed to different scale dynamically. For the
extensibility, a flexible application layer protocol has been used and also the
modularized design of the system contributes to the extensibility of the whole
system.

3.5.4 Application Layer Protocol Design
When designing the application layer protocol, one major goal to achieve is
flexibility. The application layer protocol is used to define the message
exchange between the client and servers. To increase the flexibility of the
application protocol, the protocol should be allowed to change easily. More
message types can be added and the sequence of the message can change
easily. In order to support this, the underlining network layer needs to have
the message encoding and decoding. Since different message type will
contain different information, the encoder and decoder need to handle all the
message type and transmit the message over the internet.

Virtual Reality Fighter – Final Report

 - - 22 - -

Also, the handler for the new message type should be added easily to the
game engine to handle the new message type. Then the application protocol
can be extended without any difficulties.

3.6 Current Implementation

Currently, almost all the features talked about in this section are fully built into
the game, including the multi-server and multi-client support, the application
protocol, dynamical joining of the game, and the modules used in the client
and server.

There are client-server communication and inter-server communication. The
clients can be handled by different servers and will be transferred to other
servers depending on their real time status, and the server will negotiate the
migration of clients to each other, which is transparent to the client and won’t
affect the effect at clients.

Because of the limited time, the only unfinished part of the system is the
master server. Instead, hard coding is used temporarily. However, full
flexibility is left for a master server and adding it is not difficult.

3.7 Evaluation

3.7.1 Objective
This simulation is to test the possible work load for single server and multi
servers.

3.7.2 Assumptions
1. The clients generated are not sending the firing messages. This is because
the count of firing messages is much smaller than the traffic flow of position
updating messages.

Virtual Reality Fighter – Final Report

 - - 23 - -

To cope with the real time requirement, the position of each client is updated
25 times per second. No matter how fast a person being is, it is very unlikely
that he/she will send the firing messages continuously and with the same
frequency of the position update message. Thus the real traffic flow is at most
twice of the testing flow got in the experiment.

2. The removal of 3D graphics at the load generator will not decrease the
network flow. In fact, this is only possible to increase network flow since the
burden of the client is reduced. As the simulation here is mainly carried about
the server ability and the network flow, it is all right to remove 3D graphics
part at the client side.

3. With multiple clients simulated on one single PC, the clients are able to
perform at the normal speed. In another word, the clients simulated will
generate the same load for the servers.

This is justifiable. The load generator is loaded as 10 network thread and 10
client fighters per generator (more loading per generator is possible, but may
lower down the speed of the client, causing inaccurate result). With the same
network flow as 10 client fighters, the server will carry out the same amount of
work as there are 10 clients.

3.7.3 Environment
All the server and client machines are of the following hardware configuration.
Basic Environment - Hardware

Item Name Additional Info
CPU Intel P4 1.4G 256K L2 Cache
Mainboard DMI 400MHz
Memory 256MB DDR
Network 3COM Ethernet 100M
Graphics Card GeForce 2 GTS 32MB VRAM

Basic Environment - Software

Item Name Additional Info
Operating System Windows XP Pro Build 2600
IDE Visual C++ .NET V 7.0
Network Monitor

LinkFerret Network Monitor
 V 3.07

Virtual Reality Fighter – Final Report

 - - 24 - -

Programs (client and server) are compiled with all optimization and the
performance is maximized. All threads are running at the normal frequency
and all tasks at the server side are performed.

Each client is running a load generator. The load generator will generate 10
clients connecting to the server. Each server is running an instance of the
server program.

Two experiments are carried out. Firstly we use 40 clients connecting to a
single server, and then 40 clients connecting to 4 servers with inter-server
interaction. In the 2 experiments, the data monitored about the CPU and
network usage are listed in the following table.

Client Generator and Real Server Testing

Client & Server Count
Server Number 1
Client Number 40
Clients per Server 40

Performance Measurement

 Client Server
CPU 100% 100%
Network Usage 51.23Kbps 2590Kbps
 Client-Server 51.23Kbps
 Inter-Server 0

Client Generator and Real Server Testing

Client & Server Count
Server Number 4
Client Number 40
Clients per Server 10

Performance Measurement
 Client Server
CPU 100% 100%
Network Usage 54.028Kbps 777.5Kbps
 Client-Server 54.028Kbps
 Inter-Server 0.0237Kbps

3.7.4 Result Data Analysis
According to the data collected above, the multi-server architecture can
reduce the network requirement and computation amount at each server,

Virtual Reality Fighter – Final Report

 - - 25 - -

which is a basic advantage of distributed computing. The network usage at
the client side basically remains as constant, while the inter-server message
is so small and can be neglected. Thus using the multi-server architecture is
beneficial.

3.8 Future Planning

3.8.1 Cluster Architecture
The multi-server architecture can be extended to the cluster architecture. One
logical server can be run on the cluster and actually each machine within the
cluster is a game server. Therefore, the cluster is actually a group of game
servers. The advantage of the cluster architecture is that the inter-
communication delay between the game servers can be minimized. Also, with
the cluster architecture, the game state can be centralized to one physical
space and it is much easy to maintain the game state and make sure the
game state is in consistence state.

3.8.2 Flexible and extensible platform
The flexibility and extensibility of the game platform can be further enhanced
so that the game can evolve over time.

3.9 Conclusion
To conclude, the game engine cooperates with other modules in the system
to achieve the overall functionalities. Also, the game engine incorporates the
flexibility and extensibility so that it can be an excellent platform for the game
to develop continuously.

Virtual Reality Fighter – Final Report

 - - 26 - -

Chapter 4 Network Engine

4.1 Overview
Network engine’s main function is to handle all the underlying networking
issues.

4.2 Architecture

Fig. 4.1 interactions between network engine and other components

As shown above, the architecture of the network engine is quite simple and
clear. It is defined in such a way that both client and server can use this
architecture for sending and receiving data.

Network engine functions by delegating request from the Game Engine to the
main class NetworkEngine and this class utilizes the NetworkResources and
MessageSerializer classes.

NetworkEngine provides an interface for Game Engine to call for services. Its
functions include:
Sending and receiving of data to and from the internet.
Setting up the connections between clients and server and the connections
between other peer servers.

GGGaaammmeee

NNNeeetttwwwooorrrkkk

NNNeeetttwwwooorrrkkk MMeessssaaggee

Virtual Reality Fighter – Final Report

 - - 27 - -

NetworkResources class acts as a data store and store the data received
from the network and the connection specific objects.
MessageSerializer class is responsible for encoding or decoding the message
received from the internet to the format that can be understood by the network
engine.

4.3 Features

4.3.1 TCP Communication
Two types of messages are sent and received using TCP. They are game
initialization messages and inter-server messages.

During game initialization, all settings of the game must be sent to all clients
and these settings should be synchronized among all clients and servers.
Thus TCP is a natural choice for sending such type of messages as no
message loss can be tolerated in this stage.

Now let us consider the communication between servers. The only
communication between the servers is the client information when a client
changes from one partition to another. Obviously, this type of message must
be received correctly without loss; otherwise a client may suddenly disappear
during the change of partition. Therefore, again, TCP is chosen to be the
communication protocol for this type of message.

4.3.2 UDP Communication
During the game, there are many update messages being sent and received
between clients and servers. These update messages, however, are tolerable
against loss. For example, an update message carrying the position update of
a client can be lost because a later message will arrive within several
milliseconds. Therefore, the change in position is not too sensitive and hence
we use UDP for this type of communication.

4.3.3 Redundant Message avoid Data Loss
UDP is an unreliable protocol, which causes message lost, so redundancy is
used for reliability. The idea is simple, for every message we sent out, we

Virtual Reality Fighter – Final Report

 - - 28 - -

embed 2 previous commands into the current message. In such a way, even
when some messages are lost during transmission, the receiver can receive
the next message and see if the previous commands embedded in the
message have been executed. If the commands were executed, they can be
simply discarded, otherwise, the commands are executed.

4.3.4 Multi-thread support
There are multiple threads implemented to aid the work of the network engine.

For the server, one thread is used for continuously accept clients to join the
game. Another thread is used to periodically receive messages from accepted
clients.

To implement the multi-server approach, two more threads are used to
maintain the connection with other peer servers and receiving messages from
them respectively.

Finally, one more thread is implemented to receive the UDP messages from
clients. This thread is event-based.

4.3.5 Fixed-Format Message for Internet Transmission
We have defined a message scheme such that for each message type, the
content of the messages are well-defined. For example, for the update
messages, the fields 7 – 15 in the message are reserved for holding the eye-
point, head vector and up vector of the client. In such a way, both client and
server can have a fixed way for communication. (For details of the universal
message scheme, see Appendix A4)

4.3.6 Message Encoding and Decoding
The messages that we send to and receive from the network are actually
strings. To ensure that both client and server understand the meaning of the
string, we have implemented a simple encoding and decoding scheme.

Whenever the game engine invokes the network engine to send a message,
the messages, which are initially in our self-defined format (a range of fields

Virtual Reality Fighter – Final Report

 - - 29 - -

defining the receiver of the message, message type, message content), are
encoded into a string. After that the strings are sent to the network by the
network engine.

Whenever the game engine needs to receive a message, the messages,
which are initially strings, are decoded to our self-defined format. After that the
message can be processed by the game engine.

4.4 Advanced Topic: Synchronization

4.4.1 Overview
The importance of synchronization
In the real-time internet game, synchronization is one of the important aspects.
Since the interaction between the players is in a real-time manner, if all the
players are not in sync, some strange behavior may arise. For example, if a
client 1 fire a laser and the laser must shoot the target in his view, then the
client 2 notices this and issues several down commands to escape from the
laser. However, due to the network delay, the message form the client 1
arrives to the server late and the client 2’s messages arrive first. Then the
client 1 cannot destroy client 2. This situation is illustrated in the following
figure.

Server t (ms)

Fire

Down

Down

Network Delay

0 50 100 150

0 50 100 150

0 50 100 150

t (ms)

t (ms)

Client 1

Client 2

Down

Down

Network Delay

Down

Down Fire

Fig. 4.2 the scenario showing the importance of synchronization

In order to avoid the situation above, synchronization is needed to make sure
the game messages are processed in order.

Synchronization mechanism

Virtual Reality Fighter – Final Report

 - - 30 - -

In general, synchronization will be mainly performed at the server side. The
synchronization mechanism used in the online real-time game will maintain a
database which keeps several snap shots of the game state at different time.
Also, it will keep a list of messages received from the client so that all the
messages can be processed again after the roll-back of the game state.

The synchronization mechanism used in the game use the time-stamping,
time-framing and game state roll-back techniques to achieve the
synchronization. The basic synchronization mechanism is shown in the figure
below:

Make
Snapshots

Discard Old
Snapshots

Received
Network
Message

Check Time
Stamp

Put the
Message in

Queue

Put the Past
Messages in

Queue

Roll-back
Game State

Put the New
Message in Queue in

proper order

ordered
message

out of order
message

Every 100ms

Fig. 4.3 The basic synchronization mechanism

4.4.2 Features
4.4.2.1 Message Classification
All the game messages are classified into two main categories: Critical and
Non-critical message. The non-critical message will not be handled by the
synchronizer since they will not affect the consistence of the game state. If
those messages are late or missed, they will be ignored and will not be
processed. The example of the non-critical message is the update fighter
position message.

For the critical messages, if their order is reversed or the messages are
missed, it will affect the consistence of the game state and cause strange
behavior. Therefore, the synchronizer will re-arrange the critical game

Virtual Reality Fighter – Final Report

 - - 31 - -

messages in their sending order and roll-back the game state. After the game
state has been rolled back, all the game messages will be processed again.

4.4.2.2 Time Stamping
At the client side, before any game message is send out, a time stamp will be
attached with the game message. The time stamp will be used by the server
to determine the order of the game messages.

4.4.2.3 Time Framing
The time at the server side will be divided into frames. Each frame will have a
length of 100ms. At the end of each frame, a snap shot on the Data Store will
be captured. Those snap shots will have a life time of 200ms and they will be
used when there are out-of-order messages and the game state needs to be
rolled back.

Also, when a game message is received from the client, the game message
will be stored and a list of in-order game messages is maintained in the
synchronizer. It will be used after the roll back of the game state. All the game
messages will be re-executed and bring the game state to consistence state.

4.4.2.4 Game State Roll-back
If there is an out-of-order critical message, the synchronizer will roll back the
game state by using the snap shot stored every 100ms. Depend on the delay
of the message, different snap shot of the Data Store will be used to replace
the current inconsistent Data Store.

If the delay is within 100ms, the Data Store100ms before will be used to cover
the current Data Store. If the delay of the message is within 100~200ms, the
Data Store 200ms before will be used. Finally, if the delay is more than 200ms,
the message will still be handled by the server. However, the behavior or
effect of those messages will not be guaranteed to be correct. Therefore, the
slow clients may experience delay in the effect of their actions and some
strange behavior may happen.

4.4.2.5 Maximum Delay Allowed
As mentioned above, the message with delay more than 200ms second will
not be guaranteed to be correct. That means the maximum allowable delay of

Virtual Reality Fighter – Final Report

 - - 32 - -

the game message is 200ms. If the delay is greater than 200ms, the order of
the messages may not be correct.

Actually this maximum value can be increased by increasing the number of
data store copies stored in the synchronizer. However, this is limited by the
computational power of the CPU and the actual delay of the network.

4.4.3 Problems and Solutions
4.4.3.1 Problem about the time stamping
Since the time at the servers and the clients is different, some mechanism is
needed to synchronize the server time with the client time before the game
start.

The following steps will be carried out to synchronize the server time and
client time.
1. Client record the current time ti.
2. Client send a time request message to server
3. Server send back the current time of the server ts to the client
4. Client receive the server time and record the current time tj
5. Assume the processing time is negligible compare with the network delay,

client calculate the time difference due to network delay d = (ti – tj)/2
6. Client calculate the approximate time difference between the client and

server td = tj – (ts + d)

Server Time

Client Time

ti tjRound Trip Time tr

ts

Fig. 4.4 synchronize the server time and client time

Virtual Reality Fighter – Final Report

 - - 33 - -

With the time different between the client and the server, the client will add
this difference to the time stamp so that the client time and server time can be
in sync.

4.4.3.2 How to avoid un-necessary synchronization
Since the synchronization requires the roll back of the game state and re-
executes all the game messages, if too frequent synchronization is performed,
it will waste a lot of processing power. Besides, there are some game
message types that the message can be missed without causing
inconsistence in the game state.

Therefore, the game message will be classified into critical or non-critical
message. Only the out of order or missed critical message will trigger the
synchronization. The non-critical message will not. Then the un-necessary
synchronization can be avoided.

4.4.3.3 How to minimize the amount of data backup
In the synchronization, it will keep backups of the Data Store for the roll back
operation. However, how many backups are enough for this purpose??

Actually, a trade off between the memory space and the precision of the
synchronization needs to be considered. If more backup is kept, the
synchronization can be done using a smaller time frame. Also, with a smaller
time frame, the number of game message needed to be re-executed will be
also smaller. However, this will increase the demand for the memory space.

Since the size of the Data Store will become bigger and bigger when more
clients join the game, it is not possible to keep many such a huge Data Store
in the memory. As a result, only two Data Store backups will be kept in the
memory at any instant. This can save the memory space and perform the
synchronization with a reasonable time frame of 100ms.

4.4.3.4 How to classify different message type
In classifying the message into critical and non-critical category, we need to
consider how the out of order of missed messages will affect the games state.
The following table summarizes the reason to classify the message type into
each category:

Virtual Reality Fighter – Final Report

 - - 34 - -

Critical Message Reason
Missile Fire The out of order missiles may cause a client to be

destroyed wrongly.
Laser Fire The out of order missiles may cause a client to be

destroyed wrongly.
Client Exit / Destroy If the server miss this message, the exited client may

still remain in the 3D game environment
Change Partition If the server miss this message, the client may loss

the contact with the servers since the new server
does not know a client has join its partition

Add Client If the server or client miss this message, the new
client may not join the game correctly

Non-Critical
Message

Update Fighter
Position

If the server misses one or two update fighter
position, it will not cause serious inconsistence since
the next update fighter position will review the current
position of the fighter.

Update Missile
Position

If the server misses one or two update missile
position, it will not cause serious inconsistence since
the next update missile position will review the
current position of the missile

4.4.4 Evaluation
4.4.4.1 Current Implementation
The current implementation fully deployed all the features talked in the above
section, with flexibility in several parameters like the number of data copies
maintained, the synchronization interval, and so on. Two threads are
implemented, with one in charge of taking snap shots and the other in charge
of actually sorting the messages and process them. The synchronization
threads are of high frequency to ensure the real-time effect is achieved.

4.4.4.2 Objective
This simulation is to find the number of delayed packets transmitted over the
network.

4.4.4.3 Assumptions
1. Only the critical messages will be monitored by the synchronizer and the
order of those messages will be guaranteed. On the other hand, the non-
critical messages will not be monitored by the synchronizer since they will not
affect the consistency of the game state.

Virtual Reality Fighter – Final Report

 - - 35 - -

The critical messages include the firing messages change partition messages
and client exit messages.

2. Assume the underlining system will utilize approximate 600ms to process
and send out the message. Therefore, if a message’s time stamp has the
different more than 600ms, then it will be regarded as delayed messages.

4.4.4.4 Environment
There are 1 client and 1 server. All the clients and servers are of the following
hardware equipment.

CPU: P4 1.4G
RAM: 256MB DDR RAM
Network Connection: 100M Ethernet
Network Condition: With large amount of network traffic
Programs (client and server) are compiled with all optimization and the
performance is maximized. All threads are running at the normal frequency
and all tasks at the server side are performed.

4.4.4.5 Result Data and Analysis
Following is the table showing number of messages delayed due to the
network congestion.
Test 1 2 3 4
No. of Fire
Messages

20 20 40 40

No. of
Delayed
Messages

13 12 25 22

Percentage
loss

65% 63.25% 62.5% 55%

Form the result above, the average percentage of delayed messages is
61.4375%. The percentage of delayed message is over 50% when there is
large amount of traffic. Therefore, if no synchronization is used to guarantee
the order of the fire message, this may put the game into inconsistence state.

Given this large proportion of delayed messages, the synchronization requires
a lot of computational power. Currently each invoking of the synchronization

Virtual Reality Fighter – Final Report

 - - 36 - -

threads (including the back up thread and the synchronization thread) will cost
as much computational power as the collision detection module. However, in
the tests carried out, the required computational power can be provided by a
normal P4 1.xG CPU. Thus the requirement is still reasonable.

4.4.5 Future Planning
4.4.5.1 Advance Game State Backup
Since the backups of the game state will consume a lot of memory space,
therefore, some techniques can be employed to compress the backups to
save memory. The data structure used to store the dynamic entities of the
game can be redesigned.

If the backups can consume less memory, more backups can be stored in the
memory and we can have a smaller time frame for the synchronization. Since
the size of the time frame can be decreased, the synchronization can be more
accurate and the number of game message needed to be re-executed will be
smaller.

4.5 Advanced Topic: Partition Techniques

4.5.1 Overview
During the game, update messages are sent from clients to the server quite
frequently. For each update message, the server has to broadcast the update
to all clients within the same server. As the number of players hosted by a
particular server increases, the network traffic between clients and that server
also increases and significant delay will be experienced by clients playing the
game. Are there any methods to reduce such kind of network traffic and
improve the performance?

One of the methods is partitioning. The idea behind is to divide the map into
smaller segments called partitions and each client only know the existence of
other clients, who are within the same partition. In other words, update

Virtual Reality Fighter – Final Report

 - - 37 - -

messages about a client in a particular partition will only be sent to other
clients within the same partition, but not other partitions. In such a way, the
network traffic between clients and server is reduced, since for each client
update, the number of update messages that need to be sent is reduced.

In the following paragraphs, the features of partitioning are illustrated. The
problems encountered when implementing partitioning is discussed. The
performance of the partitioning techniques is evaluated, in particular, how can
network traffic be reduced and by what amount. Finally, some possible future
extensions to the current approach are discussed.

4.5.2 Features
4.5.2.1 Characteristics of spatial partitioning approaches

Criteria Static Partitioning Dynamic Partitioning
Complexity Easy Complex
Flexibility Inflexible Flexible
Number of partitions Fixed Varied
Existence of partitions Permanent Temporary
Scalability Low High

Based on the above comparisons, we conclude that both partitioning schemes
could be applied, but at different stages of the game. Before the start of the
game, we know the number of clients exactly and hence we can easily divide
the virtual world into static partitions in such a way that the workload is
balanced among the servers. However, during the game, when there are
more and more clients hosted by one server, we have to place them in
different partitions to reduce network traffic. However, static partitioning won’t
work since the newly created partitions should be deleted later when the
number of clients in that partition reduced to normal. Therefore, we should
apply dynamic partitioning here.

4.5.2.2 Static partitioning
Design
In static partitioning scheme, the virtual world is divided into several smaller
partitions. The word “static” here means that these partitions will not be
modified or destroyed during the game. The number of static partitions
depends on the number of clients playing the game and also the number of

Virtual Reality Fighter – Final Report

 - - 38 - -

clients that can simultaneously stay in one partition without experiencing
serious network delay. Our goal is to allow the clients to be evenly distributed
among all partitions initially so that the workload can be balanced among the
servers.

Implementation
In our implementation, each server will hold one static partition and there will
be four static partitions in total. However, this configuration is for
demonstration purpose only, each server can actually hold more than one
partition. The servers can communicate with each other at a high speed
because they are placed in a Local Area Network (LAN) with a bandwidth of
at least 10Mbps with the Ethernet.

After a client connected to one of the servers, the server will send all the
information of clients within the partition to the connected clients before
starting the game so that they can know about the information of other clients
within the same partition.

Figure 4.5 Initial configurations of the servers and partitions

4.5.2.3 Interest filtering
One of the features of the partitioning schemes is the introduction of interest
filtering. Within a particular partition, clients are interested to information about
other clients within the same partition as itself. For example, they need to
know the positions of other clients within the same partition, whether another

Virtual Reality Fighter – Final Report

 - - 39 - -

client is dead or alive. Anything other than these may not be of any interest to
the client and by no means need to be stored in clients.

Partitioning helps interest filtering by grouping clients into clusters such that
each cluster is represented as a partition and hosted by a server. In such a
way, whenever the server has to send information to a client, only information
within the same partition as that client needed to be sent. As a result, interest
filtering is achieved and clients do not receive any information about clients
from rest of the virtual world.

4.5.2.4 Overlapping region of interest
When clients are close to the boundary of its current partition, they should be
able to see other clients that are close to the boundary, but within other
partitions. To handle this, we defined a region near the boundaries of
partitions such that information about clients within this region is known to
servers that are hosting the partitions with the boundary. The length of the
region is equal to the maximum visible range of the fighters so as to ensure
that clients within different nearby partitions can see each other.

When a client enters this region, the server hosting this client will send the
information of this client to another server that is hosting the partition on the
other side of the boundary. Both servers keep the information of this client
until the client leave the region. At that time only one server hold the
information of this client.

Fig. 4.6 Overlapping regions of interest

As shown above, the region can exist in two forms:
(1) shared between two servers

Virtual Reality Fighter – Final Report

 - - 40 - -

This is the case to handle a client changes partition along horizontal or
vertical direction, for example, from Partition 2 to 3. In this case, both servers
on either side of the boundary should have the information of the clients within
the region.

(2) shared between four servers
This is the case to handle those client changes partition along the horizontal,
vertical as well as diagonal direction, for example, from Partition 2 to 1. Since
the small center region is the common region owned by the four servers, all
four servers should have the information of the clients within this region.

4.5.3 Problems and Solutions
4.5.3.1 Exchange of client information among servers
With partitioning, when one fighter tries to move from one partition to another
partition, this change of partition must be known by all clients within the two
partitions and hence we should broadcast the change partition message to all
related clients. However, if we broadcast the change partition message at the
time the fighter crosses the partitions, it will be too late since the processing of
this change of partition takes time. Clients in the new partition may not be able
to know the position of the new client and collision detection cannot be done
correctly.

The solution to this problem is to use the overlapping region of interest
approach mentioned above.

4.5.4 Evaluation
4.5.4.1 Amount of network traffic
The following is the evaluation of the importance of partitioning technique to
amount of network traffic. The evaluation is done by comparing the network
traffic of server when using partitioning techniques against that without using
partitioning techniques:

Assumptions

1. All clients and servers have same background traffic.

Environment

Virtual Reality Fighter – Final Report

 - - 41 - -

All the clients and servers are of the following hardware equipment.

CPU: P4 1.4G
RAM: 256MB DDR RAM
Network Connection: 100M Ethernet
Network Monitor: Link Ferret Monitor v5.2

The clients are generated by four load generators and each of which generate
10 clients. The load generator will generate certain number of clients
connecting to the server. Each server is running an instance of the server
program, and the servers maintain interaction about the partition changing of
the clients. The position of each client is updated 25 times per second, and
the servers collect all the messages and distribute the updated client
information to the other clients.

Apart from the client generator and server, each PC is running the Link Ferret
network monitor to monitor the network flow.
There are 40 clients and 1 server for testing network traffic of the server
without partitioning. There are 40 clients and 4 servers for testing network
traffic of the server with partitioning.

Result Data and Analysis
Background traffic = 349838 bytes per 300 seconds

 Number

of
clients

Number
of
server

Duration
(second)

Inter-
server
Traffic
(Kbps)

Client-
Server
Traffic
(Kbps)

Traffic
per
server
(Kbps)

Without
partitioning

40 1 300 0 2590 2590

With
partitioning

40 4 300 0.0237

777.5 777.5237

From the above result, we can conclude that partitioning help reduce the
network traffic flowing through the servers with the network traffic reduced by
more than half of that without partitioning.

Virtual Reality Fighter – Final Report

 - - 42 - -

(a) (b)

Fig. 4.8 (a) Network traffic without using partitioning
(b) Network traffic using partitioning

4.5.4.2 Maximum number of clients supported in each server
Since the bandwidth of the server is limited, we have to calculate the
maximum number of clients that can be in a particular server for partitioning to
work. We found that the maximum number of clients that can be supported by
a server is 40. This is obtained by using more and more clients to connect to a
single server until the server has no response.

4.5.4.3 Number of servers required
Based on the above calculations, we can calculate the number of servers
required for hosting the whole game given the total number of clients. It turns
out that the number of server required can be found by:
N >= P / S where
N = number of servers
P = total number of clients
S = maximum number of clients supported by each server

4.5.5 Future Planning

4.5.5.1 Dynamic partitioning approaches

Tree-based dynamic partitioning

When the number of clients in one partition increases to a level such that the
bandwidth requirement of the server exceeds its given bandwidth, which

Virtual Reality Fighter – Final Report

 - - 43 - -

means the messages from clients are more than that can be handled by the
server; something has to be done to reduce the network traffic back to an
acceptable level. Here comes the dynamic partitioning scheme.

The idea behind dynamic partitioning scheme is to further divide the existing
static partitions to even smaller partitions so that all clients only receive
messages related to other clients within the same partition and this helps to
bring the network traffic to an acceptable level. When the number of clients
decreases such that the network traffic becomes normal again, these dynamic
partitions are removed.

To implement the dynamic spatial partitioning scheme, we have two major
choices (i.e. Octree and Binary Spatial Partitioning (BSP) tree) that are
commonly used in the gaming industry, let’s have a comparison about them
as follows:

Criteria Octree BSP tree
Number of children of each non-leaf node 8 2
Nature of virtual world Outdoor Indoor
Searching Efficiency O(log8N) O(log2N)
Implementation complexity Simple Complex
Tree Construction Efficiency Faster Slower
Shape of partitions Rectangular Variable

Based on the above comparisons and our game nature, Octree is chosen to
implement the dynamic partitioning scheme. The most distinguishing reason
is that BSP tree depends on splitting planes to divide the virtual world, which
are usually walls or something that separate the virtual world naturally in an
indoor environment. However, in our game, there is no wall. Our virtual world
is an outdoor environment! Another important reason is that the partitions
resulted by using BSP tree are of irregular shape, which makes computation
difficult. Last but not least, the implementation for BSP tree is too complicated
that the gaming industry spend years of effort to optimize it, and it is thus
infeasible for us to implement it in the final year project given the timing
constraint.

Let’s see how this works by first examining the concept of octree and see how
it is used for partitioning.

Virtual Reality Fighter – Final Report

 - - 44 - -

Octree is a tree data structure with a maximum of eight children for each non-
leaf node. Octree is commonly implemented as an array of partitions with a
pointer extending from each non-leaf node to its children. Octree is commonly
used in computer graphics to do spatial partitioning for collision detection and
frustrum culling. Here, however, besides collision detection, we use it for
reducing the network traffic between clients and server.

It is used to divide a static partition into eight smaller rectangular shaped
partitions. The original static partition is considered to be the root of the octree
and the eight newly created partitions are the children of the root node. All
clients within the original static partition are allocated to each of these newly
created partitions according to their positions. Each node in the octree will
hold all information of a partition. When many clients exist in the same
partition, that partition will be recursively divided into smaller and smaller
partitions until the network traffic can be handled by the original server.

 (a) (b)
Fig. 4.6 (a) Idea behind dynamic partitioning using octree

(b) Array-and-pointer representation for octree, each parent links to
(at most) eight children

Area-of-interest (AOI) based approach
Area-of-interest is defined as the visible area for the clients along a plane. In
other words, it’s the area, which covers all objects in the virtual world, that can
be viewed by clients and hence client is interested in it. This area can be
defined to be of any shapes, for example, circular, rectangular.

Virtual Reality Fighter – Final Report

 - - 45 - -

Having defined AOI, we can go further to explain how this can be used to
implement a dynamic partitioning scheme. The idea is simple. For all clients
within the virtual world, those clients with their AOI overlapped are included in
the same partition. This is better in the sense that clients within the same
partition are tightly related to each other and are more likely to reduce the
network traffic involved.

Distance-based approach
In this approach, the distances between any two clients are computed and
clients are grouped together in a partition with other clients that are close to
them. There are many distance metrics that can be used in this approach, for
example, Manhattan distance, Euclidean distance. There are some famous
partitioning methods that are originally used in clustering data in databases,
for example, k-means. However, details of this algorithm are not discussed
here.

4.5.5.2 Dynamic load balancing among servers
Currently, the partitions created by the dynamic partitioning schemes are
hosted by the same server as its original partition. This is not good enough
and can be improved. The reason behind is that when more and more clients
enter a particular partition, the workload is resided mainly in one server and
this causes unbalanced load between servers such that the network
bandwidth of some servers are overloaded, while other servers’ bandwidth is
wasted.

Therefore, we propose that there should be dynamic load balancing among
servers in the future. This can be done by allocating the created dynamic
partitions evenly to all servers such that the workload can be distributed
among all servers and produce a better utilization of the network bandwidth of
all servers in our multi-server approach.

However, there are still some difficulties to be explored and investigated. First
of all, there must be a way to pass these partitions information between
servers and the communication between servers must be defined carefully.
Secondly, different servers may have different network bandwidth and hence
the partition scheme should be finely adjusted to handle this and allocate

Virtual Reality Fighter – Final Report

 - - 46 - -

appropriate number of clients to each server according to their network
bandwidth.

4.6 Conclusion
In conclusion, the network engine is able to provide the sending and receiving
of messages from the internet and convert them to understandable format for
the game engine. Some advanced topics that can improve the performance of
the network engine were discussed.

Virtual Reality Fighter – Final Report

 - - 47 - -

Chapter 5 Graphics Engine

5.1 Overview
The Graphics Engine in the game is in charge of producing the virtual scene
for the players. It takes the updated models and other contents from the data
store, and utilizes OpenGL to render them to the screen. Due to the real-time
requirement and the graphic quality requirement, the models should be
flexible and the rendering should rapid. The Graphic Engine realizes this.

5.2 Architecture
The following graph depicts the overall architecture of the Graphics Engine.

 Fig. 5.1 the overall architecture of the Graphics Engine

Graphic Engine

Terrain Model General Models 2D Objects Texts

Pre-fetch Resources

Apply Model Setting

Render with OpenGL

Scene Rendered

Virtual Reality Fighter – Final Report

 - - 48 - -

5.3 Features
 The graphic engine can process 3D models and model groups, 2D

bitmap objects as well as texts.
 The generic definition of the 3D model supports most of the rendering

options including custom transformation, lighting, coloring, texturing
and bounding. Each of the options has several sub-options and can be
applied to each 3D model individually. Rendering process is based only
on the model, without any hard coding.

 The terrain generation tool is available, which enabling customized
fractal terrain generation. Textures will also be generated for the
terrains.

 Collision detection, which is also a graphic part, is implemented and
can detect collisions among objects in the world. However, this part
composes a module in the game logic rather than in the graphic engine.

5.4 Problems and Solutions

5.4.1 Performance
Problem: High performance is critical for the Graphics Engine. Thus it
is a great challenge to achieve real-time rendering for client PCs with
ordinary graphic cards. In several papers people point out that a
refresh rate less than 25 fps will cause perceived delay in updating.
Low refresh rate is considered intolerable for players.

Solution: To cope with the real-time requirement, we come up with a
series of design and implementation decisions.

 The engine adapts to procedural design rather than following the
object-oriented design of remaining parts of the system. The
purpose is to follow the pipe-and-filter architecture of OpenGL so
that the engine could benefit from the performance optimization
provided by OpenGL. Also procedural programming is generally
faster than object oriented programming.

 Object culling is applied for complex models. For the complex

models such as terrains, culling is applied before actual rendering

Virtual Reality Fighter – Final Report

 - - 49 - -

to reduce the polygons to be rendered as much as possible.

 OpenGL acceleration techniques are widely applied.
Recommended implementations such as display list and client state
arrays are used, and the calculations are delegated to OpenGL
system as much as possible to benefit from the hardware
accelerating calculation.

 All matrix calculations are optimized by scientific computing

techniques. Doing this further push up the speed as well as
accuracy of calculation.

Achievement: The current Graphics Engine demonstrates very high
performance. Tests have been organized with the following
configurations

 Hardware environment (typical configuration for home PCs):
 Pentium IV 1.4G, GeForce2 GTS (32MB), 256MB RAM

 Software Environment and Parameters:

Windows XP Pro, 200,000 polygons, 512 by 512 BMP texture,
game window size 640 * 480, all effects open (including lighting,
coloring, material setting, normal vectors, customized
transformation, fog, mipmap).

In these tests the Graphics Engine achieved 25~30 fps without any
difficulty, which is assumed to be a satisfactory performance.

5.4.2 Flexibility
Problem: Great flexibility must be present for the game, since one of
the requirements of the system is the ability to take customized models
as the system models.

Solution: Graphics Engine must provide a wide range of modeling
options and have a standard, simple and common representation for all
models.

 The Graphics Engine data representation is greatly simplified. Only

Virtual Reality Fighter – Final Report

 - - 50 - -

3 types of objects are required for the Graphics Engine:
Model/ModelGroup, BitmapObject, and normal text string (the
terrain models are subclass of models). With no game logic specific
objects, the Graphics Engine maximizes the extensibility and
portability, while minimizes the dependency of render engine on
other parts of the system. Any Models and ModelGroups parsed
from standard VRML files are guaranteed to be rendered by the
engine.

 All possibly desired options are fully provided. Texture, colour,

lighting, transformation modes can be applied to each modelgroup
and model individually. Especially, the following advanced options
are available for each model:
o Multiple color mode
o Double texture mode
o 3 types of transformation mode
o Bounding box/sphere
o Height map and culling (for terrain models)

 The terrain models can be generated by the user using the tool

provided. As the only restricted object, the terrain needs special
information to perform partition and culling. A special tool is
provided for generating it to minimize the restriction. For details
please refer to the advanced part.

Finally, by combining Models into ModelGroups to form basic unit of
3D rendering, the flexibility is further improved.

Achievement: With the standard VRML and XML files used, great
simplicity and flexibility are provided to users who want to construct
their own models. Terrains are written as binary model files from the
tools. All possible objects can be constructed simply by retrieving
the information in VRML from 3DS MAX, XML from XML Spy, and
the binary model files output by the terrain generation tool. It is even
possible to provide dynamic shaped object with different look for
each part (such as planes that can change into robots).

Virtual Reality Fighter – Final Report

 - - 51 - -

5.4.3 Resource saving
Problem: The hardware requirement will greatly affect the
popularity of the game. The assumption that clients are ordinary
PCs requires the whole system taking small amount of RAM and
CPU cycles. The demanding task of handling multiple sessions
containing multiple players also requires we save resources at the
server side.

Solution: Resource saving is mainly achieved by reuse and
caching. Models and textures are loaded only once and then
cached. Reuse of these objects could then be achieved. By
separating game specific data and common representation, these
objects can be shared among numbers of identical players. Thus
loading time and object creating time is greatly reduced.

Achievement: The current game with all required data loaded
(20,000 polygons, all color and material parameters, 512 by 512
BMP * 6) takes only about 10MB RAM under Windows XP Pro. This
is even smaller than the memory usage of ICQ and Acrobat, and is
identical for the sum of opening a WinZip and a Winamp
simultaneously.

5.4.4 Fanciness
The problems and their solutions are listed correspondingly.

Problem Solution
Complex terrains are ugly even with
large number of polygons.

Use beautiful texture mapping to
compensate.

Distant objects are too clear. Apply fog effects.
The vision of the player is too far. Implement moving sky box to limit the

vision of the player.
Near objects are not detailed
enough.

Implement double texturing for near
objects (to be finished).

Whole terrain takes too much time to
render.

Use skybox and view cone to do terrain
culling. Also, the speed can be further
improved by using rendering detail levels
on the terrain object.

Achievement: A virtual scene with realistic look.

Virtual Reality Fighter – Final Report

 - - 52 - -

Game Related Interface

Basic Geometry Routine

Software OpenGL Implementation

5.5 Advanced Topic: Collision Detection
Collision detection is essential for the game. As a module plugged in game
logic part, collision detection module is in charge of determining of the
following 3 types of events:

 If a fighter is shot by a laser (object – line)
 If a fighter is shot by a missile or fighters collide (object – object)
 If a fighter has gone into the terrain (object – object)

Each of the 3 events must be determined accurately.

The collision detection module is purely software implemented. It supports
multi-threading and can be run with multiple instances. It uses a layered
architecture with a lot of acceleration methods including

 Bounding box / sphere
 Spatial detection
 Object culling
 Computational optimization

After testing, the module demonstrates satisfactory performance. 3 types of
events can be determined with required efficiency. However, the line – object
detection is not very accurate.

5.5.1 Features
The collision detection module is a layered module with the following
architecture:

Fig. 5.2 the collision detection module

Virtual Reality Fighter – Final Report

 - - 53 - -

The main features of the collision detection module include:

 The module fully support object – line, bounding sphere/box –
bounding sphere/box and object – height map collision detection.

 The module is purely software implemented and can be run on any

computer with any operating system.

 The module supports multi-threading and can be run with several
instances.

5.5.2 Problems & Solutions
5.5.2.1 Minimize length of fighter position data from the clients

Problem: The clients have different transformations to the model objects
they use. To detect the collision among them, we firstly should re-
construct the position of them.

And, since retrieving client information involves network transmission, we
want to minimize the amount of data flow on the network. The position
information transmission is frequently performed so we want to minimize
the length of it.

Solution: There are 2 possible solutions: to transmit the axis vectors, or
to transmit the full matrices.

Finally vector transmission is applied. By transmitting vectors we only
need to send 9 numbers, while transmitting matrices sends 16 numbers.
Although dealing with the vectors at the server side needs more
computational power, local computation is always preferable than large
amount of data flow, especially for such frequently transmitted data.

5.5.2.2 Re-construct the transformation efficiently

Problem: The transformation matrix should be re-constructed using the
provided vectors. The server is assumed to be computationally powerful
and we want to utilize the CPU power.

Virtual Reality Fighter – Final Report

 - - 54 - -

Solution: To fully utilize the computational power of the server, we would
like to make the collision detection module to support multi-threading. If
the collision module uses OpenGL to compute the matrices, we gain by
the hardware computation of the matrices but lose by the AGP interface
speed and mutex requirement.

Thus the collision detection module is finally designed as a pure software
implementation with required OpenGL operations coded by hand. The
transient nature of the module also enables multi-threading supporting. By
utilizing the CPU fully and running the module in multi-threading mode, we
can maximize the speed of collision detection.

5.5.2.3 Performance fast and accurate collision detection

Problem: Even with all the technique above, the collision detection can
still be slow. The problem is the number of triangles needed to be tested
is very large. During a single object – object detection there are millions of
triangle pairs to be tested, which is definitely a burden to the server.

Solution: The solution to this part is complex and can mainly be divided
into 3 categories:

 Bounding box/sphere utilization

Although large amount of triangle pairs or triangle – line pairs are
detected, only very small number of them need the actual accurate
detection. Thus we can swap the object by simple geometries like
boxes or spheres to filter the unlikely pairs. Since most of the pairs are
not colliding, this technique ends up gaining the speed.

Bounding box/sphere is embedded in model object definition. They can
be turned on and off.

 Object culling
The most time-consuming detection is the terrain – fighter part because
of the large number of triangles on the terrain (usually millions of
triangles). But again very small proportion of them tends to collide.

Since the terrain is organized into height map, we can do better than
that. Before doing the actual detection, we don’t iterate each of the

Virtual Reality Fighter – Final Report

 - - 55 - -

triangles of the terrain but only do so to a square centered at the
position of the fighter with edge length equal to 2 times of the bounding
sphere radius of the fighter. Doing this minimizes the triangles to be
detected on the terrain.

 Modified collision detection methods

The logic of the game decides that several modifications can be
applied to the collision detection.

The laser – fighter detection must be fully performed, but bounding
box/sphere acceleration can still be applied.

The missile – fighter detection can be changed into a bounding
sphere detection of those 2 objects. This agrees with the actual
missile direction method in reality, in which the missile will simple
explode when it is within a certain range of the fighter. Same trick can
be applied for fighter – fighter detection.

The terrain – fighter detection can be simplified sine the terrain is a
height map. Firstly, we can change the problem into:

If any of the triangles on the fighter has all the 3 vertices higher than
any planes of the terrain, then the fighter doesn’t collide with the
terrain. If not we need further detection.

Proof: Firstly, for any triangle to collide the height map, at least 1
vertex of the triangle must be lower than some plane on the height
map. If all 3 vertices are higher than the plane, by equation we can
get:

Assume the equation for the terrain is

0=+++ DCzByAx

Thus to say 3 vertices are above the plane it essentially means:

0111 >+++ DCzByAx
0222 >+++ DCzByAx
0333 >+++ DCzByAx

Virtual Reality Fighter – Final Report

 - - 56 - -

Since any point in the triangle is the linear combination of the 3
vertices, we have for any point P,

332211 VpVpVpP ++= 1321 =++ ppp

Where p1, p2 and p3 are proportions.

Thus we can see that evaluating P in the equation of the plane
also get a positive result. In another word, P is also above the
plane.

Then for any triangles of the fighter, we can firstly detect if all its
pointes are higher than the terrain. If is, we will ignore the
triangle. This will speed up the detection process. To further
speed up, we can use table to store the already detected points
to see if they are above or below the plane. However this can be
space-consuming.

If 1 vertex is lower than some plane in the terrain, we will further
detect if the intersection line segment overlaps with the plane
part of the terrain. This is time-consuming but is only needed for
small number of triangle pairs.

5.5.3 Evaluation
Basically, the collision detection module reaches the functional requirement
and the performance requirement. But there is some accuracy problem about
the line – object detection.

The collision detection module can determine the stated detection required by
the game logic, and the performance is acceptable in testing phase.

The accuracy problem is that, sometimes when the laser is pointing to some
points near the boundary of the fighter, the result may be wrong. This can be
cause by 2 factors:

1. The floating point number calculation has some rounding error.

Virtual Reality Fighter – Final Report

 - - 57 - -

2. The synchronization of the game makes the vector parameters
supplied to the module out-dated.

Generally, factor 1 should not be the major affecting one, while factor 2 is
suspected to be. This can only be improved by more flexible messaging
mechanism or client-side collision detection.

The 3 layered structure of the collision detection module is fully implemented.
The underlying software implementation of OpenGL function is implemented
and is proven to be correct, while the basic functions in the 2nd level and the
high level cooperation are assumed to contain some computational problems
so that the detection against boundary cases, e.g. a very thin and small
triangle and a long line far away, may have some problem. In 100 random
collision cases tested, more than 95% of the detection results are correct. In
50 cases, the laser – fighter detection is 100% correct, while the terrain –
fighter approximation is more than 90% correct in 20 testing cases.

In the current testing process, the collision detection process virtually takes
the same amount of time with the synchronization. We have added time
counter to monitor the CPU cycle time needed by each thread at the server
side, and we get the 3 most time-consuming threads are

1. Synchronization thread
2. Collision detection thread
3. Status broadcasting thread

And the time amount needed by them is virtually 1:2:2 per cycle. Since the
synchronization thread is actually running 4 times faster, the collision
detection thread is taking less amount of time.

The computational cost for the bounding box/sphere is monitored to be
around 0.077 time of the full detection, which proves the usability of this
bounding technique.

The terrain – fighter detection, being an approximation, is functioning at more
than 90% of time but will have some situation missed. At the client side there
may be some delay equal to the RTT time of the network, but the overall
effect is acceptable.

Virtual Reality Fighter – Final Report

 - - 58 - -

5.5.4 Future Planning
If time permits, 2 improvements can be done to the module:

1. Organize the data in the model into advanced data structure such as

DSP tree to better culling process.
2. Utilize more advanced collision detection methods, such as the

shortest vector method, and so on.

5.6 Advanced Topic: Terrain Rendering

Following graph illustrated the workflow of the terrain generation process.

Fig. 5.3 the terrain generation process

The workflow of the terrain rendering process is simple and straightforward. It
follows the procedural rendering process of OpenGL architecture, which is
consistent with the whole render engine architecture. The detailed description
is as follows:

Terrain Generation: The generation of terrains is separated from the core of
client side; it is rather like a self-contained program that provides the ability to
users to generate their own terrains in an offline mode, independent of the
runtime system.
Output as Models: Terrain models would be output as reusable binary model
files and XML files. With standardized representation and read/write method,
terrain data synchronization can be done easily.

Models Loading: The game logic will load the corresponding file specified by
the user and pass the model to render engine.

Terrain Generation Output as Models Models Loading

Culling Preparation Scene Rendering

Virtual Reality Fighter – Final Report

 - - 59 - -

Culling Preparation: Because of the large number of triangles contained in
the terrain, it is desired to only draw the ones visible to the user. Since the
terrain is in height map structure, culling technique can be applied to reduce
the triangles to be painted.

Scene Rendering: After the culling preparation phase, the terrain will be
rendered just as a normal model.

5.6.1 Features
Terrain Generation
Generation of terrain is based on Fractal technique, which makes use of the
“self-similarity” property of fractal, plus the introduction of randomness in the
generation process.

The algorithm behind the generation is based on “Diamond-Square Algorithm”,
which is a simplified version of complex random generation process. The idea
is to generate the terrain recursively with more and more detailed and refined
grids. Here the algorithm is modified to use iteration rather than recursion for
speed consideration. The detail of the algorithm is available in the appendix.

The generation is implemented outside the render engine as a separate
program. It works as a generation tool that allow user to build their own terrain
models in an offline manner, by giving the tool values of core attributes.
Moreover the tool also generates texture while it is generating the terrain
model, although the textures provide for different model are simple, rooms are
provided to user to modify the texture up to their preference. The detail of
texture generation is also available in the appendix.

Terrain Culling
Partition, bounding sphere culling and rendering levels are applied to reduce
the triangles needed to be drawn as much as possible. Firstly, the terrain is
divided into pieces and invisible pieces are removed by detecting against their
bounding sphere; then the rendering is carried out with different levels, with

Virtual Reality Fighter – Final Report

 - - 60 - -

more details near the observing point and less further. Doing this the
rendering speed and the graphic quality is well balanced.

5.6.2 Problems and Solutions
5.6.2.1 Lack of control over the terrain model with simple model-
modelgroup data structure.

Problem: In the first stage of terrain modelling, the data structure used to
hold the terrain model parsed by VRML parser is the ordinary model and
modelgroup structure, which is dedicated for the data organization of
VRML format. This justification is to enable maximum flexibility of
rendering. However, this structure is not helpful to terrain culling and
partition.

 Partitioning module is affected. Since the only input is the VRML file
which holds the terrain information, there is no way to extract
essential attributes such as map dimension, map height information,
etc. With this information missing, it is difficult to implement
partitioning.

 Collision detection module is also affected. Since the collision

detection part is originally quite slow, we want to cut the triangle
pairs to be detected as much as possible to accelerate. Thus some
formatted data is needed, rather than the scattering data defined in
normal VRML files.

Solution: Instead of letting users to plug-in their own terrain sources, a
terrain generator is provided to them to generate terrain model, with
standardized grid representation and height map data structure. By doing
this we fix the geometric shape of the terrain as a square grid, and the
height map information is also available. This solution solves the 2
problems at the same time, while still maintains the required flexibility for
users to have their own terrain.

5.6.2.2 Speed degradation causes by highly complex terrain model
Problem: While it is desirable to achieve high level of flexibility, the
efficiency restriction is also present on rendering process of various game
objects. Thus the engine is adapted to restrict the model to be formed by
only using triangle primitive, plus to extensively make use of all possible

Virtual Reality Fighter – Final Report

 - - 61 - -

OpenGL optimization technique to handle the uncertainty on the
complexity of different models. It works for fighter and missile models, but
not for terrain models.

After implementing the height map data structure in order to solve the first
problem mentioned above, the generator has the ability to generate
terrains of different complexity levels, ranging from 2 polygons to more
than 1 millions of polygons. The rendering architecture used before is no
longer suitable for terrain scene rendering because of the following 2
major defects:

 Using merely triangles to construct complex terrain will have lots of
overheads for such a large model compared to using triangle strip.

 Many resources are wasted in dealing with large amount of polygons

that are not seen by the players.

Solution: Instead of using the ordinary rendering strategy, triangle strip
primitive is used to reduce the OpenGL overheads. Bounding Sphere
Culling method is also implemented to reduce the number of polygons
needed to deal with. After that, the terrain is rendered using different
levels of details. The most refined scene is rendered near the eye point,
while only brief shapes are rendered at far places. Doing all this greatly
improve the rendering speed.

5.6.3 Evaluation
The complexity of Diamond-Square algorithm is O(n), which is linear to the
number of iterations made. In practice, the iteration takes will around 7 to 10,
and the performance of the generation is very efficient with the execution time
not more than 2 sec.

The application of terrain culling does shown significant improvement on the
rendering performance, however the level of speed up is not as high as the
expected level of improvement.

Virtual Reality Fighter – Final Report

 - - 62 - -

For example, for terrain model of 512 * 512 grids, total 1024 bounding
spheres are introduced to partition the terrain into 1024 partitions. In average
only 200 – 300 spheres are excluded from supplying to the OpenGL engine
for rendering, rather than the original thought of half of the spheres will be
pruned in the culling step.

Nevertheless, the introduction of terrain culling in the terrain rendering is
proved to be useful. Table 4.1 is a performance comparison on the rendering
speed with or without terrain culling for different terrain model complexities.

Number of polygons in
the model

Frame rate without
culling (fps)

Frame rate with culling
(fps)

32768 ~ 20 ~ 60
131072 ~ 10 ~ 45
524288 < 5 ~ 20

The reason why the performance enhancement is smaller than that expected
probably because the terrain landscape change for every small area, the
terrain is too detail so that in general the sphere size is larger than necessary,
thus cause the culling function to process those grids that are actually not
inside the view frustum.

5.6.4 Future Improvements
1. Terrain Generator at this stage can only base on parameters input by

users to generate terrain models, users cannot have full control over the
appearance and landscape of the generated terrain. Further improvement
could be made the generator to allow users to adjust the height values of
different points on the terrain, and to provide users with more fancy
objects to add to the terrain, e.g. trees, mountains and lakes, and
buildings models. A better texture editing tools for building complex
texture will also be available.

2. Dynamic texture mapping can be used to simulate a more realistic world.

With textures oriented from the same scene but of different resolutions
and levels of detail, dynamic texture mapping can be implemented.
Depends on the height value of the client fighter position, the higher the
fighter the lower the resolution of the texture used to map the terrain, this

Virtual Reality Fighter – Final Report

 - - 63 - -

thus can stimulate the phenomenon “near object will be clearer than far
object”.

3. Better model representation can allow the development of “infinite large

terrain”. Although the current data manipulation can create the sense of
unlimited terrain scene, the same terrain segment will be repeated infinite
times to achieve this, which will be quite fake since every segment is the
same. A better representation should allow itself to hold several terrain
segments arranged randomly in a single file. This method could improve
the appearance of the unlimitedly large terrain which viewing from
different direction would give different experience to clients.

5.7 Future Planning
The future planning of the graphics engine mainly focuses on 2 aspects:

 Better the effect of graphics by providing more options in rendering.

The effect of the graphics can still be improved further. With the current
data structure and process, we can create movable parts on the
fighters, introduce more particle systems, and provide more refined
textures to the objects. The terrain generation process can be further
customized to provide more options and controllable parameters for the
user.

 Improve the speed by applying more acceleration techniques.

More advanced culling and collision detection techniques can be
applied to improve the speed. Special data structures and algorithms
can also be used.

Virtual Reality Fighter – Final Report

 - - 64 - -

Chapter 6 Object Definition

6.1 Overview
A suitable model can help us to extract useful information from numerous,
duplicated and interdependent data, so that analytical process can be done
easier in the later steps.

In order to provide flexibility, the system should be able to accept and
generate customized models, such as the data and 3D graphics model of
fighters and terrains. Hence this part is mainly divided into 3 components:
graphics model parser, data model parser and generator.

6.2 Importance of Modeling
Model is a standard for storing certain type of data. A model should contain all
necessary information for the object. On the other hand, the information in the
model should not duplicate since the size of the model will be huge and the
transmission time will also long.

For multimedia data such as graphics, movies or sounds, the compression
rate of them is very high, while that of the text data is very low. It is because
multimedia data contains much duplicate information and also much of the
information is not significant in the view of human being.

By using suitable algorithms and modeling technique, the key information of
the data is recorded in a model and the data need to be stored is much
smaller in size. Moreover, the key information is usually in text or numerical
value, hence further reduce the data size and increase the compression rate.
A good model can help us to eliminate such duplication and simplify the
information.

Virtual Reality Fighter – Final Report

 - - 65 - -

6.3 Graphics Model Parser

6.3.1 Why Graphics Model in VRML?
VRML (Virtual Reality Modeling Language) is a language widely used for
virtual reality display. It describes a scene so that the user can freely travel in
it by means of a viewer. Most of the 3D design and modeling tools, such as
3D Studio MAX, are able to export the 3D graphics in VRML format. The
system is able to display the 3D graphics by implementing a VRML parser
and accepting the VRML file exported from the 3D design and modeling tools.
Also, there are full of 3D graphics model in VRML on the internet. Via VRML,
the system is able to display large amount of graphics resource available.

6.3.2 VRML and 3D modeling
VRML can also be used for 3D modeling. In VRML format, the IndexFaceSet
Node is responsible for specifying 3D polygons. The texture, color and
normals information is stored in the Texture, Color and Normal Node
respectively. There is also Transform Node which states the rotation, scaling
and translation information of an object. The information is similar to
specification of OpenGL. Hence the 3D object in VRML file can be rendered
by OpenGL.

6.3.3 Architecture
The graphics model parser is responsible for reading the customized 3D
graphics model in VRML format from the users. The parser first reads a file,
and checks if it is a valid VRML 2.0/97 file. Then the parser get the necessary
data from the file, and then generates an internal Model Class instance which
is stored in the centralized data store in the system and transmitted to other
parts of the system if needed.

Virtual Reality Fighter – Final Report

 - - 66 - -

Fig 6.1 the parsing process

Implementing a complete VRML Parser is a sophisticated task, and it is also
unnecessary, as the dynamic and audio information in the VRML file is not
being handled in the system. As a result, only limited tags and structures is
recognized in the VRML Parser and converted into the internal model in the
system. Currently, the implementation of the VRML Parser utilizes the
CyberVRML library.

As graphics model generator is very complicated, it is currently not included in
the system. Users can generate a graphics model in VRML format by using
other graphics applications, such as 3D Studio MAX. Then the users can use
the model in the system via the VRML Parser.

6.3.4 Problems and Solutions
The following optimization works have been done in order to speed up the
parsing time and also the access time of the structure generated.

6.3.4.1 Array Structure in ModelGroup
Problem
The parsing task is an off-cycle work, which the VRML file is parsed only once
when the system is initialing, and a ModelGroup Class is generated after the
parsing work. Then that class is used within the system. Optimizing work
should be done on the model to reduce the rendering time in latter stage.
Therefore there is a need to optimize the structure in the parsing stage.
Although the time of parsing maybe longer, the overall time needed is shorten
as the ModelGroup structure is accessed repeatedly.

3D graphics
model

Graphics Model
Parser
(Parse once only)

ModelGroup

Centralized
Data Store

Graphics Engine

Game logic controller

Virtual Reality Fighter – Final Report

 - - 67 - -

ModelGroup

Model
(Transform (1))

Vertexes, Colour,
Normals, …

Material

Texture

Model
(Transform (2))

Model (Transform (1)x(3))

Solution
The optimizing work mainly bases on the studying of the algorithms used in
3D modeling. The VRML browsers using the OpenGL library usually parse the
file and record the structure in recursive way, since VRML is a tree-like
structure and OpenGL is a state machine. However, the performance is
lowered as many activation records are kept in the memory.

In our project, the data in VRML file is not directly apply to the OpenGL, but
being stored into the centralized data store, so that it is better to use iteration
rather than recursion to reduce the time for rendering.

Fig. 6.2 recursive tree structure in VRML is parsed into array of Model Class

When parsing a VRML file, each Transform Node is traversed and all
information under this node, including the texture, material, vertexes, colour,
normals, is recorded in a Model Class instance. If the Transform Node is a
nested one (i.e. there is another Transform Node which is the parent of this
Transform Node), the transformation matrix of the Model Class generated will
be the multiple of 2 transformation matrixes from the Transform Nodes. Finally
a ModelGroup Class, which contains a list of Model Classes, is generated to
represent a VRML file. This ModelGroup Class is stored in the centralized
data store. In this way, the recursive tree structure of VRML is converted into
array of model structure. Therefore, the time accessing the model is reduced
and less memory is required. As it is no need to create the complicated
nested structure, the parsing time is also reduced.

VRML file

Transform Node (1)

IndexFaceSet Node

Material Node

Texture Node

Shape Node

Appearance Node

Geometry Node

Transform Node (3)

Transform Node (2)

Virtual Reality Fighter – Final Report

 - - 68 - -

Evaluation
Below shows the time cost for generating the nested structure of model, as
well as the list structure of model, for a model in VRML file formed by about
20000 triangles.

The approach Time cost
Nested structure 3 min 40 sec
List structure 3 min 20 sec

6.3.4.2 Limited Support of VRML Tags
Problem
In this system, it is no need to have a complete VRML parser, since not all the
information in the VRML file is needed. As a result, only limited VRML tags
and structures are supported.

However, if too few tags and structures are handled in the system, then the
system is not able to display the required 3D model contained in the file, or
display in a different form. It will greatly reduce the flexibility of the system.
Hence we should strike the balance between the supporting tags and the
parsing time.

No matter how many tags and structures are being supported, it is important
to note that the parser should be implemented in the way that it does not get
run-time error when the VRML file containing the nodes that not being
handled in the system.

Solution
In VRML, the information belong to the Shape Node is the only visible objects.
The background, light source and fog information is ignored since they are
already defined in the program. The Transform Node is the parent of Shape
Node and it is responsible for storing the transformation needed when
displaying the objects specified in the Shape Node. Hence, only the
information under Transform Node is identified and retrieved. The other
Nodes, such as the Sensor Node, Viewing Node, Environment Node, are
simply ignored.

Virtual Reality Fighter – Final Report

 - - 69 - -

6.3.4.3 Serialized File
Problem
VRML file is actually text file. The data in the text file is stored in ASCII
characters. It is different from the data in memory which is in binary format.
Hence, time is needed to convert the data from ASCII to binary, and vice
versa.

Solution
The serialization method in CObject is adopted to generate binary format file
storing the data. The serialized file is actually memory dump, thus the data in
serialized file can be directly copied into memory and there is no conversion
time between ASCII and binary format. However, the serialized file is much
larger than the original ASCII format text file. Therefore this approach is only
used when the data in the file needed to be loaded frequently into the system.

6.3.5 Future Planning
6.3.5.1 Fault Tolerance VRML Parser
Currently, it is assumed that the VRML file imported in the system to have
certain constraints. However, a better method is that goes through all the data
in the file but ignores the information not satisfy the constraints. One way to
do so is to catch the exception during parsing, to avoid the error from causing
the failure of whole system.

6.3.5.2 Simplified VRML Parser
Currently, the VRML Parser utilizes the CyberVRML library which parses all
labels in the VRML file. It is a time consuming process and it is also
unnecessary. A better method is simply ignoring the labels unrelated to
graphics display, such as the interactive components.

6.3.5.3 Fighter Graphics Model Editor
There are some constraints for the VRML file for the fighter graphics model,
such as the maximum number of polygons, and also the shape of surface, so
that it can be rendered in a fast speed. Therefore an editor should be provided
to the users so that they can generate the VRML file satisfying the constraints.

Virtual Reality Fighter – Final Report

 - - 70 - -

6.3.5.4 “Multiple Transformation Nodes” Problem
In this project, the VRML file imported is parsed, and, as stated in the above,
each Transform Node is converted into a Model Class. Another way to do this
is to multiple the vertexes of the polygons in the model by the transformation
matrix. Then the Model Class should have identity transformation matrix
(means no transformation is needed) and also, all Transform Node in the
same VRML file can be converted into one Model Class. Hence less memory
is needed. As parsing is an off-cycle task, the parsing time increased is not
significant, comparing to the access time reduced of the Model Class during
rendering and transmission. However, it require a fault tolerance parser as
many entries of the VRML file can be in vertex base or in surface base, thus it
is error-prone to convert them all in one model.

6.4 Data Model Parser and Generator

6.4.1 Why Data Model in XML?
Markup Language
XML (eXtended Markup Language) is a type of markup language.

Markup language uses tags (or markup) to describe the status of the
document, such as the font size, the beginning of a paragraph, and also the
name of author. Sticky speaking, such information is not part of the document
content. However, the information is important for the maintenance and also
the processing (especially for the computer applications) of the document.

Markups can be classified into 2 types. Some markups indicate the
applications how to process them, such as indicating the browser or printer to
display in bold characters. Such markups are called procedural markups as
they actually activate a procedure to process that part of the documents.

However, the procedural markups are not flexible. If the appearance of the
documents needs to be changed, the whole document is also subjected to the
changes. Also, this method is error-prone and provides less portability. For
example, if the font specified is not available on a platform, an error is
produced.

Virtual Reality Fighter – Final Report

 - - 71 - -

On the other hand, markups can also be used to describe the structure of the
documents. These markups are called general identifiers. General identifiers
provided higher flexibility, as we can have different appearance for the
documents having same structure. The document can also be processed
differently, depends on the platforms; hence we can have higher portability
and more customization.

By using the general identifiers to describe a document, the appearance of
the document is separate from the content. This, in fact, is helpful to keep the
documents tidy and easier for human to read.

SGML, XML and HTML
SGML, XML and HTML are famous examples of markup language.

In fact, they are all simple text documents. The different is that, they utilize
tags (<></>) to store the information related to the document. Thus, the
documents comprise of characters as well as markups.

HTML enable user to use markups to label the document, and it is widely use
in WWW (World Wide Web). SGML is an industrial standard since 1970s, and
still being used today. Users are able to define character sets, entities,
markups, and also use them. A SGML documents can be dynamically
validated against a set of self-defined markups.

However, SGML is complicated, and the
developers often spend lots of effort in
understanding and developing the self-
defined markups. That is one of the
reasons why XML is being developed.
XML also enables users to define
markups, in a simpler ways than SGML.
Users can also validate XML documents
in run time. As XML is a new standard, it
can apply state-of-the-art technology,
such as object technology and also the
concept of namespace.

HTML

XML

SGML

Fig. 6.4 the relationship
between SGML, XML and
HTML

Virtual Reality Fighter – Final Report

 - - 72 - -

The relationship between the 3 markup languages is shown in the figure. A
valid HTML document is a valid XML document. A valid XML document is also
a valid SGML document. Moreover, the later one offers more features then
the former.

In general, XML is separated into 3 parts: the structure, content and
appearance. The structure defines the meaning of each of the markups as
well as the order and occurrence of them. The content part contains the data
need to be stored. The appearance part is responsible to translate the data
into the format suitable for screen display, and also translate into other type of
documents.

Fig. 6.5 the abilities of SGML, XML and HTML

The application of XML is mainly divided into 2 categories: visualization for
human and processing for programs.

6.4.2 Features of XML
Flexibility
XML provides flexibility, by leaving the right of defining markups to users. The
markups are defined in the DTD (Data Type Declaration, for compatibility with
SGML) or XML-schema. Hence, XML is a meta language, as it is possible to
use XML to define a set of language.

Modularization
An element means a pair of markup. In a model, two or more elements having
the same name should not belong to the same level of hierarchy to avoid
ambiguity. However, different models may have the same element name in
the same level which have completely different meaning. Error may be
caused in this way when a document applies more than one model for
different purpose (for example, a model is a composition of some other
models).

SGML XML HTML
Define character set
Define expressions
Define entities
Define markups
Use markups

Define entities
Define markups
Use markups Use markups

Virtual Reality Fighter – Final Report

 - - 73 - -

The concept of namespace is applied in XML, to avoid the misidentification of
the elements in different models having the same name in a document. Thus,
modularization can be done in XML document in order to suit different
purpose of applications, to provide higher extensibility.

Human Readable
Different from traditional programming method, XML documents need not be
translated or compiled into human non-readable binary code and then
processed by computers. The users can directly edit the document as the
structure of the document is preserved. There is no need to have compilation
before using it. It helps to reduce the debug and hence the development time.

Standard
XML 1.0 (Second Edition) is a W3C (World Wide Web Consortium)
recommendation since 2000. Following this standard, there are lots of
companion standards provided, such as XKMS (XML Key Management
Specification). Once you adopt XML in your application, you are able to utilize
the implementations of the companion standards for XML, which costs much
less time for development.

Dynamic Validation
It is possible to perform run-time checking for different structures of XML
documents, by using a specially designed application called validating parser.
The document follows the syntax of XML is called a valid XML document.
During validation, the document is validated against the DTD or XML-schema
correspondingly. If a valid XML document also fulfills the rules in the DTD or
schema, the document is a well-formatted XML document. Validating parsers
are often the entry point of XML supporting applications, as the developers
need to handle syntax errors themselves.

Portability
When general identifiers are used to describe a document, the document can
be processed on many platforms, thus higher portability.

Support from Different Platforms
Being a standard, there are many XML supporting applications available in
different platforms, such as validating parser (Xerces, MSXML), XSL
Translator (Xalan), and XML signature (IBM XML Security Suite)

Virtual Reality Fighter – Final Report

 - - 74 - -

Strong Type Language
An XML document should fulfill all the format specifications in the DTD or
schema; otherwise the validating parsers should raise error, according to the
XML language specification. It helps to reduce the errors in the document and
thus the performance of XML-supporting application can be better.

Tree-like Structure
The syntax of XML is defined by a set of EBNF (Extended Backus-Naur Form)
grammars of about 80 rules, thus has a tree-like structure. While EBNF
cannot be easily understood by human, it is easy for a computer application to
validate, parse it and also retrieve the information from the documents.

6.4.3 XML Parsing Method
Different from VRML parsing which needs to utilize custom library, there are
common APIs for getting the information in a XML file. They are DOM and
SAX. These 2 APIs actually focus on different objectives. There is a
comparison in the below to show that which approach is more suitable for this
system, and still, efficiency is the main concern.

DOM
DOM (Document Object Model) is an object-based API for parse a document.
Each component in XML document is considered as an object in DOM. When
a XML document is parsed using DOM, each of the elements is traversed and
a tree model is generated, according to the structure of the document. Then,
the applications can get the information, by traversing the tree model. Actually,
the tree model is same as the XML document in the perspective of the
applications.

<?xml version=”1.0”?>
<productlist>
<product price=”100.00”>XML Parser</product>
<product price=”150.00”>XML Generator</product>
</productlist>
Fig. 6.6 a XML document, pricelist.xml, storing the product information

Virtual Reality Fighter – Final Report

 - - 75 - -

Fig. 6.7 generating the object-based tree model from pricelist.xml

SAX
SAX (Simple API for XML) is an event-based API. The event here does not
mean the event from user interface. When a XML document is parsed by SAX,
an event is generated when the parser reach the beginning and ending of an
element, and even the characters. The parsing job finishes when the parser
reaches the ending of the root element. SAX will not preserve the information;
this job is the responsibility of the developers.

Fig. 6.8 the events generated from pricelist.xml

Comparison between DOM and SAX
Which approach is better?
There is no simple answer for this question. DOM and SAX actually focus on
different objectives.

When the developers use SAX, they can have more control on the parsing
process. It is also more efficient, as fewer operations are executed and less
memory is needed. DOM preserves all document information; therefore it is
possible to retrieve the information of the previous part even after the parser

productlist

product

productlist

product product

productlist productlist

product product

price price

element
(beginning)

element
(beginning) characters

…

<productlist><product price=”100.00”>XML Parser</product>

element
(ending)

Virtual Reality Fighter – Final Report

 - - 76 - -

has gone to latter part. SAX cannot do it, thus the developers have to record
the state of the document.

For many applications, XML processing is only one of the tasks. The major
role of the applications is to extract and further analysis the information in the
XML document. Most likely there is another data structure for the information,
for example, the information is expected to be stored in a database. In this
situation, the DOM tree structure is not suitable for the application, and if the
application utilizes DOM, it needs to manipulate 2 data structure which
actually contain the same information at the same time. There is a duplication
problem. SAX is a better solution in this situation, as it does not preserve the
information.

DOM can be used in document editing or browsing, since the information of
the documents is expected to be read repeatedly but not sequentially. Also,
the document updating is provided as a function of DOM.

 DOM SAX
Type of Interface Object-based Event-based

Object Model Created automatically Must be created by
application

Element Sequencing Preserved Ignored
Use of Memory Higher Lower
Speed of Initial Data
Retrieval Slower Faster

Stored Information Better for complex
structures Better for simple structures

Validation Optional Optional
Ability to Update XML
Document Yes (in memory) No

Fig. 6.9 characteristics of DOM and SAX

Virtual Reality Fighter – Final Report

 - - 77 - -

0
500

1000
1500
2000
2500
3000
3500

0
23

00
0

46
00

0
69

00
0

92
00

0

11
50

00

element count

tim
e

(m
s)

DOM
SAX

Fig. 6.10 performance of DOM and SAX

Approach adopted in this project
After comparing DOM with SAX, it is significant that DOM will keep all
information from the document into the memory, so the memory requirement
is higher. SAX does not preserve the information and it is expected that the
developers will store the information in some other means. Hence SAX
requires less memory.

In the system, the data model parser is used to retrieve the information from
the XML file and the model is then copied to the centralized data store.
However, we should reduce the load of the system by moving out the parser
module after reading the XML document. As DOM will generate a tree model
for the XML document, it is expected that the application will continue to
retrieve the information from the tree model generated. As a result, the DOM
component cannot be moved out since we have to access the model tree
using DOM interface. It can be seen that applying DOM does not suit the
purpose of our project: optimizing the system to have high performance.
Hence, SAX is used in the system to parse the document into the models.

6.4.4 XML generating method

Generate a XML document is just the reverse of parse a XML document. The
different is that it is needed to check for error during parsing but not
generating. It is because we can control what we write but not what we read.

Virtual Reality Fighter – Final Report

 - - 78 - -

DOM
DOM can be used in generating XML document. We can edit or generate the
tree model of the XML document, and then write the tree model into the file.

SAX
SAX cannot be used in generating XML document.

Custom Method
XML is only simple text document. Therefore the ordinary file writing method
can also be used to generate a XML file. This method is much simpler and
requires less memory, as it is no need to go through the DOM API. That is the
approach taken in this system.

6.4.5 Architecture
The fighter, missile and terrain are expected to be dynamically loaded in the
initialization step of the system. As there is no common model standard for
them, it is suggested defining models for storing the data. In this system the
models are defined in XML. When loading the XML file, the system utilizes
MSXML library to parse the file.

Data Model Parser
The XML Parser is able to read XML file in different models, by using different
Content Handler. A Content Handler specifies the task need to be done during
certain events generated by SAX.

The parser first read the file containing the fighter, missile, or terrain
information. Then the information in the file is translated into the model
corresponding to it in the system, via the content handler. Finally the model is
placed in the centralized data store for further reference of other modules in
the systems.

Virtual Reality Fighter – Final Report

 - - 79 - -

Fig. 6.11 parsing process of XML Parser

Data model Generator
The data model is a usual XML document, so it can be generated by using
text editors. However, it is not convenient to do so. The format of XML is well
defined. Therefore, it is easy to get syntax error if we generate it by text editor.
To provide flexibility, the users should be easy to generate those documents
storing the fighter, model or terrain.

As the format of data model is specific for this system, a data model generator
should be included in the system, since there is no a solution outside. A user-
friendly interface should be provided for the users to generate the models.

6.4.6 Lesson Learned

6.4.6.1 Non-Duplicate Element Names
When parsing a XML document utilizing SAX, each element in the document
generates an event. Since SAX will not store the state of the document, it is
possible to misidentify the element in different level of hierarchy but have the
same name. Besides using a state variable to store which is the current
element being parsed, we can also use different name for all the elements to
avoid the misidentification problem.

Fighter file

Fighter

Model

Fighter

Content

Handler

Missile

Content

Handler

Terrain

Content

Handler

Terrain file

Missile file

Terrain

Model

Missile

Model

Centralized

Data Store
Game logic controller

XML

Parser

Virtual Reality Fighter – Final Report

 - - 80 - -

6.4.6.2 Standard not Supported by Library
SAX level 2 is only be implemented in MSXML 4.0, which is not shipped with
Windows XP currently. You can only found MSXML 3.0 in Windows XP.
However, the dynamic validation function in SAX belongs to SAX level 2.

There are several possible ways to solve this problem.

• Shipping MSXML 4.0 together with the system
• Using MSXML 3.0 without dynamic validation for SAX
• Use dynamic validation for DOM, which is available in both MSXML 3.0

and 4.0. However, using DOM will loss the advantage of using SAX.
• Using other dynamic validating library for SAX implementation

It indicates that a new standard may not easily get supported.

6.4.7 Future Planning
6.4.7.1 Modularization of Model
Currently, the fighter model is expected to have certain constraints, such as
having one and only one type of load-out (or machine gun), the type the
missile corresponding to certain loading stations. However, real fighters are
very complex and having different equipments among the fighters. To be
more realistic, the concept of modularization can be applied. For example, a
fighter can be further divided into jet engine, wingspan, radar system, loading
system, load-out, etc. We can first model these components, and the fighter is
the superset of them. We can apply different model to the parts and a fighter
comprises of different model of the parts. This can also enhance the
reusability of models.

6.4.7.2 Binary XML
GMD-IPSI XQL engine implements PDOM in Java language. The persistent
DOM (PDOM) implements the full W3C-DOM API on indexed, binary XML
files. Documents are parsed once and stored in binary form, accessible to
DOM operations without the overhead of parsing them first. Cache
architecture additionally increases performance. It also fully implements the
XQL (XML Query Language). It demonstrates that converting a XML
document to binary format is feasible.

Virtual Reality Fighter – Final Report

 - - 81 - -

6.4.7.3 Integrated Model
An Integrated Model is a composition of different type of models. For instance,
we can have a single XML file about a fighter, containing the graphics model
(X3D), data model, and also a digital signature (XML Digital Signature) to
protect the XML file.

 X3D
X3D (Extensible 3D) extends the VRML97 format, which is expected to
be the next generation 3D standard. It defines the VRML format in XML
syntax. By utilizing XML technology, we can incorporate VRML into XML,
and having the advantages of XML stated above.

 Data Model

The data model stated above, containing the general information of the
fighter.

 XML Digital Signature

Digital Signature can be used to prove the source of the model and also
protect the copyright of the author. For example, to provide maximum
protection, a model having no valid digital signature can be considered as
invalid.

When all the models related the same object is stored in a single file, the
object is easily to be managed. It is because each XML file stands for a single,
independent object, rather than multiple files for an object which the files may
depend on each other.

Currently, the model in the files can only be imported from local drive. By
using the external entities in XML, it is possible to have Integrated Model
which only specifies the URI of the component models.
It is expected that the Integrated Model has a high extensibility, as each of the
models can be extended and developed separately. The Integrated Model
also has a high flexibility, since the model can be any composition of existing
or newly created XML model, by applying the idea of modularization.

However, we should also consider that there may not be implementation
about the newly developed XML model at the current time. For instance, X3D
is now still in drafting stage.

Virtual Reality Fighter – Final Report

 - - 82 - -

6.5 Advanced Topic

6.5.1 Extensibility of Data Models

The Data Model is highly extensible when it is defined by XML. By apply XSL
(eXtensible Stylesheet Language), we can easily transform XML document
into different structure of models.

XSL belongs to the appearance part of XML. It is also defined in XML. One of
the typical usages of it is visualizing the document, such as converting XML to
HTML for web publishing.

However the functionality of XSL is not restricted to visualization of XML
documents. We can extract only certain type of information in the document
and generate another document. Because of this property, XSL can be used
to extend the model.

Transformation of XML using XSL is completed by using XSLT processor
(XSL Transformation processor). One of the famous examples is Xalan of
Apache. It accepts a XML document and a XSL document specifying the
change in structure, and then generates the XML document in the specified
structure.

As mention above, a XML parser can be used to parse different structure of
XML document. Content Handlers define the rules of handling different events
in SAX. Therefore, we can parse different structure of XML documents by just
changing the Content Handler, but not the whole parser implementation.

Hence, we can easily extend our Data Model: by just using XSL to transform
between different models and applying different Content Handler for different
models.

Virtual Reality Fighter – Final Report

 - - 83 - -

Chapter 7 Future Trends and Possible
Improvements

According to the famous Mall Law of the computer hardware development,
the computational resource provided by hardware is expected to increase
rapidly. This increase will especially impact the networking part of the game,
since the network speed is expected to reach the same level as local storage.

Thus the design concern about network data flow will be lowered and the
emphasis will be put more on how to utilize the available computational power
of the servers and clients in the best manner. This will probably call for more
P2P or distributed applications, which heavily rely on network speed. With
improved network bandwidth, the messages can be sent more frequently and
the synchronization is not as important as before; while the type of message
may change from snap shot of client state into changes in client state.

Graphic process cards will also be improved and is possible to contain more
hardware-implemented functions, such as bump mapping, stencil and
accumulation buffering, and so on. Thus naturally more features on graphic
part are required by players.

Therefore, the quality of the graphics will be improved since more hardware
functions are available. However, with the improved graphics quality, the
render engine may require several special types of graphics card, which may
limit the use of the game on different computers. However, without more
sophisticated algorithms, the only solution is resolve to hardware. In addition
to this, more advanced algorithms can be implemented to replace the current
collision detection and terrain generation parts to make the speed and quality
better.

Virtual Reality Fighter – Final Report

 - - 84 - -

Chapter 8 Conclusion

With the given requirements, people resource and time, the Virtual Reality
Fighter gracefully satisfies all the basic requirements and has some additional
features, and is thus considered to be acceptable.

As the group members of VRF, we have spent large amount of time and
energy on this project. A series of architectures, paradigms, algorithms and
models are used, and our skills about design and programming are greatly
improved.

Last but not least, we want to give special thanks to the supervisors and tutors
of the project. It is because of their help that the project can be finished with
required functions and within given time.

Virtual Reality Fighter – Final Report

 - - 85 - -

Appendix
A1. Pseudo algorithm for terrain generation

Diamond-Square Algorithm

The algorithm is basically a mid-point displacement algorithm that is widely
used in fractal generation. The algorithm mainly consists of 2 important steps,
the Diamond Step and the Square Step.

The diamond step: Taking a square of four points, generate a random value at
the square midpoint, where the two diagonals meet. The midpoint value is
calculated by averaging the four corner values, plus a random amount. When
multiple squares are arranged in a gird diamonds are formed.

The square step: Taking each diamond of four points, generate a random
value at the center of the diamond. Calculate the midpoint value by averaging
the corner values, plus a random amount generated in the same range as
used for the diamond step. This will form squares again.

The data structure used to implement the algorithm is a 1D array which is
stimulating a 2D array structure. At the initial setup, as no data is in the array
and therefore there is no way for the algorithm to proceed. To take care of this,
in practice, some values will be “seeded” into the array at the position of the 4
corners, to act as initial data for the first pass diamond step.

Fig 4.1 shows the result of the first pass of the 2 steps:

a. The array initially seeded 4 values in the corners, in practice those 4
values will be the same.

b. This is the first diamond step. The values in the 4 corners are averaged,
plus a random value to give a new value to the center of the square.

c. This is the first square step. At this stage, the four diamonds formed in the
previous step are wrapped. Taking the 4 corners’ values of each diamond
and the center value is calculated.

Figure d and e shows the 2 steps in the second pass.

Virtual Reality Fighter – Final Report

 - - 86 - -

Notice that the first pass of running the algorithm yields 4 squares, the second
pass would end up with 16 squares. The number of squares generated is
equal to (2I)2, where I is the number of iterations through the recursive
subdivision routine.

Number of iteration controls how detailed will the resulted terrain be. Fig 4.2
and 4.3 illustrate the difference between terrain models of 2 commonly used
number of iteration values in our game.

Besides number of iteration, the random seed value is also a very important
attribute to control how the terrain model is formed. Fig 4.4 and 4.5
demonstrate the difference between terrain models of 2 random seed values.

Table 4.1 shows the information of the 4 sample terrain models.

 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5
Number of Iterations 8 7 9 9
Number of Grids 65536 16384 262144 262144
Number of Triangles 131072 32768 524288 524288
Random seed value 0 0 9999 0

Table 4.1 Information of terrain model Fig. 4.2, 4.3, 4.4 and 4.5

Virtual Reality Fighter – Final Report

 - - 87 - -

Virtual Reality Fighter – Final Report

 - - 88 - -

Virtual Reality Fighter – Final Report

 - - 89 - -

A2. Texture Generation

With the height map information resulted by running the Diamond-Square
algorithm, the texture generation is straightforward. In the implementation, the
function tries to group the height values into 3 groups, then artificially
assigning 3 different colors to those 3 groups. In the example, the higher
group is assigned to white, the middle group is assigned to grey and the lower
group is assigned to green. Fig 4.6 and 4.7 shows 2 different textures
generated by using height map resulted from using random seed values 0 and
9999.

At this stage textures created by the tool are very simple color blends, but
indeed provides a preliminary coloring for the terrain model. User can modify
the texture up to their preference and this simple texture can act as “visual”
height information.

Virtual Reality Fighter – Final Report

 - - 90 - -

A3 Terrain Culling Technique

Terrain culling is done by applying Bounding Sphere – View Frustum
detection mechanism. The basic idea is to partition the grid map into a
number of larger grids, in practice size of 16 x 16, 8 x 8 or 4 x 4 grid sizes are
used, and with each of the larger grid surrounded by a bounding sphere. With
the four normal vectors of the view frustum are ready, it is very easy to
determine whether a particular sphere is inside or outside the view frustum.
Fig 4.8 shows the general idea of the detection:

If d < r then the sphere is inside the view frustum.

If d = r then the sphere is touching the outer side of the view frustum.

If d > r then the sphere is completely outside the view frustum.

And we can obtain d by v n. Hence if v n < r the sphere is inside the view
frustum and the grid bounded by that sphere should be rendered, otherwise
the grid is not considered.

Virtual Reality Fighter – Final Report

 - - 91 - -

This method indeed reduces the number of polygons need to be considered
by the engine, in general the number of spheres used to bound the whole
terrain are 1024 – 4096. With this huge amount of spheres to be checked in
every frame it is still not very efficient.

One method to use is binary search tree. Fig 4.9 shows how the tree is built.
Basically instead of checking the spheres directly, we recursively group 2
adjacent spheres together and add a new and bigger bounding sphere to
bound this sphere group. By doing so the searching speed will be reduced
from O(n) to O(lg(n)).

Virtual Reality Fighter – Final Report

 - - 92 - -

A4 Universal Message Scheme

Critical Message

Data SERVER_TIME_REQ SERVER_TIME_ACK PLAYER_ID_REQ PLAYER_ID_AC

K
1 Sequence No Sequence No Sequence No Sequence No
2 Message Type Message Type Message Type Message Type
3 Fighter ID
4 Fighter Type
5
6
7 Fighter

Position(x)
8 Fighter

Position(y)
9 Fighter

Position(z)
10 Fighter Head (x)
11 Fighter Head (y)
12 Fighter Head (z)
13 Fighter Up (x)
14 Fighter Up (y)
15 Fighter Up (z)
16
17
18
19 TimeStamp (second) TimeStamp (second) TimeStamp

(second)
TimeStamp
(second)

20 TimeStamp
(millisecond)

TimeStamp
(millisecond)

TimeStamp
(millisecond)

TimeStamp
(millisecond)

Data SYNC_DATA_RE

Q
SYNC_DATA_ACK START_GAME_MSG FIRE_MISSILE_R

EQ
1 Sequence No Sequence No Sequence No Sequence No
2 Message Type Message Type Message Type Message Type
3 Fighter ID Fighter ID Fighter ID Missile ID
4 Fighter Type Missile Type
5 Target Fighter ID
6 Partition ID
7 Object Position(x) Missile Position(x)
8 Object Position(y) Missile Position(y)
9 Object Position(z) Missile Position(z)
10 Object Head (x) Missile Up(x)
11 Object Head (y) Missile Up(y)
12 Object Head (z) Missile Up(z)
13 Object Up (x) Missile Head(x)
14 Object Up (y) Missile Head(y)

Virtual Reality Fighter – Final Report

 - - 93 - -

15 Object Up (z) Missile Head(z)
16 Object Type
17
18
19 TimeStamp

(second)
TimeStamp
(second)

TimeStamp (second) TimeStamp
(second)

20 TimeStamp
(millisecond)

TimeStamp
(millisecond)

TimeStamp
(millisecond)

TimeStamp
(millisecond)

Data FIRE_LASER_REQ CLIENT_EXIT_REQ CLIENT_EXIT_ACK
1 Sequence No Sequence No Sequence No
2 Message Type Message Type Message Type
3 Fighter ID Fighter ID Fighter ID
4 Exit Code
5
6
7 Laser Position(x)
8 Laser Position(y)
9 Laser Position(z)
10 Laser Up(x)
11 Laser Up(y)
12 Laser Up(z)
13 Laser Head(x)
14 Laser Head(y)
15 Laser Head(z)
16
17
18
19 TimeStamp (second) TimeStamp (second) TimeStamp (second)
20 TimeStamp (millisecond) TimeStamp (millisecond) TimeStamp (millisecond)

Data CHANGE_PARTITION_MSG

(Inter-server)
CHANGE_PARTITION_MSG
(Clients)

GAME_END_MSG

1 Sequence No Sequence No Sequence No
2 Message Type Message Type Message Type
3 Fighter ID Fighter ID
4 Fighter Type New Server ID
5 Player Name
6
7 Fighter Position(x)
8 Fighter Position(y)
9 Fighter Position(z)
10 Fighter Up (x)
11 Fighter Up (y)
12 Fighter Up (z)
13 Fighter Head (x)
14 Fighter Head (y)
15 Fighter Head (z)
16 Fighter HP

Virtual Reality Fighter – Final Report

 - - 94 - -

17 Fighter Fuel
18 Missile Remain
19 TimeStamp (second) TimeStamp (second) TimeStamp (second)
20 TimeStamp (millisecond) TimeStamp (millisecond) TimeStamp

(millisecond)

Non-Critical Message

Data UPDATE_FIGHTER_STATUS UPDATE_MISSILE_STATUS
1 Sequence No Sequence No
2 Message Type Message Type
3 Fighter ID Missile ID
4 Partition ID Partition ID
5 HP Target Fighter ID
6 Fuel
7 Fighter Position(x) Missile Position(x)
8 Fighter Position(y) Missile Position(y)
9 Fighter Position(z) Missile Position(z)
10 Fighter Up (x) Missile Up(x)
11 Fighter Up (y) Missile Up(y)
12 Fighter Up (z) Missile Up(z)
13 Fighter Head (x) Missile Head(x)
14 Fighter Head (y) Missile Head(y)
15 Fighter Head (z) Missile Head(z)
16
17
18
19 TimeStamp (second) TimeStamp (second)
20 TimeStamp (millisecond) TimeStamp (millisecond)

Virtual Reality Fighter – Final Report

 - - 95 - -

References
Web Site
An introduction to octree
http://www.flipcode.com/tutorials/tut_octrees.htm

Apache XML Project (Xerces, Xalan)
http://xml.apache.org

CyberVRML
http://www.cybergarage.org

Document Object Model (DOM)
http://www.w3.org/DOM

Extensible Markup Language (XML) 1.0 (Second Edition)
http://www.w3.org/TR/REC-xml

GMD-IPSI XQL Engine
http://xml.darmstadt.gmd.de/xql

Internet-Based Virtual Environments
http://vehand.engr.ucf.edu/handbook/Chapters/Chapter19/Chapter19.html

Load Balancing Schemes for Distributed Real-Time Interactive Virtual World
Simulations
http://etd.uwaterloo.ca/etd/ijcunnin2000.pdf

Management of Networked Virtual Environments
http://cs.ulb.ac.be/publications/MT-02-01.pdf

MSXML
http://msdn.microsoft.com/xml

Octree tutorial
http://www.gametutorials.com/Tutorials/OpenGL/Octree.htm

Virtual Reality Fighter – Final Report

 - - 96 - -

Proksim Software Inc. (Multiplayer real time game architecture)
http://www.gdconf.com/archives/proceedings/2000/Proksim.doc

Simple API for XML (SAX)
http://www.saxproject.org

Virtual Reality and Model Building
http://www.cv.iit.nrc.ca/~cs410/downloads/netves.ppt

VRML97 Specification
http://www.web3d.org/Specifications/VRML97

Web 3D Consortium
http://www.web3d.org

World Wide Web Consortium (W3C)
http://www.w3.org

X3D
http://www.web3d.org/x3d

Virtual Reality Fighter – Final Report

 - - 97 - -

Papers

http://www.gamers.org/dEngine/quake/QDP/qnp.html

http://www.gamers.org/dEngine/quake/info/techinfo.091

http://www.gamasutra.com/features/19990903/lincroft_01.htm

http://www.gamasutra.com/features/19970801/ng.htm

A Distributed Multiplayer Game Server System
Eric Cronin Burton Filstrup Anthony Kurc
Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, MI 48109-2122
fecronin,bfilstru,tkurcg@eecs.umich.edu
May 4, 2001

Adaptive Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtual Environments
Thomas A. Funkhouser and Carlo H. S´ equin
University of California at Berkeleyz

