On Managing Execution Environments for Utility
Computing

Roy S.C. Ho, David C.M. Lee, Daniel H.F. Hung, Cho-Li Wang, and Francis C.M. Lau

Department of Computer Science
The University of Hong Kong, Hong Kong

Email: {scho,cmlee,hfhung, clwang, femlau} @cs. hku.hk

ABSTRACT

The main goal of utility computing is to offer computing
resources on-demand. With this paradigm, applications
could be dispatched to remote platforms for execution. A
fundamental issue is whether the ezecution environments
(EEs) in remote platforms fit the requirements of the user
applications. Current approaches such as service-oriented
grid middleware may not always be able to provide the
EEs that best meet the requirements of various applica-
tions. In this paper, we (1) propose a software framework
for managing EEs over a network; and (2) present a ref-
erence implementation of the framework, called SLIM, for
constructing Linux-based EEs. In contrast to the tradi-
tional network booting method, SLIM opts for optimal
file sharing for individual directories according to their
access patterns, which shortens the construction time of
EEs and improves their run-time performance. Besides, an
in-memory execution mode is supported which establishes
customized EEs in compute nodes without affecting the
OS/data stored in the permanent storage. Experimental
results demonstrate the efficiency of SLIM in a network
involving 272 machines.

Categories and Subject Descriptors
C.5.5 [Computer System Implementation]: Servers;
D.4.m [Operating Systems]: Miscellaneous

General Terms

Management, Design, Performance, Experimentation

Keywords
Utility computing, execution environments, system ad-
ministration, network booting, grid computing

1. INTRODUCTION

Advances in commodity networking and computing tech-
nologies have made possible the sharing of a wealth of

computing resources among users regardless of their phys-
ical locations. The development of grid middleware such
as the Globus Toolkit [19] represents a major step forward
in that possibility by introducing standard protocols and
semantics for resource access. The current trend is towards
computing resources as utility, where computing resources
can be offered or obtained on-demand. The utility com-
puting paradigm features cost-effectiveness, user’s conve-
nience, and extensibility of user applications and comput-
ing platforms.

While current R&D efforts have been focusing on how to
aggregate (e.g., [21][15][4][23][24]) and make use of (e.g.,
[19][20][1]) distributed computing resources, relatively lit-
tle attention is paid to the fact that utility computing es-
sentially decouples the computing logics (i.e., the applica-
tions) from the computing platforms. This decoupling in-
troduces a potential mismatch between the configurations
of the platforms and the requirements of the applications,
which could lead to application failures (incompatible bi-
naries), suboptimal performance (lack of native supports
for performance optimization), and users’ inconveniences
(they need to learn the usage of the new environments and
re-configure/engineer their applications). Therefore, an
important issue with utility computing is how to provide
the customized ezecution environments (EEs) for different
applications.

Traditionally, multiple EEs are installed in different disk
partitions in a computer. This approach to managing EEs
is costly. The resultant cost is a compound of: the number
of machines to be managed, the number of EEs, and the
complexity of management tasks associating with each EE
(e.g., OS/software installation, configuration, and update;
data backup, etc.). Another approach to EE management
is network booting (e.g., [2]). It generally requires the
entire root directory to be mounted through a network file
system, which often results in poor run-time performance
as some files are frequently updated/accessed; retrieving
them through the network is inefficient.

We address the problems of managing EEs for utility com-
puting. Specifically, we propose a framework for a network
service to be used for managing Unix-like EEs, and con-



structing them in distributed platforms. The target dis-
tributed platforms include the tightly-coupled ones (clus-
ters), the loosely-connected (home/desktop computers),
and the hybrid (“commodity grids” consisting of distant
clusters). We also present a reference implementation of
the framework, called SLIM (Single Linux Image Manage-
ment) [7], which can efficiently disseminate the Linux ker-
nel to distributed computers upon system boot-ups. Cus-
tomized EEs which include shared libraries and user data
are made available to the remote platforms via discrimina-
tive file sharing mechanisms. We evaluate the performance
of SLIM on a network involving 272 PCs. In addition,
we provide preliminary results of using SLIM on broad-
band networks, which indicate the feasibility of construct-
ing utility computing platforms in a pervasive fashion.

The rest of this paper is organized as follows. Section 2
outlines the related work. Section 3 describes the design
objectives and system architecture of the software frame-
work. Section 4 presents SLIM. Case studies and some
experimental results are given in Sections 5 and 6, respec-
tively. We conclude the paper in Section 7.

2. RELATED WORK

There is a large body of literature related to resource
sharing in distributed computers. We classify them into
four main categories: grid middleware, job schedulers,
application-specific solutions, and run-time support.

Grid computing has become a popular research topic in
recent years. Most research efforts have been focusing on
grid middleware; examples include the Globus Toolkit [19],
Legion [21], Condor-G [20], and UNICORE [15]. While
these middleware provide convenient mechanisms for re-
source sharing and the needed security support, they de-
mand the applications to be either developed with a spe-
cial library, or executed in application/service containers.
Therefore, this approach does not seem to be ideal for
most legacy applications due to the required porting ef-
fort. Furthermore, some service-oriented grid middleware
such as the Globus Toolkit might not be suitable for tra-
ditional HPC applications due to the completely different
programming paradigms. It is indeed desirable to allow an
application to harness remote computing resources with-
out any modification.

Job schedulers (e.g., [4], [23], [24], etc.) have been a widely
adopted approach to aggregating and sharing distributed
resources. Although a job scheduler can dispatch an appli-
cation to a platform that supports the desired EE, the type
of applications which can utilize the platform is still con-
fined by the existing EEs installed in the platforms; sup-
porting new types of applications would require tedious
system administration (e.g., OS/software re-installation,
configuration, etc.).

There have also been a number of application-specific solu-
tions proposed by the industry such as the the Data Center
Markup Language (DCML) [1]. These solutions meet well
the needs of specific forms of resource sharing (e.g., ac-
cess to databases, etc.); they however do not provide the

needed flexibility for supporting the existing general ap-
plications. Run-time supports such as service provisioning
[22][18], run-time adaption [17], and stub generation (e.g.,
[16]) fail to provide a transparent support; modification of
existing applications is therefore needed.

To conclude, current research appears to fall short of effi-
ciently providing a most suitable EE that an application
intends to run on. The result is user’s inconvenience which
in turns limits the adoption. In our research, we aim to
provide a better solution to this problem.

3. SOFTWARE FRAMEWORK

In this section, we present the design objectives and sys-
tem architecture of an EE management service whose func-
tion is to disseminate the needed EEs to networked ma-
chines and to construct them on-demand, according to the
requirements of the target applications. The goal is to fa-
cilitate resource sharing in utility computing environments
by bridging the gap between the application demands and
the configuration of the computing platforms.

3.1 Design Objectives
The framework of the EE management service aims to
fulfill the following objectives.

Convenient system administration. Common man-
agement tasks associating with a particular EE include
installation, configuration, software upgrade/update, and
backup. If these tasks have to be repeated for multiple
EEs in a large number of machines (which might even
be geographically distributed, such as in a grid), the in-
duced cost and effort could well offset the benefit of shar-
ing the computing resources. Therefore, EEs should be
centrally managed; the configurations required in the in-
dividual compute nodes should be performed only once
and kept simple.

Efficient EE construction. A running machine should
only need to reboot in order to obtain a specific EE from
the service. Furthermore, the EEs should be quickly con-
structed in order to shorten the delay in switching from
one EE to another. To this end, the framework should
accommodate different implementation strategies for per-
formance optimization in various network/system config-
urations.

Complete transparency. The network service should
be transparent to the users and applications, i.e., no mod-
ification of the applications is needed. Furthermore, users
should not notice the nature of a platform. For exam-
ple, they should be able to utilize an ad-hoc computing
platform consisting of idle computers as if they were using
dedicated cluster computers.

Platform/network neutrality. The design should aim
at a generic service which imposes no restriction on the
platforms and network interconnects; and is able to cater
to different types of platform ranging from dedicated sys-
tems serving compute-intensive jobs to home computers
having idle cycles to share.



Dl >

(' EEsare disseminated via the network |
I

]

j
' Network interconnect
i

I
— — || = !
— — — [
' ! ! @ @ @ @
I:l l:l l:l Compute nodes with different
EE Management . configurations and applications
Seri\?ce Replicated service instances (i.e., various EE specifications)

Figure 1: EE Management Service and Compute
Nodes

Client components
running at compute nodes

EE management
service components

machine ID

Network configuration
module

I

Network configuration
service

network parameters

query
EE service locator Request redirection
location of EE service module
request : i
Network booting b File service
module
¢ boot loader & kernel EE profiler
File synchronization ( )
module

file synchronization

Figure 2: Client and Server Components

In-memory execution. Most existing compute nodes
are installed with a primary OS. Our framework intends
to support an optional in-memory execution mode which
establishes the EEs entirely in the physical memory. This
feature facilitates access to idle computers as resources for
utility computing.

3.2 System Architecture

In our framework, an EE is essentially a ready-to-run OS
image including the shared libraries/utilities needed by
end users’ applications. The client/server paradigm is
adopted in designing the EE management service, which
is depicted in Figure 1. As shown in the figure, all EEs
are stored in and managed by an EE management server,
while the compute nodes would obtain the EEs from the
server on-demand.

The framework comprises several client and server com-
ponents. The client components executing in the compute
nodes include (1) a network configuration module, (2) an
EE service locater, (3) a network booting module, and (4)
a file synchronization module. The server components,
which constitute the EE management service, include (1)
a network configuration service, (2) a request redirection
module, (3) a file service, and (4) an EE profiler.

Figure 2 illustrates the interactions between these com-
ponents. When a compute node boots up, the network
configuration module sends or broadcasts a machine ID
(which uniquely identifies that machine) to a network con-
figuration service for obtaining the network configuration

parameters such as an IP address. Then, the EE service
locater sends a query to the request redirection module
to find out the location of the EE dissemination service.
Based on the originating address of the query (i.e., the
identity and location of the compute node) and the current
load of each replicated dissemination service, the request
redirection module returns the network address of the best
available dissemination service to the compute node.

At this point, the compute node starts to retrieve the EE
from the file service. The file service relies on the EE
profiler to identify the specification of each EE to be dis-
seminated. The profiler keeps track of (1) a list of EEs
(and a list of directories for each EE) being managed; (2)
the file synchronization specification, which specifies how
the individual directories are disseminated to the compute
nodes (e.g., through NFS, or copy directly); (3) a list of
hardware profiles and drivers for different compute nodes;
and (4) a table which maps the nodes’ IP addresses to the
corresponding hardware profiles and the default EEs to be
disseminated. These lists and tables are stored in the ma-
chine that hosts the file service. They are prepared by the
system administrators, and are retrieved when a compute
node requests an EE from the EE management service.

The dissemination process begins at this point: the net-
work booting module at the client side obtains a boot
loader from the file service, which is for the user to opt
for booting from the local OS’es or from one of the kernels
provided through the network. It should be noted that the
boot loader is in fact optional and is only used for directly
interacting with users (i.e., not for compute servers). If the
machine is configured to skip the boot loader or the user
opts to boot from network, the network booting module
would retrieve the default or chosen kernel from the file
service and boot with it.

When the booting process finishes, the file synchronization
module will obtain the file synchronization specification,
which specifies how the individual directories of the EE
are made available from the central storage server(s) to
the compute node. For example, files that are subject
to modifications should be copied locally for better per-
formance, while those files that are rarely retrieved could
be shared via a network file system. The construction of
the EE would finish after the file synchronization mod-
ule performs the needed file transfers and establishes the
connections to the network-shared volumes.

4. SLIM: SINGLE LINUX IMAGE MAN-
AGEMENT

We present a reference implementation of the EE manage-
ment service framework called SLIM, a network service
to be used for managing and disseminating Linux-based
EEs to distributed PC systems. SLIM offers the following
unique features.

e Manual installation of the Linux OS in individual
PCs is completely avoided. SLIM instantly turns a
PC into a Linux workstation through the network. It



Distant LANs and systems
WAN
switch

Home computers/
mobile laptops

Replicated SLIM servers

Local AreaNetwork

Cluster systems

— — — —
— — — —
1 1 1 1

Replicated servers for load balancing and availability

Figure 3: Typical SLIM Deployment Scenarios

does not affect or depend on any OS’es pre-installed
in the hard disk

e Fast system recovery and backup. Compute nodes
do not hold important user data; system adminis-
trators only need to perform backup at the central
SLIM servers.

e SLIM does not impose any restriction on the Linux
OS, which could be tailored to meet the requirements
of different applications and deployment scenarios.
It does not require any modification of the user ap-
plications, either.

Figure 3 illustrates the typical deployment scenarios of
SLIM. As shown in the figure, SLIM is designed to serve
both the machines residing in the same LAN and those
that are connecting to SLIM via the Internet and broad-
band networks. In essence, all computing resources on
these networks can be utilized on-demand with the EEs
being managed and distributed by the SLIM service.

4.1 System Overview

SLIM leverages legacy firmware/software supports for per-
forming network configuration at and disseminating the
EEs to remote compute nodes. These supports include the
pre-boot execution environment (PXE) [5], dynamic host
configuration protocol (DHCP) [10], trivial file transfer
protocol (TFTP) [6], rsync [14], and network file system
(NFS) [3]. Apart from all these, all software modules are
merely a collection of shell scripts, which indicates the sim-
plicity and portability of the EE management framework
and the SLIM prototype. The implementation strategies
of SLIM for LAN are summarized in Table 1.

There are three system processes running at the server side
which collectively provide the SLIM service: the DHCP
server sends the network configuration parameters (e.g.,

Table 1: Implementation Strategies of SLIM on
LAN

| Operation | Strategy |
Network configuration | DHCP
Locating EE service location given by DHCP
Network booting PXE/TFTP
File synchronization rsync/NFS

IP addresses, etc.) and the IP address of the TF'TP server
to the compute nodes; the TFTP server delivers the Linux
kernel and a custom initial ramdisk (initrd) to the nodes;
the NF'S server hosts the pre-installed Linux system im-
ages for different EEs. While these processes could execute
in a single server machine in a small deployment, they are
actually independent of each others and therefore could
be distributed (and/or replicated) in multiple machines
for higher performance and scalability.

We aim at minimizing the management effort on the com-
pute node side. In SLIM, this is achieved by employing
PXE as the enabling mechanism for network booting. Sys-
tem administrators will need only to (1) enable the PXE
feature in the basic input/output system (BIOS) of a PC,
(2) connect the PC to the physical network which hosts
the SLIM service, and (3) turn on the power to start boot-
ing with PXE. When an administrator wishes to launch
another EE, he needs only to map the compute node’s IP
address to a different EE in the SLIM server, reboot the
node and repeat the booting process.

Figure 4 gives an overview on the process of constructing
an EE in a compute node, which is discussed in details in
the following sections.

4.2 Network Configuration and Booting
When a PC in a SLIM network is turned on, it would first
perform the power on self test and initialize the hardware.
After that, the PXE routine stored in the firmware will ob-
tain an IP address and a bootstrap program through the
network. This operates as follows. First, the PXE module
broadcasts a DHCP Discover message over the network. If
that node is found eligible to obtain an EE, the DHCP
server of the SLIM service would reply to the node with a
DHCP Offer message, which includes the IP address being
“leased” to that node, and the IP address of the SLIM
TFTP server. Upon receipt of the IP addresses, the node
would connect to the TF'TP server to retrieve the network
bootstrap program, which is called pxelinux. The pur-
pose of pxelinux is to download the Linux kernel and the
initrd from the TFTP server. The initrd is basically an
image of a “mini-root” file system, which is compressed as
an archive for efficient transfer. pxelinux, after receiving
the kernel and initrd, would uncompress initrd and load
the image together with the kernel into the physical mem-
ory, and then start the booting process which performs
the following tasks.

1. Initialize the hardware and load the corresponding
driver modules according to the hardware profile of



Compute node SLIM server components

PXE DHCP server
O DHCP request _
O Compute node'sand TFTP -
server's | P addresses
TFTP server
O Download request of \
the network bootstrap program
O pxelinux downloaded —
pxelinux
O Download request of
the kernel and initrd \
O Kernel and initrd downloaded %
|
kernel booting
|
initrd NFS server
O Replicatefiles that are subject T
to change to alocal storage /
|
O "Mount" requests for the \
other directories /

Figure 4: Process of EE Construction

that compute node

2. Mount the root directory of the disseminated EE
from the NF'S server for file synchronization

3. Copy files to a local storage and mount the shared
NFS volumes according to the file synchronization
specification (more on this in the next section)

4. Switch to the file system on the local storage as the
root file system

5. Start the init program to carry out normal system
initialization process

4.3 File Synchronization

The file synchronization process is performed in two stages:
(1) copy the system files that are subject to modifications
to a local storage, and (2) mount the other directories
through NFS. The rationale of these arrangements is as
below.

In general, there are two ways to retrieve the OS image
from a central file server. First is to copy the files from
the server to local storage; second to access them through
a network file system such as the NFS. Deciding which ap-
proach is better is nontrivial, which is in fact a trade-off
between the booting time and the run-time performance:
it takes time to copy a file during the booting process,
but once a file is stored locally, subsequent accesses (espe-
cially updates) will be faster. In order to achieve a good
balance, we have experimented with various possibilities

in synchronizing files, and have come up with the following
two experiences.

NFS optimization. We found that the configuration
options of the NFS affect I/O performance substantially.
This phenomenon actually stems from the fact that most
files are read-only in an OS image. In a newly installed Fe-
dora Core 1 image [11], for example, 86% of files and 96.3%
of bytes are read-only during run-time (Table 2). Never-
theless, the default configuration options of NFS target at
read/write access which is inefficient. The maintenance of
file and meta-data consistency induces much unnecessary
network traffic and thus decreases performance. In order
to address this issue, we set the following options in the
NFS configuration file for each shared EE: “ro”, which
specifies a shared directory as read-only; “nolock”, which
disables file locking; and “noatime”, which avoids updat-
ing the file access time stamps. In addition, the “actimeo”
value is greatly increased, which determines the life time
of files being cached in an NFS clients. We found that
these changes do improve performance considerably.

Discriminative file sharing mechanisms. We observed
that the booting time increases substantially with the num-
ber of files to be copied. This is caused by the round-trip
latencies during file copies and the network congestion at
the central NFS server. Therefore, copying most files of
an entire OS image (whose size is in the order of GB for
modern Linux distributions) is impractical. However, fre-
quently updating files through NFS would affect run-time
performance. In order to tackle these issues, SLIM adopts
a discriminative approach to file sharing, which allows ad-
ministrators to select the optimal file sharing mechanisms
according to the access pattern of individual directories.
For example, the default file sharing strategy in the cur-
rent SLIM prototype leaves all read-only directories in the
NF'S server. Besides, all user data (i.e., their home directo-
ries) are also shared via NFS so that users can access their
data from any machines. To avoid file updates through
the NF'S, SLIM copies all system files which are subject
to modifications to the local storage of compute nodes.
These strategies could be customized according to the spe-
cific needs of applications. We believe these arrangements
do achieve a good trade-off between the conflicting goals
of minimizing booting time and optimizing the run-time
performance. In fact, a later version of SLIM has been
managing several HPC clusters since 2002 and most users
have not noticed significant performance degrade caused
by the NF'S activity.

4.4 Options for File Copy

The files copied from the SLIM server have to be stored
locally. SLIM supports three options for file copy: (1) full-
copy to RAM; (2) full-copy to hard disk; and (3) copy-if-
needed.

Full-copy to RAM. As shown in Table 2, the amount
of files to be copied (i.e., the “read/write” ones) is rela-
tively small (around tens of megabytes). Considering that
modern PC systems are often equipped with 512 MB or
even gigabytes of physical memory, it is feasible to copy all



Table 2: Access Pattern of the Fedora Core 1 Image

Directory | Read/write | Number of files (%) | Size in MB (%) |

/bin read-only 98 (0.0) 4.6 (0.2)
/boot read-only 37 (0.0) 4.6 (0.2)
/dev read/write | 18704 (10.8) 0.4 (0.0)
/etc read/write | 4122 (2.4) 25.0 (1)
/1ib read-only 3920 (2.3) 76.9 (3.2)
/sbin read-only 274 (0.2)) 12.2 (0.5)
/usr read-only 144202 (83.5) 2196.3 (92.1)
/var read/write | 1410 (0.8) 65.0 (2.7)

these files to the memory instead of the hard disk. SLIM
supports this feature by creating a ramdisk in the phys-
ical memory. A complete in-memory execution has two
advantages. First, it avoids the need to plan ahead for
the hard disk usage, which is especially desirable in utility
computing environments where a machine might execute
different EEs over time. Second, it preserves the OS/user
data originally stored in the permanent storage of a com-
pute node.

Full-copy to hard disk. Files can be stored in hard disks
if the memory space is scarce. In this case, a spare hard
disk partition is assumed to be in place for file storage.

Copy-if-needed. This is a variant of the previous op-
tion in which the files to be copied (or some of them)
have already been stored in the hard disk. In this case,
SLIM would compare the files stored in the compute node
with that in the central server, and would only copy those
that are new or have been updated. For the updated files,
SLIM would only transfer the differences (i.e., the “diff”)
between the old and the new versions so as to speed up the
dissemination process. This option offers better perfor-
mance than the others as network communication would
mainly involve version checking instead of the whole set
of files. In SLIM, these features are implemented by using
the rsync protocol.

4.5 Optimization Techniques for WAN
Although SLIM has been evolved in LAN environments,
we aim to extend its service for the machines scattered over
the Internet. Specifically, we adopt two techniques for op-
timizing the performance in disseminating EEs through a
WAN. First, the NFS server is tuned to operate with the
TCP protocol instead of UDP in order to tackle the fre-
quent packet loss in WAN. This is because the exponential
backoff for TCP retransmission handles packet loss effi-
ciently, which makes TCP a better choice over UDP. Be-
sides, a packet loss in UDP implies the whole NFS/RPC
request has to be retransmitted. TCP, by contrast, only
needs to retransmit that lost packet.

Second, in order to minimize the long latency incurred
during file transfers and version checking, all files that
need to be copied are packed into a compressed archive
file. This strategy effectively decreases the number of file
queries and thus the booting time.

5. CASE STUDIES

In this section, we describe how SLIM is deployed in our
department. We also outline some interesting applications
that might benefit from a network service like SLIM.

5.1 SLIM in HKU CS

SLIM has been managing the EEs for 600+ machines since
2002 in the Department of Computer Science, HKU. Like
other CS departments in most academic institutions, there
is a wide range of machines in our department. Most of
them are ordinary PC systems, which are mainly used for
three types of applications: (1) HPC clusters, (2) teaching,
and (3) students’ desktops.

HPC clusters. We have four PC clusters (3504 nodes)
having different hardware configurations, which range from
the Pentium II type to Pentium IV, and a few AMD sym-
metric multiprocessors (SMPs). We found that managing
the EEs for these computers for different users could be
nontrivial. Specifically, some systems research projects
demand different versions of Linux/GNU libraries/JVMs
(Java Virtual Machines); our collaborators in the Asia-
Pacific Grid [8], China National Grid [9], and Hong Kong
Grid [13] occasionally request to run experiments and de-
mos in our cluster nodes—each of these scenarios might
require a specific EE. In the past, we divided the clus-
ter nodes into multiple partitions in order to satisfy the
different needs, but the main problems are the poor uti-
lization of some partitions and the difficulty in resizing the
partitions to satisfy the changing demands (resizing usu-
ally implies re-installation/customization of EEs). SLIM
solves the problem very well as any EE can be dissemi-
nated on-demand according to the users’ needs and the
hardware specifications of the target platforms.

Teaching. The computers used for teaching encounter a
similar problem. For instance, the requirement of the OS
course differs substantially from that of the real-time sys-
tems course. In these cases, SLIM efficiently constructs
the needed EEs right before the laboratory sessions ac-
cording to the requirements given by the instructors.

Students’ desktops. These computers are generally in-
stalled with the Windows OS. However, some students
might need to use the Linux OS as a programming envi-
ronment or “X-terminal” to our Solaris servers. In these
cases, SLIM could deliver the EEs which execute entirely
in the physical memory. Furthermore, since most of these



computers are idle at nights, they could be restarted with
the Linux OS for HPC jobs submitted by the users in our
department and the other faculties.

5.2 Potential Applications

We outline some potential applications of SLIM. First,
home computers have a very good potential in forming
powerful platforms for massive computations as they gen-
erally have a lot of idle resources. SLIM could facilitate
this computing paradigm by disseminating the needed EEs
over the broadband networks. Advantages aside, however,
disseminating EEs over the Internet imposes new chal-
lenges as the performance of typical residential broadband
networks is much lower than that of the LAN. We have
started to address this issue and obtained some prelimi-
nary results, which are presented in the next section.

Second, SLIM could potentially support utility computing
services for the society. For instance, many small/medium
enterprises (SMEs) would like to adopt the Linux OS and
the open-source software for cost-effectiveness. However,
most of them do not have in-house technical support for
Linux. In this connection, the utility computing service
model finds its place by centralizing the software mainte-
nance and/or providing computing resources on-demand.
The service could possibly be offered by the Internet ser-
vice providers (ISPs) since they are “physically closer” to
the end users on the network.

6. EXPERIMENTS

In this section, we evaluate the performance of the SLIM
prototype. Section 6.1 presents the experimental results
on LAN. Section 6.2 reports some preliminary results on
the Internet.

6.1 SLIM on LAN

We conducted several experiments with SLIM in the HKU
CS Gideon cluster [12]. The cluster consists of 300 Pen-
tium IV machines and two Ethernet networks; each ma-
chine is equipped with a 40GB IDE hard disk and 512
MB RAM. The first Ethernet network is for EE manage-
ment while the second for high-speed inter-process com-
munication. The management network is organized in a
hierarchical manner: 13 24-port Fast Ethernet switches
(each interconnects 22-24 nodes) are interconnected by a
Gigabit Ethernet switch. In our experiments, all server
processes of the SLIM service were hosted by a single Pen-
tium I'V machine with 512MB RAM and an IDE hard disk.
The SLIM service disseminated the Fedora Core 1 OS to
the cluster nodes by sharing the /bin, /1ib, /sbin, and
/usr directories through the NF'S; while copying the oth-
ers (e.g., /etc, /dev, etc.) to the nodes’ local storage. We
evaluated the performance of SLIM under three file copy
options: full-copy to RAM, full-copy to HD, and copy-if-
needed. For the last option, the ideal case was tested where
all files had been stored locally in the compute nodes and
none of them needed to be updated. The results are shown
in Figure 5.

As shown in the figure, copy-if-needed offers the best re-

350 T T
Full-copy to RAM —o—
Full—cq?y toHD --+--
Copy-if-needed --G--
300 o B
@ o
g
S 250 B
&
(<5
E 200 B
j=2]
=
8 150 - |
[a3]
100 - -
50 1 1 1 1 1
0 50 100 150 200 250 300

Number of compute nodes

Figure 5: Booting Time vs. Number of Compute
Nodes

sults as the dissemination process only involves the trans-
fers of the kernel and the queries for version checking. The
other two options offer a similar performance, which sug-
gests the performance bottleneck lies more on the through-
put of the SLIM server than on the hard disk I/O at the
compute nodes. Nevertheless, the performance bottleneck
can be relieved by replicating the SLIM service (particu-
larly the NFS server) to multiple machines.

Overall, the experiments demonstrate that an EE can be
constructed in 3 (“copy-if-needed”) to 5 (“full-copy”) min-
utes in 272 PC systems, which proves that SLIM is indeed
efficient in constructing Linux-based EEs.

6.2 SLIM on the Internet

In this test, the same Fedora OS image is disseminated to
a compute node which was connected to our departmental
SLIM service via a broadband link with a download band-
width of 3 Mbps. Compared to the LAN experiment, this
test involved two additional optimizing techniques: using
TCP as the transport protocol and packing the files in
an archive file to avoid round-trip latency in copying the
files individually. The EE (for only one compute node)
took 3 minutes 40 seconds to construct. Although the
performance is considerably lower than that in the LAN,
the booting time still falls within a reasonable time frame.
Consider the very limited bandwidth and long network la-
tency in the testing environment, it is indeed an encourag-
ing result that motivates us to perform further optimiza-
tion.

7. CONCLUDING REMARKS

We propose a software framework for a network service
to be used for managing EEs, and constructing these EEs
in distributed computers for on-demand utility comput-
ing. We also present SLIM, a reference implementation of
the framework for efficient dissemination of Linux-based
EEs. The experimental results show that SLIM is able to
efficiently construct the EEs in 272 machines in 3 (“copy-
if-needed”) to 5 (“full-copy”) minutes. The preliminary
result of the WAN experiment suggests that using SLIM



on the Internet is feasible, but needs further investigation
on possible performance improvements.

Future work will focus on performance optimization of
SLIM in WAN, which will be conducted in three dimen-
sions. First, we will develop a custom file system to mask
the server/network failures and the long network latency
in WAN. In this file system, partial file serving will be
implemented which allows the usage of a file before it is
completely fetched from the SLIM server; which should
improve the responsiveness of applications. Second, we
aim to design some negotiation protocols to be used by a
compute node to negotiate with the SLIM service for the
optimal size and content of an EE based on the hardware
capability of the compute node, the real-time network per-
formance, etc. Third, we plan to incorporate more “intelli-
gence” in the discriminative file sharing policies, by taking
into account the past usage history, users’ preferences, the
intended usage of a compute node, etc., to determine the
optimal file sharing strategy.

8. ACKNOWLEDGEMENT

This research is supported in part by the HKU Founda-
tion Seed Grant 28506002 and the HKU Large Equipment
Grant 01021001.

9. REFERENCES

[1] Data Center Markup Language.
http://www.dcml.org/.

[2] Network Boot and Exotic Root HOWTO.
http://www linuxforum.com/linux-network-
boot.php.

[3] NFS on Linux. http://nfs.sourceforge.net/.
[4] Portable Batch System. http://www.openpbs.org/.

[5] Preboot Execution Environment (PXE).
ftp://download.intel.com/labs/manage/wim/
download/pxespec.pdf.

[6] RFC 1350 — The TFTP Protocol.
http://www.fags.org/rfcs/rfc1350.html.

[7] SLIM: Single Linux Image Management.
http://slim.csis.hku.hk/.

[8] The Asia-Pacific Grid. http://www.apgrid.org.

[9] The China National Grid.
http://www.chinagridforum.org/.

[10] The Dynamic Host Configuration Protocol (DHCP).
http://www.dhcp.org/.

[11] The Fedora Core 1 Linux OS.
http://fedora.redhat.com/.

[12] The HKU CS Gideon Cluster.
http://www.srg.csis.hku.hk/gideon/.

[13] The Hong Kong Grid. http://www.hkgrid.org.

[14] The rsync Utility. http://samba.anu.edu.au/rsync/.

[15] The UNICORE Forum. http://www.unicore.org/.

[16] J.R. Callahan and J.M. Purtilo. A Packaging
System for Heterogeneous Execution Environments.
IEEE Transactions on Software Engineering,
17(6):626-635, June 1991.

[17] F. Chang and V. Karamcheti. Automatic
Configuration and Run-Time Adaptation of
Distributed Applications. In Proc. of the 9th
International Symposium on High-Performance
Distributed Computing, pages 11-20, August 2000.

[18] T. Dimitrakos et al. An Emerging Architecture
Enabling Grid Based Application Service Provision.
In Proc. of the 7th IEEE International Enterprise
Distributed Object Computing Conference.

[19] L. Foster, C. Kesselman, J.M. Nick, and S. Tueckel.
The Physiology of the Grid - An Open Grid Services
Architecture for Distributed Systems Integration. In
White Paper, The Globus Project.
http:/ /www.globus.org/.

[20] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke. Condor-G: A Computation Management
Agent for Multi-Institutional Grids. Cluster
Computing, 5:237-246, 2002.

[21] A. Grimshaw, A. Ferrari, A. Knabe, and
M. Humphrey. Legion: An Operating System for
Wide-Area Computing. IEEE Computing,
32(5):29-37, May 1999.

[22] X. Jiang and D. Xu. SODA: A Service-On-Demand
Architecture for Application Service Hosting Utility
Platforms. In Proc. of the 12th IEEE International
Symposium on High Performance Distributed
Computing, 2003, pages 174—183, June 2003.

[23] T. Tannenbaum, D. Wright, K. Miller, and
M. Livny. Condor — A Distributed Job Scheduler. In
Thomas Sterling, editor, Beowulf Cluster Computing
with Linux. MIT Press, October 2001.

[24] S. Zhou. LSF: Load Sharing in Large-scale
Heterogeneous Distributed Systems. In Workshop on
Cluster Computing, 1992.



