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Abstract the large number of genes being irrelevant to each clus-

ter, two samples in the same cluster could have low sim-

Recent studies suggest that projected clusters with ex-larity when measured by a similarity function that con-
tremely low dimensionality exist in many real datasets. A siders the expression values of all genes. The clusters
number of projected clustering algorithms have been pro- are thus undetectable by traditional clustering algorithms.
posed in the past several years, but few can identify clus-The same kind of low dimensional clusters could also ex-
ters with dimensionality lower than 10% of the total num- ist in datasets from various domains such as computer vi-
ber of dimensions, which are commonly found in some realsion [15], e-commercel9], text mining and nutrition value
datasets such as gene expression profiles. In this paper wenalysis p4].
propose a new algorithm that can accurately identify pro-  The projected clustering problerti][is defined for such
jected clusters with relevant dimensions as few as 5% of thea scenario. Each projected cluster is a set of member ob-
total number of dimensions. It makes use of a robust objec-jects with an associated set of relevant dimensions such that
tive function that combines object clustering and dimension the member objects are similar to each other in the sub-
selection into a single optimization problem. The algorithm space formed by the relevant dimensions, but dissimilar to
can also utilize domain knowledge in the form of labeled objects outside the cluster. In this paper we measure object
objects and labeled dimensions to improve its clustering ac- similarity based on Euclidean distance, so a dimension is
curacy. We believe this is the first semi-supervised projectedmore relevant to a cluster if the projections of its members
clustering algorithm. Both theoretical analysis and exper- on the dimension are closer to each other, but more remote
imental results show that by using a small amount of input from the projections of other objects. The goal of a pro-
knowledge, possibly covering only a portion of the underly- jected clustering algorithm is to identify clusters of objects
ing classes, the new algorithm can be further improved to and their relevant dimensions such that a certain objective
accurately detect clusters with only 1% of the dimensions function (e.g. average within-cluster similarity along the
being relevant. The algorithm is also useful in getting a tar- relevant dimensions) is optimized.
get set of clusters when there are multiple possible group- While the clusters in real datasets can contain an ex-
ings of the objects. tremely low percentage of relevant dimensions (less than
10% of all genes in the previous example), it has been
reported that most current projected clustering algorithms
are unable to identify clusters with such low dimensional-
ity [22]. This is mainly due to their use of objective func-
tions that highly rely on the accuracy of some input param-

Recently many studies have suggested the presence ofters, and the use of similarity calculations that involve all
low dimensional clusters in high-dimensional real datasets.dimensions, which may not reflect the real similarity be-
For example, in a typical microarray gene expression tween different object2p].
dataset that contains the expression values of several thou- In addition, being unsupervised methods, the algorithms
sands of genes in different samples, it is common to find thatmake little use of domain knowledge, despite the fact that
only several tens of genes have expression patterns uniqua small amount of domain knowledge is usually available
to each cluster of sampled4]. The genes are called the in some applications. For example, in gene expression
relevant genes, as opposed to the irrelevant genes that ddatasets, the functions of a small number of genes are usu-
not help much in identifying the cluster members. Due to ally known to the biologists. In text mining, some docu-

1 Introduction



ment types have well-known keywords that help identify in the optimization process.
the member documents. In order to better utilize domain
knowledge in the clustering process, a humberseini-
supervisedclustering algorithms9] have been proposed,
which we will review in the next section. The basic idea
is to use some domain knowledge to guide the clustering
process. For example, in a semi-supervised k-means algo-
rithm [18], domain knowledge about the relationships be-
tween some objects is used to force the assignment of some
object pairs to the same cluster or to different clusters. As
reported in many studies (e.8,[L7]), the clustering ac-
curacy can be greatly improved by inputting only a small  In the next section we will review some related work in
amount of domain knowledge. projected clustering and semi-supervised clustering. In Sec-
It should be noted that while some domain knowledge tion 3 we will formally define the semi-supervised projected
is being used, semi-supervised clustering is different from clustering problem, as well as the assumptions being made
classification (supervised-learning) in that the knowledge in this study. In Sectiod we will describe our new algo-
being used in semi-supervised clustering may not be suit-rithm. Experimental results will be presented in Secton
able or sufficient for classification. For instance, the knowl- together with some observations and discussions. In Sec-
edge needs not be in the form of objects with class labelstion 6 we will summarize the whole study and discuss some
as required by classification. The amount of knowledge for future extensions.
each class can be so small that is statistically insignificant to
build a classifigr that captures the genera} properties of they Related Work
class, and the input knowledge can be biased towards one
side of the class. The input knowledge of semi-supervised
clustering also needs not cover all classes, but it is still pos-

sible to produce all the corresponding clusters. . . . . .
Existing projected clustering algorithms can be classi-

Previous studies on semi-supervised clustering havef_ di h . tional | :
been focused on non-projected clustering, which does not'® into three categories: partitional, one cluster at a time,

consider the relevance of dimensions. The semi—supervised'?‘nOI hierarchical. Th_e partitional Qpproach PROC.LUIB [
approach is in fact very useful in projected clustering. For 'S Pased on the traditional k-medoids approdts), [with a

instance, given a small amount of example objects of::xclus-goaI o,f minimizing the average within-cluster dispgrsion.
ter (the “labeled objects”, e.g. tumor samples known to be The ?;ta::ce t?etvveen (t:i)|fferent ?Iuhsterl membeLs_ ﬁ.codm-
of a certain type), the relevant dimensions of the cluster canPUted In the relevant subspace of the cluster, which is de-

be estimated by the dimensions along which the objects aretermir_\ed by measur‘i‘ng_the average distﬂance between the
significantly close to each other. Similarly, having a dimen- medoid and a set of “neighboring objects” that are close to

sion specified as relevant to a cluster (a “labeled dimen-'thWhen EIiI” dlmenS|onsd§re conS|der§d. Th; (_j(;m(fansmrr]ls |W|th
sion”, e.g. a gene known to be relevant to a tumor type),t e smallest average distances to the medoid of each cluster

the cluster members can be estimated from regions with un-2€ selected as the relevant dimensions of the cluster, which

expectedly high object densities. form itsr:elevant's.ubspl)ace. hod ,
Semi-supervised clustering also has an important ap- Another partitional method ORCLUSZ] improves

plication in handling datasets that have multiple possible PROCLUS by selecting principal components so that clus-

groupings. For example, in cancer study, patients can peters not parallel to the original dimensions can also be de-

grouped by their response to a certain treatment, or by thetected. It also adds a hierarchical part that can potentially re-

risk of having cancer recurrence. Unsupervised methodsduce the errors due to inaccurate initial object assignments.
can only produce a single set of clusters, which may corre- A Iimitatiqn of th_ese pgrtitional methods_, is_ th_e determi-
spond to only one of the groupings, or even none of them. nation of neighboring objects based on similarity calcula-

Using the semi-supervised approach, by supplying differ- tions that involve all dimensions. Since different members
ent input knowledge, a single clustering algorithm can be of a cluster may appear to be dissimilar when all dimensions

guided to produce both kinds of clusters in different runs. are considered, the neighboring objects of a medoid neeq
All the above observations motivate the current study not be come from the same real cluster and the relevant di-

which has three major contributions: mensions suggested b_y them coul_d be wrong. Also,_ as the

approaches use an objective function that tends to give bet-

e Proposing a robust objective function for projected ter scores when fewer dimensions are regarded as relevant
clustering that naturally involves dimension selection to a cluster22,24], they require users to supply the average

e Proposing the use of domain knowledge (labeled ob-
jects and labeled dimensions) to improve the accuracy
of projected clustering.

e Developing a new algorithm that can (theoretically and
empirically) detect clusters of extremely low dimen-
sionality, and whose accuracy can be further improved
by incorporating some domain knowledge in the clus-
tering process.

2.1 Projected Clustering



number of relevant dimensions per cluster, which is usually which can be quite misleading when cluster dimensionality
unknown to users. If improper values are used, the cluster-is small. A thorough survey of the above algorithms and
ing accuracy can be seriously affected. others proposed for two related problems, namely subspace

The Monte Carlo methods DOC and FastDQ@]fiden-  clustering B] and biclustering 7], can be found in24].
tify projected clusters one after another. To find a cluster, an
object is randomly selected as the seed, and some other ob2.2  Semi-supervised Clustering
jects are randomly sampled to determine the relevant sub-
space of the cluster. A dimension is regarded as relevantto A recent trend in machine learning research is to com-
the cluster if all the objects are within a distanc&om the bine the techniques developed for unsupervised learning
seed along the dimension. Each cluster is thus a hypercuband supervised learning to handle datasets with partial ex-
of width 2w. The more objects and relevant dimensions a ternal information. One of the foci is semi-supervised clus-
cluster has, the less likely it is formed by chance, and thus ittering, which actively uses the available domain knowledge
receives a better score. The relative importance between thén guiding the clustering process. These methods can be
number of objects and relevant dimensions is controlled by categorized according to the kinds of knowledge being in-
a user parametet. The algorithm repeatedly tries different put, the time that the knowledge is input, and the way the
seeds and neighboring objects and returns the cluster wittknowledge is used to affect the clustering process.
the highest score. Then the whole process will be repeated The simplest type of input is labeled objects9]. In
for a new cluster. some cases, users do not know the exact class labels of

The algorithms perform well when each cluster is in the objects, but they have some knowledge on which objects
form of a hypercube and the parameter values are specifiegshould be/should not be put into the same cluster, which
correctly, but in many cases these requirements cannot b&an be specified by must-links and cannot-link$[11,17,
met and the clustering results are quite unsatisfac@®y [  18. Some other studies propose the input of classification
The number of seeds and neighboring objects required torules [L6], examples of similar object2(], or even general
try can also be so large that causes the algorithms to run focomments like which cluster a particular object should not
a long time. be put into B].

The hierarchical algorithm HARP is proposed2#]. Its The knowledge can be supplied at different time. It can
basic assumption is that two objects are likely to belong to b€ supplied before clustering to guide the clustering pro-
the same cluster if they are very similar to each other along¢€ss #5,6,9,11,17,18,20], or after clustering to evaluate
many dimensions. Clusters are allowed to merge only if the clusters and guide the next round of cluster8jgfome
they are similar enough in a number of dimensions, where lgorithms can also actively request users to supply some
the minimum similarity and minimum number of similar ~Specific information at the most appropriate tirbel[1].
dimensions are controlled by two thresholds. At the begin- ~ There are various ways to use the input knowledge, such
ning, the thresholds are set to some harsh values such tha@s guiding the formation of seed clustesd, 6], forcing or
only merges that are very likely to group objects belonging recommending some objects to be put in the same cluster
to the same real cluster are allowed. As the relevant dimen-Or different clusters 17, 18], and modifying the objective
sions of each cluster becomes more apparent, the thresholfinction [5,6,9], similarity function 8, 20] or distance ma-
values are loosened to allow more merges. The process relfix [11].
peats until the thresholds reach their baseline values, or a
target number of clusters is reached. 3 Problem Definition

The method successfully avoids extensive distance cal-
culations that involve all dimensions and user parameters We now formally define the semi-supervised projected
whose values are hard to determine. However, due to the hiclustering problem. We start with the data model. Given a
erarchical nature, the algorithm is intrinsically slow. Also, if datasetD with n objects and! dimensions, the objects can
the number of relevant dimensions per cluster is extremelybe partitioned intd: clusters{C;}%_, and a possibly empty
low (e.g. 5% of the dataset dimensionality), the accuracy of set of outliers. We assume each cluster is a random sample
HARP may drop as the basic assumption will become lessof the corresponding hidden class, each of which is associ-
valid due to the presence of large amount of noise values inated with a set of relevant dimensions that form a relevant
the dataset. subspace. DenotB; andC;; as the projections ab and

In summary, most of the existing projected clustering al- C; on a dimensiom; respectively. Supposg is relevant to
gorithms make use of objective functions whose effective- a subset?; of the clusters, then for each clustey € R;,
ness rely greatly on the accuracy of some parameter val-C;; is a random sample of a local Gaussian population with
ues that are hard for users to determine. Some of them in-a small variancerfj. The set of all other projected values
volve similarity calculations that consider all dimensions, onv;, D; — g, g, Cij» is @ random sample of a global



population with a variance? much larger than the local and it can remain virtually unchanged if some relevant di-
Gaussians. mensions are deselected.

Intuitively, in the relevant subspace of a cluster, the clus-  We therefore designed a new objective function with
ter members are on average close to each other, but remotthree goals: 1) it should facilitate the selection of dimen-
from other objects not in the cluster. Alternatively, given a sions based on the particular data properties of different
cluster with an unknown relevant subspace, a dimension isclusters and dimensions, 2) its value should be constituted
more likely to be relevant to the cluster if the projection of more by relevant dimensions, and 3) it should be relatively
the cluster on the dimension has a smaller variance. robust. The function, denoted asis defined as follows:

To distinguish the actual clusters due to the hidden
classes and the clusters produced by a clustering algorithm, .
we will call the former the “real clusters” and the later sim- 1 Z & )
ply the “clusters”. We will also call the dimensions deter- nd — !
mined by a clustering algorithm as relevant to a cluster the .

“selected dimensions” of it. G o= Y by &)
The inputs to our semi-supervised projected clustering v €Vi
algorithm are: 1 .
gori (;SU = n;—1— §7 Z (TJ — /Lq;j)z (3)
e The dataseD i zeC;
2 )2
e The target number of clusteks = (11— Sij + Wg i) ), (@)

Sy
e A (possibly empty) set® of labeled objects<ob;j. ID, !
class labeb pairs), each indicates that the object is a whereV; is the set of selected dimensions of clugigy n;
member of the class. The set may or may not cover all is the size of (number of objects i), z; is the projection
classes. of an objectz on dimensionu;, fi;;, ui; ands3; are the
. . . . sample median, mean and variance of the projectiofi;of
* A (possibly empty) set/” of labeled dimensions onuv; respectively, andfj is the selection threshold whose

gfrg'en;&g IC; l?ZISé:/Ziiop'?r:reS)cylae:s?hElggthZ}fnsetnhsail;:]hfanmeaning will be explained later. The objective functign
o y is composed of the score componetitsof each cluster,
be specified as relevant to multiple classes. The set

may or may not cover all classes which in turn is_the s_um of the score componenis of
) each selected dimension.

The outputs of the algorithm afeclusters and their se- There are three major differences betweemnd the ob-
lected dimensions, and a (possibly empty) set of outliers. jective function defined inl]]. First, ¢, is not normalized by
The goal is to optimize an objective function whose value the number of selected dimensionggf but instead by the
(the objective score) reflects the quality of the clusters. thresholdéfj. As to be discussed later in this section, this
In the non-projected clustering algorithm k-mear$)]| allows the dimension selection procedure to be based on
the objective function is defined as the total within-cluster the data properties a; alongv; (design goal #1). It also
squared error. It can be shown that the partition of objectsavoids the existence of trivial best score when each clus-
that minimize the function corresponds to the maximum ter selects only one dimension. Second, by setﬁﬁ;go a
likelihood hypothesis of the above model when there are novalue that is always larger than the sample variasjcef
irrelevant dimensionslP]. In [1], the objective functionis  each selected dimensiopy,; is always positive, and a better
modified for projected clustering such that only relevant di- dimension (one with smallesrfj) has a larger constituent to
mensions are involved in the distance calculations, and theg, (design goal #2). A better clustering leads to a higher
part of objective score from each cluster is normalized by score, so the goal is to maximize the objective score. Third,
the number of selected dimensions. Due to the normaliza-within-cluster dispersion is measured by the distance from
tion, the function tends to gives better (i.e., smaller) scoresthe cluster median rather than centroid, which makes the
for clusters with fewer selected dimensio@g,[24], which function less affected by outliers. We will discuss the ro-
forces the algorithm to request users to supply the averagebustness op later.
cluster dimensionality in order not to select only one dimen-  The definition of the objective function leads to the fol-
sion per cluster. Also, as the function is based on the sum-lowing lemma:
mation of variances among different dimensions, a worse
dimension (one with larger variance) constitutes more to theLemma 1 Given a set of cluster¢C;}%_,, the objective
objective score. This means if some irrelevant dimensionsfunction ¢ is maximized when all dimensions witf} +
are accidentally selected, the objective score can be dom{u,; — [Lij)2 smaller than§§j are selected and all other di-
inated by the constituents from the irrelevant dimensions, mensions are not selected.



Proof: To maximize, a dimensiorv; should be selected
if ¢;; is positive, and should not be selectedjf is nega-
tive, which correspond to the cases whetet (115 — f1i;)°
is smaller than and larger thaéfj respectively. 0

cluster center along some relevant dimensions according to
the data model in Sectidh In the next iteration, the values

of fi;; will be substituted by these medians. We will use
the term “cluster representative” to call the medoid or me-
dian that represents a cluster. After replacing the old cluster
representatives, the members of each cluster are removed,
and a new iteration of object assignment, score compari-
son and cluster representatives replacement is carried out.
The process repeats until the best objective score remains
unchanged for a certain number of iterations.

The following dimension selection procedure follows di-
rectly from the lemma:

Procedure SelectDim;: target cluster)

1 Foreach dimension; do

2 Selec; for C; ifand only if s7; + (pi; — fis;)° < 33
End

Algorithm SSPC

1 Initialization: determine the seeds and relevant di-
Listing 1: The dimension selection procedure. mensions of each cluster
2  For each cluster, draw a medoid from the seeds
32 is thus called the selection threshold. 3 Assign every object in the dataset to the cluster (or

i In the next
section we will describe a simple scheme that determines
the values of?;, and a more advanced probabilistic-based
scheme that can be used when certain conditions are satis-
fied. In both cases, only one user parameter is required, the 5

outlier list) that gives the greatest improvement to the
objective score

Call SelectDim(;) for each cluste€’;, and calculate
the overall objective score

Record the clusters if they give the best objective

value of which is not critical to the clustering accuracy.

In this study we confine the scope by a nhumber of as-
sumptions: 1) clusters are disjoint and axis-parallel, 2) ob-
ject similarity is based on a distance function, 3) one class
corresponds to one cluster and 4) the input knowledge is
correct. More information about the assumptions can be

score so far, restore the best clusters otherwise

6 Replace the cluster representative of each cluster,
then remove its members

7 Repeat 3-6 until no score improvements are observed
for a certain number of iterations

End

found in [23]. The possibility of relaxing some of them will

. . . Listing 2: The outline of the SSPC algorithm.
be discussed in Sectidh

There are three main differences between SSPC and
the previous partitional approaches for projected cluster-
ing. First, the seeds are determined based on some do-

The outline of the new algorithm SSPC (Semi- main knowledge (labeled objects and labeled dimensions)
Supervised Projected Clustering) is shown in Listiag if supplied, which is potentially more accurate. Second, un-
It is a partitional method similar to the k-medoids algo- like PROCLUS and ORCLUS where the selected dimen-
rithms [L3]. At the beginning it determines some seeds sions are determined based on some distance calculations
(potential medoids) and each cluster draws a medoid fromthat involve all dimensions, the seeds of each cluster are
them. Every object in the dataset is then assigned to theassociated with an estimated set of relevant dimensions de-
cluster that gives the greatest improvement to the objectivetermined during initialization. When a seed is picked as the
score, where the value @f;; in Equation4 is temporarily medoid of a cluster, either initially or to replace an old clus-
substituted by the projection of the medoid@n If an ob- ter representative, the associated dimensions become the se
ject does not improve the; score of any cluster, it will be  lected dimensions of the cluster. As to be seen later, this
put on the outlier list. After assigning all objects, the se- process does not rely on distance calculations that involve
lected dimensions of each cluster are redetermined and thell dimensions or any user parameters that are critical to
overall objective score is computed using the actual medi-the clustering accuracy but whose values are hard to deter-
ans. If the new score is the best one encountered so far, thenine. This allows SSPC to identify low-dimensional clus-
clusters will be recorded. Otherwise, the best clusters will ters more accurately. Third, after each iteration, besides re-
be restored. A bad cluster is then identified from the current placing a bad cluster representative by a new medoid, other
best set of clusters, and a new medoid is selected for it withcluster representatives are also replaced by the cluster medi-
an attempt to improve the objective score in the next iter- ans to avoid problems due to the potential biased projected
ation. The medoid of each other cluster is replaced by thevalues of the medoids as discussed before.
cluster median (the virtual object with projected value along  In the coming subsections some core mechanisms of
each dimension equal to the median of the cluster membersBSSPC will be discussed in detail, followed by an overall
as a medoid could have projected values deviated from theanalysis of the whole algorithm.

4 The New Algorithm



4.1 Determining s, 4.2 Initialization

In the initialization step, SSPC determines the seeds and

In order to use the SelectDim procedure and calculatePuts them into different seed groups. Each seed group con-
the objective score), we need to determine the values of tains a set of seeds that are expected to come from a sin-

. As mentioned in Sectio8, 5%, should be greater than gle real cluster, and a set of dimensions estimated from the

the sample varlancez for all selected dimensions. Since Se€eds to be relevant to the cluster. Each time a seed of a

the expected variance of a random sample of a population isS€€d group is picked as the medoid of a cluster, the esti-
the variance of the population, 3% is no smaller than the = Mated dimensions of the seed group are used as the selected

variance of the global population,jz., the members of’; dimensions of the clust.er. .
are no more similar to each other alongthan a group of SSPC creates two kinds of seed groups: private and pub-

random objects. Sa;? can be viewed as a baseline (max- lic. For a (;Iusterdwnh input Iinowled?ie), Lthliheasmrdto for(;nth
imum) value ofs?;, whose value can be estimated by the an accurate seed group (|_n erms ot bo € seeds and he

. J estimated relevant dimensions). A private seed group is thus
sample variance ab;, hereafter denoted a$.

created, which is solely used by the cluster. All other clus-
We propose two schemes to set the actual va|u§7of ters share some large number of public seed groups, so that
The first scheme is to set it tms2, wherem < (0, 1] is medoids can be drawn from different seed group combina-
a user parameter. A smaller tightens the selection crite-  tions. Whenever a cluster needs to draw a new medoid, it
rion. The second scheme is based on a probabilistic reasonis randomly drawn from its private seed group if it has, or
ing. Users need to specify a valpethat bounds the max-  Otherwise one of the public seed groups not currently used
imum probability that a dimension irrelevant to a cluster is Py other clusters.
selected by chance. SuppoSeis a cluster to which di- The order of seed group creation is important. Having
mension; is irrelevant. We can writp = Pr(s2 < §2). created theT seed groups of some clusters_a_ccurately, it be-
If the sampling distribution of2, has a known probability =~ COMes easier to accurately create the remaining seed groups.

density function (PDF), the value 6f; can be computed This is because objects that are close to the seeds of the pre-
accordingly. ' J vious seed groups in the corresponding subspaces are likely

members of those clusters, which need not be considered

For example, suppose the global populations are Gauswhen determining the seeds of the new seed groups. We will
sian. Then the random vanaM has a chi-square show in Sectior.5that it is easier to create seed groups ac-
distribution withn; — 1 degrees of treedom. With spec- curately for clusters vyith more .input knowledge, which sug-
ified anda approximated bys2 the value ofs can be gests that clusters with more input knowledge should have
computed from the inverse of the cumulative chi- -square dis- their seed groups created earlier. Based on the ease of cre-
tribution. ating accurate seed groups, SSPC creates seed groups in the

following order: 1) clusters with inputs in botf? and 7,

The first scheme is more generic as it does not need top) clusters with inputs id° only, 3) clusters with inputs in
assume the propertles of the glObal populatlons Butin caseyv 0n|y 4) clusters with no |nputs Within each category,
the sampling distribution of?; has a known PDF, the sec-  clusters with larger amount of inputs are initialized earlier.
ond scheme is more r_ecommended as parametes a We now discuss the details of the seed group creation
stronger intuitive meaning than. process for the four cases separately. For the first three

Notice that although?; can take different values for dif- ~ €ases, a private seed group is created, and we wilClse
ferentC; (when parametqv is used) and; (in both cases), to denote the target cluste&¥,; the resulting seed group, and
the objective function and the SelectDim procedure involves /{ andl;’ the sets of labeled objects and labeled dimensions
only one user parameter whose value is not critical to thefor C; respecuvely Sinc€r; contains both a set of objects
clustering accuracy, which makes SSPC quite robust. Ac-(the seeds) and a set of estimated relevant dimensions, we
cording to the experimental results to be presented in secWill sometimes treat it as a cluster for the sake of discussion.
tion 5, the range of values of. andp that give good clus-

tering results is usually much wider than the rangé - 4.2.1 Clusters with both kinds of inputs
ues (average cluster dimensionality) used by PROCLUS. In
general, some reasonable values (e0g8 < m < 0.7, In this case, the center @f; is likely to be located near the

0.01 < p < 0.2) can be used when the user has no ideasmedian ofI?. Also, if the set of objects iy is viewed

on the proper value to use. The value can be tuned down ifas a temporary clust&r;,, the dimensions with larges; ;

the clusters appear to have too many selected dimensionsyalues are more likely to be relevantdg.

or tuned up if too many objects are discarded as outliers. This leads to a two-step process of seed group creation.



We first identify the seeds ir; to be the objects that are  Without C;/, there is no starting point for the localized hill-
close to the median of along dimensions with large; ; climbing search, so the seeds are chosen from the objects in
values. Then we set the relevant dimensions of the seedhe absolute peak of the whole grid.
group to be those selected by SelectOiiy)(plus the ones
inI?. . :
We developed a mechanism for the first step based on4'2'4 Clusters with no inputs
a simple idea. If we form a grid (multi-dimensional his- In this case, we cannot build the grids directly due to the
togram) of the whole dataset using a fixed number of di- lack of input knowledge. An alternative mechanism that
mensions, then if the dimensions are all relevaidttaa cell makes use of the information of other seed groups is de-
will be found to contain a large number of objects, which veloped. It is similar to the max-min mechanism of PRO-
correspond to the center @f; in the subspace. If some of CLUS [1], which identifies an object whose minimum dis-
the dimensions are irrelevant @;, the peak density (the tance to all the seeds already picked by other seed groups is
highest number of objects among the cells) will be much maximum. Distance calculations are performed in the sub-
lower. So, multiple grids are built using different sets of di- space defined by the relevant dimensions of the seed groups,
mensions, and the objects in the peak cell with the highestnormalized by the number of dimensions. The identified
density are chosen as the memberé&af object is remote from all picked seeds, so there is a good
A set of grid-building dimensions could be simultane- chance that it belongs to one of the clusters whose seed
ously relevant to multiple clusters, in which case the grid group has not been created. It is thus used to replace the
will contain multiple peaks. Since the cluster center is ex- median ofI? in the previous cases as the starting point of
pected to be close to the medianigf it can be located by  the hill-climbing search.
performing a localized hill-climbing search starting from An one-dimensional histogram is then constructed for
the cell that contains the median 6f. The search also each dimension of the dataset to measure the object density
solves the problem that the median may be biased towardsaround the identified object along the dimension. A dimen-
one side ofC;. sion with high object density around the identified object
The number of dimensions used to build each grid shouldis likely to be relevant to a cluster that centers around the
not be too large as the number of cells increases expo-object along the dimension. The dimension is thus given a
nentially as the number of building dimensions increases, high probability of being involved in grid building. With
which makes each cell to have too few objects and cre-these probabilities determined, the seed group creation pro-
ates a heavy computational overhead. Normally a three-cess for the case with labeled objects only can be performed.
dimensional grid serves the purpose quite well. If all clusters have no input knowledge, the object of the
Dimensions with greater chance of being relevanfto  first group is randomly drawn from the dataset.
should have higher probabilities of being involved in grid
building. Therefore we define a candidate set that includes4.3  Cluster Representatives Replacement
the dimensions selected by SelectDirpj as well as those

in 177, where each dimensiory in the set has a probability To improve the objective score, SSPC needs to identify
proportional to the).; value of being selected as abuilding 4 paq cluster and replace its cluster representative appropri-
dimension of a grid. _ _ ately. Bad clusters most commonly exist when the medoids
As ¢ involves the computation of the sample variance of two clusters belong to the same real cluster. As a result,

55, I should contain at least two objects. the two clusters will be quite similar, and they compete for
the ¢; score of the real cluster. On the other hand, one of
4.2.2 Clusters with labeled objects only the other real clusters will not be represented by any cluster,

and most of its members will be put on the outlier list.
The seed group creation process is almost the same as To detect the occurrence of this situation, one way is to
in the previous case, except that only dimensions from check if there is a cluster with a very lag score, which is
SelectDim(’;) are involved in grid building and only those  Jikely the loser of the two competing clusters. Another way
from SelectDim(z;) are set as the relevant dimensions of s to look for clusters that are very similar. In both cases, a
the seed group. bad cluster can be pinpointed and its cluster representative
replaced by a new medoid.

For each other cluster, although the medoid may really
be a member of the cluster, it may not be close to the cluster
In this case, the temporary clustéf, cannot be formed. center along some relevant dimensions. As a result some
Only dimensions in/; are involved in grid building, and  real members located at the other side of the cluster may not
each of them has the same probability of being involved. be attracted to this cluster. The cluster can be improved by

4.2.3 Clusters with labeled dimensions only
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Figure 1. The probability that at least one grid Figure 2. The probability that at least one grid
is formed by relevant dimensions only, when with all ¢ building dimensions being relevant
only labeled objects are available. to C; only is formed, when only labeled di-

mensions are available.

replacing the medoid with the median of the cluster, which

is probably closer to the center of the real cluster. by relevant dimensions only. In addition, each curve has
a sharp increase followed by a flattened region. This means
4.4 Complexity users can estimate the smallest amount of input that can lead

to a near maximal accuracy. It is an exciting result to see
It can be shownZ3] that SSPC has a time and space that When% = 5%, only 5 inputs are enough to have an
complexity of O(knd) andO(nd) respectively. The linear —almost 100% guarantee that a grid will be formed by rele-
complexity makes it more practical to cluster large datasetsvant dimensions only. The figure also shows that for a fixed
as compared to some other projected clustering algorithmsamount of input, the probability increases @sincreases,

such as DOC, HARP and ORCLUS. which suggests that input objects work better when the clus-
ters have more relevant dimensions.
4.5 How much input is needed? Next, we consider the case with labeled dimensions only.

Suppose dimension; is specified as relevant to a cluster

In many real situations the amount of available domain C;. If an one-dimensional histogram is built from, we
knowledge is very limited. It is therefore important to pre- expect to find a peak at the center(@f. If the cell with the
dict the relationship between the amount of input knowl- highest object density is not close to the centef’pfmost
edge and the resulting clustering accuracy, so as to mini-probablyv; is also relevant to another cluster. We want to
mize the amount of input knowledge while getting a satis- know the probability that at least one grid has all building
factory accuracy. dimensions being relevant &; only. The closed form for-

We begin with the case where only labeled objects are mula can be found ir3]. Using the same parameter values
available. Suppose a clustél; receives|I?| labeled ob-  as before, and setting = 5, the estimated probabilities at
jects. The objects form a temporary cluster, which is used various|I?| and% values are shown in Figug
to determine the grid-building dimensions. We want to es-  In general, the more labeled dimensions being supplied,
timate the probability that at least one grid is built from di- the higher is the chance of forming a grid with all build-
mensions that are really relevant@@only, which is crucial ing dimensions being relevant t@; only. The figure also
to the accuracy of the seed group and the clustering accufeveals an interesting phenomenon: while labeled objects
racy in turn. A closed form formula for the probability is work better Wher%’i is large, labeled dimensions work bet-
given in [23. To visualize the change of this value with ter when it is small as the chance for a single dimension to
different input sizes, let us consider some real values to bebe relevant to multiple clusters is small. This suggests that
used in the experiments in Sectién Supposel = 3000, when trying to identify clusters with extremely low dimen-
p = 0.01, each grid involves: = 3 building dimensions,  sionality, which is the main focus of this study, it is more
g = 20 grids are built for each seed group, and the variance effective to use labeled dimensions as input knowledge.
ratio of a local population to the corresponding global pop-  Both inferences show that a very small amount of input
ulation is 0.15. Figurd shows the estimated probabilities knowledge would enhance the accuracy a lot. Finally, since
that at least one grid is formed by relevant dimensions only the two kinds of input complement each other, there is a
with varying |I?| and the% ratio, whered; is the number  synergy when they are supplied at the same time, provided
of relevant dimensions af;. the amount of input objects is not so small that causes a

The figure shows that for a fixeé! ratio, having more  large amount of irrelevant dimensions to be used in building
input objects increases the probability of forming a grid the grids. Some empirical results will be presented in the
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In this section we present various experimental results o=
on SSPC and some comparing algorithms. We com- CrrE o Eee e
pare the accuracy of three projected clustering algorithms
HARP [22], PROCLUS [l] and SSPC, using the non-
projected k-medoids clustering algorithm CLARANS3] Figure 3. The best raw accuracies of the algo-
as reference. rithms on datasets with various average clus-

As far as we know, there exists no benchmark datasets ter dimensionality.
that contain projected clusters as low-dimensional as the
ones that are of interest in this study. We therefore generate
our own synthetic datasets in ways that are similar to some o ] ]
previous studiesl 24], but with the parameters adjusted to gnlform and the local distributions having variances rang-
produce datasets with the desired properties. We repeatedd from 1% — 10% of the value range of the global distri-

each experiment 10 times, and report only the result thatPutions. _
gives the best algorithm-specific objective score. We setk to 5 for all algorithms, used default parameter
The performance metric used to evaluate the quality of avalues for HARP and CLARANS, and tried different val-

clustering result is the Adjusted Rand Index (AR2)] that ues of the critical_ parameters of PROCLUS and SSPC. For
compares the produced clusters by the known real clustersPROCLUS, we tried 9 different values bfor each dataset.

It measures how similar are the partition of objects accord- For SSPC, 5 different values of andp were used for each
ing to the real clusters (U) and the partition in a clustering dataset. The best results (the results with the highest ARI
result (V). Denotex, b, c andd as the number of object pairs vz_ilues) after trying different parameter values are shown in
that are in the same cluster in both U and V, in the same Figures3.

cluster in U but not V, in the same cluster in V but not U,  The figure shows that all projected clustering algorithms
and in different clusters in both U and V respectively, ARl Performed well when the cluster dimensionality is high as
is defined as follows: compared to CLARANS. When the dataset dimensionality

is as low a$% of d, the performance of all three projected
clustering algorithms went down, but SSPC has the mildest
2(ad — be) (5) performance drop. It is somewhat unexpected that the raw
(a+b)(b+d)+ (a+c)(c+d) performance of SSPC when parametés used is close to
the performance when parameteis used, given the global
distributions are actually non-Gaussian. This may due to the
fact that except the dimension selection procedure, SSPC
makes no assumptions on the global distribution. The per-
If input knowledge is involved in a run of SSPC, the la- formance of the other parts of the algorithm may compen-
beled objects are removed from the resulting clusters beforeSat€ for the invalid assumptions being made when parameter

computing the ARI values in order to eliminate the direct P 'S l_Jsed' N .
performance gain due to the input objects. Figure4 shows the individual clustering results of SSPC

and PROCLUS wheh..,; = 10, which captures their typi-

ARI(U,V) =

The more similar are the two partitions, the larger will be
the ARI value. When U and V are identical, the index value
will be one. When V is only as good as a random patrtition,
the index value will be zero.

Due to limited space, some figures are omitted, and they

can be found inZ3]. cal change of accuracy at different parameter va_lues. PRO-
CLUS performed well when the value bivas supplied cor-
5.1 Raw accuracy rectly, but the performance went down as the input moved

away from the true value. In contrast, SSPC performed well
with the various parameter values being tried, and is thus

In the first set of experiments we compared the raw ac-
more robust.

curacy of the algorithms, i.e., the accuracy without input
knowledge. A series of synthetic datasets were generated ) )

with n = 1000, d = 100 andk = 5. The actual aver- 9.2 Outlier Immunity

age dimensionality of the clusters,,;, varies from 5 to

40, accounting fob% — 40% of the dataset dimensionality. In this set of experiments we studied how SSPC is af-
The datasets were generated according to the data moddected by outliers. A series of synthetic datasets were gen-
described in Sectiof3, with the global distributions being erated, with the amount of outliers varying from 0% to 25%.
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The results (figures not shown) show that SSPC has a high 08
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5.3 Performance with input knowledge

Figure 6. The accuracy of SSPC with various
In this set of experiments, we further lower the average coverage of input know|edge when input size

cluster dimensionality and see if the accuracy of SSPC can s 6,
be improved by input knowledge. We generated a dataset

with n = 150, d = 3000, kK = 5 andl,..q; = 30, i.e., 1%

of d. The configuration highly resembles a gene expression . .

dataset when the goal is to ciuster the samples, and the numt© each cluster. This is due to the large probability that the

ber of relevant genes of each sample class is as |das two objects are close to each other along many irrelevant
d. We setm — 0.5, and tried 5 coverage ratios (fraction of dimensions, which misleads the dimension selection proce-

clusters receiving inputs), 4 input categories (no inpiits, g_ure (s_ee F'guéé)' Ir|1 contrast, ﬂl](.a Fl)ro?ab'“ty for a pﬁllr of
only, IV only, both), and 8 input sizes. For example, when dlmeHSIr(])nls tobere evanlt to mgltlp € C_USt(T_rS IS rr?uﬁ owler
coverage=0.6, both kinds of inputs are supplied and input ue to the low average cluster dimensionality, which resuits

size=4.0.6 x 5 — 3 clusters receive input knowledge, each in an observable accuracy improvement when 2 labeled di-
with 4 labeled objects and 4 labeled dimensions. No inputs

mensions are supplied.
are supplied for the other 2 clusters. Figure6 shows the accuracy of SSPC with changing cov-
The inputs are drawn randomly from the real cluster

erage, when the input size is 6. There is a general trend of
members and relevant dimensions. Each point in the Com_increasing accuracy as the coverage increases. An interest-
ing figures is the median of 10 repeated runs with 10 inde-

ing observation from Figur6 is that the peak performance
pendent sets of inputs.

is reached at 60% coverage, which suggests that it is not

Figure5 shows the accuracy of SSPC when coveragezl.necessary to input domain knowledge to every cluster. By
For reference, the ARI values of HARP and PROCLUS

(with correcti value supplied) are 0.17 and 0.08 respec-

using the max-min mechanism (SectR.4), clusters with

no input knowledge could also locate their cluster centers if
tively, which are much lower than the raw accuracy of SSPC
(atinput size 0). In general, SSPC has a larger accuracy im-

the seed groups of the other clusters are created accurately.
provement when more inputs are supplied. The accuracyd-4 Data with multiple possible groupings
becomes stable with 5 objects and 3 dimensions (which is
equal to the default value a@f the number of building di- As discussed in Sectioh, an important application of
mensions per grid). All these observations are consistentsemi-supervised clustering is to produce different desired
with the analysis in Sectiod.5. The accuracy of SSPC clusters based on different input knowledge. In this set of
appears to be more stable with labeled dimensions as inexperiments we verify the capability of SSPC in achiev-
puts. In particular, an accuracy lower than the raw accu-ing this. We generated two datasets, each witk 150,
racy is observed when only 2 labeled objects are suppliedd = 1500, ¥ = 5 andl,.,; = 30. The members and
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Figure 7. The accuracy of the algorithms on

the dataset with two possible groupings. Figure 8. The execution time of 10 repeated

runs of PROCLUS and SSPC.

relevant dimensions of the clusters in the two datasets ard6 Summary and Future Extensions

independent. We then combined the two datasets to pro-

duce a dataset with 3000 dimensions, where the first 1500 |n this paper, we have discussed some potential limita-
come from the first original dataset and the last 1500 cometions of some existing projected clustering algorithms, in-
from the second. The average cluster dimensionality thuscluding their inability to detect clusters with very low di-
remains atl % of d. We then tested the accuracy of HARP, mensionality, the use of user parameters whose proper val-
PROCLUS and SSPC on the dataset, with cortegilue ues are hard to determine, and the potential accuracy drop
supplied to PROCLUS. For SSPC, we tested its accuracy inwhen improper parameter values are supplied. We have pro-
three different scenarios: without inputs (raw accuracy), in- posed a new projected clustering algorithm that is robust
put based on the knowledge of the first original dataset, andand is able to detect clusters of extremely low dimension-
input based on the knowledge of the second original datasetality as it uses a robust objective function and avoids dis-
The ARI values of the algorithms computed from the actual tance calculations that involve all the dimensions. In ad-
clusters of the two original datasets are shown in Figure  dition, we have proposed ways to utilize any available do-

The performance of HARP is Seri0u5|y affected by the main knOWIedge in the form of labeled ObjeCtS and labeled
simultaneous existence of two possible groupings. Objectsdimensions. Experimental results show that there is a clear
not in the same cluster can be close to each other alongAccuracy improvement when some input knowledge is in-
many dimensions (as they do belong to the same clustercorporated in the clustering process. The peak performance
in the other grouping), which ruin the threshold loosen- is readily reached when only a small amount of knowledge
ing mechanism of HARP. The performance of PROCLUS is supplied, and when the knowledge covers only some of
is better, but is still not very encouraging. The raw accuracy the classes.
of SSPC is better than HARP and PROCLUS when evalu- There are some obvious directions for further study. The
ated by the first set of clusters, but worse when evaluated bymostimportant one is to test the new algorithm on some real
the second set. This shows that without any external inputs datasets that are expected to contain projected clusters, such
SSPC tends to form clusters that are more similar to the firstas gene expression profiles. When applying to complex,
set. But as some external inputs were supplied, the accuracyr0isy real data, the data model and objective function may
of SSPC was significantly improved in both cases. The re-have to be revised according to the observed data properties.
sults confirm the importance of external inputs in guiding  Another direction is to allow incorrect inputs. When in-

the formation of some desired clusters when there are mul-puts could be incorrect, they have to be validated before
tiple possible groupings. being used to guide the clustering process, for example by

comparing the assumed data model and the observed data
values. It is also possible to study fuzzy inputs, each of
5.5 Scalability which contains a confidence level that indicates its chance
of belonging to a cluster, and/or a quality level that specifies
the chance for the object to be of a certain distance from the
Figures8a and8b show the execution time of 10 repeated cluster center.
runs of SSPC with an increasing dataset sizegnd di- It is also interesting to study the case where one class
mensionality ) respectively, using the execution time of corresponds to multiple clusters. Ih]], an interesting al-
PROCLUS as reference. The figures confirm the linear time gorithm is proposed that modifies the distance matrix such
complexity of SSPC with respect to bothandd. Its speed  that objects of the same class move towards each other to
is comparable to PROCLUS in our implementations. form a single cluster. The more general approach that al-



lows the formation of multiple clusters per class is not yet [15] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali.
fully studied.
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