
CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 9(12), 1351–1376 (DECEMBER 1997)

Decentralized remapping of data parallel
applications in distributed memory
multiprocessors
CHENGZHONG XU1, FRANCIS C. M. LAU2 AND RALF DIEKMANN3

1Dept. of Electrical & Computer Engineering, Wayne State University, Detroit, MI 48202

2Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong

3Department of Computer Science, University of Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

SUMMARY
In this paper we present a decentralized remapping method for data parallel applications
on distributed memory multiprocessors. The method uses a generalized dimension exchange
(GDE) algorithm periodically during the execution of an application to balance (remap) the
system’s workload. We implemented this remapping method in parallel WaTor simulations and
parallel image thinning applications, and found it to be effective in reducing the computation
time. The average performance gain is about 20% in the WaTor simulation of a 256 × 256
ocean grid on 16 processors, and up to 8% in the thinning of a typical image of size 128 × 128
on eight processors. The performance gains due to remapping in the image thinning case are
reasonably substantial given the fact that the application by its very nature does not necessarily
favor remapping. We also implemented this remapping method, using up to 32 processors, for
partitioning and re-partitioning of grids in computational fluid dynamics. It was found that
the GDE-based parallel refinement policy, coupled with simple geometric strategies, produces
partitions that are comparable in quality to those from the best serial algorithms. 1997 John
Wiley & Sons, Ltd.

1. INTRODUCTION

The mapping problem in parallel computations is concerned with how to distribute the
workload or processes of a computation among the available processors so that each pro-
cessor would have the same or nearly the same amount of work to do. In most cases,
mapping is done prior to execution and is done only once – called static mapping. Static
mapping can be quite effective for computations that have predictable runtime behaviors[1].
For computations whose runtime behavior is non-deterministic or not so predictable, how-
ever, performing mapping only once in the beginning is insufficient. For these cases, it
might be better to perform the mapping more than once or periodically during runtime –
this is called dynamic remapping. Dynamic remapping produces ideal load-balances at the
cost of additional runtime overheads. A successful remapping mechanism must therefore
try to produce enough benefits that would outweigh the overheads incurred. We introduce
such a remapping mechanism in this paper, which is based on a very simple load-balancing
method, the generalized dimension exchange (GDE) method[2,3]. We demonstrate the ef-
fectiveness of this mechanism through incorporating it into the implementation of three
major applications.

A data parallel computation decomposes its problem domain into a number of sub-
domains (data sets), and designates them to processes[1]. These processes simultaneously

CCC 1040–3108/97/121351–26 $17.50 Received 27 July 1995
1997 by John Wiley & Sons, Ltd. Revised 6 August 1996

1352 C. XU, F. C. M. LAU AND R. DIEKMANN

perform the same functions across different data sets. Because the sub-domains are con-
nected at their boundaries, processes in neighboring sub-domains have to synchronize and
exchange boundary information with each other every now and then. These synchronization
points divide the computation into phases. During each phase, every process executes some
operations that might depend on the results from previous phases. This kind of computation
arises in a large variety of real applications. In a study of 84 successful parallel applications
in various areas, it was found that nearly 83% used this form of data parallelism[4].

In data parallel applications, the computational requirements associated with different
parts of a problem domain may change as the computation proceeds. This occurs when
the behavior of the physical system being modeled changes with time. Such adaptive
data parallel computations appear frequently in scientific and engineering applications
such as those in molecular dynamics (MD) and computational fluid dynamics (CFD). A
molecular dynamics program simulates the dynamic interactions among all atoms in a
system of interest for a period of time. For each time step, the simulation calculates the
forces between atoms, the energy of the whole structure and the movements of atoms.
Since atoms tend to move around in the system, simulation loads associated with different
parts of the system change from one step to another with the change of the atoms’ spatial
positions. A computational fluid dynamics program calculates the velocity and the pressure
of vertices in a moving object for the purpose of deriving its structural and dynamic
properties. The object can be either a car, an airplane, a space-shuttle or any other high-
speed vehicle. It is first tessellated using a grid. Numerical calculations are carried out at
grid points. In simulations that use adaptive grids to adjust the scale of resolution as the
simulation progresses, computational workloads associated with different parts of a grid
may change from phase to phase. To implement this kind of computation on a distributed
memory multiprocessor, static domain decomposition techniques, such as strip-wise, box-
wise and binary decompositions[5], are often not satisfactory; they fail to maintain an even
distribution of computational workloads across the processors during execution. Because
of the need for synchronization between phases, a processor that has finished its work in
the current phase has to wait for the more heavily loaded processors to finish their work
before proceeding to the next phase (see Figure 1). Consequently, the duration of a phase
is determined by the heavily loaded processors, and system performance may deteriorate
in time.

To lessen the penalty due to synchronization and load imbalances, one must dynami-
cally remap (re-decompose) the problem domain onto the processors as the computation
proceeds. Remapping can be performed either afresh – i.e. treating the current overall
workload as if it is a new workload to be decomposed – or through adjusting boundaries
created in the previous decomposition. The former approach can be viewed as dynamic
invocation of a static decomposition. Since the global workload is to be taken as a whole
for re-decomposition, the work is most conveniently performed by a designated processor
which has a global view of the current state of affairs. Such a centralized remapping can
no doubt yield a good workload distribution because of the existence of global knowledge.
However, the price to pay is the high cost of collecting the data sets from and communicat-
ing the re-decomposed data sets to the processors, which could be prohibitive, especially in
large systems. Therefore, the second approach of adjusting boundaries from the previous
phase is preferred, which can be performed easily in a decentralized, parallel fashion. As
each processor has to deal only with its nearest neighbors, much fewer data transfers would
take place in the network as compared to the centralized approach. The difficulty lies in

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1353

how to decide in a distributed way when a remapping should be invoked and how to adjust
the sub-domain boundaries among processors (also in a distributed way) so that the result
is a reasonably balanced workload.

This paper proposes a new and effective dynamic remapping method for time-varying
data parallel computations. This method is fully distributed and is based on a very simple,
low-overhead load-balancing algorithm that runs in every node. We prefer a distributed
method because it would have less chance of running into bottleneck problems and is
generally more reliable. The method requires no global information, and no broadcasting
of information. Through actual implementations, the net gain in performance due to the
use of this method is found to be substantial and comparable to performance results in
the literature for decentralized remapping. The simple load-balancing algorithm that runs
in every node is based on the generalized dimension exchange (GDE) load-balancing
method. With the GDE method, each processor plays an identical role in making load-
balancing decisions, which are based on knowledge of its nearest neighbors’ states. GDE
load-balancing is iterative: every processor successively balances its workload with every
one of nearest neighbors in an iteration step until a global balance state is reached. This
global balance state is detected by a distributed termination detection algorithm embedded
in the load-balancing algorithm. We have analyzed the GDE method thoroughly in our
previous works, and showed that it is effective, scalable and applicable to many network
topologies[2,3]. This paper continues the study of the GDE method with an emphasis on
its applicability to real problems, and also tries to demonstrate the benefits of distributed
remapping in general.

The rest of paper is organized as follows. Section 2 describes the computation model and
reviews the GDE method. Section 3 presents implementation aspects of our GDE-based
remapping mechanism. Section 4–6 evaluate the performance of the mechanism in three
different data parallel applications. Section 7 summarizes related work in the literature. We
conclude the paper in Section 8 with remarks on the GDE method on arbitrary computational
graphs.

2. COMPUTATION MODEL AND THE GDE METHOD

2.1. Computation model

We consider time-varying data parallel computations in distributed memory multipro-
cessors. A distributed memory multiprocessor is assumed to consist of N autonomous,
homogeneous processors connected by a direct communication network. We represent the
network by a simple graph G = (V,E), where V denotes the set of processors labeled
from 1 to N , and E ⊆ V × V is a set of edges. Each edge (i, j) ∈ E corresponds to the
communication link between processors i and j.

The parallel computation is assumed to follow the so-called single-program-multiple-
data (SPMD) paradigm in which each processor executes the same program but on different
sub-domains of the problem[1]. It proceeds in phases that are separated by global synchro-
nization points. During each phase, the processors perform calculations independently and
then communicate with their data-dependent peers. Figure 1 shows a typical scenario of
the paradigm in a system of four processors. The horizontal scale corresponds to the com-
putation time of the processors; the vertical lines represent synchronization points at which
a round of communications among the processors is due to begin. The shaded and the dark

1354 C. XU, F. C. M. LAU AND R. DIEKMANN

horizontal bars represent the communication time and the calculation time, respectively.
The dotted empty bars correspond to the idle times of the processors, which are the times
spent in waiting for the next phase to come.

1

2

3

4

communication calcaulation idle

Processor

k+1 k+2 k+3k Phase

Figure 1. An example of time-varying multiphase data parallel computations

Let tcommik , tcalcik and tik denote the communication time, the calculation time, and the
elapsed (or computation) time of processor i in the kth phase, respectively. Let Tk denote
the duration of the kth phase. Then, the computation time of the processor in this phase is
given by

tik = tcommik + tcalcik (1)

and the duration of the phase by

Tk = max(t1k, t2k, . . . , tNk) (2)

Supposing that the computation requires K phases, then the total elapsed time of the
computation, denoted by T , is given by

T =

K∑
k=1

Tk (3)

Clearly, the efficiency of this kind of computation is dependent upon two main factors: the
interprocessor communication cost and the degree of load imbalance across the processors
during each phase. The interprocessor communication cost is reflected by the ratio of tcommik

to tcalcik . These two times are functions of various parameters related to the application in
question as well as the underlying multiprocessor system. Discussion of the problem of
how to tune these parameters to yield a better communication-calculation ratio is beyond
the scope of this paper. Readers are referred to the book by Fox et al.[1] for discussion on
this issue and practical techniques to use. In this paper, we assume that the computation
is dominated by their calculation times, which is a reasonable assumption for medium-
and large-grain data parallel computations. As such, we can base the calculation of load
imbalances on calculation times. These calculation times are in fact equal to a processors’

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1355

utilization, which is defined as

Uk =

∑N
i=1 tik
NTk

(4)

The objective of remapping is to minimize the total elapsed time through maximizing the
processor utilization Uk from phase to phase.

Since the execution of the remapping procedure is expected to incur non-negligible
delay, the decision of when to invoke a remapping must be carefully made so that the
remapping cost would not outweigh the performance gain. The cost of remapping includes
the cost of interprocessor communications and the cost of subsequent workload transfers.
Note that the distribution of the computation times tik has much bearing on the reward
of remapping. Given some time-varying computations whose execution behavior is non-
deterministic, it is possible for the distribution of tik, 1 ≤ i ≤ N , in a phase to tend to
uniform, and a uniformly distributed tik in some phases to become severely imbalanced
in the next phase. That is, for computations whose execution behavior is non-deterministic
(and unpredictable), there exists the possibility that a version with no balancing would
outperform a dynamically balanced version, regardless of how well one can optimize the
remapping procedure. Therefore, in order for remapping to be promising in leading to
appreciable performance gains, the ideal arena in which to apply remapping would be the
class of parallel computations whose computational requirements vary gradually over time.
There are a large number of practical examples that fall into this class, including the three
we implemented.

2.2. The GDE method

Our remapping mechanism invokes a load-balancing procedure between every two succes-
sive phases, k and k+1 say, so that hopefully the same computation time ti(k+1) may result
across the processors. For simplicity, we use ti to represent the expected computation time
ti(k+1) of processor i prior to remapping. The goal of remapping is to redistribute the sys-
tem workload such that each processor would end up with the same expected computation
time t =

∑
ti/N . Such a redistribution is possible if the computation time ti is dominated

by its calculation part tcalci and if tcalci is such that there are tcalci pieces of work, each
requiring one unit of execution time. In this case, we can count the outstanding pieces of
work in a processor at the end of a phase and use this number to calculate the average load
to be assigned to every processor in the next phase. In the case that the communication
time tcommi is non-negligible, the remapping aims at balancing the calculation time of pro-
cessors while retaining communication locality and maintaining the original interprocessor
communication structure. It is done through nearest-neighbor shifting for the purpose of
load-balancing.

Dynamic remapping incurs runtime overhead. To balance between the desire to balance
the workloads of processors and the desire to minimize the remapping time, we have pro-
posed several iterative methods for remapping[3,6]. These methods operate in a relaxation
fashion in which a processor successively balances its workload with its nearest neighbors.
Iterative methods have a less stringent requirement on the spread of local load information
around the system. They are flexible in controlling the balance quality and suitable for
retaining the communication locality.

The GDE method is one of the most efficient iterative nearest-neighbor methods.

1356 C. XU, F. C. M. LAU AND R. DIEKMANN

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(1)

(1)

(1)

(1)

(3) (3) (3) (3)

(4)(4)(4) (4)

(3) (3)(3) (3)

15 20

140912

22

14 edge color

workload

8

4

18 27

5 14

1 7

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(1)

(1)

(1)

(1)

(3) (3) (3) (3)

(4)(4)(4) (4)

(3) (3)(3) (3)

14 13

1212

11 12

129

11

1517

12

6

12

12

10

Figure 2. Change of workload distribution after an iteration sweep in the GDE method

It evolves from the dimension exchange (DE) method which was intensively studied in
hypercube-structured multiprocessors (see [2] for a brief review). With the DE method,
every processor successively balances its workload with each one of its direct neighbors in
an iteration step according to a dimension order of the hypercube. It is through a number of
such iteration steps that the extra workload of a processor may get propagated to even the
remotest processors. It was proved that, regardless of the dimension order, the DE method
yields a uniform distribution from any initial workload distribution after one round of iter-
ation steps (called a sweep)[7]. For non-hypercube structures, however, we proved that the
DE method is not the most efficient (not optimal)[2]. Subsequently we derived the general-
ized version, the GDE method, which can yield optimal results in non-hypercube networks.
The GDE method is based on edge-coloring of the interconnection graphG = (V,E). The
edges ofG are supposed to be colored beforehand with the least number of colors (κ, say),
and no two adjoining edges are assigned the same color number. We index the colors with
integers from 1 to κ. Figure 2(a) shows a colored 4× 4 mesh. The numbers in parentheses
are the assigned color numbers (or chromatic indices).

In an edge-colored graph, a ‘dimension’ is then equal to the set of all edges of the same
chromatic index. During each iteration sweep, a processor would exchange its load with
each of its neighbors in turn according to the chromatic indices of its incident edges – i.e.
going through the dimensions in turn. During the process, the exchange operation between
a pair of processors would split the total workload of the two processors according to a
prescribed exchange parameter λ, 0 < λ < 1. Specifically, for processor i, the exchange
of workload with a nearest neighbor j is executed as

t̃i = (1− λ)ti + λtj (5)

where ti (tj) is the current workload of processor i (processor j), and t̃i is the adjusted
workload of processor i (processor j executes a similar operation). Note that when λ = 1/2
the GDE method is reduced to the original DE method[7,8]. Figure 2 illustrates the change
of workload distribution subject to the integer ceiling and floor operations after an iteration
sweep of the DE method.

Clearly, for an arbitrary structure, it is unlikely that the DE method can yield a uniform

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1357

workload distribution after a single iteration sweep. The introduction of the exchange
parameter λ aims at accelerating the convergence rate of the load-balancing procedure.
Our previous work resulted in the determination of a necessary and sufficient condition
for values of this parameter that would lead to convergence. We also presented a sufficient
condition for a class of network topologies for whichλ= 1/2 yields the fastest convergence
rate. Examples of the members of this class include the hypercube and the product of any
two structures satisfying the condition.

For the popular structures of the n-dimensional k1×k2×· · ·×kn mesh and 2k1×2k2×
· · · × 2kn torus, we derived the optimal exchange parameters, λopt = 1/(1 + sin(π/k)),
where k = max{ki, 1 ≤ i ≤ n}. Note that the torus converges twice as fast as a mesh of the
same dimensions. It was proved that the performance of these optimally tuned procedures
is scalable: the number of iteration steps required is found to be linearly proportional to
N , the number of processors. Through extensive experimentation, we showed that these
optimal parameters did speed up the GDE balancing procedure significantly, and that the
actual number of iteration steps taken was sufficiently small.

0

2

4

6

8

10

12

14

16

18

2x2 4x4 8x4 8x8 16x8 16x16 32x8 32x16 32x32

l
o
g
2
(
T
)

ADE
ODE
ADF
ODF

Figure 3. The number of communication steps necessary for reaching a global balance state in a
two-dimensional mesh of sizes varying from 2× 2 to 32× 32 (ADE represents the original dimension
exchange method; ODE is the optimally-tuned GDE method; ADF represents a diffusion method;

ODF is the optimally-tuned diffusion method)

Figure 3 plots the number of communication steps necessary for reaching a global
balance state from any initial workload distribution, using four different load-balancing
algorithms. The diffusion method is another nearest-neighbor load-balancing algorithm, in
which a processor balances its workload with those of its nearest neighbors simultaneously
rather than one at a time as in the dimension exchange method. It is included in the

1358 C. XU, F. C. M. LAU AND R. DIEKMANN

figure for comparison. This figure clearly indicates that the dimension exchange method
outperforms the diffusion method, and that the optimized GDE method accelerates the
dimension exchange load-balancing process significantly. From this figure it can also be
seen that the number of communication steps in a two-dimensional mesh is dependent only
on the size of its larger dimension and is insensitive to the size of its smaller dimension.
This observation was proved to be true in both the mesh and the torus[3].

3. DISTRIBUTED REMAPPING WITH THE GDE METHOD

3.1. Distributed convergence detection

The distributed GDE load-balancing procedure is invoked between consecutive phases.
Every time it finishes, the variance of the global workload distribution across the pro-
cessors is supposed to be less than a certain prescribed threshold. Such a state has to be
detected in order for the procedure to stop executing. From the practical point of view,
the detection of the global convergence is by no means trivial because the processors are
unaware of the global workload distribution during balancing. To assist the processors to
infer global termination of the load-balancing procedure from local workload informa-
tion, we superimpose a distributed termination detection mechanism on the load-balancing
procedure.

The problem of distributed termination detection per se is a popular research topic
in parallel and distributed computing areas. In the past, numerous solutions of diverse
characteristics have been proposed. Readers are referred to [9] for a brief review. For
our situation, we need a fully distributed and efficient method for the nodes to detect
global termination because all the processors are held up waiting for the completion of the
remapping procedure before they can proceed into the next phase. The method’s delay in
announcing termination after the instant when every node enters into its locally terminated
(or stable) state must be sufficiently small. A stable state is one in which the workload
remains unchanged after an iteration sweep of the GDE load-balancing. We adopt the
method as proposed in [9], which is especially effective for termination detection of loosely
synchronized iterative computations in general.

The method (see the algorithm below) makes use of virtual global time advanced by the
iteration sweeps. For termination detection, every node maintains an integer counter State
to record its current state and the historical states of others. State is equal to zero if and only
if the node is in an unstable state. Every node exchanges its counter value with its nearest
neighbors in a manner that is exactly like the exchange of workload information in the
GDE method. By executing the operation Exchange(c), a node sends out its local counter
value and receives its neighbor’s counter value along the channel with chromatic index
c. The variable InputState temporarily stores the neighbor’s counter value received in the
current exchange operation. The counter State changes as the load-balancing procedure,
LoadBalance(), progresses. Global termination of the load-balancing procedure is detected
when the counter value State reaches a prescribed value, ∆, which is a function of the
structure of the underlying colored system graph. In [9], we showed that this ∆ is in fact
equal to the minimum number of sweeps required by a processor to acquire the status of
other processors. In the color mesh of Figure 2(a), for example, ∆ = 2, because it takes a
minimum of two sweeps for any node to transmit a message to any other node. As a counter
would keep counting up after the system has entered a global stable state, this method is
time-optimal.

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1359

Algorithm: TerminationDetector
State = 0;
while (State ≤ ∆) {

for (c = 1; c ≤ κ; c+ +) {
if there exists an incident edge of color c {

InputState = Exchange(c, State);
State = min{State, InputState};

}
}
LoadBalance();
if (LocalT erminated)

State = State+ 1;
else

State = 0;
}

3.2. Multithreaded implementation of the remapping mechanism

Even though the analysis of the GDE method ignores the interprocessor communication
overhead, the method is applicable to the computations where interprocessor communi-
cation costs are non-negligible. Basically, what the GDE load-balancing ends up with are
nearest-neighbor communications that shift the loads over short distances. By adopting the
approach of adjusting boundaries of the problem domain, the GDE balancing procedure
preserves the communication locality and hence the stability of the original communication
structure through the series of redecompositions.

The problem domain can be treated as a group of internal load distributions together
with a corresponding external load distribution. Every sub-domain in a node is represented
by an internal load distribution for the computational requirements of its internal finer
portions, and by an external integer value for its total workload. The remapping mechanism
has two components: the decision maker and the workload adjuster. The decision maker
is concerned only with the external load distribution, and is responsible for calculating the
amount of workload inflow or outflow along each link of a node necessary for workload-
balancing. The workload adjuster is responsible for actually adjusting the borders of the
problem domain according to the results of the decision maker.

The decision maker uses the GDE method with which a node iteratively balances its
workload with its nearest neighbors until a uniform workload distribution is reached and
detected. Note that the balance operator does not involve real workload. The workload
is represented abstractly in this decision making process by simple integer variables:
WorkLoad for the node’s workload before the decision making and Load, a temporary
variable for workload during the process. We also introduce a vector FlowTrace to keep
track of the workload flows along each link of a node. Initially, each element FlowTrace[i]
is set to zero. For each sweep of the iterative decision making procedure, the amount of
workload which is to be sent away or absorbed along a link i is added to FlowTrace[i] as a
positive or negative value, respectively. Thus, at the end of the decision making, FlowTrace
records the inflow or outflow amount along each link.

Below, we outline the algorithm executed by the decision maker, which combines the
GDE algorithm and the termination detection algorithm. Note that LocalTerminated would

1360 C. XU, F. C. M. LAU AND R. DIEKMANN

become true in processor i when no change occurs in FlowTrace[i] after a sweep of
exchanges with the processor’s neighbors.

Algorithm: DecisionMaker
State = 0;
Load = WorkLoad;
while (State ≤ ∆) {

for (c = 1; c ≤ κ; c+ +) {
if there exists an edge of color c {

(InputState, InputLoad) = Exchange(c, State, Load);
if (InputLoad > Load)

temp = b(InputLoad− Load)× λc;
else

Flow[c] = d(InputLoad− Load)× λe;
FlowTrace[c] = FlowTrace[c] + temp;
Load = Load+ temp;
State = min{State, InputState};

}
}
if (LocalT erminated)

State = State+ 1;
else

State = 0;
}

Applying the algorithm to the external load distribution in Figure 2(a), we obtain the
inflow or outflow value for each link, as illustrated in Figure 4.

18

13

5

27

0

8 22

41

10

14

15

14

20

14

7

3 4 1

8 7 7 6

0348

6 5 4 3

1 2 7

7

43

24

4

12

12

12 12

12

13 13 13 13

13

1111

11 11 11 11

Figure 4. In/out-flow along each channel of a processor necessary for arriving at a global balance
state

Following the decision making, the workload adjuster of every node would start to work
on its internal load distribution according to the FlowTrace vector generated by the decision
maker. It involves selecting data set(s) to be split, transferring the split data sets between

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1361

nodes, and merging of received data set(s) with the original sub-domain. In principle, the
splitting and merging of data sets are such that the geometric adjacency of data points in
the problem domain are kept intact; what is done is basically adjusting of borders. For
strip-wise-partitioned sub-domains, this can be done conveniently through shifting rows
(or columns) between neighboring sub-domains. Details of how this is done are presented
in Section 4 and 5 when the implementations of two real applications are discussed. In
Section 6, we discuss a policy for splitting data items in grid partitioning and repartitioning
in computational fluid dynamics.

Data transfer dominates the cost of remapping when the original distribution is severely
imbalanced. Nearest-neighbor algorithms reduce the domain remapping operation to ad-
justment of sub-domain borders. Correspondingly, a processor may need to send and/or
receive data along its communication channels at the same time. To exploit the parallelism
in multiport communications, we experimented with a multithreaded model for multiport
concurrent communications. We created a sender thread or receiver thread for each commu-
nication port. The local sub-domain is treated as a public data pool for all threads. Sender
threads continually fetch data from the pool and receiver threads store data in the pool.
One more thread was used for the pool management, whose tasks include the selection of
data for sender threads and the combination of data from receiver threads with the original
sub-domain.

The flow calculation determines the communication pattern and communication volume
along each channel. A processor usually needs to send many data items to the same
processor. These small pieces of data items destined for the same processor were aggregated
into a single large message so as to reduce the number of instances of communication startup.

The time-varying data parallel applications we selected for testing the performance of
the GDE-based remapping mechanism are the WaTor simulation[10] and parallel thinning
of images[11,12]. They are representatives of two different load variation models: in the
WaTor simulation, computation requirements in a phase are independent of the previous
phase, whereas in image thinning, the computation requirements of a phase are dependent
on the previous phase. We also implemented the GDE-based remapping mechanism in
parallel grid partitioning/repartitioning in the context of computational fluid dynamics. All
experiments ran on a group of T805-30 transputers. The first two were coded in INMOS
Parallel C[13], and the third in C under the Parix parallel operating system. The main
metric in the first two experiments is the improvement in execution time due to remapping,
denoted by ηremap, which is defined as

ηremap =
tWithoutRemap − tWithRemap

tWithoutRemap
× 100%

where tWithoutRemap and tWithRemap are the execution times without and with remapping,
respectively. The metric in the application of grid partitioning/repartitioning is the improve-
ment in the quality of partitions due to refinement. Another metric for all experiments is
the overhead of the remapping (repartitioning) mechanism.

4. APPLICATION 1: WATOR – A MONTE CARLO DYNAMICAL SIMULATION

WaTor is an experiment that simulates the activities of fishes in a two-dimensional periodic
ocean. The name WaTor comes from the toroidal topology of the imaginary watery planet.
Fishes in the ocean breed, move, eat and die according to certain non-deterministic rules.

1362 C. XU, F. C. M. LAU AND R. DIEKMANN

The simulation is Monte Carlo in nature, and can be used to illustrate many of the crucial
ideas in dynamic time- and event-driven simulations.

In the simulation, the ocean space was divided into a fine grid which was structured as a
torus. Fishes are allowed to live only on grid points, and move around within neighboring
points in a simulation step. There are two kinds of fishes in the ocean: the minnows and the
sharks. They adhere to the following rules as they strive to live.

1. Each fish is updated as the simulation progresses in a series of discrete time steps.
2. A minnow locates a vacant position randomly in up, down, left or right direction. If

the vacant position is found, the minnow moves there. If it is mature with respect to
the minnow breeding age, the minnow leaves a new minnow of age 0 in the original
location.

3. A shark locates a minnow within its neighboring positions at first. If found, it eats the
minnow and moves to that location. Otherwise, the shark locates a vacant position as
the minnow does. If the shark moves to a new location and it is mature with respect
to the shark breeding age, a new shark of age 0 is left in its original location. If a
shark has not eaten any minnows within a starvation period, it dies.

Since the ocean structure is toroidal, we implemented the WaTor algorithm on a ring-
structured system (a ring is a special case of a torus). The parallel implementation decom-
posed the ocean grid into strips, and assigned each of them to a processing node. Each
simulation step consists of three sub-steps:

1. ExBound: exchange of contents of grid points along a strip’s boundaries
2. Update: update of fishes in the strip
3. ExFish: boundary-crossing of fishes that have to leave the strip.

The routine Update follows the above live-and-die rules for fishes. Fishes bound for
neighboring strips are not transferred individually. Instead, they are held until the end of
the Update procedure, and then bundled up to cross the boundaries in the routine ExFish.
Thus, the duration of a simulation step in a processor i is given by

Ti = tExBoundi + tUpdatei + tExFishi

where tExBoundi , tUpdatei and tExFishi are the times spent in the respective procedures. Since
the boundary-crossing fishes are bundled and transferred in one message, every processor
transmits the same number of messages to its neighbors and hence incurs approximately
the same communication cost.

The simulation was done for a 256 × 256 ocean grid which was mapped onto 16
transputers; it was run for as many as 100 simulation steps. The minnow breeding, the
shark breeding and the shark starvation parameters were set to be seven, 12, and five steps,
respectively. Initially, the ocean was populated by minnows and sharks generated from a
random uniform distribution, which were distributed by rows among the 16 transputers.
The total simulation time for 100 steps was 17.58 s.

The computational requirement of a processor is proportional to the density of fishes in
the strip that it is simulating. The more fishes exist, the more computation time is needed
for the update. Owing to the tendency of the fishes to form schools dynamically and owing
to their unpredictable behaviors, the processor utilization Uk (as defined in Section 2) of

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1363

the processors does not vary quite so smoothly over time, as shown in the TIME curve
of Figure 5. We applied remapping based on the GDE method periodically on the parallel
simulation. Since the computational workload of a processor is proportional to the number
of fishes in the strip, we used the latter as the measure of workload. The remapping
procedure then tries to split the number of fishes between nodes as evenly as possible.
Figure 5 (the FISH curve) also plots the processor utilization in terms of the number of
fishes of each processor at various simulation steps. From the simulation data, it is observed
that the variance of the computation time distribution changes with time and the change
tendency is unpredictable. The close agreement in shape of the two curves confirms the
reasonableness of measuring the computational load in terms of the number of fishes.

0 25 50 75 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FISH

TIME

Pr
oc

es
so

r
U

til
iz

at
io

n

Iteration Step

Figure 5. Processor utilization at various simulation steps

We examined the benefits of GDE-based remapping for various sizes of the remapping
interval. Other than the remapping interval, the remapping cost relative to the computation
time per simulation step is also an important parameter for determining the improvement
due to remapping. The remapping cost is the time tdecisioni required for decision-making
plus the time tadjusti spent in the workload adjustment. The latter is dependent on the
internal fish distribution at the time the remapping is invoked and on the results of the
decision making. Table 1 presents the scenario of a remapping instance which is invoked
after the simulation has passed 30 steps. The distribution of number of fishes fprei prior to
the remapping is given in the second column. For comparison, we also recorded in the next
column the actual update time of each processor, tupdatei , if no remapping is imposed. The
fourth column presents the time tdecisioni , which is the product of the number of iteration
sweeps NS spent in decision making using the GDE method (among which are eight
sweeps for global convergence detection) and a constant representing the time complexity
of a sweep. The fifth column gives the number of fishes that are migrated upwards (fupi) and
downwards (fdowni) due to the remapping. A positive number means ‘take’ and a negative

1364 C. XU, F. C. M. LAU AND R. DIEKMANN

number means ‘give away’. Correspondingly, the time spent in load adjustment tadjusti is
presented in the sixth column. The last column is the distribution of fishes after remapping,
fposti .

Table 1. Scenario of a remapping instance

Pre-remapping Decision-making Load adjustment Post-remapping

pi fprei tupdatei (NS, tdecisioni) (fupi , fdowni) tadjusti fposti

1 2014 265.9 (-121, 0) 37.3 1893
2 2094 285.7 (0,0) 0.128 2094
3 1909 240.8 (0,0) 0.128 1909
4 1927 254.3 (0,0) 0.128 1927
5 2160 276.6 (0, -126) 33.8 2034
6 2123 273.7 (126, -228) 71.7 2021
7 1737 225.2 (228, 0) 71.4 1965
8 1727 233.7 (17, 2.75) (0, 109) 25.2 1836
9 2042 271.0 (-109, 0) 25.2 1933

10 2132 268.4 (0, 0) 0.128 2132
11 2017 255.8 (0, -117) 34.9 1900
12 1876 264.4 (117, 0) 34.8 1993
13 1743 231.2 (0, 0) 0.128 1743
14 1848 251.1 (0, 122) 30.7 1970
15 1931 249.4 (-122, 139) 41.4 1948
16 2030 265.6 (-139, 121) 41.3 2012

All time items ti in the table are in milliseconds.

It can be seen from the table that the time for decision making tdecisioni (= 2.75 ms) is
relatively insignificant when compared to the update time tupdatei (122 ms on average), and
the cost of remapping is dominated by the time for load adjustment tadjusti . It is because the
load adjustment procedure involves a number of time-consuming steps including memory
allocation/deallocation and transmission of the fishes concerned.

The improvements due to remapping for different sizes of the remapping interval are
plotted in Figure 6 (the curve of DR, EL=0, where DR stands for distributed remapping
and EL stands for extra workload). The horizontal scale is the number of simulation
steps between two successive remapping instances; for example, a 20 means remapping is
invoked once every 20 simulation steps. The curve shows that relatively frequent remapping
gives an improvement of 7–15% in the overall simulation time. Because of its rather low
cost, remapping is favorable even in the case that the simulation is interrupted by remapping
once every simulation step. Conversely, less frequent remapping (e.g. once every 30–50
steps) could end up with no improvement or even degradation of performance. It is because
the load distribution across processors changes in a haphazard way over time. This is
characteristic of WaTor simulations.

Since the decision making and the load adjustment are based on the number of fishes, the
remapping cost does not change with the increase of the time a fish spends in a simulation
step. Hence, remapping would be even more beneficial if a fish does some extra work in
a simulation step. This ‘better’ performance is shown in Figure 6: the cases of DR, EL=1
and DR, EL=2, in which the time for the update of a fish is increased by an extra load of
64 µs and 128 µs, respectively.

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1365

-15

-10

-5

0

5

10

15

20

25

30

2 203 4 5 6 7 8 9 10

30 40 50

CR, EL=0

DR, EL=0

DR, EL=2

DR, EL=1

Remapping interval

Im
pr

ov
em

en
t

Figure 6. Improvement due to remapping for various interval sizes

For comparison, we also show the improvements resulting from an efficient implemen-
tation of a centralized remapping method in the figure (the case of CR, EL=0; CR stands for
centralized remapping). With the method, a designated processor takes the responsibility
of making decisions according to the external load distribution[14]. This centralized ver-
sion takes a much longer time (6.4–12.8 ms) to do decision making than the decentralized
version based on GDE. From the figure, it can be measured that the GDE-based remapping
method, when frequently invoked, outperforms the centralized method by up to 40%.

5. APPLICATION 2: PARALLEL THINNING OF IMAGES

Thinning is a fundamental preprocessing operation to be applied over a binary image to
produce a version that shows the significant features of the image (see Figure 7). In the
process, redundant information is removed from the image. It takes as input a binary
picture consisting of objects and a background which are represented by 1-valued pixels
and 0-valued pixels, respectively. It produces object skeletons that preserve the original
shapes and connectivity. An iterative thinning algorithm performs successive iterations on
the picture by converting those 1-valued pixels that are judged to be not belonging to the
skeletons into 0-valued pixels until no more conversions are necessary. In general, the
conversion (or survival) condition of a pixel, say P , is dependent upon the values of its
eight neighboring pixels, as depicted below.

NW N NE

W P E

SW S SE

A parallel thinning algorithm decomposes the image domain into a number of portions
and applies the thinning operator to all portions simultaneously. Since the study of parallel
thinning algorithms itself is beyond the scope of this study, we picked an existing parallel

1366 C. XU, F. C. M. LAU AND R. DIEKMANN

························ ············ ····∗·······∗·· ···∗·······∗·· ····∗·····∗·· ····∗·······∗·· ····∗∗·······∗·· ····∗·······∗·· ····∗·······∗∗·· ····∗······∗∗·· ···∗·······∗∗·· ···∗·······∗∗··· ·······∗····∗∗···········∗·····∗∗········∗·∗·····∗∗∗∗∗∗∗∗················∗∗∗∗·············∗···∗∗··········∗·····∗∗········∗·······∗∗∗∗······∗··· ······∗∗····∗··· ·∗·····∗·· ··∗·····∗·· ··∗····∗·· ···∗····∗·· ··∗····∗·· ··∗·····∗·· ····∗·····∗··· ····∗··········· ··∗····· ·················· ···∗···············∗·· ····∗·········∗∗∗∗·∗········∗∗∗···∗ ···∗∗∗····∗∗······∗∗··∗∗····∗ ···∗·········∗∗∗∗∗∗······∗∗···∗ ····∗·······················∗··∗······∗························∗∗····∗····∗······· ··············∗···∗·∗∗∗····· ····∗···∗····· ·∗·····∗······ ·∗·········· ··∗······· ·∗···· ·∗····· ··∗··· ··∗····∗···∗····∗·······∗∗······∗········∗········∗······∗······∗····∗·∗······

Figure 7. The image pattern and the thinning result

thinning algorithm, the HSCP algorithm[11], and implemented it on a chain-structured
system using strip-wise decomposition. The algorithm is sketched below.

Algorithm: Thinning
while (!GlobalTerminated) {

ExBound();
if (!LocalTerminated) {

ComputeEdge();
ExEdge();
LocalTerminated = Erosion();

}
}

At the beginning of each thinning iteration step, the boundary pixels of each strip are
exchanged with those of the neighboring strips in the routine ExBound. The heart of the
algorithm is the routine Erosion, which applies the thinning operator to each pixel according
to the following survival condition.

p && (!edge(P) ||
(edge(E) && n && s) ||
(edge(S) && w && e) ||
(edge(E) && edge(SE) && edge(S)))

where a small letter denotes the pixel value at a location identified by the corresponding
capital letter; the function edge tells whether a pixel is on the edge of an object skeleton.

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1367

The edge value of a pixel is determined by the values of its surrounding pixels, and is
computable in advance. The routine ComputeEdge is for computing the edge values of all
pixels. The edge values of boundary pixels are exchanged in the routine ExEdge.

We used a typical image, that of a human body, as shown in Figure 7, to be the test pattern.
The dots are 1-pixels, the white space is the 0-pixels, and the asterisks are the result of the
thinning process. For the image of size 128× 128, the number of iterations required by the
thinning algorithm is 15. The thinning time and other performance data of the algorithm
for various numbers of the processors are given in Table 2. The ‘efficiency’ measure is to

Table 2. Performance of parallel thinning

Number of processors 1 2 3 4 5 6 7 8

Thinning time, s 3.414 1.727 1.27 0.974 0.793 0.713 0.579 0.555
Speedup 1 1.977 2.685 3.503 4.304 4.785 5.892 6.146
Efficiency 1 0.988 0.893 0.875 0.861 0.798 0.842 0.768
Communication cost, % – 1.112 1.510 1.970 2.318 2.691 3.313 3.457

reflect the effectiveness of using more processors to solve the same problem. The loss of
efficiency as the number of processors increases is due to interprocessor communication
costs and load imbalances. From the thinning algorithm, we see that each thinning iteration
step involves two communication operations with neighboring nodes (in a chain, each node
has one or two neighbors): the exchange of boundary rows and the exchange of edge values
of boundary pixels. An exchange operator is made up of sending and receiving a fixed
size message in parallel. It is measured that the operator uses about 0.64 ms. The total

2 3 4 5 6 7 8 9 10 11 12 13 141

0.6

0.7

0.8

0.9

1.0

0.5

Iteration Step

Pr
oc

es
so

r
U

til
iz

at
io

n

case 3

case 1

case 2

Figure 8. Processor utilizations at various iteration steps (eight processors)

1368 C. XU, F. C. M. LAU AND R. DIEKMANN

communication time is thus∼ 19.2 ms, which is the same for any number of processors. Its
contribution in percentage to the overall thinning time is shown in the last row of Table 2.

We see that in parallel thinning, the computational requirement of a node is mainly
dependent on the 1-pixels. The amount of conversions of 1-pixels to 0-pixels in an iteration
step is unpredictable, and hence the computational workload can be somewhat varied over
time. We thus resort to dynamic remapping to balance the workload over the course of
thinning. We approximate the computational workload of a processor at an iteration by
the processing time spent in the previous iteration. This approximation is reasonable since
erosion takes place gradually along the edges of object skeletons, and thus the processing
times of two consecutive iterations should not differ a great deal.

From the experience of the WaTor simulation, we tried two invocation policies for the
remapping. One is to invoke the remapping once every two steps, and the other is to invoke
the remapping only once at the beginning of the thinning process. Since no computation
time is available before the first iteration step to serve as an estimate of the workload, we
perform the remapping between the first and the second iteration step. Figure 8 plots the
processor utilizationUk across eight processors at various iteration steps for cases with and
without remapping.

The curve for case 1 (without remapping) shows that the initial unbalanced workload

2 53 4 6 7 8

1

2

3

4

5

6

8

9

0

7

-1

-2 N

Number of Processors

Im
pr

ov
em

en
t

Case 2

Case 3

Figure 9. Improvement due to remapping for various numbers of processors

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1369

distribution tends to uniform as the thinning algorithm proceeds. This points to the fact that
the problem in question does not favor remapping. In fact, by applying the once-at-the-
beginning remapping to the problem (case 2), the overall performance seems to become
worse: the initial balanced load distribution which is the result of the remapping tends to be
non-uniform afterwards. To preserve the uniform distribution, it seems necessary to invoke
the remapping periodically (case 3). This time improvement is evident, as can be seen in
the figure. Then in Figure 9, we show the improvement due to remapping (cases 2 and 3)
in overall thinning time for different numbers of processors. Note that even though case 2
has seemed not to be so satisfactory in terms of processor utilization as shown in Figure 8,
it does however reap performance gain in terms of thinning time most of the time, even
outperforming case 3 in some instances.

From Figure 9 it is clear that the parallel thinning algorithm does benefit from remap-
ping. Although the once-at-the-beginning remapping could sometimes outperform frequent
remapping, the latter tends to give smoother performance throughout. As we have already
pointed out, this particular test image is unfavorable as far as remapping is concerned
because its workload distribution would tend to a uniform distribution as thinning pro-
gresses. Therefore, we consider the saving due to remapping of only a few percent in the
overall thinning time to be satisfactory in both cases. In comparison with the interprocessor
communication cost, which also accounts for a few percent (see Table 2), this saving is
significant.

6. APPLICATION 3: PARALLEL UNSTRUCTURED GRID PARTITIONING

In computational fluid dynamics, physical domains of interest are tessellated using struc-
tured, block structured or unstructured grids. Unstructured grids, composed of triangular
or tetrahedra elements, provide flexibility for tessellating about complex geometries and
for adapting to flow features, such as shocks and boundary layers. Parallel numerical sim-
ulations require splitting the unstructured grid into equal-sized partitions so as to minimize
the number of edges crossing partitions. Figure 10 shows an air-foil grid with 64 partitions.

Traditionally, grid partitioning is performed as a serial preprocessing step. For large
unstructured grids, serial partitioning on a single processor may not be feasible due to
memory or time constraints. Parallel partitioning is essential for reducing the preprocessing
time. It is also desirable for handling load imbalances at runtime in simulations based on
solution-adaptive grids.

We applied the GDE method to both grid partitioning and repartitioning. The grid in
consideration was first partitioned using a simple strategy, and then assigned to processors
using Bokhari’s simple mapping algorithm[5]. We experimented with two initial partition-
ing strategies: the recursive orthogonal bisection (ROB) and Farhat’s algorithm. The ROB
algorithm recursively cuts the grid or sub-grids into two halves. It tends to generate bal-
anced and well shaped partitions but with large cut size (the number of cut edges). Farhart’s
algorithm uses a breadth-first-search-based front technique to determine partitions one by
one[15]. Starting from non-partitioned vertices which are connected to the boundary of
partition i − 1, it forms partition i according to the number of edges external to partition
i− 1. The algorithm produces compact and balanced partitions with small cut size. Parti-
tions generated by both strategies are not necessarily connected. We refined the distribution
using the GDE method according to the geometric information of vertices with respect to
the cut size.

1370 C. XU, F. C. M. LAU AND R. DIEKMANN

Figure 10. A distribution of an unstructured mesh around an air-foil

6.1. Flow calculation

Initial partitioning of a physical domain results in a computational graph, where vertices
represent partitions and edges reflect neighboring relationships between partitions. The
workload of a partition is defined as the total number of grid points inside the partition.
The GDE method is readily applicable to the flow calculation in the case that the network
graph matches well with the computation graph. In the case that the computational graph
is different from the network graph, however, the GDE method on the network graph may
generate a load flow along an edge between a pair of directly connected processors whose
sub-domains are geometrically disconnected. Figure 11(a) shows such a computational
graph mapped onto a 2 × 4 mesh. Network links (2, 7) and (3, 6) do not match with any
edges of the computational graph. Load migration along such mis-matched links would
lead to bad partition shapes and to non-connected partitions.

We handled this problem by derouting flows on mis-matched links to a sequence of
edges that are on the shortest path to the destination of flows. In Figure 11(b), for example,
the flow on link (7, 2) is derouted to the path (7, 3, 1) in the computational graph. The
flow on link (3, 6) is derouted to the path (3, 5, 6). Notice that flow derouting may result
in undesirable cyclic traffic such as those along the path (7, 3, 5, 6, 7) in Figure 11(b). This
cyclic path can be eliminated easily, as shown in Figure 11(c), by subtracting certain flows
from all links in the path.

6.2. Selection of vertices for load migration

Selection of data sets to be split should be such that the geometric adjacency of data points
in the problem domain is preserved. The fundamental idea behind the selection policy is
the concept of gain associated with switching a grid point between different partitions. As
in the Kernighan–Lin local refinement algorithm[16,17], the gain for a point v was simply

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1371

321

5678

(c)

(b)(a)

1 399

13129

1 2 3 4

5678

20 10
111

4 29 131

01 30

4

20 1020 10 1020

8 7 6 5

432
4

10

20

9

131

291

94
1

220170210220

80350175175

220170210220

80350175175

220170210220

80350175175

Figure 11. (a) Mesh with mis-matched links; (b) flows along the mis-matched links derouted; (c)
after elimination of cyclic traffic

defined as the net reduction in the number of cut edges if the grid point were to switch sets.
That is,

gain(v) =
∑

(v,u) is an edge

{
1 if P (u) = P (v)
−1 otherwise

where P (u) and P (v) are the current partitions in which vertices u and v, respectively,
reside.

6.3. Experimental results

We experimented with the GDE-based refinement for grid partitioning[18]. Table 3 tabu-
larizes the improvement in cut size due to GDE-based refinement for partitioning of three
2-D finite element unstructured grids onto eight or 32 processors. The airfoil grid has 4253
vertices and 12,289 edges, the crack grid has 10,240 vertices and 30,380 edges, and the
big grid has 15,606 vertices and 45,878 edges[19]. From this table, it can be seen that
the GDE-based refinement strategy improves the quality of initial partitions by a factor of
15–25% in most cases.

Table 4 presents the quality and efficiency of our parallel partitioning mechanism, to-
gether with those from other well-known sequential algorithms. The inertial method (IN)
employs a physical analogy in which the grid points are treated as point masses and the
grid is cut with a plane orthogonal to the principal inertial axis of the mass distribution.
The spectral bisection method (SB) partitions a grid by considering an eigenvector of an
associated matrix to gain an understanding of global properties of the grid. Both methods
are complemented by a Kernighan–Lin (KL) local refinement algorithm. The multilevel
method accelerates the spectral method by coarsening the grid down to a smaller graph.
Partitions of the small graph resulted from the spectral method are projected back towards

1372 C. XU, F. C. M. LAU AND R. DIEKMANN

Table 3. Improvements in cut size due to GDE-based refinement

Airfoil Crack Big

8 32 8 32 8 32

ROB 272 870 556 1405 709 1950
ROB+GDE 207 666 463 1154 535 1478
Improvement, % 23.9 23.3 16.7 17.9 24.5 24.2
Farhat 423 684 611 1483 848 1454
Farhat+GDE 329 639 437 1146 719 1384
Improvement, % 22.2 6.6 28.0 22.7 15.2 4.8

the original grid. All these sequential methods are available in the Chaco library[20], and
the evaluation was done on a Sun Sparc 10/50 with 96 MB memory. The parallel algorithm
ran on a Parsytec T805 transputer-based GCel system. The T805 transputer is about 17
times slower than the Sparc machine; the timing performance in the table has been scaled to
take this into account. From this table, it can be seen that the inertial method is fast, but pro-
duces partitions of relatively low quality. The spectral method produces excellent partitions
at a very slow speed. The GDE-based refinement strategy, coupled with a simple Farhat
partitioner, outperforms the inertial method in quality. It produces partitions comparable to
the spectral method, and runs an order of magnitude faster.

Table 4. Comparison of various algorithms in terms of cut size and running time in seconds for
mapping various unstructured meshes onto 16 processors (KL = Kernighan-Lin, IN = inertial, SB

= spectral bisection, ML = multilevel and GDE = GDE-based refinement)

Airfoil Crack Big

CutSize Time CutSize Time CutSize Time

IN 503 0.20 797 0.45 1219 1.05
IN+KL 400 0.86 639 2.03 995 3.31
SB 372 21.29 671 74.14 863 124.8
SB+KL 309 24.20 577 82.60 675 131.3
ML+KL 325 2.98 615 6.47 605 8.05
Farhat+GDE 382 1.96 660 4.30 913 3.55

7. RELATED WORK

In the literature, much attention has been given to dynamic remapping of data parallel
computations over the past several years. Nicol and Saltz addressed the issue of when to
invoke a remapping so that its performance gain will not be offset by its overhead[21].
They proposed a simple heuristical invocation policy, Stop-At-Rise, for applications with
gradually varying resource demands. Most recently, Moon and Saltz applied the Stop-At-
Rise invocation policy, coupled with an elegant chain-structured partitioner and a recursive
co-ordinate bisection (RCB) partitioner, to three-dimensional direct Monte Carlo simulation
methods[22]. They showed that Stop-At-Rise remapping is superior to periodic remapping
with any fixed intervals when the RCB is applied, and is slightly worse than periodic
remapping with optimal intervals when the chain-structured partitioner is applied. A Stop-

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1373

At-Rise invocation decision is made in a centralized manner and based on an assumption
that the remapping cost is known in advance. Albeit valid in centralized remapping, the
assumption is obviously not applicable to decentralized remapping.

De Keyser and Roose experimented with centralized repartitioning in the calculation
of dynamic unstructured finite element grids[23,24]. The computation here is solution-
adaptive in that the grids are refined according to the solution obtained so far. After the
refinement of the grids, a global remapping is imposed. Dynamic remapping for solution-
adaptive grid refinements was also considered by Williams[25]. He compared three complex
parallel algorithms for carrying out the remapping, the ROB, the simulated annealing, and
the eigenvalue recursive bisection, and concluded that the latter should be preferred.

More parallel grid partitioning algorithms based on existing sequential algorithms have
been developed in recent years. They include a parallel index-based algorithm[26], a
parallel inertial algorithm[27], a parallel multilevel spectral algorithm[28], a parallel re-
cursive bisection algorithm[29] and the unbalanced recursive bisection (a parallel variant
of ROB)[30]. Most of these parallel algorithms take advantage of the recursive nature of
their sequential versions, and exploit parallelism associated with the recursive step. They
are efficient for initial grid partitioning. Since they are based on a global knowledge of
the entire grid, they might not be applicable to grid repartitioning at runtime. Our GDE-
based distributed refinement should serve as a complement to these parallel partitioning
algorithms. In [27], the authors proposed a distributed greedy refinement strategy, based
on ideas described by Hammond[19], to complement their parallel inertial algorithm. The
refinement strategy greedily improves the bisection resulted from the inertial partitions in a
pair-wise fashion. That is, all pairs of processors whose partitions share common edges ex-
change vertices so as to minimize cut sizes. Their parallel refinement strategy is essentially
a dimension exchange algorithm applied to computational graphs.

In the context of image understanding, Choudhary et al. incorporated a remapping
mechanism into a parallel motion estimation system[31,32]. The system consists of several
stages: convolution, thresholding and template matching. Remapping is invoked at the
beginning of each stage, in which every processor would broadcast information about the
sub-domain it is working on to all the others, and then do border adjustment based on
the collected information. A similar idea based on global knowledge was implemented
by Hanxleden and Scott[14]. They invoked remapping periodically in the course of a
Monte Carlo dynamical simulation, and gained 10–15% performance improvement using
the optimal remapping interval.

8. CONCLUDING REMARKS

In this paper we have studied distributed remapping with the generalized dimension ex-
change (GDE) method for data parallel applications. We first evaluated its performance
in two data parallel applications. In the WaTor simulation of a 256 × 256 torodial ocean
running on 16 processors, it is found that frequent remapping leads to∼ 20% improvement
in simulation time over static mapping, and it outperforms centralized remapping by a
factor of 50%. In parallel thinning of a 128× 128 image on eight processors, the policy of
frequent remapping still saves ∼ 5% thinning time, although the test image is unsuitable
for remapping. We consider these gains in performance due to remapping to be satisfac-
tory because our test problems are themselves balanced in the statistical sense – i.e. the
mean and variance of the workload distribution are more or less homogeneous across the

1374 C. XU, F. C. M. LAU AND R. DIEKMANN

domain, and the imbalances are mainly due to statistical fluctuations. We believe that this
characteristic is typical of many real data parallel problems. For other problems that have
substantial imbalances (the simulation of timed Petri nets, for instance), improvements of
the order of hundreds of percent could sometimes be observed.

We then implemented the GDE-based grid partitioning/repartitioning mechanism in the
context of computational fluid dynamics. It is found that the GDE-based parallel refinement
method, coupled with simple geometric approaches, produces partitions comparable in
quality to results from the best serial algorithms.

2

(b)

20

232372

13223

(a)

1020 10

1261 23

72

6 1

010

220170210220

175 175 350 80

220 210 170 220

80350175175
1

1

1 6

6

Figure 12. Flows along each edge of a computational graph for arriving at a global balance state:
(b) results from eliminating circular traffic paths in (a)

The GDE method is readily applicable to the flow calculation in the case that the underly-
ing network graph matches well with the computational graph generated from applications
like the first two with which we experimented. In the case that the computational graph
is different from the network graph, as we have encountered in the third experiment, we
employed a derouting strategy to redirect traffic on mis-matched network links to a dif-
ferent path in the computational graph in order to preserve communication locality. An
alternative approach is to apply the GDE method directly to the computational graph, as
illustrated in Figure 12(a). Figure 12(b) is the result of eliminating the circular traffic flows
in Figure 12(a). Flow calculation on the computational graph can also be performed in
series.

ACKNOWLEDGEMENTS

The authors would like to thank David Nicol for his helpful comments on an early version
of this paper, Derk Meyer for his contributions to the third experiment, Bruce Hendrickson
and Robert Leland for the Chaco library, and Steven Hammond for the example meshes.
This work is partly supported by grants from the Research Grant Council of the Hong
Kong Government, the University of Hong Kong, the DFG Sonderforschungsbereich 376
‘Massive Parallelität’, and the EC ESPRIT Long Term Research Project 20244 (ALCOM-
IT). A preliminary version of this paper was presented at SHPCC’94, Tennessee, 23–25
May 1994[33].

REFERENCES

1. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon and D. W. Walker, Solving
Problems on Concurrent Processors, Vol. I, Prentice-Hall, 1988.

2. C.-Z. Xu and F. C. M. Lau, ‘Analysis of the generalized dimension exchange method for dynamic
load balancing’, J. Parallel Distrib. Comput., 16, (4), 385–393 (1992).

DECENTRALIZED REMAPPING OF DATA PARALLEL APPLICATIONS 1375

3. C.-Z. Xu and F. C. M. Lau, ‘The generalized dimension exchange method for load balancing in
k-ary n-cubes and variants’, J. Parallel Distrib. Comput., 24, (1), 72–85 (1995).

4. G. C. Fox, ‘Applications of parallel supercomputers: Scientific results and computer science
lessons’, in Natural and Artifical Parallel Computation, The MIT Press, Cambridge, MA, 1990.

5. M. J. Berger and S. H. Bohari, ‘A partitioning strategy for nonuniform problems on multipro-
cessors’, IEEE Trans. Comput., 36, (5), 570–580 (1987).

6. C.-Z. Xu, B. Monien, R. Lüling and F. C. M. Lau, ‘Nearest neighbor algorithms for load
balancing in parallel computers’, Concurrency: Pract. Exp., 7, (7), 707–736 (1995).

7. G. Cybenko, ‘Load balancing for distributed memory multiprocessors’, J. Parallel Distrib.
Comput., 7, 279–301 (1989).

8. S. H. Hosseini, B. Litow, M. Malkawi, J. Mcpherson and K. Vairavan, ‘Analysis of a graph
coloring based distributed load balancing algorithm’, J. Parallel Distrib. Comput., 10, 160–166
(1990).

9. C.-Z. Xu and F. C. M. Lau, ‘Efficient termination detection for loosely synchronous applications
in multicomputers’, IEEE Trans. Parallel Distrib. Syst., 7, (5), 537–544 (1996).

10. A. K. Dewdney, ‘Computer recreations’, Sci. Am., 251, (6), 14–22 (1984).
11. C. M. Holt, A. Stewart, M. Clint and R. D. Perrott, ‘An improved parallel thinning algorithm’,

Commun. ACM, 30, (2), 156–160 (1987).
12. S. Heydorn and P. Weidner, ‘Optimization and performance analysis of thinning algorithm on

parallel computers’, Parallel Computing, 17, 17–27 (1991).
13. Inmos Limited (UK), ANSI C Toolset User Manual, 1990.
14. R. V. Hanxleden and L. R. Scott, ‘Load balancing on message passing architectures’, J. Parallel

Distrib. Comput., 13, (3), 312–324 (1991).
15. C. Farhat and H. D. Simon, ‘TOP/DoMDEC—A software tool for mesh partitioning and parallel

processing’, Technical Report RNR-93-011, NASA Ames, 1993.
16. R. Diekmann, B. Monien and R. Preis, ‘Using helpful sets to improve graph bisecitons’, in

Sotteau Hsu (Ed.), Interconnection Networks and Mapping and Scheduling Parallel Computa-
tions, DIMACS, 1995, pp. 57–73.

17. B. Kernighan and S. Lin, ‘An efficient heuristic procedure for partitioning graphs’, Bell Syst.
Tech. J., 29, 291–307 (1970).

18. R. Diekmann, D. Meyer and B. Monien, ‘Parallel decomposition of unstructured FEM-meshes’,
in Proceedings of the 2nd International Workshop on Parallel Algorithms for Irregularly Struc-
tured Problems, Springer LNCS 980, 1995, pp. 199–215.

19. H. W. Hammond, ‘Mapping unstructured grid computations to massively parallel computers’,
PhD thesis, Rensselaer Polytechnic Institute, 1992.

20. B. Hendrickson and R. Leland, ‘The chaco user’s guide’, Technical Report SAND 93-2339,
Sandia National Lab., USA, 1993.

21. D. M. Nicol and J. H. Saltz, ‘Dynamic remapping of parallel computations with varying resource
demands’, IEEE Trans. Comput., 37, (9), 1073–1087 (1988).

22. B. Moon and J. Saltz, ‘Adaptive runtime support for direct simulation Monte Carlo methods on
distributed memory architectures’, in Scalable High-Performance Computing Conference, May
1994, pp. 176–183.

23. J. De Keyser and D. Roose, ‘A software tool for load balanced adaptive multiple grids on dis-
tributed memory computers’, in Proceedings of 6th Distributed Memory Computing Conference,
April 1991, pp. 122–128.

24. J. De Keyser and D. Roose, ‘Multigrid with solution-adaptive irregular grids on distributed
memory computers’, in D. J. Evans, G. R. Joubert and H. Liddell (Eds.), Parallel Computing,
Elsevier Science Publishers, 1992, pp. 375–382.

25. R. D. Williams, ‘Performance of dynamic load balancing algorithms for unstructured mesh
calculations’, Concurrency: Pract. Exp., 3, (5), 451–481 (1991).

26. C.-W. Ou and S. Ranka, ‘Parallel remapping algorithms for adaptive problems’, Technical Report
SCCS-652, School of Computer and Information Science, Syracuse University, 1995.

27. P. Diniz, S. Plimpton, B. Hendrickson and R. Leland, ‘Parallel algorithms for dynamically
partitioning unstructured grids’, in Proc. of the 7th SIAM Conf. on Parallel Processing for
Scientific Computing, 1995, pp. 615–620.

1376 C. XU, F. C. M. LAU AND R. DIEKMANN

28. G. Karypis and V. Kumar, Parallel multilevel graph partitioning, Report, University of Min-
nesota, Department of Computer Science, May 1995.

29. C. Walshaw and M. Berzines, ‘Dynamic load-balancing for pde solvers on adaptive unstructured
meshes’, Concurrency: Pract. Exp., 7, (1), 14–28 (1995).

30. M. T. Jones and P. E. Plassmann, ‘Parallel algorithms for the adaptive refinement and partition-
ing of unstructured meshes’, in Proceedings of 1994 Scalable High Performance Computing
Conference, IEEE Computer Society Press, May 1994, pp. 478–485.

31. A. N. Choudhary and R. Ponnusamy, ‘Run-time data decomposition for parallel implementation
of image processing and computer vision tasks’, Concurrency: Pract. Exp., 4, (4), 313–334
(1992).

32. A. N. Choudhary, B. Narahari and R. Krishnamurti, ‘An efficient heuristic scheme for dynamic
remapping of parallel computations’, Parallel Comput., 19, 621–632 (1993).

33. C.-Z. Xu and F. C. M. Lau, ‘Decentralized remapping of data-parallel computations with the
generalized dimension exchange method’, in Proceedings of 1994 Scalable High Performance
Computing Conference, IEEE Computer Society Press, May 1994, pp. 414–421.

	1. INTRODUCTION
	2. COMPUTATION MODEL AND THE GDE METHOD
	2.1. Computation model
	2.2. The GDE method

	3. DISTRIBUTED REMAPPING WITH THE GDE METHOD
	3.1. Distributed convergence detection
	3.2. Multithreaded implementation of the remapping mechanism

	4. APPLICATION 1: WATOR -- A MONTE CARLO DYNAMICAL SIMULATION
	5. APPLICATION 2: PARALLEL THINNING OF IMAGES
	6. APPLICATION 3: PARALLEL UNSTRUCTURED GRID PARTITIONING
	6.1. Flow calculation
	6.2. Selection of vertices for load migration
	6.3. Experimental results

	7. RELATED WORK
	8. CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

