
InstantLeap: Fast Neighbor Discovery in P2P VoD
Streaming

Xuanjia Qiu1 Chuan Wu2 Xiaola Lin1 Francis C.M. Lau2

1Department of Computer Science
Sun Yat-Sen University

P. R. China
is03qxj@mail2.sysu.edu.cn, linxl@mail.sysu.edu.cn

2Department of Computer Science
The University of Hong Kong

Hong Kong
{cwu,fcmlau}@cs.hku.hk

ABSTRACT
A fundamental challenge in peer-to-peer (P2P) Video-on-Demand
(VoD) streaming is to quickly locate new supplying peers when-
ever a VCR command is issued, in order to achieve smooth view-
ing experiences. For most existing commercial systems which re-
sort to tracking servers for such neighbor discovery, the increasing
scale of P2P VoD systems has brought heavy load onto the dedi-
cated servers. To avoid overloading the servers and achieve instant
neighbor discovery over the self-organizing P2P overlay, we de-
sign a novel method of organizing peers watching the same video,
that constitutes a light-weighted indexing structure to support effi-
cient streaming and fast neighbor discovery at the same time.In-
stantLeapachieves anO(1) neighbor discovery efficiency upon
any playback “leaps” across the media stream in streaming over-
lays of any sizes, with a low messaging cost for the overlay mainte-
nance. We support our design with rigorous analysis and extensive
simulations.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems—Distributed Applications

General Terms
Algorithms, Design

Keywords
Peer-to-peer network, video-on-demand, indexing overlay, neigh-
bor discovery

1. INTRODUCTION
Peer-to-peer (P2P) Video-on-Demand (VoD) streaming has been

successfully deployed over the Internet [1, 2, 3], providing thou-
sands of videos to hundreds of thousands of users. The state-of-
the-art P2P VoD applications are based on the design philosophy
of allowing peers watching the same video to exchange available
media blocks among themselves, in order to alleviate the server

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’09,June 3–5, 2009, Williamsburg, Virginia, USA.
Copyright 2009 ACM 978-1-60558-433-1/09/06 ...$5.00.

load [7]. As compared to P2P live streaming which has more ma-
ture applications in deployment, P2P VoD streaming presents a fun-
damental technical challenge to the designers: given a same video,
the users (peers) could be watching different parts of the stream,
and may issue VCR commands at will to “jump” to new playback
positions, leading to fundamentally lower levels of content overlap
among the peers than those in live streaming; this necessitates fre-
quent search for new supplying peers, and such neighbor discovery
has to be carried out as fast as possible in order to guarantee smooth
playback.

For neighbor discovery upon such “jumps”, existing commercial
P2P VoD systems have largely resorted to tracking servers which
keep track of the block availability at all the peers, and the peers
would query the server for available serving peers. Such a tracking
server however can easily become a bottleneck when peers join,
depart, and issue VCR commands frequently.

To map block locations to peers, DHT (distributed hash table)
has been adopted in a number of recent P2P VoD proposals [10,
12, 13]. In general, each DHT lookup takeslog(N) steps, where
N is the number of peers in the system, and DHT updates are re-
quired whenever the cached blocks are changed at the peers as they
progress in the playback.

It is possible using different overlay structures to implement neigh-
bor lookup without the complexity and cost of constructing a DHT.
Wanget al. [11] utilize a dynamic skip list to construct a P2P VoD
overlay, where all the peers are connected sequentially according
to their playback progress at the base layer of the skip list, and each
peer may also randomly connect to a few non-adjacent peers in the
higher layers. Alog(N) complexity is shown for each lookup over
the skip list. Chiet al. [6] suggest the use of an AVL tree for peer
indexing, which can achieve a search efficiency sublinear to the
number of peers. Recently, Chenget al. [5] propose a ring-assisted
overlay management scheme, where each peer maintains a set of
concentric rings with different radii and places neighbors on the
rings based on how similar their cached contents are. This overlay
structure promises to achieve an O(log(T/w)) lookup complexity
(T and w are the video size and the buffer size, respectively), but a
rigorous proof is missing.

In this paper, we proposeInstantLeap, a new method of orga-
nizing peers watching the same video in a P2P VoD application.
The resulting overlay structure is simple but efficient, supporting
both effective streaming andinstantneighbor lookup in the face of
any playback “leaps”. Peers are grouped according to their play-
back locality. Each peer strategically connects to a number of peers
with similar playback progress, as well as some other selected peers
watching different parts of the video. The original highlights of our
overlay design are as follows.

⊲ We show an O(1) neighbor discovery efficiency upon peer
joins and playback leaps across the video stream.

⊲ We show anO(m) overlay maintenance overhead for man-
aging peer dynamics, including failures, departures, and any
playback leaps, wherem is the number of groups.

⊲ InstantLeapcan be implemented based on the mesh-pull pro-
tocol employed in prevailing P2P VoD systems, with the sim-
ple add-on of random exchanges of neighbor information,
to build shortcuts among peers watching different parts of a
video.

The remainder of this paper is organized as follows. In Sec. 2,
we present our network model and the design rationale. In Sec. 3,
we discuss the detailed protocols inInstantLeapand analyze the
performance. We evaluateInstantLeapby extensive simulations
and comparisons against existing schemes in Sec. 4, and conclude
the paper in Sec. 5.

2. DESIGN RATIONALE
A typical mesh-based P2P VoD streaming application consists of

multiple mesh overlays, each of which connects the peers watching
the same video. The peers in the same overlay exchange informa-
tion about available video blocks in their local buffers. The buffer at
each peer represents a sliding window of the video stream, contain-
ing the block it is currently playing (referred to as itsplaying posi-
tion hereinafter) and a number of blocks the peer has just watched
or retrieved to be played in the near future.

Unlike live streaming where a peer’s playing position can only
move continuously forward, VoD streaming allows the users to
freely change their playing positions to any random point in the
video stream (referred to as playbackleapshereinafter). Such ran-
dom playback leaps give rise to the need to quickly discover new
supplying peers, which can provide video blocks at the new play-
ing position. To achieve the fastest possible neighbor discovery,
our design of a P2P VoD overlay, corresponding to the streaming
of one video toN peers, has the following features.

2.1 Peer grouping with playback locality
We partition the video stream intom consecutive segments along

the time axis. The size of each segment approximates the size of the
local buffer at each peer. A peer is marked as a member of group
i if its current playing position falls into theith segment. Peers in
the same group (e.g., groupi), and those in the two adjacent groups
(e.g., groupsi − 1, i + 1), may have overlapping buffer contents
and are thus potential supplying peers for one another.

Each peer in groupi maintains two neighbor lists: the first list
(referred to as thestreaming neighbor list) contains a subset of
peers within the same groupi and in the two adjacent groupsi − 1
and i + 1 for downloading and exchanging of video blocks; the
second list (referred to as theshortcut neighbor list) includes peers
that are not in groupi or the two groups adjacent to groupi, the
connections to which serve as shortcuts to reach other parts of the
video stream upon playback leaps. A conceptual model of the over-
lay design is illustrated in Fig. 1 (A). The discovery of peers to be
maintained in the neighbor lists is based on a random exchange
protocol, to be discussed in Sec. 3.

The two neighbor lists at a peer facilitate efficient streaming from
neighbors in the same group or adjacent groups, and meanwhile
enable fast discovery of new supplying peers in other destination
groups whenever a playback leap occurs, by following connections
to the shortcut neighbors. By maintaining neighbors in a random
subset of all groups at each peer, we decouple the complexity of

Group 1

Group i

S
eg

m
en

ts in
 a v

id
eo

Group i-1

Peer

(A)

Group
 1

(B)

Group m

Group
 m

Connection between
streaming neighbors

Connection between
shortcut neighbors

Group i+1

1

i-1

i-1

i

m

Group
 i+1

Group
 i-1

Group
 i

... ...

... ...

... ...

... ...

Figure 1: P2P VoD overlay design in InstantLeap.

inter-group neighbor discovery from the total number of peers in
the overlay,N ; the complexity is reduced to at most a simple func-
tion of the number of segments in the video,m. What is more, in
the following, we show that the complexity of neighbor discovery
is independent ofm.

2.2 Inter-group connectivity
We can represent each group of peers in Fig. 1 (A) by one graph

node and merge all the connections across groups into one; the
condensed overlay graph is shown in Fig. 1 (B). In practical large-
scale P2P VoD applications, a streaming overlay of a video can be
populated by thousands of peers or more, with a large number of
peers in each group. The node degrees in the condensed overlay
graph in Fig. 1 (B) can be much larger than the number of inter-
group connections at a single peer. Therefore, given a reasonable
number of neighbors at each peer, the condensed overlay graph can
turn out to be a dense graph, or even a complete graph. Hence the
number of hops between any two nodes in the condensed graph
would tend to be small,i.e., O(1) with high probability. For a
peer currently at segmenti who initiates a playback leap to a non-
adjacent segmentj, the complexity of finding a neighbor in the
destination groupj is proportional to the number of hops between
the nodes concerned in the condensed graph,i.e., O(1) with high
probability.

The following section presents the detailed protocols for realiz-
ing the above design. We also give a rigorous analysis showing
that when each peer has a reasonable number of shortcut neighbors
(i.e., O(m)), anO(1) complexity for discovering supplying peers
in any new playing position can be achieved with high probability.

3. INSTANTLEAP: PROTOCOLS
AND ANALYSIS

InstantLeapassumes an underlying framework similar to that
of most of the state-of-the-art mesh-based P2P streaming proto-
cols (e.g., CoolStreaming [14], UUSee [2], PPLive [8]): new peers
are introduced into a streaming overlay by a bootstrapping tracking
server; they then stream the video by retrieving needed blocks from
neighbors based on exchanges of buffer maps, and may exchange
neighbor lists among each other to learn more peers in the overlay.

The original highlight ofInstantLeapis the construction of short-
cut neighbor lists based on simple exchanges of known neighbors
among the peers with some strategies. These lists facilitate fast
neighbor discovery upon playback leaps with low additional proto-
col overhead.

3.1 Protocols
Using random neighbor list exchanges between peers as a basic

function, the main procedures inInstantLeapinclude the following
three:lookupof a peer in the destination group of a playback leap,
construction of the streaming neighbor listat a peer, andconstruc-
tion of the shortcut neighbor listat a peer. The highlights of these
three procedures are given inAlgorithm 1. Main protocols inIn-
stantLeapcan be implemented using these procedures, as follows.

Initial neighbor lists construction upon peer joins
With InstantLeap, we seek to minimize the load on the tracking
servers. When a peer first joins a streaming overlay, the number of
existing peers assigned to it can be as small as one or a few. These
bootstrapping peers are added to the new peer’s streaming or short-
cut neighbor lists, according to their group membership. If none
of the assigned neighbors is in the group where the peer’s desired
playing position falls into, the new peer executes the procedure
lookup to discover a peer in the destination group by exchanging
neighbor lists with the few known neighbors. Then the new peer
executesConstructStreamNeighborListto obtain more neighbors
with similar playback progress for video streaming, andConstruct-
ShortcutNeighborListto establish shortcuts to segments across the
entire video stream.

In InstantLeap, the number of neighbors in the streaming neigh-
bor list of a peer is a constant,e.g., 30–50, as typically used in
prevailing P2P streaming protocols [1, 2, 3]. The size of the short-
cut neighbor list is in the range of[β1m, β2m], where0 ≤ β1 <

β2 ≤ 1: our ConstructShortcutNeighborListprocedure would stop
expanding the shortcut neighbor list of a peer when the peer has ob-
tainedβ2m neighbors inβ2m different groups; the peer will restart
this procedure when its number of shortcut neighbors has fallen un-
derβ1m.

The case of continuous playback
When a peer watches the video continuously, its group membership
changes when it moves on to play the next video segment. The peer
updates all its neighbors in the two lists with its new group mem-
bership. Nevertheless, there would be little changes to its streaming
neighbor list, when most of its streaming neighbors are pursuing a
continuous playback as well.

The case of playback leaps
When there is a playback leap due to a VCR operation, thelookup
procedure is executed, similar to the case when a peer first joins
the overlay. When the peer still fails to discover a peer in the des-
tination group afterT exchanges of neighbor lists, it queries the
tracking server as the last resort.T is a protocol parameter, which

represents the maximum number of times a peer exchanges neigh-
bor lists with others, in its attempt to discover a supplying peer in
the destination group, before it resorts to the tracking server. The
value ofT is to be decided in practice, considering the tradeoff be-
tween the maximum allowed delay for neighbor discovery and the
aggregate load on a tracking server.

After connecting to a peer in the destination group, the peer ex-
ecutesConstructStreamNeighborListto obtain more new stream-
ing neighbors, and starts streaming by retrieving video blocks from
these neighbors. Meanwhile, it notifies all its existing neighbors in
the two lists of the changes of its group membership.

Algorithm 1 Main Procedures at each peer inInstantLeap

1: procedure GETNEIGHBORL IST(listType,peerId)
2: if listType is shortcut neighbor list
3: obtain the shortcut neighbor list frompeerId

4: merge obtained peers into my shortcut neighbor list
5: end if
6: if listType is streaming neighbor list
7: obtain the streaming neighbor list frompeerId

8: merge obtained peers into my streaming neighbor list
9: endif

10: end procedure
1: procedure CONSTRUCTSTREAMNEIGHBORL IST

2: while my streaming neighbor list is not full
3: select a random peer withpeerId from my streaming neigh-

bor list
4: GetNeighborList(streamNeighborList, peerId)
5: end while
6: end procedure
1: procedure CONSTRUCTSHORTCUTNEIGHBORL IST

2: while the size of my shortcut neighbor list is smaller than
β2m

3: select a random peer withpeerId from my streaming or
shortcut neighbor list

4: GetNeighborList(shortcutNeighborList, peerId)
5: end while
6: end procedure
1: procedure LOOKUP(PlayPosition)
2: calculategroupId of the destination group corresponding to

PlayPosition

3: while there is no peer in my streaming or shortcut neighbor
list with groupId and the times of neighbor list exchanges has
not exceededT

4: select a random peer withpeerId in my streaming or short-
cut neighbor list

5: GetNeighborList(shortcutNeighborList, peerId)
6: end while
7: if no neighbor withgroupId has been discovered
8: request a neighbor withgroupId from tracking server
9: end if

10: if I am not evoking the procedure as a new join peer
11: update all neighbors in my streaming and shortcut neighbor

lists with my new group membership
12: clear my streaming neighbor list
13: end if
14: add the discovered neighbor into streaming neighbor list
15: end procedure

Neighbor list maintenance upon neighbor dynamics
When a peer detects the failure or departure of a neighbor, it may
simply remove the neighbor from its corresponding neighbor list.
When a peer receives update of group membership from a stream-
ing neighbor which can no longer serve itself, it will transfer the
neighbor to its shortcut neighbor list, if it previously has no shortcut
neighbor for the updated group. When group membership update
from a shortcut neighbor arrives, the peer will keep the neighbor
and update its group membership, if there has been no shortcut
neighbor for the group.

Refinement
Based on the random neighbor list exchanges, a peer may get to
know multiple peers in a group after several neighbor list exchanges.
In InstantLeap, only one shortcut neighbor for each group is to be
maintained in the shortcut neighbor list at a peer, in order to min-
imize the buffering overhead. Since a shortcut neighbor may well
become a streaming neighbor in the near future if the peer’s play-
ing position changes to the respective segment, high-quality peers
are favored and maintained as shortcut neighbors,e.g., those with
larger bandwidth, better stability, or more available blocks in the
buffer.

3.2 Analysis
Although InstantLeapprotocols appear to be simple add-ons to

the existing typical mesh-based streaming protocols, we show in
the following that anO(1) neighbor discovery complexity can be
achieved upon any playback leaps with low protocol overhead.

We first show that a peer can obtain shortcut neighbors across
O(m) groups by only a small number of neighbor list exchanges
with other peers. Letst

i denote the average size of the shortcut
neighbor list at peeri after t times of random neighbor list ex-
changes. We first prove a lemma.

LEMMA 1. Let peeri and peerj be two randomly selected
peers from allN peers in the streaming overlay, with an initial
size of the shortcut neighbor list ofs0

i = a and s0
j = b, re-

spectively. The average size of their shortcut neighbor lists after
one exchange of the shortcut neighbor list between peeri andj is
s1

i = s1
j = a + b − a×b

m
.

PROOF. The average size of the merged shortcut neighbor list is
the sum of the number of groups peeri’s shortcut neighbors belong
to (i.e., a) and the number of groups peerj’s shortcut neighbors be-
long to (i.e., b), minus the expected number of overlapping groups
which is a

m
×

b
m

× m.

Based on Lemma 1, we have the following theorem.

THEOREM 2. Assumings0
i ∈ [K, (1 + α)K], whereK ≥ 1

and 0 ≤ α ≪ 1, for any peeri in the streaming overlay. After
t times of shortcut neighbor list exchanges with randomly selected
other peers in the overlay, the average size of the shortcut neighbor

list at peeri is st
i≥m[1 − e−

2
t
×K

m].

PROOF. Given each peer has a similar number of initial short-
cut neighbors, based on Lemma 1, the average number of shortcut
neighbors at peeri after one exchange with another random peer is

s1
i = 2 ∗ s0

i −
(s0

i
)2

m
.

After t + 1 times of exchanges between peeri and other peers,

we havest+1
i = 2 ∗ st

i −
(st

i
)2

m
, for t≥0.

Let Q(t) = st
i − m. We have

Q(t + 1) = s
t+1
i − m = 2 ∗ s

t
i −

(st
i)

2

m
− m

= −
1

m
[st

i − m]2 = −
1

m
[Q(t)]2

We then haveQ(t) = −
[Q(0)]2

t

m2t−1
= −m(1 −

s0

i

m
)2

t

,

and thusst
i = Q(t) + m = m[1 − (1 −

s0

i

m
)2

t

].

Since1 −
s0

i

m
≤ e−

s
0

i

m with 0 ≤ s0
i ≤ m, we have

s
t
i ≥ m[1 − e

−
2

t
×s

0
i

m] ≥ m[1 − e
−

2
t
×K

m]

COROLLARY 3. Assuming initiallys0
i = 1 for any peeri in

the streaming overlay, afterlog(m) times of shortcut neighbor list
exchanges with randomly selected other peers, the average size of
the shortcut neighbor list at peeri is s

log m
i ≥(1 −

1
e
)m≈0.63m.

This corollary tells us that even in the extreme case that each peer
is assigned with only one neighbor initially, after a small number
(log(m)) of neighbor list exchanges, the peer can obtain shortcut
neighbors covering more than half (0.63) of all the groups.

log(m) is generally a very small value. Based on the corollary,
we know that a peer will have a shortcut neighbor list of size no
less than(1− 1

e
)m after a few exchanges after joining the overlay.

As a side note, in our implementation of the protocol handling peer
joins, as discussed in Sec. 3.1, parameterβ2 is set to a value of2

3
by

considering this effect. In this case, when a peer, which has finished
the joining procedure, initiates a playback leap, the probability that
it already has a neighbor belonging to its destination group is at
least1− 1

e
. If there is no such a neighbor, according to our protocol

in Sec. 3.1, the peer will exchange neighbor lists with its current
neighbors. The probability it can successfully obtain a shortcut
neighbor within a specific destination group afterv exchanges is at
least(1− 1

e
)(1

e
)v. Therefore, we can derive the following theorem

on the expected number of neighbor list exchanges a peer needs
upon a playback leap, in order to discover a shortcut neighbor to
the destination group.

THEOREM 4. The expected number of neighbor list exchanges,
for a peer which has finished its joining procedure, to find a short-
cut neighbor to a destination group upon any playback leap, is
O(1).

PROOF. Consider any peeri in the overlay who makes a play-
back leap to destination groupd. Let p denote the average prob-
ability that a peer’s shortcut neighbor list includes a peer in the
destination group. This probability equals the ratio of the average
size of the shortcut neighbor list at a peer over the total number
of groups (i.e., m). In the case that peeri’s shortcut neighbor list
does not contain such a neighbor, the probability that peeri can
obtain such a peer by one neighbor list exchange with another peer
j, randomly selected from the overlay, isp, i.e., the probability that
peerj has a neighbor in groupd. Therefore, the probability that a
peer successfully obtains a neighbor in the destination group after
v times of random neighbor list exchanges is(1− p)v

× p, and the
expected number of exchanges is

P

∞

v=0 v × (1 − p)v
× p = 1−p

p
.

Considering that the peers involved in the exchanges are not
new joiners (i.e., they have all finished their joining procedures),
we havep ≥ 1 −

1
e
, and the expected number of exchanges is

1−p

p
≤

1
e−1

≈ 0.58. Therefore, in general, the expected number
of neighbor list exchanges upon any playback leap isO(1).

In our analysis, we have assumed that all neighbor list exchanges
occur between two peers randomly selected from the overlay. The
random exchanges inInstantLeapbetween a peer and one of its
randomly selected neighbors represent the best possible approxi-
mation to the expected randomness in a practical P2P VoD system.

The overhead inInstantLeapprotocols is due mainly to the ex-
change, construction and maintenance of neighbor lists in case of
various peer operations, including continuous playback, playback
leaps, joins and departures. Since we maintain at each peer a stream-
ing neighbor list of at most a constant size and a shortcut neighbor
list with sizeO(m), the overhead involved in each operation is at
mostO(m). We will show that the protocol overhead is indeed
negligible as compared to the streaming rate in our simulations.

4. PERFORMANCE EVALUATION
We present evaluations ofInstantLeapbased on a P2P simulator

we have developed. The simulator is implemented using Java, fea-
turing a multi-threaded high-performance architecture, with sup-
ports for multiple event-driven timeouts. All peer dynamics, in-
cluding playback leaps, joins and departures, are simulated with
events scheduled at their respective times. With careful optimiza-
tions, our simulator can simulate large-scale P2P systems with
10, 000 or more simultaneous peers, distinguishing itself from rep-
resentative existing P2P simulators [9] which may support3000
peers at most.

We have implementedInstantLeapprotocols in our simulator,
and also implemented the dynamic skip list (DSL) algorithm [11]
for comparison purpose. In our evaluations, the streaming rate of
the video distributed in the overlay is450 Kbps. The upload band-
width at the peers ranges between300− 600 Kbps. Peers’ lifetime
follows an exponential distribution with an expected length of30
minutes. Peers join the overlay following a Poisson arrival model,
whose inter-arrival times follow an exponential distribution. The
expectation of the inter-arrival times differs across the experiments
we have carried out using different overlay sizes, in order to keep
the total number of online peers at a similar level overtime in each
experiment. The interval between two playback leaps at each peer
follows an exponential distribution with an expected length of200
seconds. We experiment with videos of different lengths, varying
from 40 minutes to 200 minutes. The peer buffer has a length of
1 minute. The number of groups(m) thus ranges from40 to 200,
accordingly. These parameters are carefully selected to be con-
sistent with the measurement results in the existing representative
P2P VoD systems [4, 8]. In addition, unless stated otherwise, the
parameters in our protocols areβ1 = 1

3
, β2 = 2

3
, andT = 10.

4.1 Performance of neighbor discovery
Figure 2 and 3 show the average numbers of neighbor list ex-

changes upon peer joins and playback leaps, respectively, in over-
lays of different sizes and with videos of different lengths. These
numbers would translate into the delay for neighbor discovery in
case of peer joins and playback leaps, when the protocols are imple-
mented in practice. We observe that the numbers of exchanges in
both cases are all less than6, and there is almost no change with the
increase of the overlay size. This clearly confirms thatInstantLeap
achieves a constant neighbor discovery performance, independent
of the number of peers in the overlay. Although this number is
larger than what is derived in Theorem 4 (where we assume ideal
random exchanges, which may not be feasible in practical systems),
it would already be quite satisfactory in practice.

In the case of DSL (dynamic skip list) algorithm, the numbers in
Figure 2 and 3 represent the average numbers of messages needed
to discover a supplying peer. We can see that DSL in general re-

2000 4000 6000 8000 10000
0

5

10

15

number of peers

N
um

be
r

of

 n
ei

gh
bo

r
lis

t e
xc

ha
ng

es

m = 40
m = 80
m = 120
m = 160
m = 200
DSL

Figure 2: Average number of neighbor list exchanges upon peer
joins.

2000 4000 6000 8000 10000
0

5

10

15

number of peers

N
um

be
r

of

 n
ei

gh
bo

r
lis

t e
xc

ha
ng

es

m = 40
m = 80
m = 120
m = 160
m = 200
DSL

Figure 3: Average number of neighbor list exchanges upon
playback leaps.

quires many more messages (hence longer delay) for neighbor dis-
covery, and their number increases with the increase of overlay size
as well.

4.2 Overhead for overlay maintenance
Figure 4 and 5 plot the control messaging overhead for overlay

maintenance upon peer leaps and departures, which is derived as a
function of the number of control messages, typical control mes-
sage sizes, and typical delays among Internet hosts. We observe a
control messaging bandwidth that is no more than2% of the video
streaming rate of450 Kbps, which is also largely independent of
the overlay size. Therefore, we can conclude that by sacrificing just
a little of the bandwidth for the fast neighbor discovery upon VCR
operations, the users’ experience can be improved significantly.

4.3 Impact of the number of shortcut neigh-
bors

In InstantLeap, we impose a range on the number of shortcut
neighbors at each peer,i.e., [β1m, β2m]. We now investigate whether
the number of shortcut neighbors at peers affects the performance
and overhead inInstantLeap. Figure 6 and 7 plot the neighbor
discovery performance and overlay maintenance overhead for dif-
ferent values ofβ2, respectively. In all these experiments, we set
β1 = 0.5β2, and the size of the overlay is10, 000. We observe
that the performance becomes better when peers have more short-
cut neighbors (with the increase ofβ2), which is at the cost of in-
creased overlay maintenance overhead. A closer look reveals that
the optimal value ofβ2 is achieved at around0.6, where there is
a good balance between the performance and the overhead. This
also explains our choice of usingβ2 = 2

3
in all of our previous

evaluations.

5. CONCLUDING REMARKS
This paper proposesInstantLeap, a scalable light-weighted in-

dexing structure to achieve efficient streaming and fast neighbor

2000 4000 6000 8000 10000
0

100

200

300

400

500

number of peers

C
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d

 (
K

bp
s)

m = 40
m = 80
m = 120
m = 160
m = 200
Streaming rate

Figure 4: Maintenance overhead upon playback leaps.

2000 4000 6000 8000 10000
0

100

200

300

400

500

number of peers

C
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d

 (
K

bp
s)

m = 40
m = 80
m = 120
m = 160
m = 200
Streaming rate

Figure 5: Maintenance overhead upon peer departures.

discovery for P2P VoD streaming applications. The distinctive fea-
ture of InstantLeapis its neighbor discovery method, which has a
performance ofO(1) upon any playback leap with low overhead.
InstantLeapcan be implemented on top of the basic framework of
prevailing mesh-based P2P VoD protocols, by adding the simple
function of random neighbor list exchanges to maintain shortcut
neighbors. The seemingly simple protocol achieves unexpectedly
good neighbor discovery performance, which is validated by both
theoretical analysis and simulations with large-scale overlays and
intense peer dynamics. As ongoing work, we are extending our
design to address neighbor discovery across multiple concurrent
streaming overlays, as in practical P2P VoD applications.

6. REFERENCES
[1] PPLive, http://www.pplive.com/.
[2] UUSee, http://www.uusee.com/.
[3] PPStream, http://www.ppstream.com/.
[4] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A Measurement

Study of a Peer-to-Peer Video-on-Demand System. In
Proc. of the 6th International Workshop on Peer-to-Peer
Systems (IPTPS 2007), February 2007.

[5] B. Cheng, H. Jin, and X. Liao. Supporting VCR Functions in
P2P VoD Services Using Ring-Assisted Overlays. InProc. of
the IEEE International Conference on Communications (ICC
2007), June 2007.

[6] H. Chi, Q. Zhang, J. Jia, and X. Shen. Efficient Search and
Scheduling in P2P-based Media-on-Demand Streaming
Service.IEEE Journal on Selected Areas in
Communications, 25(1):119–130, January 2007.

[7] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai.
Improving VoD Server Efficiency with BitTorrent. InProc.
of ACM Multimedia 2007, September 2007.

0.2 0.4 0.6 0.8
0

1

2

3

4

5

β
2

N
um

be
r

of

 n
ei

gh
bo

r
lis

t e
xc

ha
ng

es

m = 40
m = 80
m = 120
m = 160
m = 200

Figure 6: Average number of neighbor list exchanges upon
playback leaps.

0.2 0.4 0.6 0.8
0

5

10

15

20

25

β
2

C
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d

 (
K

bp
s)

m = 40
m = 80
m = 120
m = 160
m = 200

Figure 7: Maintenance overhead upon playback leaps.

[8] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang.
Challenges, Design and Analysis of a Large-Scale P2P-VoD
System. InProc. of ACM SIGCOMM, August 2008.

[9] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The State of Peer-to-Peer
Simulators and Simulations.ACM SIGCOMM Computer
Communication Review, 37(2):95 – 98, April 2007.

[10] N. Vratonjic, P. Gupta, N. Knezevic, D. Kostic, and
A. Rowstron. Enabling DVD-like Features in P2P
Video-on-Demand Systems. InProc. of the SIGCOMM
Peer-to-Peer Streaming and IP-TV Workshop, August 2007.

[11] D. Wang and J. Liu. A Dynamic Skip List-Based Overlay for
On-Demand Media Streaming with VCR Interactions.IEEE
Transactions on Parallel and Distributed Systems, 19(4):503
– 514, April 2008.

[12] Z. Yin and H. Jin. DHT Based Collaborative Multimedia
Streaming and Caching Service. InProc. of the IEEE
International Region 10 Conference (TENCON 2005),
November 2005.

[13] W.P. Yiu, X. Jin, and S.H. Chan. VMesh: Distributed
Segment Storage for Peer-to-Peer Interactive Video
Streaming.IEEE Journal on Selected Areas in
Communications, Special Issue on Advances in Peer-to-Peer
Streaming Systems, 25(9):1717 – 1731, December 2007.

[14] X. Zhang, J. Liu, B. Li, and T.P. Yum.
CoolStreaming/DONet: A Data-Driven Overlay Network for
Live Media Streaming. InProc. of IEEE INFOCOM, March
2005.

