InstantLeap: Fast Neighbor Discovery in P2P VoD

Streaming
Xuanjia Qiu? Chuan Wu? Xiaola Lin! Francis C.M. Lau?
!Department of Computer Science 2Department of Computer Science
Sun Yat-Sen University The University of Hong Kong
P. R. China Hong Kong
is03gxj@mail2.sysu.edu.cn, linxl@mail.sysu.edu.cn {cwu,fcmlau}@cs.hku.hk
ABSTRACT load [7]. As compared to P2P live streaming which has more ma-

A fundamental challenge in peer-to-peer (P2P) Video-on-Demand ture applications in deployment, P2P VoD streaming presents a fun-

(VoD) streaming is to quickly locate new supplying peers when- damental technical challenge to th_e designers: given a same video,
ever a VCR command is issued, in order to achieve smooth view- the users (peers) could be watching different parts of the stream,

ing experiences. For most existing commercial systems which re- and.r.nay Issue VCR commands at will to “jump” to new playback
sort to tracking servers for such neighbor discovery, the increasing POSitions, leading to fundamentally lower levels of content overlap
scale of P2P VoD systems has brought heavy load onto the dedi-@mong the peers than those in live streaming; this necessitates fre-

cated servers. To avoid overloading the servers and achieve instanﬂuent sbearch _foé new sufpplying pee_rsl, a_nd S;Ch neighbor digcover h
neighbor discovery over the self-organizing P2P overlay, we de- as to be carried outas fast as possible in order to guarantee smoot

sign a novel method of organizing peers watching the same video, playback. hbor di h . i ial
that constitutes a light-weighted indexing structure to support effi- For neighbor discovery upon such jumps’, eX|s_t|ng commercia
cient streaming and fast neighbor discovery at the same time. P2P VoD systems have largely resorted to tracking servers which

stantLeapachieves arO(1) neighbor discovery efficiency upon keep track of the block availability at all the peers, and the peers
any playback “leaps” across the media stream in streaming over- Would query the server fqr available serving peers. Such atraclqryg
lays of any sizes, with a low messaging cost for the overlay mainte- server however can easily become a bottleneck when peers join,

; - ; - ~depart, and issue VCR commands frequently.
nance. We support our design with rigorous analysis and extensive '
simulations PP g g y To map block locations to peers, DHT (distributed hash table)

has been adopted in a number of recent P2P VoD proposals [10,
12, 13]. In general, each DHT lookup takieg(N) steps, where
N is the number of peers in the system, and DHT updates are re-

Categoriesand Subject Descriptors

C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis- quired whenever the cached blocks are changed at the peers as they
tributed Systems-Bistributed Applications progress in the playback.
Itis possible using different overlay structures to implement neigh-
General Terms bor lookup without the complexity and cost of constructing a DHT.
) . Wanget al. [11] utilize a dynamic skip list to construct a P2P VoD

Algorithms, Design overlay, where all the peers are connected sequentially according

to their playback progress at the base layer of the skip list, and each
K eywor ds peer may also randomly connect to a few non-adjacent peers in the

h- higher layers. Aog(N) complexity is shown for each lookup over
the skip list. Chiet al. [6] suggest the use of an AVL tree for peer
indexing, which can achieve a search efficiency sublinear to the
number of peers. Recently, Cheeigal. [5] propose a ring-assisted

1. INTRODUCTION overlay management scheme, where each peer maintains a set of
Peer-to-peer (P2P) Video-on-Demand (VoD) streaming has beenconcentric rings with different radii and places neighbors on the

successfully deployed over the Internet [1, 2, 3], providing thou- rings based on how similar their cached contents are. This overlay

sands of videos to hundreds of thousands of users. The state-ofstructure promises to achieve an O(log(T/w)) lookup complexity

the-art P2P VoD applications are based on the design philosophy(T and w are the video size and the buffer size, respectively), but a

of allowing peers watching the same video to exchange available rigorous proof is missing.

media blocks among themselves, in order to alleviate the server |n this paper, we proposmstantLeap a new method of orga-

nizing peers watching the same video in a P2P VoD application.
The resulting overlay structure is simple but efficient, supporting
o o)) both effective streaming andstantneighbor lookup in the face of

Permission to make digital or hard copies of all or part of therknfor any playback “leaps”. Peers are grouped according to their play-

personal or classroom use is granted without fee providatiapies are back locality. Each peer strategically connects to a number of peers

not made or distributed for profit or commercial advantage aatidbpies - e
bear this notice and the full citation on the first page. Toyouiherwise, to with similar playback progress, as well as some other selected peers

republish, to post on servers or to redistribute to listgyui@s prior specific watching different parts of the video. The original highlights of our
permission and/or a fee. overlay design are as follows.

NOSSDAV’'09June 3-5, 2009, Williamsburg, Virginia, USA.

Copyright 2009 ACM 978-1-60558-433-1/09/06 ...$5.00.

Peer-to-peer network, video-on-demand, indexing overlay, neig
bor discovery

> We show an O(1) neighbor discovery efficiency upon peer E » Group 1

joins and playback leaps across the video stream.

> We show anD(m) overlay maintenance overhead for man-
aging peer dynamics, including failures, departures, and any
playback leaps, where is the number of groups.

> InstantLeagpran be implemented based on the mesh-pull pro-
tocol employed in prevailing P2P VoD systems, with the sim-
ple add-on of random exchanges of neighbor information,
to build shortcuts among peers watching different parts of a
video.

09PIA € UI Sjuow3as

The remainder of this paper is organized as follows. In Sec. 2, E
we present our network model and the design rationale. In Sec. 3,
we discuss the detailed protocolslimstantLeapand analyze the ® Peer — Connection between Connection between
performance. We evaluatestantLeapby extensive simulations streaming neighbors shortcut neighbors
and comparisons against existing schemes in Sec. 4, and conclude (A)
the paper in Sec. 5.

2. DESIGN RATIONALE

A typical mesh-based P2P VoD streaming application consists of
multiple mesh overlays, each of which connects the peers watching
the same video. The peers in the same overlay exchange informa-
tion about available video blocks in their local buffers. The buffer at
each peer represents a sliding window of the video stream, contain-
ing the block it is currently playing (referred to as jiislying posi-
tion hereinafter) and a number of blocks the peer has just watched
or retrieved to be played in the near future.

Unlike live streaming where a peer’s playing position can only
move continuously forward, VoD streaming allows the users to
freely change their playing positions to any random point in the
video stream (referred to as playbdelpshereinafter). Such ran-
dom playback leaps give rise to the need to quickly discover new
supplying peers, which can provide video blocks at the new play-
ing position. To achieve the fastest possible neighbor discovery, inter-group neighbor discovery from the total number of peers in
our design of a P2P VoD overlay, corresponding to the streaming the overlay,N; the complexity is reduced to at most a simple func-

Figure 1: P2P VoD overlay design in InstantL eap.

of one video taV peers, has the following features. tion of the number of segments in the video, What is more, in
. . . the following, we show that the complexity of neighbor discovery

We partition the video stream inta consecutive segments along ..
the time axis. The size of each segment approximates the size of the2-2 I nter-group connectivity
local buffer at each peer. A peer is marked as a member of group We can represent each group of peers in Fig. 1 (A) by one graph
¢ if its current playing position falls into thi,, segment. Peersin node and merge all the connections across groups into one; the
the same groupe(g, groupz), and those in the two adjacent groups condensed overlay graph is shown in Fig. 1 (B). In practical large-
(e.g, groupsi — 1, i + 1), may have overlapping buffer contents scale P2P VoD applications, a streaming overlay of a video can be
and are thus potential supplying peers for one another. populated by thousands of peers or more, with a large number of

Each peer in group maintains two neighbor lists: the first list peers in each group. The node degrees in the condensed overlay
(referred to as thetreaming neighbor lijtcontains a subset of graph in Fig. 1 (B) can be much larger than the number of inter-
peers within the same grod@nd in the two adjacent groups- 1 group connections at a single peer. Therefore, given a reasonable
andi + 1 for downloading and exchanging of video blocks; the number of neighbors at each peer, the condensed overlay graph ca
second list (referred to as tishortcut neighbor ligtincludes peers turn out to be a dense graph, or even a complete graph. Hence the
that are not in group or the two groups adjacent to groapthe number of hops between any two nodes in the condensed graph
connections to which serve as shortcuts to reach other parts of thewould tend to be smalli.e, O(1) with high probability. For a
video stream upon playback leaps. A conceptual model of the over- peer currently at segmentvho initiates a playback leap to a non-
lay design is illustrated in Fig. 1 (A). The discovery of peers to be adjacent segment, the complexity of finding a neighbor in the
maintained in the neighbor lists is based on a random exchangedestination groug is proportional to the number of hops between
protocol, to be discussed in Sec. 3. the nodes concerned in the condensed graphO(1) with high

The two neighbor lists at a peer facilitate efficient streaming from probability.
neighbors in the same group or adjacent groups, and meanwhile The following section presents the detailed protocols for realiz-
enable fast discovery of new supplying peers in other destination ing the above design. We also give a rigorous analysis showing
groups whenever a playback leap occurs, by following connections that when each peer has a reasonable number of shortcut neighbors
to the shortcut neighbors. By maintaining neighbors in a random (i.e, O(m)), anO(1) complexity for discovering supplying peers
subset of all groups at each peer, we decouple the complexity of in any new playing position can be achieved with high probability.

3. INSTANTLEAP: PROTOCOLS

AND ANALYSIS

InstantLeapassumes an underlying framework similar to that
of most of the state-of-the-art mesh-based P2P streaming proto-
cols (e.g, CoolStreaming [14], UUSee [2], PPLive [8]): new peers
are introduced into a streaming overlay by a bootstrapping tracking
server; they then stream the video by retrieving needed blocks from
neighbors based on exchanges of buffer maps, and may exchang

represents the maximum number of times a peer exchanges neigh-
bor lists with others, in its attempt to discover a supplying peer in
the destination group, before it resorts to the tracking server. The
value of T is to be decided in practice, considering the tradeoff be-
tween the maximum allowed delay for neighbor discovery and the
aggregate load on a tracking server.

After connecting to a peer in the destination group, the peer ex-
ecutesConstructStreamNeighborLisb obtain more new stream-
?ng neighbors, and starts streaming by retrieving video blocks from

neighbor lists among each other to learn more peers in the overlay.
The original highlight olnstantLeaps the construction of short-

cut neighbor lists based on simple exchanges of known neighbors

among the peers with some strategies. These lists facilitate fast

neighbor discovery upon playback leaps with low additional proto-

these neighbors. Meanwhile, it notifies all its existing neighbors in
the two lists of the changes of its group membership.

col overhead.

Algorithm 1 Main Procedures at each peeimstantLeap

3.1 Protocols :

Using random neighbor list exchanges between peers as a basic 3;

function, the main procedures instantLeagnclude the following 4:
three:lookupof a peer in the destination group of a playback leap, 5
construction of the streaming neighbor lata peer, andonstruc- 6
tion of the shortcut neighbor ligtt a peer. The highlights of these 7:
three procedures are givenAdgorithm 1. Main protocols inin- 8
stantLeapcan be implemented using these procedures, as follows. 9:

.. 10:
Initial neighbor lists construction upon peer joins 1
With InstantLeap we seek to minimize the load on the tracking 2:

servers. When a peer first joins a streaming overlay, the number of 3:
existing peers assigned to it can be as small as one or a few. These
bootstrapping peers are added to the new peer’s streaming or short- 4:
cut neighbor lists, according to their group membership. If none 5:
of the assigned neighbors is in the group where the peer’s desired 6:
playing position falls into, the new peer executes the procedure 1:
lookupto discover a peer in the destination group by exchanging -
neighbor lists with the few known neighbors. Then the new peer
executesConstructStreamNeighborLisd obtain more neighbors
with similar playback progress for video streaming, &ahstruct-
ShortcutNeighborListo establish shortcuts to segments across the 4-
entire video stream. 5:
In InstantLeapthe number of neighbors in the streaming neigh- &:
bor list of a peer is a constant,g, 30-50, as typically used in
prevailing P2P streaming protocols [1, 2, 3]. The size of the short-
cut neighbor list is in the range ¢f1m, 82m], where0 < 31 <
B2 < 1: our ConstructShortcutNeighborLigrocedure would stop
expanding the shortcut neighbor list of a peer when the peer has ob-
tained,m neighbors indam different groups; the peer will restart
this procedure when its number of shortcut neighbors has fallen un- 4
derfBim.

3:

The case of continuous playback 2;
When a peer watches the video continuously, its group membership 7:
changes when it moves on to play the next video segment. The peer g:
updates all its neighbors in the two lists with its new group mem- 9:
bership. Nevertheless, there would be little changes to its streaming10:
neighbor list, when most of its streaming neighbors are pursuing a 11:
continuous playback as well.

12:
The case of playback leaps 13:

When there is a playback leap due to a VCR operationicibleup 14:
procedure is executed, similar to the case when a peer first joins15:

procedure GETNEIGHBORLIST(listType,peerId)
if listType is shortcut neighbor list
obtain the shortcut neighbor list fropaerId
merge obtained peers into my shortcut neighbor list
end if
if listT'ype is streaming neighbor list
obtain the streaming neighbor list fravaerId
merge obtained peers into my streaming neighbor list
endif
end procedure

. procedure CONSTRUCTSTREAMNEIGHBORLIST

while my streaming neighbor list is not full
select a random peer witlzeer I d from my streaming neigh-
bor list
GetNeighborList{tream N eighbor List, peer1d)
end while
end procedure
procedure CONSTRUCTSHORTCUTNEIGHBORLIST
while the size of my shortcut neighbor list is smaller than
Bam
select a random peer witeerId from my streaming or
shortcut neighbor list
GetNeighborList{hortcut N eighbor List, peerId)
end while
end procedure

1: procedure LOOKUP(PlayPosition)

calculategroupld of the destination group corresponding to
PlayPosition
while there is no peer in my streaming or shortcut neighbor

list with groupId and the times of neighbor list exchanges has

not exceeded’
select a random peer witleer Id in my streaming or short-
cut neighbor list
GetNeighborList{hortcut N eighbor List, peerId)
end while
if no neighbor withyroupId has been discovered
request a neighbor withroupld from tracking server
end if
if I am not evoking the procedure as a new join peer
update all neighbors in my streaming and shortcut neighbor
lists with my new group membership
clear my streaming neighbor list
end if
add the discovered neighbor into streaming neighbor list
end procedure

the overlay. When the peer still fails to discover a peer in the des-
tination group aftefl’ exchanges of neighbor lists, it queries the
tracking server as the last resdft.is a protocol parameter, which

Neighbor list maintenance upon neighbor dynamics Let Q(t) = st — m. We have

When a peer detects the failure or departure of a neighbor, it may 1 ¢ (sh?
simply remove the neighbor from its corresponding neighbor list. Qt+1) = s —m=2xs; — o
When a peer receives update of group membership from a stream- 1.,) 1)
ing neighbor which can no longer serve itself, it will transfer the = — s —m]T = ——[Q(1)]
neighbor to its shortcut neighbor list, if it previously has no shortcut . .
neighbor for the updated group. When group membership update We then have)(t) = — [2(2(?121 =—m(l— %)2‘,

from a shortcut neighbor arrives, the peer will keep the neighbor . 0ot
and update its group membership, if there has been no shortcut and thuss; = Q(?) 40' m=m[l —(1-2)"].
neighbor for the group. Sincel — % < e~ with 0 < 59 < m, we have

. 2t><s,? t
Refinement s mll— e s - -2 ﬁk]

Based on the random neighbor list exchanges, a peer may get to
know multiple peers in a group after several neighbor list exchanges.
In InstantLeap only one shortcut neighbor for each group is to be
maintained in the shortcut neighbor list at a peer, in order to min-
imize the buffering overhead. Since a shortcut neighbor may well
become a streaming neighbor in the near future if the peer’s play-
ing position changes to the respective segment, high-quality peers

COROLLARY 3. Assuming initiallys? = 1 for any peeri in
the streaming overlay, aftéog(m) times of shortcut neighbor list
exchanges with randomly selected other peers, the average size of
the shortcut neighbor list at peéiis s1°™>(1 — 1)m~0.63m.

e

are favored and maintained as shortcut neighbegs, those with This corollary tells us that even in the extreme case that each peer

larger bandwidth, better stability, or more available blocks in the s assigned with only one neighbor initially, after a small number

buffer. (log(m)) of neighbor list exchanges, the peer can obtain shortcut
. neighbors covering more than halk ¢3) of all the groups.

3.2 Analysis log(m) is generally a very small value. Based on the corollary,

Although InstantLeapprotocols appear to be simple add-ons to we know that a peer will have a shortcut neighbor list of size no
the existing typical mesh-based streaming protocols, we show in less than(1 — %)m after a few exchanges after joining the overlay.
the following that anO(1) neighbor discovery complexity can be As a side note, in our implementation of the protocol handling peer
achieved upon any playback leaps with low protocol overhead. joins, as discussed in Sec. 3.1, paramgtes set to a value of by

We first show that a peer can obtain shortcut neighbors acrossconsidering this effect. In this case, when a peer, which has finished
O(m) groups by only a small number of neighbor list exchanges the joining procedure, initiates a playback leap, the probability that
with other peers. Les! denote the average size of the shortcut it already has a neighbor belonging to its destination group is at
neighbor list at peet# after ¢t times of random neighbor list ex- Ieastlfi. If there is no such a neighbor, according to our protocol
changes. We first prove a lemma. in Sec. 3.1, the peer will exchange neighbor lists with its current
neighbors. The probability it can successfully obtain a shortcut
neighbor within a specific destination group aftezxchanges is at
least(1 — 1)(1)". Therefore, we can derive the following theorem
on the expected number of neighbor list exchanges a peer needs
upon a playback leap, in order to discover a shortcut neighbor to
the destination group.

LEMMA 1. Let peeri and peerj be two randomly selected
peers from allN peers in the streaming overlay, with an initial
size of the shortcut neighbor list 8f = a and s} = b, re-
spectively. The average size of their shortcut neighbor lists after
one exchange of the shortcut neighbor list between paed j is
si=sj=atb— L. THEOREM 4. The expected number of neighbor list exchanges,
for a peer which has finished its joining procedure, to find a short-

the sum of the number of groups pe&rshortcut neighbors belong cut neighbor to a destination group upon any playback leap, is
to (i.e., a) and the number of groups pegs shortcut neighbors be- o).
long to (.e. b), minus the expected number of overlapping groups PROOF Consider any peerin the overlay who makes a play-
which is = x 7% xm. [back leap to destination group Let p denote the average prob-
ability that a peer’s shortcut neighbor list includes a peer in the
destination group. This probability equals the ratio of the average
size of the shortcut neighbor list at a peer over the total number
. of groups (.e., m). In the case that peéis shortcut neighbor list
THEOREM 2. Assumings; € [K, (1 + @)K], whereK > 1 does not contain such a neighbor, the probability that peem

and0 < a < 1, for any peeri in the streaming overlay. After ,pqin 5 1ch a peer by one neighbor list exchange with another peer
t times of shortcut neighbor list exchanges with randomly selected .

.) . j, randomly selected from the overlaygisi.e., the probability that
other peers in the overlay, tr;texell(verage size of the shortcut nelghborpeerj has a neighbor in groug. Therefore, the probability that a

list at peeri is si>m[l —e™ "m . peer successfully obtains a neighbor in the destination group after

b Gi h h i ber of initial sh v times of random neighbor list exchangegis- p)” x p, and the
ROOF. Given each peer has a similar number of initial short- gypected number of exchange$is® v x (1—p)’ x p= =2

cut neighbors, based on Lemma 1, the average number of shortcut - considering that the peers involved in the exchanges are not
neighbors at peerafter one exchange with another random peeris gy joiners (e., they have all finished their joining procedures),

PROOF The average size of the merged shortcut neighbor list is

Based on Lemma 1, we have the following theorem.

042
st=2%s) — % we havep > 1 — % and the expected number of exchanges is
After ¢ + 1 times of exchanges between pé@nd other peers, -2 < _L. ~ 0.58. Therefore, in general, the expected number
2 > o=
we haves!™ = 2 % st — <S&> , for t>0. of neighbor list exchanges upon any playback leap(s). [

-
o

In our analysis, we have assumed that all neighbor list exchanges
occur between two peers randomly selected from the overlay. The
random exchanges imstantLeapbetween a peer and one of its
randomly selected neighbors represent the best possible approxi-
mation to the expected randomness in a practical P2P VoD system.

The overhead iinstantLeapprotocols is due mainly to the ex-
change, construction and maintenance of neighbor lists in case of
various peer operations, including continuous playback, playback
leaps, joins and departures. Since we maintain at each peer a stream- ‘ ‘ ‘ ‘
ing neighbor list of at most a constant size and a shortcut neighbor 0 2000 4000 6000 8000 10000
list with size O(m), the overhead involved in each operation is at number of peers

mostO(m). We will show that the protocol overhead is indeed Figure2: Averagenumber of neighbor list exchangesupon peer
negligible as compared to the streaming rate in our simulations.

-
o

[¢)]

Number of
neighbor list exchanges

joins.
n 15 |
4. PERFORMANCE EVALUATION >
We present evaluations tifstantLeapbased on a P2P simulator o % ——m =40
we have developed. The simulator is implemented using Java, fea- °ox 10 —~-m =80
turing a multi-threaded high-performance architecture, with sup- 85 ——m=120
ports for multiple event-driven timeouts. All peer dynamics, in- % g 5l ——m =160
cluding playback leaps, joins and departures, are simulated with Z 2 “\ —m =200
events scheduled at their respective times. With careful optimiza- 2 . DSt
tions, our simulator can simulate large-scale P2P systems with < it

o

10, 000 or more simultaneous peers, distinguishing itself from rep- 2000 4000 6000 8000 10000
resentative existing P2P simulators [9] which may suppofi0 number of peers
peers at most. Figure 3: Average number of neighbor list exchanges upon

We have implementethstantLeapprotocols in our simulator, playback leaps.
and also implemented the dynamic skip list (DSL) algorithm [11]
for comparison purpose. In our evaluations, the streaming rate of
the video distributed in the overlay 450 Kbps. The upload band-
width at the peers ranges betwesd — 600 Kbps. Peers’ lifetime
follows an exponential distribution with an expected lengtt3@f

minutes. Peers join the overlay following a Poisson arrival model, 4.2 Qverhead for overlay maintenance

xpoctation of the iner-arival times difers across the experiments _ F19Ure 4 and S pot the control messaging overhead for overiay
Wephave carried out using different overlay sizes, in ordgr to kee maintenance upon peer leaps and departures, which is derived as a
9 y ' P function of the number of control messages, typical control mes-

D e e e oL S eve) vrlne 1 " sage s, and ypca delays smong iemet Hoss We cbserv 3
follows an éxponential distribution with an expected lengtR@i control_messaglng bandwidth t_hat_ls no more tﬂ%.mf the video
seconds. We experiment with videos of different lengths, varying streaming rate 0850 Kbps, which is also largely |ndepen.d.e.nt O.f
from 40 hinutes to 200 minutes. The peer buffer has a iength of thg overlay size. Thgrefore, we can co_nclude t_hat by sacrificing just

: a little of the bandwidth for the fast neighbor discovery upon VCR

1 mmu_te. The number of grouisn) thus ranges fror0 to 200, operations, the users’ experience can be improved significantly.
accordingly. These parameters are carefully selected to be con-

sistent with the measurement results in the existing representative4 3 I mpact of the number of shortcut neigh-
P2P VoD systems [4, 8]. In addition, unless stated otherwise, the bors
parameters in our protocols afg = %, 8, = Z, andT" = 10.

quires many more messages (hence longer delay) for neighbor dis-
covery, and their number increases with the increase of overlay size
as well.

In InstantLeap we impose a range on the number of shortcut

4.1 Performance of nei gh bor discovery neighbors at each peée., [31m, S2m]. We now investigate whether

. . . the number of shortcut neighbors at peers affects the performance

Figure 2 and 3 show the average numbers of neighbor list ex- d head i L Fi 6 and 7 olot th iahb
changes upon peer joins and playback leaps, respectively, in over-2nd overnead | nstantleap Figure an plot the neighbor .
. . o o ' discovery performance and overlay maintenance overhead for dif-
lays of different sizes and with videos of different lengths. These - :
numbers would translate into the delay for neighbor discovery in ferent values off;, respectively. In all these experiments, we set
case of peer joins and playback leaps xhen theg rotocols are ir)rq led ! ~ 0.502, and the size of the overlay i), 000. We observe
peerjoin play PS, P P hat the performance becomes better when peers have more short-

mented in practice. We observe that the numbers of exchanges in iahb ith the i hich i h fi
both cases are all less théand there is almost no change with the cut neighbors (wit t e increase Gf), which is at the cost of in-
. . . ! creased overlay maintenance overhead. A closer look reveals that
increase of the overlay size. This clearly confirms thatantLeap

achieves a constant neighbor discovery performance, inde ndenthe optimal value of3; is achieved at arount.6, where there is

9 yp 0 pend a good balance between the performance and the overhead. This
of the number of peers in the overlay. Although this number is . : : o .

. : . . also explains our choice of using, = < in all of our previous

larger than what is derived in Theorem 4 (where we assume ideal K 3

. o - evaluations.
random exchanges, which may not be feasible in practical systems),
it would already be quite satisfactory in practice.

In the case of DSL (dynamic skip list) algorithm, the numbers in 5. CONCLUDING REMARKS

Figure 2 and 3 represent the average numbers of messages needed This paper proposesistantLeap a scalable light-weighted in-
to discover a supplying peer. We can see that DSL in general re- dexing structure to achieve efficient streaming and fast neighbor

discovery for P2P VoD streaming applications. The distinctive fea-

S

S 500

£

(]

2 400 e m =40

g_g- ——m =120

@ X200 ——m =160

¢ ~=-m =200

S 100 Streaming rate 1
E o

O 2000 4000 6000 8000 10000

number of peers

Figure 4: Maintenance overhead upon playback leaps.

B

g 500

=

g 400 —m =40
23300 ~m =80
%g' ——m =120
@ ¥ 200 —-m =160
g —=—m =200
5 100 Streaming rate
<

o

(@]

4000
number of peers

Figure5: Maintenance overhead upon peer departures.

ture of InstantLeapis its neighbor discovery method, which has a
performance of)(1) upon any playback leap with low overhead.

InstantLeapcan be implemented on top of the basic framework of
prevailing mesh-based P2P VoD protocols, by adding the simple 9]

function of random neighbor list exchanges to maintain shortcut
neighbors. The seemingly simple protocol achieves unexpectedly
good neighbor discovery performance, which is validated by both

[

3 —
g ——m =40
%4 ——m =80 1|
w5
o
C 33
O
-g.@
:527
Z Qo
51
Q
<

o
N

0.4

Figure 6. Average number of neighbor list exchanges upon
playback leaps.

(8]

theoretical analysis and simulations with large-scale overlays and [10]

intense peer dynamics. As ongoing work, we are extending our
design to address neighbor discovery across multiple concurrent

streaming overlays, as in practical P2P VoD applications.

6.
(1]
(2]
(3]
(4]

(3]
(6]

(7]

REFERENCES

PPLive http://www.pplive.com/.

UUSeg http://www.uusee.com/.
PPStreamhttp://www.ppstream.com/.

B. Cheng, X. Liu, Z. Zhang, and H. Jin. A Measurement
Study of a Peer-to-Peer Video-on-Demand System. In
Proc. of the 6th International Workshop on Peer-to-Peer
Systems (IPTPS 20Q'Hebruary 2007.

B. Cheng, H. Jin, and X. Liao. Supporting VCR Functions in
P2P VoD Services Using Ring-Assisted OverlaysPtac. of
the IEEE International Conference on Communications (ICC
2007) June 2007.

H. Chi, Q. Zhang, J. Jia, and X. Shen. Efficient Search and
Scheduling in P2P-based Media-on-Demand Streaming
Service lEEE Journal on Selected Areas in
Communications25(1):119-130, January 2007.

Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai.
Improving VoD Server Efficiency with BitTorrent. IRroc.

of ACM Multimedia 2007September 2007.

[11]

[12]

[13]

[14]

8 25

£ —m =40

g 20t ——m =80 I
> ——m =120
£ 15 - m=1601
g8 | ~-m =200
17, P 10
e
5 ‘ ‘

3 82 0.4 0.6 0.8

B,

Figure 7: Maintenance overhead upon playback leaps.

Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang.
Challenges, Design and Analysis of a Large-Scale P2P-VoD
System. InProc. of ACM SIGCOMMAugust 2008.

S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,

I. Wakeman, and D. Chalmers. The State of Peer-to-Peer
Simulators and SimulationACM SIGCOMM Computer
Communication Reviev@7(2):95 — 98, April 2007.

N. Vratonjic, P. Gupta, N. Knezevic, D. Kostic, and

A. Rowstron. Enabling DVD-like Features in P2P
Video-on-Demand Systems. Rroc. of the SIGCOMM
Peer-to-Peer Streaming and IP-TV Workshé&pgust 2007.

D. Wang and J. Liu. A Dynamic Skip List-Based Overlay for
On-Demand Media Streaming with VCR InteractiolfsEE
Transactions on Parallel and Distributed Systerh@(4):503

— 514, April 2008.

Z.Yin and H. Jin. DHT Based Collaborative Multimedia
Streaming and Caching Service.Rmoc. of the IEEE
International Region 10 Conference (TENCON 2005)
November 2005.

W.P. Yiu, X. Jin, and S.H. Chan. VMesh: Distributed
Segment Storage for Peer-to-Peer Interactive Video
StreaminglEEE Journal on Selected Areas in
Communications, Special Issue on Advances in Peer-to-Peer
Streaming System®5(9):1717 — 1731, December 2007.

X. Zhang, J. Liu, B. Li, and T.P. Yum.
CoolStreaming/DONet: A Data-Driven Overlay Network for
Live Media Streaming. IfProc. of IEEE INFOCOMMarch
2005.

