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Abstract
Copying-based garbage collectors are currently widely employed
in JVM systems, as they provide not only cheap allocations but
also fast collections. Comparing to their compacting-based coun-
terparts, copying-based collectors trade space for time: they con-
servatively reserve half of the available heap for the purpose of
copying live objects.1 It is a common belief, however, that ob-
jects’ survival rates are generally too low to make full use of the
reserved memory. We find through experiments that the total live
object sizes of Java programs are generally small and remain rela-
tively stable over many collections, which provides a perfect oppor-
tunity for optimization. We analyze this phenomenon and propose a
“skew-space”2 collector that would reserve spaces of dynamically
adjusted sizes coming from online predictions. The proposed col-
lector has been realized using MMTk in the JikesRVM, and has
shown promising improvements in the total execution time for the
SPECjvm98 and DaCapo benchmarks.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection)

General Terms Management, Algorithms, Measurement

Keywords Skew Space, Mark Compact, Semi Space

1. Introduction
Automatic dynamic memory management, also referred to as
garbage collection (GC), was devised by John McCarthy while de-
signing Lisp in the late 1950s [1]. It is commonly regarded as one of
the biggest contributions in connection with the Lisp language [2].
GC has since been adopted in the design of many object-oriented
languages such as Java.

There are in general two different approaches to constructing
garbage collectors: reference counting and tracing [3]. Tracing-

1 The group ofreachableobjects is the parent set oflive objects. In a
garbage collected language, reached objects are treated aslive, and so in
this paper we decide to use these two terms interchangeably.
2 A skew-space collector reserves less than half of the heap space for
copying, which is a key difference from semi-space collectors.
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based collectors are usually more preferred because, unlike refer-
ence counting, they do not need extra space to store count numbers
and can handle cyclic objects. This paper is about tracing-based
collectors that move objects when performing GC—that is, com-
pacting and copying collectors. For compacting collectors, the heap
is traced to set apart the live and dead objects, and then the entire
heap is traversed several times in order to compact the live objects
into the lower end of the heap [4][17]. A typical copying collector
[16] divides the heap into two equal spaces: the working space and
the free space. Objects are allocated into the working space which
when full triggers a GC. When this happens, the working space is
traced and live objects are copied to the free space. The free space
will then become the new working space for the next round. As the
spaces are absolutely clean after every collection, moving-based
collectors have the following merits:

• Both compacting and copying collectors move all the live ob-
jects into a contiguous space, which makes allocation fast and
cheap: it amounts to simply advancing the bump pointer. Frag-
ments are eliminated since all the free memory blocks are com-
pacted during the process.

• Objects can be relocated to achieve placements that are cache-
conscious.

The time to do a collection is an important performance mea-
sure. For copying-based collectors, the time depends on the live
objects; whereas for compacting collectors, it depends on the entire
heap. So copying-based collectors work much faster, and are thus
widely employed in practice, particularly for handling the nurs-
ery space of generational garbage collectors [5][23]. However, the
price to pay is dear as half of the memory space needs to be re-
served for the following garbage collection all the time. Copying
collectors are also called semispace collectors.

Copying collectors trade space for time. But whether there are
always so many surviving objects to fill the reserved space is an
issue. Obviously, at the time of GC, the amount of survivors must
not be excessive in order that the collector can finish its work
swiftly and there will be sufficient space left for the new objects.
Otherwise, collection will be triggered too frequently, which is
unacceptable. If indeed only a modestly substantial fraction of the
objects in the working space would survive, then reserving half of
the heap is too much and as a result, much memory resources are
wasted. But can we reserve less than half of the space? This paper
gives an affirmative answer which hinges on the assumption that
the total size of live objects after each collection can be known.
We describe a technique to predict such sizes, which is based on
analyzing the pattern of the total size of live objects (orlive object
sizein short) over time in typical programs.

We refer to the number of memory blocks needed to accom-
modate the surviving live objects as the memory requirement of a



program. We conjecture that there is a maximum memory require-
ment for every program, and that the total size of live objects after a
GC would remain similar to that after the previous collection. They
should be true for most programs. Our conjecture is based on the
following reasoning.

• If the memory requirement of a program keeps rising as if
there is no limit, then this program will eventually exhaust the
physical memory resource and generate a run-time exception.
The maximum memory requirement should be considerably
less than the reserved space in order that garbage collection will
not be triggered too frequently.

• In many programs, for most of the time, the same code in a loop
is repeatedly executed. This is a cyclic memory usage pattern.

• Many objects have a relatively short life time. If collections
are not too frequent, allocations and de-allocations may just
balance out space-wise.

• There are occasions when massive allocations happen. These
objects however will likely be de-allocated soon, or otherwise
memory resources will run out quickly.

A similar claim that live object sizes change little over time is
vaguely given in [26] but it was neither expounded on nor sup-
ported by experiments. If ordinary programs indeed have the above-
mentioned behaviors, we can then devise an algorithm to predict
their memory usages and reserve a suitable amount of memory ac-
cordingly. In order to empirically test these conjectures, we carried
out an experiment using all the applications in SPECjvm98 [30].
The results indicate that the memory requirement of most of the
benchmarks is upper-bounded, and the total size of live objects re-
mains relatively stable over the series of collections. These findings
motivated us to deviate from the conventional half-sizing approach.
We propose a dynamic free space reserving algorithm whereby the
size of the reserved space is set according to the total size of the
previous survivors. Because the survivor rate (i.e., percentageof
objects surviving) tends to be low typically, the reserved space can
be much smaller than before, leaving more space for object allo-
cations and reducing the number of GCs. When in some rare cases
the survivors’ size exceeds the size of reserved space, a compacting
collector is triggered to collect the remaining objects. This fallback
strategy is similar to the approach adopted by [7], except that we
customize it to fit a non-generational collector here.

The contributions of our work are as follows.

• We analyzed the memory usages of many Java programs, which
showed that the live object size tends to reach a maximum value
after some time and remain stable after each garbage collection.

• We propose a “skew-space” garbage collection algorithm that
utilizes the above phenomenon to reduce the reserved space of
copying-based collectors, show its compatibility with other im-
provement techniques, and analyze its applicability to bounded-
size generational collectors.

• We implemented our skew space collector in JikesRVM [11]
and evaluated its pros and cons.

The remainder of this paper is organized as follows. Sec. 2 gives
an analysis based on the SPECjvm98 benckmarks, which provides
a strong support to our conjecture. We propose a prediction-based
strategy in Sec. 3, and describe a possible implementation of the
proposed strategy. Sec. 4 reports on the experiments we have car-
ried out and their results followed by some discussion on applying
our algorithm to generational collectors in Sec.5. Related works are
discussed in Sec. 6. We summarize our contributions and discuss
possible future work in Sec. 7.

2. Live Objects and Their Sizes
In object-oriented programs, such as Java and C# programs, objects
are constantly born and later become dead in the heap. Because of
limited memory resources, garbage collectors automatically delete
the dead objects in order to save space for the newly created ones.
It is very rare that all objects would live forever and continue to
occupy the address space at all times; such situations would easily
exhaust the system’s memory as more objects are being created.

Copying-based collectors divide the available heap into two
parts: FromSpace and ToSpace. These two parts are made equal
so that the survivors of one space can certainly be completely
contained in the other space and the above highly unlikely situation
can still be accommodated.

However, as suggested in [6] and [7], the amount of live objects
to be copied can be significantly smaller than the reserved space.
The live object size of a typical program would normally not exceed
a certain maximum value and it will waste space if we reserve
more space than this value. Although in [24] it is said that the
live object ratio (i.e., live objects to all objects) is a variable over
the course of program execution, our finding suggests that the live
object size after every collection tends to remain relatively stable.
By stable, we mean the difference in live object size between two
successive collections is quite small. We refer to a particular period
during which the live object size remains stable as a memory usage
phase. After some time being in a certain memory usage phase,
the program may move into another phase and stay there for a
sufficiently long period of time.

To demonstrate the above more concretely, we carried out an
experiment to measure the live object size of the applications in the
SPECjvm98 Benchmark using the semispace collector in MMTk
[8]. The results are presented in Fig. 13.

It can be easily seen that in both sub-figures all the benchmarks
reached their maximum memory requirements at some point, re-
gardless of the heap size. Furthermore, except forjavac, all the
applications display a relative stable live object size over the se-
ries of collections and a number of phases. In the 25MB heap set-
ting, for example,mtrt starts in a phase of around 4MB, which then
increases sharply to 10.40MB, and then becomes stable for about
90 collections; afterwards, it drops down to 7.3MB and remains
there until the end of the program. Overall there are three phases.
Even more pronounced are the cases ofjess, compressand jack
whose live object sizes change very little in the entire execution;
they linger around 5.5MB, 4.0MB and 4.6MB respectively. These
applications practically have only one phase and so our prediction
approach works best for them. The same phenomena happen also in
the 50MB heap setting, although here the number of collections de-
creases dramatically for all the programs. Note that half of the heap
would be 25MB, but none of the programs have produced a sur-
viving object size larger than 25MB. In fact, a closer examination
shows thatjavac’s live object size never exceeds 12MB. Compared
with the reserved 25MB in the 50MB heap case, this represents a
huge waste of precious memory resources.

The above finding encourages us to try to predict the subsequent
live object sizes, based on which we can adaptively adjust the size
of the reserve space instead of always half of the heap.

The figure also reveals why the collection time of copying-based
collectors decreases as the available heap space increases. Copying-
based collectors take time proportional to the live objects, instead
of the whole heap. The figure shows that, whatever the heap size
may be, the live object size is more or less the same, and so is the
time consumed by a single collection. Because of the larger heap in

3 In the 25MB heap setting,javacanddbare not runable due to insufficient
memory.mpegaudioseldom allocates, so with a 25MB heap it only requests
one collection, and with a 50MB heap the collector is not eventriggered.
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Figure 1: Size of Live Objects

Fig. 1b, the number of collections is significantly smaller, leading
to a much reduced overall collection time.

3. The Skew-Space Collector
The previous section has revealed the likely fact that the live object
size can be significantly smaller than the space typically reserved in
a semispace garbage collector, and this size tends to remain stable
throughout the program’s execution. In response to this, we propose
a skew-space garbage collectorwhose mechanics is illustrated in
Fig. 2.

The upper two sub-figure depicts the process of the traditional
semispace collection. From pointerbottomto free is the reserved
space, and fromfree to bottomthe active space. Objects are allo-
cated in the direction as indicated by the black solid pointer. When
the alloc pointer coincides with thebottompointer, a collection
is triggered and survivors are scavenged into the space between
pointerbottomandfree. At the same time, the active space is set as
the reserved space, and vice versa. Obviously, in order to prepare
for the worst case where all the objects survive, semispace collec-

(a) SemiSpace Collector

(b) SkewSpace Collector

Figure 2: Comparing Two Collectors

tors must reserve half of the available heap. But unfortunately, most
of the time, the reserved space is largely wasted, as survivor rate
typically is far below 100%.

The lower sub-figure describes two typical collections in our
skew-space collectors. Betweenbottomand free is the survivors’
space (that occupied by the live objects) in the last collection,
betweenfree and alloc is the reserved space for copying, and
betweenalloc andbottomis the allocation space. We can see that
this time the reserved space is not equal to the half of the available
space, but the same as the survivors’ size of the last collection. After
every collection, the survivors are copied into reserved space, and
then the following code is executed:

survivorSize = getCurrentSurvivors();
bottom = free;
free += survivorSize;
alloc = free + survivorSize;
endGC();

If in a very rare situation, the total size of survivors exceeds the re-
served space, we trigger a compacting collection which requires no
extra space for collecting the remaining objects. The root set of the
compacting collection is the set of un-scanned objects in the pre-
ceding copying collection. As we do not need to do the compacting
from the very beginning, but only need to finish a remaining task
left behind by the copying collection, the compacting collection
will consume less time than a normal compaction.

3.1 Implementation

We partition the whole available heap space into equal regions
whose size is set to be eight OS pages.4 Each region contains a
header (see Fig. 3) which consists of information about the end of
the actual data in this region and the location of the next region.
The next header word of the last region points back to the first

4 In moving collectors, large objects with size bigger than forexample two
OS pages are allocated in the large object space (LOS) to avoid the time
of copying such a big object. Thus objects allocated in skew-space must be
able to fit in a region.



region in this heap space. The reason for this is that in the skew-
space collector, after every collection thebottom, free and alloc
pointers must be moved. Oncealloc reaches the end of the heap,
there should be a way to tell the pointer where to allocate next. We
achieve this by connecting the top of the heap to its bottom, so that
alloc can freely move in this heap space. Furthermore, to support
the compacting collector, we need to know how to linearly traverse
the heap in allocation order; thus the information about where the
next region resides is essential. The size of every region header is
about eight bytes, so the space overhead is less than 0.2%.

Figure 3: The Heap Structure

At the start of a program’s execution, we reserve half of the heap
space as there is no survivor information available. Thebottom
pointer points at the bottom of available heap, andfree at the
middle. Objects are allocated from the place designated by thealloc
pointer, which is initially set to be the bottom of the heap. When the
alloc pointer meets up with thefreepointer, a garbage collection is
triggered which moves the survivors to be after thefreepointer. At
the same time, the size of the survivors is calculated and recorded,
based on which the three pointers are adjusted. Mis-prediction
happens when the size of the survivors is too large, causingfree
to passalloc. In this situation, the live object size curve shoots up
as compared with the previous collection.

How to advance thealloc pointer is a tricky problem. Closer
observations on Fig. 1 tell us that the live object size actually
fluctuates, but not exactly stick around the stabilized line. If the
alloc pointer is advanced by exactly the size of the survivors,
mis-prediction will happen every time even when the live object
size rises by just a little bit. To deal with this, we add two other
parameters,flucBytesand protectBytes, and initialize the former
to be 0.5 Then upon every mis-prediction, the following code is
executed:

flucBytes = PreSurvivors() - CurSurvivors();
flucBytes += protectBytes;
if(0 < flucBytes) survivorSize += flucBytes;

To explain the code, we generalize the variation of live object
size as in Fig. 4. The fluctuation of the live object size may be
upward and downward. SoflucBytesshould be added if we want
to avoid false prediction on such tiny fluctuations.protectBytesis
used to fight against the difference between the fluctuation wave
tips, which is manually set to be 1% of the whole heap. In our ex-
periment this percentage works well but it can also be set dynam-
ically to cater to the characteristics of other programs. Note that if
the survivor rate grows to be very high, augmented byprotectBytes,
the reserve ratio may exceed 100%. We added a test to check for
this and stick to 100% if this should happen.

3.2 Compacting Collection

Although a false prediction is very rare, we still need a mechanism
to tackle the situation. Another moving collector, mark-compact,
can be utilized iffree passes thealloc pointer. Our mechanism is

5 In the first cycle of the collection, half of the available heap is reserved,
and there is no need to reserve extra space.

Figure 4: The Fluctuation Wave

similar to the method described in [7] for Appel-style generational
collectors [25], except that the survivors are not copied into the
mature generation but to the free space.

A collection starts by computing the entire root set and pushing
them into a trace queue. If an object is reached, it is first copied
to the regions after thefreepointer and also pushed into the queue
for pointer scanning. An object will be popped out automatically
after it is fully scanned. In this way, live objects are continuously
pushed onto and popped out of the queue. The tracing is finished if
the queue becomes empty.

For every object copied, its size is fetched and added to the
free pointer. If the result is larger than thealloc pointer, while
the tracing queue is not empty, we have a false prediction. At this
juncture, the remaining objects in the allocation space cannot be
copied into the free space; otherwise they may overwrite those live
objects previously created in the allocation space. In this event, the
remaining objects in the tracing queue can be used as the root set
of tracing to prepare for a mark-compact collection. We start from
these objects and mark those living objects in the allocation space.
The remaining live objects are then compacted into the regions after
the currentfreepointer.

It is worth pointing out that there is a difference between fall-
back compacting and normal compacting. For our compacting col-
lector, some of the objects in the operation area may already have
been copied to the reserved space. When the process of marking
comes across such an object, we simply update the referring point-
ers with the value stored in the forwarding word (it is installed by
copying-based collectors). This object will not be marked, because
it is already copied into the working space and fully scanned. The
costs of compacting consist of that due to moving objects and that
due to traversing the entire heap. Even if there is a false prediction,
the difference between the pre-reserved space and the actual live
object size is subtle. So we expect the time spent on the former to
be not so much, as it is moving much fewer objects. The biggest
problem is that, for a compacting collection, the entire heap will
need to be traversed, including the garbage objects. Because of the
LRU eviction mechanism used by virtual memory systems, we can
expect that pages with a lot of garbage normally reside out of the
main memory. The traversal of them, therefore, will result in a lot
of page thrashing and extensively prolong the collection time.

3.3 Parallelism

By its very nature, our skew-space collector can be implemented as
a parallel procedure. Since the memory resources are acquired by
regions, threads can be synchronized at this level. At first all the re-
gions are in a global memory pool. Every thread start its execution
by requesting a region from the pool, and once a region is success-



fully granted, allocation of objects can be happily performed there.
If the current region is exhausted, this particular thread can again
request another region or perform a local garbage collection. In this
way, the coordination happens for regions as units, which are large
enough to require only very little coordination effort.

The possibility of parallelism also adds to the reason why we
partition the heap space into regions. In our skew space implemen-
tation, we resort to mark-and-compact garbage collection when the
prediction fails. Due to the nature of the latter type of collectors,
a linear scan through the heap is needed. But in a multi-threading
environment, where the virtual address space is shared by all the
threads, to define the address of the next object, an auxiliary data
structure is used. Without the help of the region header, linear
scanning through the memory resources consumed by a particular
thread would not be possible.

4. Performance Evaluation
4.1 Experimental Setup

We use all the applications in SPECjvm98 exceptmpegaudio, be-
cause it seldom allocates and thus invokes extremely few collec-
tions. The benchmarks are run on a Dell desktop computer which
has a 2 GHz Intel Core 2 Duo CPU and 2G main memory. Each
core has an 8-way associative L1 data and code cache of 32KB,
which is partitioned into lines of 64 bytes. There is only one uni-
fied 16-way associative L2 cache of size 4096KB, which consists
of 64-byte lines.

Our skew-space collector is implemented using MMTk [8] in
the JikesRVM [11]. JikesRVM is an open source virtual machine
derived from IBM Jalapeno [12], with a design goal to balance be-
tween high performance and portability. It does not implement a
bytecode interpreter, and adopts the Adaptive Optimization Sys-
tem [13] to support cutting-edge virtual machine technology and
enable online feedback-directed optimizations. MMTk is the mem-
ory management toolkit for JikesRVM. Communication between
them is conducted on the VM and exported interfaces. MMTk di-
vides the available space into several areas, such as metadata, im-
mortal, large object space, and other collector-specific spaces. The
main class that implements a collector is calledplan. In the basic
plan class, the collector-independent spaces are created and the in-
terface from JikesRVM is built. AstopTheWorldclass extendsplan
by incorporating typical execution phases, which is furthermore ex-
tended by a specific collector, for example a copying collector, to
create two semispaces, and to add other phases and make auxiliary
calculations. From time to time, thepoll method inplan is called.
If either the heap or the space in use is full, a collection will be
triggered.

We revise the semispace collector to implement our version of
skew-space collections. The space reservation ratio is at first set
to be 100%, because at that time no statistics are available for use
in the prediction. After the program has started, the memory usage
information is gathered and used to calculate the next ratio. In order
to know whether our prediction is correct or not, we maintain a
counter to keep track of the number of pages currently used by the
mutators, and stop the copying if it exceeds the current reserved
space. The objects lying between thescanand free pointers are
then incorporated in the tracing root, from where the collector starts
tracing the heap and marks touched objects to be compacted. Note
that because of the specific design of MMTk we do not implement a
cyclic heap (as described in Sec. 3), but check the number of pages
instead to control how much virtual address space is to be used.

4.2 Results

We evaluate our skew-space collector (sks) against a semispace
(ss) and a mark-compact collector (mc). sksachieves dynamically

a balance between these two other collectors.sks reserves less
than half of the heap space according to online predictions, so its
performance is highly dependent on the accuracy of the dynamic
predictions. If the predictions are sufficiently accurate,sksreserves
less space thanss, and triggers fewer collections which ultimately
leads to reduced execution time. In the event of a false (inaccurate)
prediction,sksneeds to call onmc to treat the remaining objects.

Compacting collectors (mc for instance) need to traverse the
entire heap to compact live objects in the lower end of the heap.
Since they must touch all the garbage, plenty of page thrashing
can be expected, thus consuming much more time than copying
collectors.

Fig. 5 shows the performance of the three collectors for the six
benchmark applications and different heap sizes. In Fig. 5 we can
see that most of the applications demonstrate a promising reduction
in execution time. Tab. 1 shows the mis-prediction percentages for
different applications upon various heap sizes. The majority of the
false predictions are well below 15%, and some have 0%. Tab. 2
gives the “difference” in number of collections betweenss and
sks. It clearly shows that as the heap grows in size, this difference
decreases accordingly, because the memory resource becomes not
so tight. Note that “x times” in the first row of each table denotes
the heap size divided by the minimum memory requirement.

In the figure, we can also see that the performance ofcompress
is slightly degraded as compared toss. We have analyzed the
runtime characteristics of this application, and found that it seldom
allocates new objects in the semispaces (most of its newly created
objects are very large, therefore allocated in the LOS space). Apart
from the first collection, the survivor rate in the semispace is always
very close to 100%. This causessksto reserve a space that is of
the same size as that ofss, and reduces our implementation to be
similar to the latter. Tab. 2 also helps to confirm our analysis, where
there is no difference in number of collections for this benchmark.
The slightly poorer performance ofsksis due to the implementation
of skswhich introduces additional overheads.

We further tested our collector using a newer benchmark suite,
DaCapo [9] (v. 2006-10-MR2). The results are presented in Fig. 6.
We excludedeclipseand chart as they failed to work correctly
for all the three collectors, due tonullPointer errors. Furthermore,
among the other benchmarks,hsqldb, lusearchandxalanare multi-
threaded applications, and so are also excluded from our evaluation.
Note also thatmccannot run thejythonbenchmark under any heap
size; therefore, in the corresponding diagram, only the performance
of ssandsksare compared. From the figure, it is evident thatsks
outperformsmcandssfor almost all the benchmark applications.

4.3 Discussions

Copying and compacting garbage collectors represent two ex-
tremes: the former sacrifices all the space, while the latter all the
time. There are some variants which take the middle way, for ex-
ample [19]. It partitions the space intoN multiple windows and
reserves only one window for copying. If the survivor rate turns
out to be less than1

N
, then only one pass over the heap is needed.

But if the rate grows to become larger, it displaces objects in dif-
ferent windows and triggers multiple passes on the heap. We have
suggested possible performance improvements by conserving the
fraction of the windows dynamically based on the occasion.

Our skew space garbage collector is not a new type of garbage
collector, but a technique to combine the merits of both copying
and compacting collectors. It is built on the observation that the
size of live data objects will not vary too much at each collection.
This phenomenon is entirely experimental and has only been tested
on Java benchmarks, and so it may not be universally true for all
possible programs. In that case, our collector can switch back to
a normal semi-space collector, based on the false prediction rate.



Table 1: The Percentages of False Predictions bysks
benchmark 1 times 1.25 times 1.5 times 1.75 times 2 times 2.25 times 2.5 times 2.75 times 3 times
compress 0 0 0 0 0 0 0 0 0
db null null 10% 12% 0 0 0 0 0
jack 0 0 0 0 0 0 0 0 0
javac null null 25% 50% 42% 11% 25% 14% 0
jess 0 0 0 0 0 0 0 0 0
mtrt null 5% 13% 9% 12% 0 0 0 0

Table 2: Number of Collections ofssminus that ofsks
benchmark 1 times 1.25 times 1.5 times 1.75 times 2 times 2.25 times 2.5 times 2.75 times 3 times
compress 0 0 0 0 0 0 0 0 0
db null null 8 4 3 2 2 1 1
jack 29 19 13 11 9 8 6 6 5
javac null null 30 16 10 8 6 5 5
jess 32 20 15 12 9 8 7 6 5
mtrt null 17 14 9 7 5 5 3 3
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Figure 5: Comparisons using SPECjvm98 Benchmarks
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Figure 6: Comparisons using Dacapo Benchmarks

We argue, however, that owing to the statements proposed in Sec. 1
Program behavivors should obey this rule.

5. Generational Collectors
Our algorithm is very simple and therefore can be easily combined
with other techniques (some are mentioned in Sec. 6) to achieve
better performance. For generational collectors, the algorithm can
be applied in two areas: to dynamically adjust the portion of re-
served space and to determine when to trigger a full heap collec-
tion, which will be discussed in the following subsections.

5.1 Classifications and Comparisons

According to the size of the nursery, [19] generational collectors
can be classified into three groups: Fixed Generation (FG, which
maintains an unchanged size of the nursery), Variable Generation
(VG, which allows the nursery to grow and shrink progressively)
and Bounded Generation (BG, which sets a minimum size thresh-
old).

FG collectors, such as [23], only promote objects when they
are old enough; this requires additional age information inside the
object headers. Some of the implementations remove the age infor-
mation by partitioning the nursery into buckets, but this incurs extra
copying costs. Furthermore, FG normally collects the heap when
the memory usage exceedsHeapSize

2
− NurserySize, whereas

VG [25] triggers a collection when the heap is half full and there-
fore is more space efficient. The main problem with VG, however,

is that when the mature space grows too big, it squeezes the nurs-
ery into a small space and causes collection to take place too often.
To tackle these problems, BG imposes a minimum size to which
the nursery can be decreased. It starts a garbage collection imme-
diately after the heap becomes half full or the minimum threshold
is reached. Because of its merits, we picked BG for applying our
algorithm. Our algorithm can also be built on other collectors to
dynamically conserve copying space.

5.2 Skew Space Generational Collector

As illustrated in Fig. 7a, a traditional Appel style generational col-
lector starts by employing half of the available heap as its nursery,
where newly created objects are continuously allocated. A garbage
collection will be triggered if the nursery becomes full, and then
the live objects are pushed to the very end of the reserved space
which forms the mature space. This process repeats until the whole
available heap is half occupied, at which time a full heap collection
will be conducted to tidy up the spaces.

For the traditional Appel’s collector, there are three issues that
need to be addressed:

• It always reserves half of the space in case the worst scenario
happens, that is, when all the objects survive. But this is very
rare or indicates inefficiently assigned memory resources if it
does happen too often.

• Although it seems simple, but how to determine when the heap
will become half occupied remains to be a tricky problem.



(a) appel (b) sksg

Figure 7: Appel’s and Modified Generational Collectors

Appel’s collector solves it through an indirect way. We are
going to present an alternative.

• As the mature generation continues to grow, it will squeeze the
nursery into a small space and result in frequent collections.
Therefore, we need to put a limit on how small the nursery can
be reduced to.

It can be expected that, for generational collectors, the nursery
survival rate is even lower than that of the whole heap. Experi-
mental results show that normally this rate is well below 10% and
sometimes drops to very close to zero, which also explains why the
static algorithm in [7] works well. In view of a high infant mortality,
traditional Appel’s collectors waste most of the reserved space. We
therefore propose to reserve space according to the memory usage
pattern (Fig. 7b) and reserve less than 50% of space for copying.
The basic rule is the same as that applied to non-generational col-
lector, and so if the prediction fails, a compacting collector is called
upon for both minor and major collections.

We maintain two rates of survivals:MinorRate for minor and
MajorRate for major collections. As usual,MinorRate is the
result of a division between nursery survivals and original nurs-
ery size upon a minor collection, whileMajorRate is a divi-
sion upon a major collection. Once the nursery is exhausted, it will
first multiply MinorRate with the size of the nursery (NurSize)
to produce the prospective size of minor survivors (denoted as
ProsMiSize); it then calculates the predicted major survivors’
size (denoted asProsMaSize) in the same way. At last the fol-
lowing formula is evaluated:

ProsMiSize + ProsMaSize + MatureSpace ≥ FullHeap

If it is satisfied a major collection must be triggered; otherwise only
a minor collection. Compared to the method adopted by Appel-
style generators to determine the time for a major collection, our
algorithm does not re-locate part of the live objects and hence
avoids the extra pointer-updating overhead.

In order to tackle the third issue, a target policy is needed. Here
we set our aim at keeping a smooth collection pace, as collec-
tions being too frequent would leave little time for the objects to
die. That drives us to adopt a bounded-size generational collector.
For this collector, a special parameter, threshold nursery size, to-
gether with the previous strategy, would define when to trigger a
major collection. The collector will degenerate to non-generational
if the nursery size is set to be half of the heap space. The smaller
this parameter becomes, the more collections will be triggered. We
propose to use a feedback mechanism to dynamically adjust this
parameter, in order to keep to the same number of allocations be-
tween any collections. We use the percentage of the entire available
heap to control the threshold nursery size and manually set it to 5%
at the very beginning. Then the program keeps running and trig-
gers minor collections; meanwhile a count (AllocMean) is main-
tained to store the number of allocations which is averaged over

the whole period. This process continues until it consumes more
thanMajorRate amount of space or the nursery size drops to this
threshold. At this time a major collection is triggered to reclaim any
garbage. At the same time, we compare the allocation mean to that
of the previous major collection. If it is larger then the threshold
percentage, the latter is increased by 2.5%, and vice versa. But this
percentage is not allowed to rise higher than 25%; otherwise the
expanded nursery would be too large. With all this we can make
sure that the size of the nursery will never become too small and
the pace of collections will never be too fast.

Again we implemented our collector with MMTk then com-
pared it to a generational copying garbage collector. The result is
available in Fig. 8. It is expected that the improvement is not as
great as that of its full heap counterpact. This is because right now
most of the time only the nursery is collected. Its size is small and
it leaves little space for optimizations.

6. Related Work
After McCarthy’s proposal to use an automatic memory manage-
ment strategy for Lisp, garbage collectors were widely investigated,
with two main implementation approaches: reference counting and
tracing. These two approaches are then unified in [14] based on
the argument that they are in fact duals of each other. [15] com-
pares the performance of two different tracing techniques: mark-
and-sweep and stop-and-copy, and points out that while the former
is slightly more expensive than the latter, it consumes significantly
less memory. In the following we discuss some works on collectors
that move objects, which are more related to our paper.

6.1 Moving Collectors

There are basically two different types of collectors that move live
objects: semispace collectors copy their survivors [16], and com-
pacting collectors compact them [17]. The advantage of moving
collectors is that they provide very cheap allocation. In mark-sweep
collectors, allocation requests are satisfied by searching free-lists,
whereas for moving collectors, the equivalent is just to advance
the bump pointer by the requested size. But there are prices to pay.
Compacting collectors need to touch the whole space several times,
and semi-space collectors need to reserved half of the available
space for copying the survivors.

6.2 Space Efficient Collectors

Because copying-based collectors need to reserve half of available
heap whereas compacting-based versions do not, for a particular
program there must be a point in the time-space tradeoff where
two kinds of collectors achieve the same performance. [21] ana-
lyzed theoretically how memory residency (the ratio between live
memory and the total heap) affects the performance of both collec-
tors, and adopted a dual-mode collector which switches between
copying and compacting according to the memory usage. In order
to reduce the space reserved in a full-heap copying collector, [18]
partitions the heap into a mark-sweep space and a sliding copying
space. The copying space is relatively small and slides linearly over
the entire heap in order to tidy up scattered objects in the mark-
sweep space. Their algorithm works well and its copying space can
make use of our algorithm to further reduce the reserved amount.
The mark-copy collector proposed in [19] divides the mature space
of a generational collector into multiple windows and maintains
uni-directional remember sets from higher windows to lower ones.
It defers full collections until the free space drops down to one win-
dow which means that only one frame is reserved. [10] resorts to
region-based memory management strategy which mixes marking
and copying in one pass to provide space efficiency and to achieve
faster reclamation and better mutator’s performance. The above two
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Figure 8: Comparisons between Appel’s and Our Collectors

cutting-edge collectors target at the mature space while ours at the
young space, and so combining either of them with our implemen-
tation will be an interesting investigation.

In recognition of the fact that the live object size must be
smaller than the reserved space, Sun Microsystem’s HotSpot virtual
Machine [29] implements a parallel copying generational collector
with a fixed nursery size, where survivors are always promoted to
the mature generation after a collection. It would not always reserve
enough space for copying all the live objects, and when there is not
enough memory, it compacts the nursery. [6] and [7] implement
similar strategies for Appel-style generational collectors. The three
collectors above are very similar to our skew-space collector, but
our collector has the following merits:

• We take advantage of the phenomenon we observed about live
object size to dynamically set the reserved space, which is more
accurate and precise. [29] does not unveil any implementation
details, whereas [7] reserves space manually, and therefore can-
not adapt to the specific characteristics of different applications.
In particular, [6] reserves space by calculating the average size
of live objects, which cannot be all that accurate because a sin-
gle unusually high or low survivor rate would pollute all the
predictions.

• Our algorithm is very general and can be extended to both
Ungar’s and Appel’s style of generational collectors.

• We have discussed and can devise different strategies to apply
our algorithm to different generational collectors.

There are also plenty of work to reduce the space consumed
by non-copying garbage collectors, for example, [20], which intro-
duces objects reuse in the design of garbage collection, and [27]
which eliminates forwarding pointers and shortens object headers,
etc.

7. Conclusion
In this paper, we conjecture a memory usage phenomenon of typ-
ical applications, which is that live objects’ total size would reach
a maximum value and tends to remain relatively stable over many
collections. We have carried out experiments using the benchmarks
in SPECjvm98 to show that it is indeed true. In response, we design
and implement a skew-space garbage collector that can be used in
both embedded and general machines. Our skew-space collector
improves copying-based collection by dynamically adjusting the
reserved space to achieve space and consequently time efficiency.
It capitalizes on the above phenomenon to predict how much space
should be reserved, and resorts to a compacting collector in the rare
event when the prediction turns out to be false. Compared with tra-
ditional semi-space collectors, our skew-space collector improves
the total execution time of the tested benchmarks. Because of the
simplicity of the design, our algorithm can also be applied to the
young space of a generational collector, or work in a concurrent
fashion to perform real-time and space efficient collections. It will



be particularly interesting if both existing static approaches [28]
and our dynamic memory usage prediction algorithm can be com-
bined to achieve potentially greater improvements.

Although in our experiments most of the Java benchmarks ex-
hibit the above phenomenon, the live object size of some real-life
programs may vary and deviate from this phenomenon consider-
ably. In the future, we plan to devise a strategy to record and an-
alyze the variations, and then based on the false prediction rate to
determine ifprotectBytesshould be adjusted to reserve more space,
or, in the worst case, to fall back on a semi space collector. Further-
more, the criterion for when to trigger compacting collection can be
refined—for example, to compact only when thealloc pointer runs
into a live object. Although not tested, we believe that other pro-
grams, for example C# and Smalltalk programs, may also bear the
same characteristics so that our algorithm can be applied to them.
Lastly, our implementation of the skew-space collector will always
resort to a compacting collector to recycle the remaining live ob-
jects. Compacting is very expensive and how to reduce its cost will
be a meaningful pursuit.
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