Exploiting Memory Usage Patterns to
Improve Garbage Collections in Java

Liangliang Tong

Department of Computer Science
The University of Hong Kong

lltong@cs.hku.hk

Abstract

Copying-based garbage collectors are currently widely employe
in JVM systems, as they provide not only cheap allocations bu

also fast collections. Comparing to their compacting-based coun-
terparts, copying-based collectors trade space for time: they con-

servatively reserve half of the available heap for the purpose of
copying live objects. It is a common belief, however, that ob-

jects’ survival rates are generally too low to make full use of the
reserved memory. We find through experiments that the total live

object sizes of Java programs are generally small and remain rela

tively stable over many collections, which provides a perfect oppor-

tunity for optimization. We analyze this phenomenon and propose a

“skew-space? collector that would reserve spaces of dynamically

adjusted sizes coming from online predictions. The proposed col-

lector has been realized using MMTk in the JikesRVM, and has
shown promising improvements in the total execution time for the
SPECjvm98 and DaCapo benchmarks.

Categories and Subject Descriptors D.3.4 [Processork Mem-
ory management (garbage collection)

General Terms Management, Algorithms, Measurement

Keywords Skew Space, Mark Compact, Semi Space

1. Introduction

Francis C.M. Lau

Department of Computer Science
The University of Hong Kong

fcmlau®@cs.hku.hk

based collectors are usually more preferred because, unlike refer-

g ence counting, they do not need extra space to store count numbers
t and can handle cyclic objects. This paper is about tracing-based

collectors that move objects when performing GC—that is, com-
pacting and copying collectors. For compacting collectors, the heap
is traced to set apart the live and dead objects, and then the entire
heap is traversed several times in order to compact the live objects
into the lower end of the heap [4][17]. A typical copying collector
[16] divides the heap into two equal spaces: the working space and

_the free space. Objects are allocated into the working space which

when full triggers a GC. When this happens, the working space is
traced and live objects are copied to the free space. The free space
will then become the new working space for the next round. As the
spaces are absolutely clean after every collection, moving-based
collectors have the following merits:

e Both compacting and copying collectors move all the live ob-
jects into a contiguous space, which makes allocation fast and
cheap: it amounts to simply advancing the bump pointer. Frag-
ments are eliminated since all the free memory blocks are com-
pacted during the process.

¢ Objects can be relocated to achieve placements that are cache-
conscious.

The time to do a collection is an important performance mea-
sure. For copying-based collectors, the time depends on the live
objects; whereas for compacting collectors, it depends on the entire

Automatic dynamic memory management, also referred 10 as heap. So copying-based collectors work much faster, and are thus

garbage collection (GC), was devised by John McCarthy while de-
signing Lisp in the late 1950s [1]. It is commonly regarded as one of

widely employed in practice, particularly for handling the nurs-
ery space of generational garbage collectors [5][23]. However, th

the biggest contributions in cc_mnection _/vith the Lisp Ianguagt_a [2]. price to pay is dear as half of the memory space needs to be re-
GC has since been adopted in the design of many object-orientedseryed for the following garbage collection all the time. Copying

languages such as Java.

There are in general two different approaches to constructing

garbage collectors: reference counting and tracing [3]. Tracing-

1The group ofreachableobjects is the parent set diffe objects. In a
garbage collected language, reached objects are treata@,aand so in
this paper we decide to use these two terms interchangeably.

2A skew-space collector reserves less than half of the heapesfor
copying, which is a key difference from semi-space collector

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

PPPJ 10 September 15-17, 2010, Vienna, Austria.
Copyright© 2010 ACM 978-1-4503-0269-2. .. $10.00

collectors are also called semispace collectors.

Copying collectors trade space for time. But whether there are
always so many surviving objects to fill the reserved space is an
issue. Obviously, at the time of GC, the amount of survivors must
not be excessive in order that the collector can finish its work
swiftly and there will be sufficient space left for the new objects.
Otherwise, collection will be triggered too frequently, which is
unacceptable. If indeed only a modestly substantial fraction of the
objects in the working space would survive, then reserving half of
the heap is too much and as a result, much memory resources are
wasted. But can we reserve less than half of the space? This paper
gives an affirmative answer which hinges on the assumption that
the total size of live objects after each collection can be known.
We describe a technique to predict such sizes, which is based on
analyzing the pattern of the total size of live objectsliee object
sizein short) over time in typical programs.

We refer to the number of memory blocks needed to accom-
modate the surviving live objects as the memory requirement of a

program. We conjecture that there is a maximum memory require- 2. Live Objects and Their Sizes
ment for every program, and that the total size of live objects after a
GC would remain similar to that after the previous collection. They
should be true for most programs. Our conjecture is based on the
following reasoning.

In object-oriented programs, such as Java and C# programs, objects
are constantly born and later become dead in the heap. Because of
limited memory resources, garbage collectors automatically delete
the dead objects in order to save space for the newly created ones.
It is very rare that all objects would live forever and continue to
occupy the address space at all times; such situations would easily
exhaust the system’s memory as more objects are being created.
Copying-based collectors divide the available heap into two

parts: FromSpace and ToSpace. These two parts are made equal
so that the survivors of one space can certainly be completely
contained in the other space and the above highly unlikely situation
¢ In many programs, for most of the time, the same code in a loop can still be accommodated.

is repeatedly executed. This is a cyclic memory usage pattern. However, as suggested in [6] and [7], the amount of live objects

 Many objects have a relatively short life time. If collections to be copied can be significantly smaller than the reserved space.

are not too frequent, allocations and de-allocations may just | Ne live object size of a typical program would normally not exceed
balance out space-wise. a certain maximum value and it will waste space if we reserve

i)) more space than this value. Although in [24] it is said that the
* There are occasions when massive allocations happen. Thesgye opject ratio (i.e., live objects to all objects) is a variable over
objects however will likely be de-allocated soon, or otherwise he course of program execution, our finding suggests that the live
memory resources will run out quickly. object size after every collection tends to remain relatively stable.
By stable, we mean the difference in live object size between two
successive collections is quite small. We refer to a particular period
during which the live object size remains stable as a memory usage
phase. After some time being in a certain memory usage phase,
the program may move into another phase and stay there for a
‘sufficiently long period of time.
To demonstrate the above more concretely, we carried out an
periment to measure the live object size of the applications in the
PECjvm98 Benchmark using the semispace collector in MMTk
[8]. The results are presented in Fig. 1
It can be easily seen that in both sub-figures all the benchmarks

¢ If the memory requirement of a program keeps rising as if
there is no limit, then this program will eventually exhaust the
physical memory resource and generate a run-time exception.
The maximum memory requirement should be considerably
less than the reserved space in order that garbage collection will
not be triggered too frequently.

A similar claim that live object sizes change little over time is

vaguely given in [26] but it was neither expounded on nor sup-

ported by experiments. If ordinary programs indeed have the above-
mentioned behaviors, we can then devise an algorithm to predict
their memory usages and reserve a suitable amount of memory ac
cordingly. In order to empirically test these conjectures, we carried
out an experiment using all the applications in SPECjvm98 [30]. ex
The results indicate that the memory requirement of most of the S
benchmarks is upper-bounded, and the total size of live objects re-
mains relatively stable over the series of collections. These findings

motivated us to deviate from the conventional half-sizing approach. reached their maximum memory requirements at some point, re-

We propose a dynamic free space reserving algorithm whereby thegardless of the heap size. Furthermore, excepidaac, all the

Siz€ .Of the reserved space Is set accqrdlng to the total size of theapplications display a relative stable live object size over the se-
previous survivors. Because the survivor rate (i.e., percerdfige

biect vina) tends o be | icallv. th 4 ries of collections and a number of phases. In the 25MB heap set-
8 Jects ﬁuerVll?g)tr?n Sb (; e (I)W typically, the reserfve zpacte ?Ian ting, for examplemtrt starts in a phase of around 4MB, which then
€ much smaller than belore, leaving more space for object allo- i, wea5eg sharply to 10.40MB, and then becomes stable for about

20 collections; afterwards, it drops down to 7.3MB and remains
there until the end of the program. Overall there are three phases.
Even more pronounced are the caseges§ compressand jack
whose live object sizes change very little in the entire execution;
they linger around 5.5MB, 4.0MB and 4.6MB respectively. These
applications practically have only one phase and so our prediction
approach works best for them. The same phenomena happen also in
the 50MB heap setting, although here the number of collections de-
creases dramatically for all the programs. Note that half of the heap
would be 25MB, but none of the programs have produced a sur-
* We propose a “skew-space” garbage collection algorithm that viving object size larger than 25MB. In fact, a closer examination
utilizes the above phenomenon to reduce the reserved space okhows thajavacs live object size never exceeds 12MB. Compared
copying-based collectors, show its compatibility with other im- with the reserved 25MB in the 50MB heap case, this represents a
provement techniques, and analyze its applicability to bounded- huge waste of precious memory resources.

the survivors’ size exceeds the size of reserved space, a congpactin
collector is triggered to collect the remaining objects. This fallback
strategy is similar to the approach adopted by [7], except that we
customize it to fit a non-generational collector here.

The contributions of our work are as follows.

¢ We analyzed the memory usages of many Java programs, which
showed that the live object size tends to reach a maximum value
after some time and remain stable after each garbage collection.

size generational collectors. The above finding encourages us to try to predict the subsequent
« We implemented our skew space collector in JikesRVM [11] live object sizes, basv_sd on which we can adaptively adjust the size
and evaluated its pros and cons. of the reserve space instead of always half of the heap.

The figure also reveals why the collection time of copying-based
The remainder of this paper is organized as follows. Sec. 2 gives collectors decreases as the available heap space increases. Copying-

an analysis based on the SPECjvm98 benckmarks, which providesbased collectors take time proportional to the live objects, instead
a strong support to our conjecture. We propose a prediction-basedof the whole heap. The figure shows that, whatever the heap size
strategy in Sec. 3, and describe a possible implementation of themay be, the live object size is more or less the same, and so is the
proposed strategy. Sec. 4 reports on the experiments we have cartime consumed by a single collection. Because of the Iarger heap in
ried out and their results followed by some discussion on applying
our algorithm to generational collectors in Sec.5. Related works are 3|, the 25MB heap settingavacanddb are not runable due to insufficient
discussed in Sec. 6. We summarize our contributions and discussmemorympegaudiseldom allocates, so with a 25MB heap it only requests
possible future work in Sec. 7. one collection, and with a 50MB heap the collector is not evigigered.

12 T

10 | 4 g

PSR

Live Object Size (MB)
(o2}

I
I
: i
2F il e
| |
1
I
I

0 H i , i | |
0 20 40 60 80
Collection Number

(a) 25MB heap

100 120

14 T T
mtrt ——
jess —x—-
compress ------

- Oh-e-1 1
mpegaudio &

. jack -i-o--
[javac -i-e--

12F B 4. e

10

Live Object Size (MB)

0 - :l. & - - - - =
0 2 4 6 8 10 12 14 16
Collection Number

(b) 50MB heap

Figure 1: Size of Live Objects

Fig. 1b, the number of collections is significantly smaller, leading
to a much reduced overall collection time.

3. The Skew-Space Collector

bottom

~ alloc
pace

(a) SemiSpace Collector
(Ekewsp E:

bottom

CmSpace
alloc ~

free

SemiS

free

bottom

SkewSpace

bottom
free

alloc free

W
y

alloc

(b) SkewSpace Collector

Figure 2: Comparing Two Collectors

tors must reserve half of the available heap. But unfortunately, most
of the time, the reserved space is largely wasted, as survivor rate
typically is far below 100%.

The lower sub-figure describes two typical collections in our
skew-space collectors. Betwebnttomandfree is the survivors’
space (that occupied by the live objects) in the last collection,
betweenfree and alloc is the reserved space for copying, and
betweenalloc andbottomis the allocation space. We can see that
this time the reserved space is not equal to the half of the available
space, but the same as the survivors’ size of the last collection. After
every collection, the survivors are copied into reserved space, and
then the following code is executed:

survivorSize = getCurrentSurvivors();
bottom = free;

free += survivorSize;

alloc = free + survivorSize;

endGC(Q) ;

If in a very rare situation, the total size of survivors exceeds the re-
served space, we trigger a compacting collection which requires no
extra space for collecting the remaining objects. The root set of the
compacting collection is the set of un-scanned objects in the pre-
ceding copying collection. As we do not need to do the compacting

The previous section has revealed the likely fact that the live object from the very beginning, but only need to finish a remaining task
size can be significantly smaller than the space typically reserved inleft behind by the copying collection, the compacting collection
a semispace garbage collector, and this size tends to remain stablevill consume less time than a normal compaction.

throughout the program’s execution. In response to this, we propose

a skew-space garbage collectathose mechanics is illustrated in =~ 3.1

Fig. 2.]] . We partition the whole available heap space into equal regions
The upper two sub-figure depicts the process of the traditional \yhose size is set to be eight OS pajd=ach region contains a

semispace collection. From pointeottomto freeis the reserved peader (see Fig. 3) which consists of information about the end of
space, and frorfree to bottomthe active space. Objects are allo- e actual data in this region and the location of the next region.
cated in the direction as indicated by the black solid pointer. When The next header word of the last region points back to the first
the alloc pointer coincides with thdottom pointer, a collection

1S _trlggered and survivors are Scav_enged into _the space betweentm moving collectors, large objects with size bigger thandeample two
pointerbottomandfree. At the same time, the active space is setas s pages are allocated in the large object space (LOS) td #veitime

the reserved space, and vice versa. Obviously, in order to prepareof copying such a big object. Thus objects allocated in skpaee must be

for the worst case where all the objects survive, semispace collec-able to fit in a region.

Implementation

A

region in this heap space. The reason for this is that in the skew-
space collector, after every collection thettom free and alloc
pointers must be moved. Onedloc reaches the end of the heap,
there should be a way to tell the pointer where to allocate next. We
achieve this by connecting the top of the heap to its bottom, so that
alloc can freely move in this heap space. Furthermore, to support

Survivor Size

Rise Fall

the compacting collector, we need to know how to linearly traverse | | protectBytes |
the heap in allocation order; thus the information about where the I /\/W \ ¥
next region resides is essential. The size of every region header is fucBrtes
about eight bytes, so the space overhead is less than 0.2%.
E E E E Heap | ..
‘\\ T — ~ Collection Number >

~
Region Header ~

Figure 4: The Fluctuation Wave
Data End Next

similar to the method described in [7] for Appel-style generational
Figure 3: The Heap Structure collectors [25], except that the survivors are not copied into the
mature generation but to the free space.
At the start of a program’s execution, we reserve half ofthe heap A collection starts by computing the entire root set and pushing

space as there is no survivor information available. Bb&om them into a trace queue. If an object is reached, it is first copied
pointer points at the bottom of available heap, drek at the to the regions after thigee pointer and also pushed into the queue
middle. Objects are allocated from the place designated bgflihe for pointer scanning. An object will be popped out automatically

pointer, which is initially set to be the bottom of the heap. When the after it is fully scanned. In this way, live objects are continuously
alloc pointer meets up with thigee pointer, a garbage collectionis pushed onto and popped out of the queue. The tracing is finished if
triggered which moves the survivors to be after filee pointer. At the queue becomes empty.
the same time, the size of the survivors is calculated and recorded, For every object copied, its size is fetched and added to the
based on which the three pointers are adjusted. Mis-prediction free pointer. If the result is larger than thaloc pointer, while
happens when the size of the survivors is too large, caufsieg the tracing queue is not empty, we have a false prediction. At this
to passalloc. In this situation, the live object size curve shoots up juncture, the remaining objects in the allocation space cannot be
as compared with the previous collection. copied into the free space; otherwise they may overwrite those live
How to advance thalloc pointer is a tricky problem. Closer objects previously created in the allocation space. In this event, the
observations on Fig. 1 tell us that the live object size actually remaining objects in the tracing queue can be used as the root set
fluctuates, but not exactly stick around the stabilized line. If the of tracing to prepare for a mark-compact collection. We start from
alloc pointer is advanced by exactly the size of the survivors, these objects and mark those living objects in the allocation space.
mis-prediction will happen every time even when the live object The remaining live objects are then compacted into the regions after
size rises by just a little bit. To deal with this, we add two other the currenfreepointer.

parametersflucBytesand protectBytes and initialize the former It is worth pointing out that there is a difference between fall-
to be 0° Then upon every mis-prediction, the following code is back compacting and normal compacting. For our compacting col-
executed: lector, some of the objects in the operation area may already have

been copied to the reserved space. When the process of marking
comes across such an object, we simply update the referring point-
ers with the value stored in the forwarding word (it is installed by
copying-based collectors). This object will not be marked, because
To explain the code, we generalize the variation of live object it is already copied into the working space and fully scanned. The
size as in Fig. 4. The fluctuation of the live object size may be costs of compacting consist of that due to moving objects and that
upward and downward. StucBytesshould be added if we want due to traversing the entire heap. Even if there is a false prediction,
to avoid false prediction on such tiny fluctuatiopsotectBytess the difference between the pre-reserved space and the actual live
used to fight against the difference between the fluctuation wave object size is subtle. So we expect the time spent on the former to
tips, which is manually set to be 1% of the whole heap. In our ex- be not so much, as it is moving much fewer objects. The biggest
periment this percentage works well but it can also be set dynam- problem is that, for a compacting collection, the entire heap will
ically to cater to the characteristics of other programs. Note that if need to be traversed, including the garbage objects. Because of the

flucBytes = PreSurvivors() - CurSurvivors();
flucBytes += protectBytes;
if (0 < flucBytes) survivorSize += flucBytes;

the survivor rate grows to be very high, augmenteginectBytes LRU eviction mechanism used by virtual memory systems, we can
the reserve ratio may exceed 100%. We added a test to check forexpect that pages with a lot of garbage normally reside out of the
this and stick to 100% if this should happen. main memory. The traversal of them, therefore, will result in a lot

of page thrashing and extensively prolong the collection time.
3.2 Compacting Collection
3.3 Parallelism

Although a false prediction is very rare, we still need a mechanism

to tackle the situation. Another moving collector, mark-compact, BY its very nature, our skew-space collector can be implemented as
can be utilized iffree passes thalloc pointer. Our mechanism is @ parallel procedure. Since the memory resources are acquired by
regions, threads can be synchronized at this level. At first all the re-
51n the first cycle of the collection, half of the available peda reserved, gions are in a global memory pool. Every thread start its execution
and there is no need to reserve extra space. by requesting a region from the pool, and once a region is success-

fully granted, allocation of objects can be happily performed there. a balance between these two other collectsks reserves less
If the current region is exhausted, this particular thread can again than half of the heap space according to online predictions, so its
request another region or perform a local garbage collection. In this performance is highly dependent on the accuracy of the dynamic
way, the coordination happens for regions as units, which are large predictions. If the predictions are sufficiently accuratesreserves
enough to require only very little coordination effort. less space thass and triggers fewer collections which ultimately
The possibility of parallelism also adds to the reason why we leads to reduced execution time. In the event of a false (inaccurate)
partition the heap space into regions. In our skew space implemen-prediction,sksneeds to call omcto treat the remaining objects.
tation, we resort to mark-and-compact garbage collection whenthe Compacting collectorsnfc for instance) need to traverse the
prediction fails. Due to the nature of the latter type of collectors, entire heap to compact live objects in the lower end of the heap.
a linear scan through the heap is needed. But in a multi-threading Since they must touch all the garbage, plenty of page thrashing
environment, where the virtual address space is shared by all thecan be expected, thus consuming much more time than copying
threads, to define the address of the next object, an auxiliary datacollectors.
structure is used. Without the help of the region header, linear Fig. 5 shows the performance of the three collectors for the six
scanning through the memory resources consumed by a particulatenchmark applications and different heap sizes. In Fig. 5 we can
thread would not be possible. see that most of the applications demonstrate a promising reduction
in execution time. Tab. 1 shows the mis-prediction percentages for
; different applications upon various heap sizes. The majority of the
4. Performance Evaluation false predictions are well below 15%, and some have 0%. Tab. 2
4.1 Experimental Setup gives the “difference” in number of collections betwesmnand

We use all the applications in SPECjvm98 exceyptegaudio be- sks It clearly shows that as the heap grows in size, this difference
cause it seldom allocates and thus invokes extremely few collec- decreases accordlggly, be(’:,a_luse the memory resource becomes no
tions. The benchmarks are run on a Dell desktop computer which SO tight. Note that “x times” in the first row of each table denotes
has a 2 GHz Intel Core 2 Duo CPU and 2G main memory. Each the heap size divided by the minimum memory requirement.
core has an 8-way associative L1 data and code cache of 32KB, [N the figure, we can also see that the performanamofpress
which is partitioned into lines of 64 bytes. There is only one uni- 1S Slightly degraded as compared $a& We have analyzed the
fied 16-way associative L2 cache of size 4096KB, which consists runtime characteristics of this application, and found that it seldom
of 64-byte lines. allocates new objects in the semispaces (most of its newly created
Our skew-space collector is implemented using MMTk [8] in objects are very large, therefore allocated in the LOS space). Apart
the JikesRVM [11]. JikesRVM is an open source virtual machine from the first collection, the survivor rate in the semispace is always
derived from IBM Jalapeno [12], with a design goal to balance be- Very close to 100%. This caussksto reserve a space that is of
tween high performance and portability. It does not implement a the same size as that 8§ and reduces our implementation to be
bytecode interpreter, and adopts the Adaptive Optimization Sys- similar to the latter. Tab. 2 also helps to confirm our analysis, where
tem [13] to support cutting-edge virtual machine technology and there is no difference in number of collections for this benchmark.
enable online feedback-directed optimizations. MMTK is the mem- 1he slightly poorer performance sksis due to the implementation
ory management toolkit for JikesRVM. Communication between ©f skswhich introduces additional overheads. .
them is conducted on the VM and exported interfaces. MMTk di- We further tested our collector using a newer benchmark suite,
vides the available space into several areas, such as metadata, imPaCapo [9] (v. 2006-10-MR2). The results are presented in Fig. 6.
mortal, large object space, and other collector-specific spaces. The/Ve excludedeclipseand chart as they failed to work correctly
main class that implements a collector is calpgan. In the basic for all the three collectors, due twllPointer errors. Furthermo.re,
planclass, the collector-independent spaces are created and the in@mong the other benchmarksgldh lusearchandxalanare multi-
terface from JikesRVM is built. AtopTheWorldtlass extendplan threaded applications, and so are also excluded from our evaluation.
by incorporating typical execution phases, which is furthermore ex- Note also thamccannot run thgythonbenchmark under any heap
tended by a specific collector, for example a copying collector, to Siz€; therefore, in the corresponding diagram, only the performance
create two semispaces, and to add other phases and make auxiliar§f Ssandsksare compared. From the figure, it is evident thlks

calculations. From time to time, thmoll method inplan is called. outperformsncandssfor almost all the benchmark applications.
If either the heap or the space in use is full, a collection will be
triggered. 4.3 Discussions

We revise the semispace collector to implement our version of Copying and compacting garbage collectors represent two ex-
skew-space collections. The space reservation ratio is at first Sefyemes: the former sacrifices all the space, while the latter all the
to be 100%, because at that time no statistics are available for Usg;me There are some variants which take the middle way, for ex-
in the prediction. After the program has started, the memory usage gmple [19]. It partitions the space infy multiple windows and
information is gathered and used to calculate the nextratio. In order (ggaryves only one window for copying. If the survivor rate turns
to know whether our prediction is correct or not, we maintain a out to be less tha%, then only one pass over the heap is needed.
counter to keep track of the number of pages currently used by the gt it the rate grows to become larger, it displaces objects in dif-
mutators, and stop the copying if it exceeds the current reservedserent windows and triggers multiple passes on the heap. We have
space. The objects lying between theanand free pointers are g,ggested possible performance improvements by conserving the
then incorporated in the tracing root, from where the collector starts fraction of the windows dynamically based on the occasion.
tracing the heap and marks touched objects to be compacted. Note 5,1 skew space garbage collector is not a new type of garbage
that because of the specific design of MMTk we do notimplementa cqjjector, but a technique to combine the merits of both copying
cyclic heap (as described in Sec. 3), but check the number of pages;ng compacting collectors. It is built on the observation that the
instead to control how much virtual address space is to be used. gjze of live data objects will not vary too much at each collection.
This phenomenon is entirely experimental and has only been tested
4.2 Resuits on Java benchmarks, and so it may not be universally true for all
We evaluate our skew-space collectekgy against a semispace possible programs. In that case, our collector can switch back to
(s9 and a mark-compact collectam). sksachieves dynamically a normal semi-space collector, based on the false prediction rate.

Totoal Execution Time

Totoal Execution Time

Table 1: The Percentages of False Predictionsksy

benchmark|| 1times| 1.25times| 1.5times| 1.75times| 2times| 2.25times| 2.5times| 2.75 times| 3times
compress || O 0 0 0 0 0 0 0 0
db null null 10% 12% 0 0 0 0 0
jack 0 0 0 0 0 0 0 0 0
javac null null 25% 50% 42% 11% 25% 14% 0
jess 0 0 0 0 0 0 0 0 0
mtrt null 5% 13% 9% 12% 0 0 0 0
Table 2: Number of Collections asminus that ofsks
benchmark|| 1times| 1.25times| 1.5times| 1.75times| 2times| 2.25times| 2.5times| 2.75times| 3 times
compress || O 0 0 0 0 0 0 0 0
db null null 8 4 3 2 2 1 1
jack 29 19 13 11 9 8 6 6 5
javac null null 30 16 10 8 6 5 5
jess 32 20 15 12 9 8 7 6 5
mtrt null 17 14 9 7 5 5 3 3
20 T T 50 T T 32 T T T
3 sks —+— sks —+— sks —+—
195 £ oo L ST 300 e
19 1 S b
E 40+ ¢ X B g
% 35 X . é
25 |
145 . . . 20 . . .
15 2 25 3 1 15 2 25 3
Normalized Heap Size Normalized Heap Size Normalized Heap Size
(a) compress (b) db (c) jack
80 T T 45 T T 100 T T
sks —+— sks —+— x sks —+—
ol x o | e ol 4]
| a0 s 1
| 3 80 4
60 | % 4 |
X S g g 70 4
50 % E g 60 1
* 3 af 13
40 . o . 4 sop | 1
30 h % |
"X) o * . 30 F * »X\\ . 4
T al T . | 20 ‘ ia@
10 . . . is . . 10 . .
1 15 2 25 3 1 15 2 25 3 1 1.5 2 25 3
Normalized Heap Size Normalized Heap Size Normalized Heap Size
(d) javac (e) jess (f) mtrt

Figure 5: Comparisons using SPECjvm98 Benchmarks

28 T T T 450 T T T 60

sks —— sks —+—
s | =S 55
2% me - a0 [me x|
v \ 50
24 F 1 4
\ . 350 1 R 45

40 -

35

30

Totoal Execution Time
Totoal Execution Time
Totoal Execution Time

25
20|

15

10 n n n

Normalized Heap Size Normalized Heap Size Normalized Heap Size
(a) antlr (b) bloat (c) fop

240 T T T T T T 75 T T T 240 T T T

X sks —— S sks —+— sks ——

\ e S8 —-X-- 3 S§ X
220 -\ B 0F . me x| 220 |- me %

\ . ‘X. "

200 | B 200 | 4

180 | 1 180 |

160 g 160

Totoal Execution Time
Totoal Execution Time
Totoal Execution Time

120 |-

100 |

80 [

14 16 18 2 22 24 26 2.8 3 1 15 2 25 3 1 15 2 25 3
Normalized Heap Size Normalized Heap Size Normalized Heap Size

(d) jython (e) luindex (f) pmd

Figure 6: Comparisons using Dacapo Benchmarks

We argue, however, that owing to the statements proposed in Sec. 1is that when the mature space grows too big, it squeezes the nurs-
Program behavivors should obey this rule. ery into a small space and causes collection to take place too often.
To tackle these problems, BG imposes a minimum size to which

; the nursery can be decreased. It starts a garbage collection imme-
5. Generational Collectors diately after the heap becomes half full or the minimum threshold
Our algorithm is very simple and therefore can be easily combined s reached. Because of its merits, we picked BG for applying our
with other techniques (some are mentioned in Sec. 6) to achievealgorithm. Our algorithm can also be built on other collectors to
better performance. For generational collectors, the algorithm can dynamically conserve copying space.
be applied in two areas: to dynamically adjust the portion of re-
served space and to determine when to trigger a full heap collec-5.2 Skew Space Generational Collector

tion, which will be discussed in the following subsections. As illustrated in Fig. 7a, a traditional Appel style generational col-
5.1 Classifications and Comparisons lector starts by employing half of the available heap as its nursery,
where newly created objects are continuously allocated. A garbage
According to the size of the nursery, [19] generational collectors collection will be triggered if the nursery becomes full, and then
can be classified into three groups: Fixed Generation (FG, which the live objects are pushed to the very end of the reserved space
maintains an unchanged size of the nursery), Variable Generationwhich forms the mature space. This process repeats until the whole
(VG, which allows the nursery to grow and shrink progressively) available heap is half occupied, at which time a full heap collection
and Bounded Generation (BG, which sets a minimum size thresh- will be conducted to tidy up the spaces.
old). For the traditional Appel’s collector, there are three issues that
FG collectors, such as [23], only promote objects when they need to be addressed:
are old enough; this requires additional age information inside the
object headers. Some of the implementations remove the age infor-
mation by partitioning the nursery into buckets, but this incurs extra > M : o
copying costs. Furthermore, FG normally collects the heap when ~ aré or indicates inefficiently assigned memory resources if it
the memory usage exceed&252¢ — NurserySize, whereas does happen too often.
VG [25] triggers a collection when the heap is half full and there- e Although it seems simple, but how to determine when the heap
fore is more space efficient. The main problem with VG, however, will become half occupied remains to be a tricky problem.

e It always reserves half of the space in case the worst scenario
happens, that is, when all the objects survive. But this is very

the whole period. This process continues until it consumes more

[wmeyoon | weeesowa | Nursery (>50%) thanM ajor Rate amount of space or the nursery size drops to this
threshold. At this time a major collection is triggered to reclaim any

\ }—““L’ Nursery \ Reserved (30%) H F““' Nursery(>50%) garbage. At the same time, we compare the allocation mean to that

L L of the previous major collection. If it is larger then the threshold

Reserved(<s0%) ‘ percentage, the latter is increased by 2.5%, and vice versa. But this

percentage is not allowed to rise higher than 25%; otherwise the
expanded nursery would be too large. With all this we can make
sure that the size of the nursery will never become too small and
the pace of collections will never be too fast.

Again we implemented our collector with MMTk then com-
pared it to a generational copying garbage collector. The result is
available in Fig. 8. It is expected that the improvement is not as
great as that of its full heap counterpact. This is because right now
most of the time only the nursery is collected. Its size is small and
it leaves little space for optimizations.

Reserved(<50%)

Reserved(<50%)

‘ Nursery ‘ Reserved (50%) H Nursery(>50%)

‘ Nursery ‘ Reserved ‘ Mature Nursery(>50%) Reserved Mature

(a) appel (b) sksg

Figure 7: Appel's and Modified Generational Collectors

Appel's collector solves it through an indirect way. We are
going to present an alternative.

¢ As the mature generation continues to grow, it will squeeze the

nursery into aqsmall space and resultgin frequent gollections. 6. Related Work

Therefore, we need to put a limit on how small the nursery can After McCarthy’s proposal to use an automatic memory manage-

be reduced to. ment strategy for Lisp, garbage collectors were widely investigated,
with two main implementation approaches: reference counting and
tracing. These two approaches are then unified in [14] based on
the argument that they are in fact duals of each other. [15] com-
pares the performance of two different tracing techniques: mark-
and-sweep and stop-and-copy, and points out that while the former
is slightly more expensive than the latter, it consumes significantly
less memory. In the following we discuss some works on collectors
that move objects, which are more related to our paper.

It can be expected that, for generational collectors, the nursery
survival rate is even lower than that of the whole heap. Experi-
mental results show that normally this rate is well below 10% and
sometimes drops to very close to zero, which also explains why the
static algorithm in [7] works well. In view of a high infant mortality,
traditional Appel’s collectors waste most of the reserved space. We
therefore propose to reserve space according to the memory usag
pattern (Fig. 7b) and reserve less than 50% of space for copying.
The basic rule is the same as that applied to non-generational col-

: o . . . 6.1 Moving Collectors
lector, and so if the prediction fails, a compacting collector is called 9

upon for both minor and major collections. There are basically two different types of collectors that move live
We maintain two rates of survivalaZinor Rate for minor and objects: semispace collectors copy their survivors [16], and com-
Magjor Rate for major collections. As usual\/inor Rate is the pacting collectors compact them [17]. The advantage of moving
result of a division between nursery survivals and original nurs- collectors is that they provide very cheap allocation. In mark-sweep
ery size upon a minor collection, whil&/ajorRate is a divi- collectors, allocation requests are satisfied by searching free-lists,
sion upon a major collection. Once the nursery is exhausted, it will whereas for moving collectors, the equivalent is just to advance
first multiply Minor Rate with the size of the nursenyNurSize) the bump pointer by the requested size. But there are prices to pay.

to produce the prospective size of minor survivors (denoted as Compacting collectors need to touch the whole space several times,
ProsMiSize); it then calculates the predicted major survivors’ and semi-space collectors need to reserved half of the available
size (denoted a®rosMaSize) in the same way. At last the fol- ~ space for copying the survivors.

lowing formula is evaluated: .
6.2 Space Efficient Collectors

Because copying-based collectors need to reserve half of available
If it is satisfied a major collection must be triggered; otherwise only heap whereas compacting-based versions do not, for a particular
a minor collection. Compared to the method adopted by Appel- program there must be a point in the time-space tradeoff where
style generators to determine the time for a major collection, our two kinds of collectors achieve the same performance. [21] ana-
algorithm does not re-locate part of the live objects and hence lyzed theoretically how memory residency (the ratio between live
avoids the extra pointer-updating overhead. memory and the total heap) affects the performance of both collec-
In order to tackle the third issue, a target policy is needed. Here tors, and adopted a dual-mode collector which switches between
we set our aim at keeping a smooth collection pace, as collec- copying and compacting according to the memory usage. In order
tions being too frequent would leave little time for the objects to to reduce the space reserved in a full-heap copying collector, [18]
die. That drives us to adopt a bounded-size generational collector.partitions the heap into a mark-sweep space and a sliding copying
For this collector, a special parameter, threshold nursery size, to-space. The copying space is relatively small and slides linearly over
gether with the previous strategy, would define when to trigger a the entire heap in order to tidy up scattered objects in the mark-
major collection. The collector will degenerate to non-generational sweep space. Their algorithm works well and its copying space can
if the nursery size is set to be half of the heap space. The smallermake use of our algorithm to further reduce the reserved amount.
this parameter becomes, the more collections will be triggered. We The mark-copy collector proposed in [19] divides the mature space
propose to use a feedback mechanism to dynamically adjust thisof a generational collector into multiple windows and maintains
parameter, in order to keep to the same number of allocations be-uni-directional remember sets from higher windows to lower ones.
tween any collections. We use the percentage of the entire availablelt defers full collections until the free space drops down to one win-
heap to control the threshold nursery size and manually set it to 5% dow which means that only one frame is reserved. [10] resorts to
at the very beginning. Then the program keeps running and trig- region-based memory management strategy which mixes marking
gers minor collections; meanwhile a coudtl{ocM ean) is main- and copying in one pass to provide space efficiency and to achieve
tained to store the number of allocations which is averaged over faster reclamation and better mutator’s performance. The above two

ProsMiSize + ProsMaSize + MatureSpace > FullHeap

Totoal Execution Time

15 n n

Normalized Heap Size

(a) compress

36 T T T T T

34 b

T T
appel —+—
sksg --x---

Totoal Execution Time

32 T

31

30

29 |

28 -

27

26 |

25

24 1

23 L

14 1.6

17

2 22 24
Normalized Heap Size

(b) db

'appel —_—
sksg --x---

Totoal Execution Time

Normalized Heap Size

(c) jack

32 |

30

28 -

26 |

Totoal Execution Time
Totoal Execution Time
Totoal Execution Time

24

22

20 |

18 I I I I I I I 135 I I I 85 I I I I
14 1.6 18 2 2.2 2.4 2.6 2.8 3 1 15 2 25 3 12 14 16 18 2 22 24 26 28 3

Normalized Heap Size

(f) mtrt

Normalized Heap Size

(e) jess

Normalized Heap Size

(d) javac

Figure 8: Comparisons between Appel’s and Our Collectors

cutting-edge collectors target at the mature space while ours at the e We have discussed and can devise different strategies to apply
young space, and so combining either of them with our implemen- our algorithm to different generational collectors.
tation will be an interesting investigation.

In recognition of the fact that the live object size must be
smaller than the reserved space, Sun Microsystem’s HotSpot virtual
Machine [29] implements a parallel copying generational collector
with a fixed nursery size, where survivors are always promoted to
the mature generation after a collection. It would not always reserve
enough space for copying all the live objects, and when there is not .
enough memory, it compacts the nursery. [6] and [7] implement /- Conclusion
similar strategies for Appel-style generational collectors. The three In this paper, we Conjecture a memory usage phenomenon of typ_
collectors above are very similar to our skew-space collector, but jcal applications, which is that live objects’ total size would reach
our collector has the following merits: a maximum value and tends to remain relatively stable over many

collections. We have carried out experiments using the benchmarks

in SPECjvm98 to show that it is indeed true. In response, we design
. and implement a skew-space garbage collector that can be used in
* We take advantage of the phenomenon we observed about live, , erl?1bedded and ger?eral ?nachi?les. Our skew-space collector

object size to dy”a.m'ca”y setthe reserveq space, which is m.oreimproves copying-based collection by dynamically adjusting the

accurate and precise. [29] does not unveil any implementation \osered space to achieve space and consequently time efficiency.
details, whereas [7] reserves space .ma““a!'yv and thergforg cany capitalizes on the above phenomenon to predict how much space
not adapt to the specific characteristics of different applications. should be reserved, and resorts to a compacting collector in the rare

In particqlar, [6] reserves space by calculating the average si.ze event when the preaiction turns out to be false. Compared with tra-

of live objects, which cannot be all that accurate because a sin- jiona| semi-space collectors, our skew-space collector improves

gle qngsually high or low survivor rate would pollute all the the total execution time of the tested benchmarks. Because of the

predictions. simplicity of the design, our algorithm can also be applied to the
e Our algorithm is very general and can be extended to both young space of a generational collector, or work in a concurrent

Ungar’s and Appel’s style of generational collectors. fashion to perform real-time and space efficient collections. It will

There are also plenty of work to reduce the space consumed
by non-copying garbage collectors, for example, [20], which intro-
duces objects reuse in the design of garbage collection, and [27]
which eliminates forwarding pointers and shortens object headers,
etc.

be particularly interesting if both existing static approaches [28] [14] D. F. Bacon, P. Cheng and V. T. Rajan: A Unified Theory oflzge
and our dynamic memory usage prediction algorithm can be com- Collection. In: ACM Conference on Object-Oriented Programgni
bined to achieve potentially greater improvements. Systems, Languages, and Applications, 50-68, 2004.

Although in our experiments most of the Java benchmarks ex- [15] B. G. Zorn: Comparing Mark-and-Sweep and Stop-and-Gaasbage
hibit the above phenomenon, the live object size of some real-life Collection. In: ACM Conference on LISP and Functional Pesgming,
programs may vary and deviate from this phenomenon consider- 87-98, 1990.
ably. In the future, we plan to devise a strategy to record and an- [16] C. J. Cheney: A Nonrecursive List Compacting Algorithm: |
alyze the variations, and then based on the false prediction rate to Communication of the ACM, Volume 13, Number 11, 677-678, 1970.
determine ifprotectByteshould be adjusted to reserve more space, [17] H. B. M. Jonkers: A Fast Garbage Compaction Algorithm. In:
or, in the worst case, to fall back on a semi space collector. Further- Information Processing Letters, Volume 9, Number 9, 25-309197
more, the criterion for when to trigger compacting collection can be [18] B. Lang and F. Dupont: Incremental Incrementally Compagti
refined—for example, to compact only when #ilwc pointer runs Garbage Collection. In: ACM SIGPLAN Notices, Volume 22, Issu
into a live object. Although not tested, we believe that other pro- 7, 253-263, 1987.
grams, for example C# and Smalltalk programs, may also bear the[19] N. Sachindran and J. E. B. Moss: Mark-copy: fast copy@@ with
same characteristics so that our algorithm can be applied to them. |ess space overhead. In: ACM SIGPLAN Notices, Volume 38 dsisly
Lastly, our implementation of the skew-space collector will always 326-343, 2003.

resort to a compacting collector to recycle the remaining live ob- [20] z. C. H. Yu, F. C. M. Lau and C. L. Wang: Object Co-location
jects. Compacting is very expensive and how to reduce its cost will

be a meaningful pursuit.

Acknowledgments

This work is supported in part by a Hong Kong RGC GRF grant

(7141/06E).

References

[1] J. McCarthy: Recursive Functions Symboloc Expressiors Eheir
Computation by Machine. In: Communication of the ACM, Volume 3,
Number 4, 184-195, 1960.

[2] R. Jones and R. Lins: Garbage Collection: Algorithm fartématic
Dynamic Memory Management. John Wiley&Sons, 1997.

[3] P. R. Wilson: Uniprocessor Garbage Collection Techaiguln:
Proceedings of the International Workshop on Memory Managéme
1-42,1992.

[4] B. K. Haddon and W. M. Waite: A Compaction Procedure forighlte
Length Storage Element. In: The Computer Journal, Volume 16)béu
2,162-165, 1967.

[5] H. Lieberman and C. Hweitt: A Real-time Garbage CollectiRased
on the Lifetimes of Objects. In: Communication of the ACM, Volume
26, Number 6, 419-429, 1983.

[6] J. M. Velasco, K.Olcoz and F. Tirado: Adaptive Tuning ofserved
Space in an Appel Collector. In: European Conference on ciégje
oriented Programming, 542-558, 2004.

[7] P. MaGachey and A. L. Hosking: Reducing Generationaly(Reserve
Overhead with Fallback Compaction. In: International Synoson
Memory Management, 17-28, 2006.

[8] S. M. Blackburn, P. Cheng and K. S. McKinley: Oil and W&tétigh
Performance Garbage Collection in Java with MMTk. In: Inggional
Conference on Software Engineering, 137-146, 2004.

[9] S. M. Blackburn, R. Garner and C. Hoffman: The Dacapo berarks:
Java benchmarking development and analysis. In: ACM Conteren
Object-Oriented Programming, Systems, Languages, and Apipis,
169-190, 2006.

[10] S. M. Blackburn and K. S. McKinley: Immix: a Mark-Region
Garbage Collector With Space Efficiency, Fast Collectior Elutator

Performance. In: ACM Conference on Programming Language Besig

and Implementation, 22-32, 2008.

[11] B. Alpern, S. Augart and S. M. Blackburn: The Jikes Resed/irtual
Machine Project: Building an Open-source Research Community
IBM Systems Journal special issue on Open Source Softwahemeo
44, Number 2, 399-417, 2005.

[12] B. Alpern, C. R. Attanasio and J. J. Barton: The Jalap¥mtual
Machine. IBM Systems Journal, volume 39, number 1, 211-238)200

[13] M. Arnold, S. J. Fink and D. Grove: Adaptive Optimizationthe
Jalapeno JVM. In: ACM Conference on Object-Oriented Pnogning,
Systems, Languages, and Applications, 47-65, 2000.

and Memory Reuse for Java Programs. In: ACM Transactions on
Architecture and Code Optimization, Volume 4, Issue 4, 232-2608.

[21] P. M. Sansom: Combining Single-Space and Two-Space Cdingac
Garbage Collectors. In: Proceedings of the Glasgow Worksio
Functional Programming, 1991.

[22] E. W. M. Dijkstra, L. Lamport and A. J. Martin: On-the-flyaEbage
Collection: An Exercise in Cooperation. In: Communicationtioé
ACM, Volume 21, Number 11, 611-612, 1978.

[23] D. Ungar: Generation Scavenging: A non-disruptivehrpgrformance
storage reclamation algorithm. In: ACM SIGSOFT Software Bagi-
ing Notes, Volume 9, Issue 3, 157-167, 1984.

[24] D. Ungar and F. Jackson: Tenuring policies for generabased
storage reclamation. In: ACM SIGPLAN Notices, Volume 23, &s4d,
1-17, 1988.

[25] A. W. Appel: Simple generational garbage collection dast
allocation. In: Software Practice & Experience, Volume 18ue 2,
171-183, 1989.

[26] D. A. Barrett and B. G. Zorn: Garbage collection usingyaamic
threatening boundary. In: ACM SIGPLAN Notices, Volume 3Gus 6,
301-314, 1995.

[27] D. F. Bacon, P. Cheng and D. Grove: Garbage collectioriidbedded
systems. In: International Conference On Embedded Softdage 136,
2004.

[28] E. Albert, S. Genaim, M. G. Zamalloa: Live heap space asisly
for languages with garbage collection. In: Internationahposium on
Memory management, 129-138, 2009.

[29] The Java Hotspot Virtual Machine, White Paper
http://java.sun.com/products/hotspot/index.html.

[30] The SPEC Java Virtual Machine Benchmarks http://spgfun98.

