
Online Algorithms for Covering and Packing
Problems with Convex Objectives

Yossi Azar∗, Niv Buchbinder†, T-H. Hubert Chan‡, Shahar Chen§, Ilan Reuven Cohen†, Anupam Gupta¶,
Zhiyi Huang‡, Ning Kang‡, Viswanath Nagarajan‖, Joseph (Seffi) Naor§, Debmalya Panigrahi∗∗

∗Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
Email: {azar@tau.ac.il, ilanrcohen@gmail.com}

†Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.
Email: niv.buchbinder@gmail.com

‡Department of Computer Science, The University of Hong Kong, Hong Kong, China.
Email: {hubert,zhiyi,nkang}@cs.hku.hk

§Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel.
Email:{shahar.chen11@gmail.com, naor@cs.technion.ac.il}

¶Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Email: anupamg@cs.cmu.edu

‖Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Email: viswa@umich.edu

∗∗Department of Computer Science, Duke University, Durham, NC 27708, USA.
Email: debmalya@cs.duke.edu

Abstract—We present online algorithms for covering and
packing problems with (non-linear) convex objectives. The convex
covering problem is defined as: minx∈Rn+ f(x) s.t. Ax ≥ 1, where
f : Rn

+ → R+ is a monotone convex function, and A is an m×n
matrix with non-negative entries. In the online version, a new row
of the constraint matrix, representing a new covering constraint,
is revealed in each step and the algorithm is required to maintain
a feasible and monotonically non-decreasing assignment x over
time. We also consider a convex packing problem defined as:
maxy∈Rm+

∑m
j=1 yj−g(AT y), where g : Rn

+ → R+ is a monotone
convex function. In the online version, each variable yj arrives
online and the algorithm must decide the value of yj on its arrival.
This represents the Fenchel dual of the convex covering program,
when g is the convex conjugate of f . We use a primal-dual
approach to give online algorithms for these generic problems,
and use them to simplify, unify, and improve upon previous
results for several applications.

Index Terms—online algorithm; convex optimization; primal-
dual algorithm

I. INTRODUCTION

In the area of online algorithms, the method of modeling a
problem as a linear program, obtaining a fractional solution via

This paper presents results independently obtained by Y. Azar, I. R. Cohen,
and D. Panigrahi [1], N. Buchbinder, S. Chen, A. Gupta, V. Nagarajan, and
J. Naor [2], and T.-H. H. Chan, Z. Huang, and N. Kang [3].

Y. Azar and I. R. Cohen are supported in part by the Israel Science
Foundation (grant No. 1506/16), by the I-CORE program (Center No. 4/11),
and by the Blavatnik Fund. N. Buchbinder is supported in part by ISF grant
1585/15 and by BSF grant 2014414. S. Chen and J. Naor are supported in
part by ISF grant 1585/15 and BSF grant 2014414. A. Gupta is supported in
part by NSF awards CCF-1319811, CCF-1536002, CCF-1540541 and CCF-
1617790. D. Panigrahi is supported in part by NSF Awards CCF-1527084 and
CCF-1535972. T-H. H. Chan is supported in part by the Hong Kong RGC
grant 17202715. Z. Huang is supported in part by the Hong Kong RGC grant
17202115.

a primal-dual algorithm, and then rounding it, has proved to be
a very powerful general technique (see [4] for a survey). This
framework is applicable to many central online problems, like
the classic ski rental problem, online set-cover [5], generalized
paging [6], [7], k-server and metrical task systems [8], [9],
graph connectivity [10], [11], routing [12], load balancing and
machine scheduling [13], [14], matching [15], and budgeted
allocation [16]. Via this approach, not only can we unify
previously known results, but we can also resolve important
open questions in competitive analysis. The use of the online
primal-dual method mirrors (and is inspired by) the use of
linear programming relaxations for approximation algorithms,
with one major difference. In the online setting, generic
linear programming solvers cannot be used for even obtaining
a fractional solution, since constraints are presented online.
Hence, new algorithms have been developed for solving linear
programs online [17], [18].

The basic setting of the online primal-dual framework is
grounded on the well-studied covering/packing framework for
combinatorial optimization problems. Covering/packing linear
formulations are a special class of linear formulations in which
all coefficients are non-negative. In a covering problem, the
goal is to minimize a non-negative cost function subject to
non-negative covering constraints. In a packing problem the
goal is to maximize a non-negative profit function subject to
non-negative packing constraints. Packing and covering form
a primal-dual pair – for consistency, we refer to the covering
problem as the primal problem and to the packing problem as
the dual problem, although in some cases, it is the dual packing
problem in which we are interested in. The covering/packing
framework captures a large class of (relaxations) of well-

studied combinatorial problems.
Although extremely successful, the online primal-dual ap-

proach has been mainly studied for linear objective functions.
Yet, what about convex optimization problems? In the offline
setting, the Ellipsoid and interior-point methods can solve
these problems with linear convergence rates. But, online, it
was not known how to solve convex optimization problems
in general prior to this work. In contrast, specific online
problems with non-linear convex/concave objectives have been
studied in recent years, in areas such as energy-efficient
scheduling [19], [20], [21], paging [22], network routing [23],
combinatorial auctions [24], [14], matching [25], and budgeted
allocation [26]. In this paper, we develop a general framework
for a broad class of covering/packing programs with convex
objective functions. The competitive ratios we obtain are
optimal. This already improves and substantially generalizes
previous results for problem classes such as mixed packing
covering LPs considered in [13]. We then show how to round
these fractional solutions online for specific optimization prob-
lems, obtaining improved results for non-linear optimization
problems considered recently in machine scheduling, network
routing, and combinatorial auctions.

A. The Convex Optimization Framework

The next convex covering problem is our primal problem.

min
x∈Rn+

C(x) := f(x) subject to Ax ≥ 1. (I.1)

Here, f : Rn+ → R is a convex function and Am×n is a
non-negative matrix. The rows of A, the covering constraints,
arrive online over time. At any point of time we must maintain
a feasible fractional solution x, non-decreasing over time.

This convex program captures, e.g., the mixed covering-
packing problem [13], the machine scheduling and online
routing problems from [23], [20], and the nested set cover
problem [27].

As in solving LPs online, we use a primal-dual technique
where we simultaneously obtain a solution to both primal and
dual programs. In the convex setting, the dual of (I.1) is the
following packing problem:

max
y∈Rm+ ,z∈Rn

P (y) :=
∑
j∈[m] yj−f?(z) subject to AT y ≤ z.

(I.2)
Here f? is the Fenchel dual or conjugate function of f ,
which is always a convex function∗, and hence another convex
optimization problem. In the online setting, at each step a new
dual variable yi arrives along with its coefficients. The dual
values must be monotone: we fix a value of yi upon arrival
and cannot change it later, in particular in applications where
the dual problem is our focus.

Interestingly, the dual has a natural interpretation of its own,
as the problem of social-welfare maximization with production
costs. Consider a seller who produces and sells items of n
types in a combinatorial market with m buyers. The seller

∗The Fenchel dual function is formally defined in (II.3); see, e.g., [28] for
background and properties.

produces a quantity zj of each item j ∈ [n], at total cost
f?(z). Now, if yj denotes the value obtained from the bundle
of goods assigned to buyer j, and Ay ≤ z captures the
constraints that no item is sold in greater quantities than its
production, then we recover precisely the dual problem. This
social-welfare maximization problem was studied by Blum
et al. [24] and Huang et al. [14] for the “separable” special
case in which the production cost of each item is a univariate
convex function, and the total cost is the sum over the items:
f?(z) =

∑
i f

?
i (zi). This case is somewhat restrictive in that

it does not capture production costs such as energy that are
typically modeled as f?(z) = (

∑
zi)

α for some α > 1. This
is a non-separable function, and so not captured by previous
work, but it falls neatly into our framework.

B. Our Results

Our main theorem for the general online covering/packing
framework is for monotone convex functions with monotone
gradients† (we denote the gradient ∇f). Our primal-dual
approach simultaneously gives us solutions to both the primal
and dual convex programs.

Theorem 1 (Online Convex Covering/Packing Theorem). Let
f : Rn+ → R+ be a function that is monotone, differentiable,
convex, and ∇f is monotone. Let p = supx≥0

〈∇f(x),x〉
f(x) . Then,

(a) There exists an O(p log d)p-competitive algorithm that
produces a monotone primal solution.

(b) There exists an O(p log(ρd))p-competitive algorithm that
produces a monotone dual solution.

Here d is the maximal row sparsity of the matrix and ρ is
maxj maxi,i′|ai,j 6=0{

ai′j
aij
}.

The conditions of the theorem are satisfied, for exam-
ple, by convex polynomials of degree p (with non-negative
coefficients). One such example is f(x) = 1

p‖x‖
p
p, whose

Fenchel conjugate function is f? = 1
q‖x‖

q
q where 1

p + 1
q = 1.

Intuitively, p bounds the growth of the objective around a given
point and shows the (necessary) effects of discretization of
the feasible region performed by the algorithm. In fact, our
competitive ratios are the best possible for all p: see §III-A.

Observe that the dual result of Theorem 1(b) makes as-
sumptions on the function f and then solves the dual problem
using f?. However, if our goal is to solve the dual problem,
e.g., for social-welfare maximization with production costs,
we can instead impose conditions on the dual cost function
f?, which may yield a better competitive ratio. Indeed, the
assumptions on the primal and the dual yield incomparable
families of convex functions.‡ Our general result in this setting
is the following:

†Function g : Rn → R is monotone if for all x′, x such that x′i ≥ xi for
all i ∈ [n], g(x′) ≥ g(x). Monotonicity of the objective is clearly necessary,
but that of its gradient is a technical assumption that might be avoidable.
‡ For example, monotonicity of f and ∇f does not imply monotonicity

of ∇f?: e.g., if f(x) = (x1 + x2)2, then f?(z) = max(z21 , z
2
2) which has

non-monotone gradients. Hence, one can use Theorem 1 to solve the dual
problem for this f?, but not Theorem 2.

Theorem 2 (Online Convex Packing Theorem). Let f? :
Rn+ → R+ be a convex polynomial function with non-negative
coefficients, zero constant term and maximum degree q. Then,
there exists an O(q)-competitive algorithm for the online
convex packing problem.

This competitive ratio is also optimal, even for the special
case where f? is “separable”, i.e., the sum of single-variate
convex functions f?(z) =

∑
j gj(zj); see [14].

Prior to this work, analogous results for online cover-
ing/packing were only known for linear objectives. Com-
petitive ratios of O(log n) for covering and O(log(ρd)) for
packing were obtained in [17], the covering ratio being sub-
sequently improved to O(log d) in [18]. For linear objec-
tives, Theorem 1 obtains ratios of O(log d) for covering and
O(log(ρd)) for packing, matching the best bounds.

C. Our Techniques

Our algorithm for convex covering and packing (Theorem 1)
is based on a clean unified approach, that significantly sim-
plifies even the well-studied linear case [18]. The value of
the primal variables grows exponentially proportional both to
their current value and their coefficient in the constraint, but
divided by the gradient of f at the current solution. The dual is
increased at a (carefully chosen) linear rate. This update rule
is enough for obtaining the second part of Theorem 1 (which
has a dependence on ρ, a parameter that depends on the matrix
A). But it does not prove the first part, which is independent
of the numbers. To obtain the improved primal result we keep
“shadow duals” that are used to bound the primal cost more
tightly. These dual variables are non-monotone and may be
decreased at certain times. Decreasing the dual variables may
potentially reduce the total dual value being used to bound
the primal cost. However, doing this carefully and maintaining
such “non-monotone” duals is crucial in obtaining the sharp
O(p log d)p competitive ratio.

The algorithm for convex packing (Theorem 2) achieves
a much better competitive ratio when parameterized by the
“smoothness parameter” of the dual cost function f?. This
parametrization is also natural in applications such as welfare
maximization. This algorithm increases duals linearly, while
maintaining primal variables as the gradient of f? at a scaled
dual solution. The primal/dual updates and their analysis are
quite different from those of Theorem 1: this is not surprising
since the two algorithms are intended to perform well for
(roughly) complementary classes of the function f . Moreover,
as noted earlier, there are functions f and f? for which the
guarantees in both Theorem 1 and Theorem 2 are tight.

D. Applications

The general framework captures many existing and new
applications. Due to space limitations, we only give an outline
of these applications here and defer a detailed discussion to
the full version of the paper.

(1) Mixed Covering and Packing LPs. Here we have an
online covering problem, along with K different objective
functions, and the goal is to minimize the p-norm of these

K objective functions. As a direct application of our general
covering framework (Theorem 1(a)), we obtain an O(p log d)-
competitive algorithm for this problem, where d ≤ n is the
row-sparsity of the covering constraint matrix A. This yields
an O(logK log d)-competitive algorithm for minimizing the
maximum constraint (the ∞-norm), improving upon the pre-
vious best bound of O(logK · log(dκγ)) [13], where γ and
κ are the max-to-min ratio of the entries in the covering and
packing constraints respectively. For p-norms of the objective
functions, no previous bound was known.

While our framework is designed for obtaining fractional
solutions, it also yields new results for discrete problems via
online rounding. Several examples follow.

(2) Social Welfare Maximization with Production Costs. As
an application of our packing framework, we consider social
welfare maximization in combinatorial auctions with produc-
tion costs. For the problem with arbitrary valuation functions
(assuming access via demand oracles), where the production
cost function is allowed to be any convex degree-q polynomial
production cost function with non-negative coefficients, we get
an algorithm which is O(q)-competitive, with an additive loss
in the social welfare that depends only on the production cost
functions (but is independent of the number of buyers). [14]
considered the separable case and characterized the optimal
competitive ratio of any given cost function via a differential
equation. For the special case of polynomial cost functions xq ,
[14] explicitly solved the differential equation and obtained a
competitive ratio of 4q. Our results in this paper, applying to
the special case of separable degree-q polynomial functions,
essentially gives the same algorithm and a competitive ratio of
O(q) §, matching the results of [14] asymptotically. We stress
that the results in this paper applies to the much more general
non-separable cost functions.

(3) Unrelated Machine Scheduling with Startup Costs. In
this problem, a set of n jobs arriving online have to be
scheduled on m machines, where machine i has startup
cost ci and can run job j in processing time pij . The goal
is to assign each job to a machine so as to simultane-
ously minimize the p-norm of the overall machine loads
and the total startup cost of machines used. For this prob-
lem, we obtain an (O(logm log(mn)), O(p2 log1/p(mn)))
bicriteria competitive ratio,¶ which is almost tight. For
the special case of total load (the 1-norm), we obtain a
tighter bound of (O(logm log n), O(1)). For the special case
of the ∞-norm (maximum load or makespan), the best
competitive ratio previously obtained using tools specific
to this case was (O(logm log(mn)), O(logm)) [13] while
our general framework yields a slightly worse bound of

§We have not optimized the constants for specific polynomials, as our focus
has been on getting a general positive result for a large family of cost functions
¶A bi-criteria competitive ratio of (α, β) implies that the online algorithm

produces a schedule of expected startup cost at most αC and expected p-
norm of machine loads at most βL, if there exists a feasible solution with
startup cost C and p-norm of loads L.

(O(logm log(mn)), O(log2m(log n)1/ logm)).‖ For all other
p-norms, including the 1-norm, no previous result was known,
not only in the online setting but also offline [29], [30], [31].

(4) Capacity Constrained Facility Location (CCFL). We
are given m potential facility locations, each with an opening
cost ci and a capacity ui. Now, n clients arrive online, each
client j ∈ [n] having an assignment cost aij and a demand
bij for each facility i ∈ [m]. The online algorithm must open
facilities (paying the opening costs ci) and assign each arriving
client j to an open facility i (paying the assignment cost aij ,
and incurring a load pij on facility i). The congestion of an
assignment is the maximum load on any facility. The objective
in CCFL is to simultaneously minimize the sum of opening
costs and assignment costs, and the maximum congestion
of any facility. We obtain an O(log2m logmn)-competitive
randomized online algorithm. This competitive ratio is worse
by a logarithmic factor than the best result known [13], but
follows easily from our general framework.

(5) Capacitated Multicast Problem (CMC). This is a com-
mon generalization of CCFL and the online multicast prob-
lem [10]. There are m edge-disjoint rooted trees T1, · · · , Tm
corresponding to multicast trees in some network. Each tree Ti
has a capacity ui, and each edge e ∈ ∪mi=1Ti has an opening
cost ce. A sequence of n clients arrive online, and each must
be assigned to one of these trees. Each client j has a tree-
dependent load of pij for tree Ti, and is connected to exactly
one vertex πij in tree Ti. Thus, if client j is assigned to tree
Ti then the load of Ti increases by pij , and all edges on the
path in Ti from πij to its root must be opened. The objective
is to minimize the total cost of opening the edges, subject
to the capacity constraints that the total load on tree Ti is at
most ui. Solving a natural fractional convex relaxation, and
then applying a suitable randomized rounding to it, we get an
O(log2m logmn)-competitive randomized online algorithm
that violates each capacity by an O((d + log2m) logmn)
factor; here d is the maximum depth of the trees {Ti}mi=1.
The capacitated multicast problem with depth d = 2 trees
generalizes the CCFL problem, in which case we recover the
above result for CCFL.

(6) Online Set Cover with Set Requests (SCSR). We are
given a universe U of n resources, and a collection of m
facilities, where each facility i ∈ [m] is specified by (i) a
subset Si ⊆ U of resources (ii) opening cost ci and (iii)
capacity ui. The resources and facilities are given up-front.
Now, a sequence of k requests arrive over time. Each request
j ∈ [k] requires some subset Rj ⊆ U of resources. The request
has to be served by assigning it to some collection Fj ⊆ [m] of
facilities whose sets collectively cover Rj , i.e., Rj ⊆ ∪i∈FjSi.
Note that these facilities have to be open, and we incur their
opening cost. Moreover, if facility i is used to serve client j,
this contributes to the load of facility i, and this total load
must be at most the capacity ui. This problem was considered

‖Note that the (logn)1/ logm is a superconstant only if n is super-
exponential in m. So, for polynomial instances, the competitive ratio is
(O(logm log(mn)), O(log2m)), which only has an additional logm term
in the competitive ratio of the makespan compared to [13].

recently by Bhawalkar et al. [27]. Using an approach identical
to that for the CCFL problem, we get an O(log2m logmnk)-
competitive randomized online algorithm that violates each
capacity by an O(log2m logmnk) factor. Again this factor is
weaker than the best result known by a logarithmic factor, but
directly follows from our general framework.

II. PRELIMINARIES

For a positive integer n, we denote [n] := {1, 2, . . . , n}.
We use x to denote a column vector. For two vectors a and
b of the same dimension, we write a ≥ b if each coordinate
of a is at least the corresponding coordinate of b. We use
〈a, b〉 = aᵀb to denote the dot product of a and b. Let 0 and
1 denote the all zero’s and all one’s vectors, respectively. A
function g : Rn+ → Rm+ is monotone if a ≤ b implies that
g(a) ≤ g(b). For i ∈ [n], we use ei to denote the unit vector
whose ith coordinate is 1.

Fenchel Conjugate: Given a function f : Rn+ → R+, its
Fenchel conjugate f? : Rn+ → R+ is defined as

f?(z) = sup
x∈Rn+

{
〈x, z〉 − f(x)

}
. (II.3)

It is well known (e.g., [28]) that the supremum is achieved at
a gradient of f , and thus 〈x, z〉 − f(x) is the negative of the
y-intercept of a hyperplane that passes through point x and has
gradient z. The Fenchel conjugate can also be interpreted as
representing f by a function that relates slopes of tangents to
their y-intercept. As an example, if f(x) = 1

px
p is a degree-p

polynomial (p > 1), then f?(z) = (1 − 1
p)z

p
p−1 is a degree-

p
p−1 polynomial. For the rest of this paper, we will focus on
the following type of functions f .

Assumption 3 (Nice function). Function f : Rn+ → R+ is
convex, monotone, differentiable, and f(0) = 0.

In this case, the conjugate function f? satisfies the following
properties:

1) The conjugate f? is non-negative, monotone, convex, and
f?(0) = 0.

2) If f is lower semi-continuous, f?? = f .
We will use the following properties of nice functions.

Lemma 4 (Bounded Growth). Suppose that function f sat-
isfies Assumption 3 and there is some p ≥ 1 such that
〈∇f(x), x〉 ≤ p · f(x) for all x ∈ Rn+. Then, the following
statements hold.
(a) For δ ≥ 1, for x ∈ Rn+, f(δx) ≤ δpf(x).
(b) For all x ∈ Rn+, f?(∇f(x)) = 〈x,∇f(x)〉 − f(x) ≤

(p− 1) · f(x).
(c) If p > 1 then for any 0 < γ ≤ 1, z ∈ Rn+, f?(γz) ≤

γ
p
p−1 · f?(z) and f?(γ · ∇f(z)) ≤ γ

p
p−1 · (p− 1) · f(z).

(d) If p = 1 then for any 0 < γ ≤ 1, z ∈ Rn+, f?(γ ·
∇f(z)) ≤ 0.

Proof. For statement (a), define the function g : [1,+∞)→ R
by g(θ) := ln f(θx). Then, g′(θ) = 〈∇f(θx),x〉

f(θx) ≤ p
θ , where

the last inequality follows because 〈f(θx), θx〉 ≤ pf(θx).

Integrating over θ ∈ [1, δ] gives g(δ) − g(1) ≤ p ln δ, which
is equivalent to f(δx) ≤ δpf(x).

For statement (b), observe that f?(∇f(x)) =
supw∈Rn+ h(w), where h(w) := 〈w,∇f(x)〉 − f(w).
Hence, ∇h(w) = ∇f(x) − ∇f(w). Since f is a convex
function, h is a concave function. Also ∇h(x) = 0. It
follows that the (global) supremum of h is at w = x, and so
f?(∇f(x)) = 〈x,∇f(x)〉−f(x). This is at most (p−1)·f(x)
from the assumption on f .

For statement (c), for 0 < γ ≤ 1, let δ := (1
γ)

1
p−1 ≥ 1,

f?(γz) = sup
x∈Rn+

{〈x, γz〉 − f(x)}

= γ
p
p−1 sup

x∈Rn+
{〈δx, z〉 − δpf(x)}

≤ γ
p
p−1 sup

x∈Rn+
{〈δx, z〉 − f(δx)}

= γ
p
p−1 f?(z) ,

where the inequality follows from statement (a). This proves
the first part of (c). The second part follows by combining this
with (b).

For statement (d), we have p = 1 and:

f?(γ · ∇f(z)) = sup
x∈Rn+

{〈x, γ · ∇f(z)〉 − f(x)}

≤ γ · sup
x∈Rn+

{〈x,∇f(z)〉 − f(x)}

= γ · f?(∇f(z)) ≤ 0

The first inequality is since f ≥ 0 and γ ≤ 1, and the second
inequality is by part (b).

Convex Covering/Packing Framework: We consider the
following convex covering problem:

min
x∈Rn+

C(x) := f(x) subject to Ax ≥ 1. (II.4)

Above, f : Rn+ → R is a monotone convex function and
Am×n is non-negative. Let f? be the Fenchel dual function
of f . The (Fenchel) dual problem of (II.4) is the following
packing problem∗∗:

max
y∈Rm+

P (y) :=
∑
j∈[m] yj − f?

(
AT y

)
. (II.5)

For definitions of the online versions of the pack-
ing/covering problems, see the Introduction. The following
lemma is a standard weak duality result.

Lemma 5 (Weak Duality). For any x ∈ Rn+ such that Ax ≥ 1
and any y ∈ Rm+ , we have C(x) ≥ P (y), which holds even if
f is not convex.

Proof. Let x, y be feasible solutions to problems (II.4) and
(II.5) respectively. Then,

f(x) ≥ f(x) + yt (1−Ax)

∗∗Variable z appearing in (I.2) is redundant here.

=
∑
j∈[m]

yj −
(
xtAT y − f(x)

)
≥
∑
j∈[m]

yj − sup
x∈Rn+

(
xtAT y − f(x)

)
=
∑
j∈[m]

yj − f?
(
AT y

)
.

The first inequality follows by the feasibility of x and since
y ≥ 0. The second inequality follows as x ≥ 0.

III. ONLINE COVERING FRAMEWORK

We give here a primal-dual algorithm for the online convex
packing/covering problem, and prove Theorem 1. The algo-
rithm is presented in Figure III and is very simple; in fact, even
simpler than the optimal algorithm for the linear case [18].

Let x denote the primal solution and y the dual solution.
The algorithm is presented in Figure III. The primal update
rule is particularly simple (see the first three steps): effectively,
it is a multiplicative increase in the primal variables, where
the rate of increase of xi is inversely proportional to the ith

coordinate of the gradient at x. The dual update in Step 4 is
just as simple: it increases the current dual variable at constant
rate; here 0 < δ < 1 is a parameter which we optimize later.
The monotonicity of the dual is immediate.

Finally, we also maintain “shadow dual” variables denoted
by z in Step 5 which are used only for the primal analysis.††

Note that this step both increases some shadow duals and
decreases others. This non-monotonicity of the shadow dual
is essential for proving the primal bound in Theorem 1(a).

For the analysis, we denote by xτ , yτ , · · · the values of
the variables at time τ . Let x be the final value of x at the
end of the execution. We first analyze the algorithm with the
more complex update step 5 and then state the minor changes
required to analyze the dual.

Observation 6 (Feasible Solutions). The algorithm maintains
a feasible monotonically non-decreasing primal solution x.
Also, the duals y and z are both feasible.

To analyze the competitive ratio we first state the following
claim whose proof is deferred to the full version of the paper.

Claim 7 (Lower-bounding x variables). For a variable xi, let
Ti = {j | aji > 0} and let Si be any subset of Ti. If the
current dual variable zk increases at rate r (and other dual
variables may decrease), then

xτi ≥
1

maxj∈Si{aji} · d

exp

 1

r · ∇if(x)

∑
j∈Si

ajiz
τ
j

− 1

 .

(III.7)

Proof of Theorem 1. First, we prove the competitive ratio of
the primal algorithm. For this, we first claim that for any time
τ , the variables z satisfy Atz ≤ δ∇f(x), i.e. for each i,∑k
j=1 ajiz

τ
j ≤ δ∇if(x). Indeed, while processing constraint

††The shadow variables z are unrelated to the z-variables in (I.2).

Fractional Algorithm: When the kth request
∑n
i=1 akixi ≥ 1 arrives:

1) Let τ be a continuous variable denoting the current time.
2) While the new constraint is unsatisfied, i.e.,

∑n
i=1 akixi < 1, increase τ at rate 1 and:

3) Change primal variables:
• For each i with aki > 0, increase each xi at rate

∂xi
∂τ

=
aki xi + 1

d

∇if(x)
. (III.6)

Here d is an upper bound on the row sparsity of the matrix and ∇if(x) is the ith-coordinate of the gradient ∇f(x).
4) Change dual variables:
• Increase yk at rate w = δ

log(1+d·ρ) . Here ρ is an upper bound on the maximum-to-minimum ratio of positive entries in
any column of A.

5) Change “shadow” dual variables (only for primal analysis):
• Increase zk at rate r = δ

log(1+2d2) .

• If for variable xi we have
∑k
j=1 ajizj = δ · ∇if(x), then

– Let m?
i = arg maxkj=1{aji | zj > 0}.

– Increase zm?i at rate − aki
am?

i
i
· r. (Note: this change occurs only if aki is strictly positive.)

Fig. III.1. Algorithm for Convex Covering

k, if
∑k
j=1 ajiz

τ
j < δ · ∇if(x) for column i we are trivially

satisfied. Suppose that during the processing of constraint k,
we have

∑k
j=1 ajiz

τ
j = δ∇if(x) for some dual constraint i

and time τ . Now the dual decrease part of the algorithm kicks
in, and the rate of increase in the left-hand side of the dual
constraint is at most:

d

dτ

 k∑
j=1

ajiz
τ
j

 = aki · r − am?i i ·
aki
am?i i

· r = 0.

Now consider the update when primal constraint k arrives
and τ is the current time. Let U(τ) denote the set of indices i
for which we have aki > 0 and

∑k
j=1 ajiz

τ
i = δ∇if(x). So

|U(τ)| ≤ d, the row-sparsity of A. Moreover, define Si := {j |
aji > 0, zτj > 0} for every i ∈ U(τ). Clearly,

∑
j∈Si ajiz

τ
j =∑k

j=1 ajiz
τ
j = δ · ∇if(x). Plugging in r = δ

ln(1+2d2) into
Claim 7, and using the fact that

∑
i akix

τ
i < 1, we get for

every i ∈ U(τ),

1

aki
> xτi ≥

1

maxj∈Si{aji} · d
(
exp

(
ln(1 + 2d2)

)
− 1
)
,

and after simplifying we get aki
am?

i
i

= aki
maxj∈Si{aji}

≤ 1
2d . As a

result, we can bound the rate of change in the dual expression∑k
j=1 zj at any time τ :

d
(∑k

j=1 zj

)
dτ

= r −
∑

i∈U(τ)

aki
am?i i

· r

≥ r

1−
∑

i∈U(τ)

1

2d

 ≥ 1

2
r (III.8)

where the last inequality follows as |U(τ)| ≤ d. On the other
hand, when processing constraint k during the execution of

the algorithm, the rate of increase of the primal objective f
is:
df(xτ)

dτ
=
∑
i

∇if(xτ)
∂xτi
∂τ

=
∑

i|aki>0

∇if(xτ)

(
akix

τ
i + 1

d

∇if(xτ)

)

=
∑

i|aki>0

(
akix

τ
i +

1

d

)
≤ 2. (III.9)

The final inequality uses the fact that the covering constraint
is unsatisfied, and that d is at least the number of non-zeroes
in the vector ak. From (III.8) and (III.9) we can now bound
the following primal-dual ratio:

d
(∑k

j=1 z
τ
j

)
df(xτ)

≥ r

4
=

δ

4 ln (1 + 2d2)
. (III.10)

Thus, if z is the final dual solution we get,
m∑
i=1

zi ≥
δ

4 ln (1 + 2d2)
· f(x). (III.11)

To complete the proof of Theorem 1, we use Lemma 4. We
have for any 0 ≤ δ ≤ 1:

f∗(Atz) ≤ f∗(δ·∇f(x)) ≤
{
δ

p
p−1 · (p− 1) · f(x) if p > 1

0 if p = 1

The first inequality is by monotonicity of f? and our claim
that Atz ≤ δ∇f(x). The second inequality is by Lemma 4
parts (c-d). Combining with (III.11), D =
m∑
i=1

zi−f∗(Atz) ≥
(

δ

4 ln (1 + 2d2)
− δ

p
p−1 · (p− 1)

)
·f(x)

if p > 1, and D ≥ δ
4 ln(1+2d2)f(x) if p = 1. The optimal

choice of δ is 1
(4p ln(1+2d2))p−1 . Plugging in this value we get:

f(x) ≤
(
4p ln

(
1 + 2d2

))p
D ≤

(
4p ln

(
1 + 2d2

))p
f(OPT).

Hence the proof of the primal algorithm.
Next, we prove the primal-dual competitive ratio using the

monotone dual update in step 4. Applying Claim 7 with w =
δ

ln(1+dρ) (instead of r) with the final (feasible) primal and dual
solutions x, y and with Si := {j | aji > 0} to get

xi ≥
1

maxj∈Si{aji} · d

exp

 ln (1 + dρ)

δ · ∇if(x)

∑
j∈Si

ajiyj

− 1

 .

Note that xi ≤ 1
minj∈Si{aji}

(since all constraints that contain
xi would be satisfied at the upper bound). Simplifying and
using that ρ ≥ maxj∈Si{aji}

minj∈Si{aji}
we get,

∑
j∈Si ajiyj ≤ δ·∇if(x),

or equivalently Aty ≤ δ · ∇f(x). Using the same arguments
as above we get,

∑m
i=1 yi ≥

δ
2 ln(1+dρ) · f(x). Plugging it in

we get,

D =

m∑
i=1

yi − f∗(Aty)

≥
(

δ

2 ln (1 + d · ρ)
− δ

p
p−1 · (p− 1)

)
· f(x).

Optimizing, we get δ = 1
(2p ln(1+d·ρ))p−1 yielding a competi-

tive ratio O(p log(dρ))p for the dual.

A. A Lower Bound for Online Convex Covering

In this section we adapt the example in Azar et al. [13]
for the `∞ norm to the `p norm and showing that our
competitive ratio for the convex covering problem is optimal
up to constants.

Theorem 8 (Lower bound for `pp-norm objective function).
There exists an instance of the online covering problem with an
`pp-norm objective function f for which any online algorithm
is Ω(p log d)p-competitive, where d is the maximal sparsity of
the covering matrix.

Proof. For parameters p and d, the example has 2p+1 − 2
pairwise disjoint sets (blocks) of d variables each. We use
Bi to refer to the ith block. The objective function f is a
polynomial of degree p composed of 2p sums of variables
each raised to the power of p. To define the sums let us
consider a complete binary tree of depth p. Each node in this
tree except the root corresponds to a unique block. Each term
in f corresponds to a path from the root to a leaf node k,
and is of the form

(∑
x∈∪i∈QkBi

x
)p

where Qk is the set of
blocks encountered on the path (excluding the root, which is
not a block).

In [13], there is a procedure for revealing covering con-
straints of sparsity at most 2d of two blocks such that:
• the sum of variables in the online algorithm for one of

the blocks is at least Hd/2, where Hd refers to the dth
harmonic number, and

• there is a feasible solution that sets a single variable in
the other block to 1.

First, we apply the procedure to the two children of the root.
Next, the procedure is applied to the children of the block

with the larger sum of variables (≥ Hd/2) in the algorithmic
solution. This continues until we reach one of the leaves. Then,
there is path from root to leaf where p blocks each have a total
variable value of at least Hd/2 in the algorithmic solution. On
the other hand, the optimal solution only sets one variable to
1 in each root to leaf path. Therefore, the competitive ratio of

the algorithm is at least

(
p
Hd
2

)p
2p = Ω(p log d)p.

B. An Application: `p-norm Set Cover

In this section we consider a generalization of the online set-
cover problem introduced in [5]. In our problem we are given
n sets {Sj}nj=1 over some ground set U . Apart from the set
system, we are also given K cost functions bk : [n]→ R+ for
k ∈ [K]. Elements from U arrive online and must be covered
by some set upon arrival; the decision to select a set into the
solution is irrevocable. The goal is to maintain a set-cover
that minimizes the `p norm of the K cost functions. We use
the above fractional online algorithm along with a rounding
scheme (similar to [23]) to obtain the following.

Theorem 9 (`p-norm Set Cover). There is an
O
(

p3

log p log d log r
)

-competitive randomized online algorithm
for set cover minimizing the `p-norm of multiple cost-
functions. Here d is the maximum number of sets containing
any element, and r = |U | is the number of elements.

Proof. We use the following convex relaxation. There is a
variable xj for each set j ∈ [n] which denotes whether this
set is chosen.

min f(x) =

K∑
k=1

(n∑
j=1

bkj · xj
)p

+

n∑
j=1

(K∑
k=1

bpkj

)
· xj

s.t.
∑
j:e∈Sj

xj ≥ 1, ∀e ∈ U

x ≥ 0.

Since f satisfies 〈∇f(x), x〉 ≤ p f(x), we can use our frame-
work to solve this fractional convex covering problem online,
with a cost at most O(p log d)p times the optimal fractional
solution. Moreover, if C? denotes the pth power of the optimal
value of the objective of the given set cover instance, then the
optimal value of the above fractional relaxation is at most
2C?, and hence the value of our fractional online solution x
is f(x) = O(p log d)p · C?.

To get an integer solution, we use a simple online ran-
domized rounding algorithm. For each set j ∈ [n], define
Xj to be a {0, 1}-random variable with Pr[Xj = 1] =
min{4p log r · xj , 1}. This can easily be implemented online.
It is easy to see by a Chernoff bound that for each element e,
it is not covered with probability at most 1

r2p . If an element e
is not covered by this rounding, we choose the set minimizing
minnj=1{

∑K
k=1 b

p
kj : e ∈ Sj}; let e ∈ [n] index this set and

Ce =
∑K
k=1 b

p
ke. Observe that Ce ≤ C? for all e ∈ U .

To bound the `p-norm of the cost, let Ck =
∑n
j=1 bkj ·Xj

be the cost of the randomly rounded solution under the kth

cost function, and let C :=
∑K
k=1 C

p
k . Also, for each element

e ∈ U and k ∈ [K], define:

Dek =

{
bke If e is not covered
0 Otherwise.

De =

{
Ce If e is not covered
0 Otherwise.

Note that De =
∑K
k=1D

p
ek. The pth power of the objective

function is:

C =

K∑
k=1

(
Ck +

∑
e∈U

Dek

)p

≤ 2p
K∑
k=1

Cpk + 2p
K∑
k=1

(∑
e∈U

Dek

)p

≤ 2p · C + 2p
K∑
k=1

rp
∑
e∈U

Dp
ek

= 2p · C + (2r)p
∑
e∈U

De (III.12)

We now bound E[C] using (III.12). Observe that E[Ck] ≤
4p log r ·

∑n
j=1 bkj · xj . Since each Ck is the sum of inde-

pendent non-negative random variables, we can bound E[Cpk]
using a concentration inequality involving pth moments [32]:

E[Cpk] ≤ Kp ·
(
E[Ck]p +

n∑
j=1

E[bpkj ·X
p
j]

)

≤ Kp ·
(

(4p log r)p
(n∑
j=1

bkj · xj
)p

+ 4p log r

n∑
j=1

bpkj · xj
)
.

Above Kp = O(p/ log p)p. By linearity of expectation,

E[C] =

K∑
k=1

E[Cpk]

≤ Kp(4p log r)p
K∑
k=1

((n∑
j=1

bkj · xj
)p

+

n∑
j=1

bpkj · xj
)

= Kp(4p log r)p · f(x).

Thus we have E[C] = O
(

p3

log p · log d · log r
)p
· C?.

Observe that E
[∑

e∈U De

]
=
∑
e∈U Pr[e uncovered] ·

Ce ≤ r−2p ·
∑
e∈U C

? = r1−2p · C?. Using these bounds
in (III.12), we have E[C] ≤ 2p ·E[C] + (2r)p

∑
e∈U E[De] =

O
(

p3

log p · log d · log r
)p
· C?.

IV. ONLINE PACKING FRAMEWORK

In this section, we consider the convex online packing
problem. We consider the case that f? is a convex multi-variate
polynomial with non-negative coefficients, zero constant term
and maximum degree q. We shall state exactly what properties
of f? are needed for our proofs. Although there are more

Fractional Packing Algorithm: Initialize x := z := 0. When
the kth constraint vector ak = (ak1, . . . , akn) arrives in round
k:

1) Set yk := 0.
2) While

∑n
i=1 akixi < 1, do:

• Continuously increase yk.
• Simultaneously for each i ∈ [n], increase zi at rate

dzi
dyk

= aki.
• Increase x according to x = ∇f∗(ρz).

Fig. IV.2. Algorithm for super-linear f?

general objective functions for which our packing algorithm
can work (for instance f?(z) =

∑n
i=1 z

1.5
i), we think that for

ease of exposition, it is simpler to restrict ourselves to the case
of polynomials (with integral degrees).

The reader can check that the special class of polynomials
we describe above satisfy the first two conditions in the
following Assumption 10.

Assumption 10 (Nice function f?). 1) The function f? is
convex, monotone, and f?(0) = 0.

2) The function f? is differentiable, and the gradient ∇f?
is monotone. Moreover, there is some q > 0 such that for
all z ∈ Rn+, 〈∇f?(z), z〉 ≤ q · f?(z)

3) The offline convex packing problem has bounded optimal
objective. ‡‡

We first obtain an algorithm for the special case when f?

is “super-linear”, which means, in addition to Assumption 10,
suppose the packing cost function f? satisfies the following
condition. There exists some λ > 1 such that for all ρ ≥ 1,
for all z ∈ Rn+, ∇f?(ρz) ≥ ρλ−1 · ∇f?(z).

Here, the vector x plays an auxiliary role and is initialized
to 0. Throughout the algorithm, we maintain the invariant
z = AT y and x = ∇f?(ρz) for some parameter ρ > 1
to be determined later. In round k ∈ [m], the vector ak =
(ak1, ak2, . . . , akn) is given. The variable yk is initialized to
0, and is continuously increased while

∑
i∈[n] akixi < 1. To

maintain z = AT y, for each i ∈ [n], zi is increased at rate
dz
dyk

= aki. As the coordinates of z are increased, the vector
x is increased according to the invariant x = ∇f?(ρz). Since
∇f? is monotone, as yk increases, both z and z increase mono-
tonically. We show in Lemma 11 that unless the offline packing
problem is unbounded, eventually

∑
i∈[n] akixi reaches 1, at

which moment yk stops increasing and round k finishes.
Observe that the coordinates of x are increased monotoni-

cally throughout the algorithm. Below we show that at the end
of the process, the constraints

∑
i∈[n] ajixi ≥ 1 are satisfied

‡‡Note that there are instances for which the offline convex packing
problem whose objective can be arbitrarily large. Consider, for example, a
convex packing problem with a linear cost function f?(z) = 1

2n

∑
i∈[n] zi

and the first request is a1 = 1. Then, by letting y1 to be arbitrarily large,
we can get a feasible packing assignment with arbitrarily large objective.
Obviously, such instances are not interesting for practical purposes. Hence,
we will assume that the offline optimal is bounded.

for all j ∈ [m]. Hence, the vector x is feasible for the covering
problem.

In the rest of the section, for k ∈ [m], we let z(k) denote
the vector z at the end of round k, where z(0) := 0.

Lemma 11 (Dual Feasibility). Recall our assumption that the
offline optimal packing objective is bounded. Then, in each
round k ∈ [m], eventually we have

∑
i∈[n] akixi ≥ 1, and yk

will stop increasing.

Proof. During round k ∈ [m], the algorithm increases yk only
when

∑n
i=1 akixi < 1. Therefore, recalling z = AT y, when

the algorithm increases yk, it also increases each zi at rate
dzi
dyk

= aki.
Hence, we have

∂P (y)
∂yk

= 1− 〈ak,∇f?(z)〉 ≥ 1− 1
ρλ−1 · 〈ak,∇f?(ρz)〉

= 1− 1
ρλ−1 · 〈ak, x〉 ≥ 1− 1

ρλ−1 ,

where the first inequality follows from the assumption
∇f?(ρz) ≥ ρλ−1 · ∇f?(z), and the last inequality follows
because 〈ak, x〉 < 1 when yk is increased.

Therefore, suppose for contrary that 〈ak, x〉 never reaches
1, then the objective function P (y) increases at least at some
positive rate 1 − 1

ρλ−1 (recalling ρ > 1 and λ ≥ 2) as
yk increases, which means the offline packing problem is
unbounded, contradicting our assumption.

Lemma 12 (Bounding Increase in y). For k ∈ [m], let z(k)

denote the vector z at the end of round k, where z(0) := 0.
Then, at the end of round k when yk stops increasing (by
Lemma 11)

yk ≥ 1
ρ ·
(
f?(ρz(k))− f?(z(k−1))

)
.

In particular, since f?(0) = 0, this implies that at the end of
the algorithm, ∑

k∈[m]

yk ≥ 1
ρ · f

?(ρz(m)) .

Proof. Recall again that yk increases only when 〈ak, x〉 < 1,
we have

1 ≥
∑
i∈[n]

akixi =
∑
i∈[n]

xi ·
dzi
dyk

.

Hence, integrating this with respect to yk throughout round k,
and observing that x = ∇f?(ρz), we have

yk ≥
∫ z(k)

z=z(k−1)

〈∇f?(ρz), dz〉 =
1

ρ
·(f?(ρz(k))−f?(z(k−1))) ,

where the last equality comes from the fundamental theorem
of calculus for path integrals of vector fields.

Lemma 13 (Super-linear f?). For a super-linear function f?,
by setting ρ := λ

1
λ−1 in the Fractional Packing Algorithm, we

obtain an O
(
qλ
λ−1

)
-competitive online algorithm for the online

convex packing problem.

Proof. Suppose z(m) = AT y is the vector at the end of the
algorithm, and x(m) = ∇f?(ρz(m)). Then, we have

C(x(m)) = f(∇f?(ρz(m))) ≤ (q − 1) · f?(ρz(m)) ,

where the inequality follows from applying Lemma 4(c) with
the roles of f and f? reversed.

On the other hand,

P (y) =
∑
k∈[m] yk − f?(z(m)) ≥ 1

ρ · f
?(ρz(m))− f?(z(m)) .

(IV.13)
Hence, it follows that

C(x)

P (y)
≤ (p− 1) · f∗(ρz(m))

1
ρ · f∗(ρz(m))− f∗(z(m))

(IV.14)

≤ (p− 1) · ρλ · f∗(z(m))
1
ρ · ρλ · f∗(z(m))− f∗(z(m))

(IV.15)

= (p− 1) · ρλ

ρλ−1 − 1
(IV.16)

where the penultimate inequality follows because the assump-
tion ∇f?(ρz) ≥ ρλ−1 · ∇f?(z) implies that f?(ρz(m)) =

ρ
∫ z(m)

z=0
〈∇f?(ρz), dz〉 ≥ ρλ

∫ z(m)

z=0
〈∇f?(z), dz〉 = ρλ ·

f?(z(m))), and the function t 7→ t
t
ρ−f?(z(m))

is decreasing.

Choosing ρ := λ
1

λ−1 and observing that x(m) is feasible for
the covering problem, we have

P opt

P (y)
≤ Copt

P (y)
≤ C(x(m))

P (y)
≤ (q − 1) · λ

λ
λ−1

λ− 1
.

The result then follows because λ
1

λ−1 =
(
1 + (λ− 1)

) 1
λ−1 ≤

e.

Then we discuss the a general function f? that satisfies
Assumption 10. Recall that we consider a polynomial f? with
non-negative coefficients and zero constant term. Hence, we
apply the following transformation f?(z) = 〈c, z〉 + f̂?(z),
where c = ∇f?(0). Observe that f̂?(z) no longer has linear
terms, thus the second condition of Lemma 13 always holds
with λ = 2 (and hence ρ = 2).

Lemma 14 (f̂∗ has bounded growth and is superlinear.). We
have the following.
• For all z ∈ Rn+, 〈∇f̂∗(z), z〉 ≤ q · f̂∗(z).
• For all ρ ≥ 1 and z ≥ 0, ∇f̂?(ρz) ≥ ρ · ∇f̂?(z).

Proof. To prove the first statement, we can pick any non-zero
term M in f̂∗. Since the coefficient of M is positive and its
degree is at most q, it follows that 〈∇M(z), z〉 ≤ q ·M(z).
Therefore, summing up all the terms, we get 〈∇f̂∗(z), z〉 ≤
q · f̂∗(z).

For the second statement, if f̂∗ is the zero function,
then the statement trivially holds. Otherwise, observe that
in f̂∗(x), only terms with degree at least 2 can have non-
zero coefficients. Therefore, for z ≥ 0 and ρ ≥ 1, we have
∇f̂?(ρz) ≥ ρ · ∇f̂?(z), i.e., the condition in Lemma 13 is
satisfied with λ = 2.

In terms of f̂∗, the objective function becomes

P (y) = 〈1, y〉 − f?(AT y) = 〈1−Ac, y〉 − f̂?(AT y) .

Moreover, the corresponding covering problem becomes
minx≥0 f̂(x) subject to Ax ≥ 1 − Ac. In other words, in
round k ∈ [m], as the vector ak arrives, the covering constraint
becomes 〈ak, x〉 ≥ bk, where bk := 1−〈ak, c〉. If bk ≤ 0, then
the constraint is automatically satisfied, and we set yk = 0
such that round k finishes immediately. Otherwise, we can
run the Fractional Packing Algorithm using the function f̂?

and the constraint vector ak
bk

in round k.
Next, we present a proof of Theorem 2 based on the above

discussion.
Proof of Theorem 2: As discussed above, we write c :=

∇f?(0) and f̂?(x) := f?(x)− 〈c, x〉 as the convex function.
(Observe that if f? is a polynomial function containing only
linear terms, then the problem is trivial because the objective
is unbounded when there is some round k ∈ [m] such that
bk > 0.)

For ease of exposition, we can assume that for each k ∈ [m],
bk := 1 − 〈ak, c〉 > 0. Otherwise, we can essentially ignore
the variable yk by setting it to 0. We denote B as the diagonal
matrix whose (k, k)-th entry is bk. By writing w := By, the
objective function can be expressed in terms of w as P̂ (w) :=
〈1, w〉 − f̂?((B−1A)Tw).

Hence, we can run the Fractional Packing Algorithm using
function f̂? such that in round k ∈ [m], when the vector ak
arrives, we can transform it by dividing each coordinate by bk
before passing it to the algorithm.

By Lemmas 13 and 14, using λ = 2, it follows that the
algorithm has competitive ratio O(q).

As an application of the above fractional solver (with some
additional ideas to ensure integral allocation), we can obtain
a competitive algorithm for a generalized version of combi-
natorial auction where the seller may produce any number of
copies of each item subject to a production cost function f?.

Theorem 15 (Combinatorial Auction with Production Cost).
Suppose the production cost function f? satisfies the con-
ditions in Theorem 2. Then, there is an O(q)-competitive
online algorithm for the online combinatorial auction problem
with production cost f?, with an additive error that depends
on f? (but does not depends on the number of buyers).
Specifically, the algorithm returns a solution with value at least
Ω(OPT

q)−V (f?), where V (f?) := 1
ρ ·(f

?(ρ(q+1)1)−f?(ρ1))
and ρ = 2.

REFERENCES

[1] Y. Azar, I. R. Cohen, and D. Panigrahi, “Online covering with convex
objectives and applications,” arXiv preprint arXiv:1412.3507, 2014.

[2] N. Buchbinder, S. Chen, A. Gupta, V. Nagarajan, and J. S. Naor, “Online
packing and covering framework with convex objectives,” arXiv preprint
arXiv:1412.8347, 2014.

[3] T. H. Chan, Z. Huang, and N. Kang, “Online convex covering and
packing problems,” CoRR, vol. abs/1502.01802, 2015.

[4] N. Buchbinder and J. S. Naor, “The design of competitive online
algorithms via a primal-dual approach,” Found. Trends Theor. Comput.
Sci., vol. 3, no. 2-3, pp. 93–263, 2007. [Online]. Available:
http://dx.doi.org/10.1561/0400000024

[5] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor, “The online
set cover problem,” SIAM J. Comput., vol. 39, no. 2, pp. 361–370, 2009.

[6] N. Bansal, N. Buchbinder, and J. Naor, “A primal-dual randomized
algorithm for weighted paging,” J. ACM, vol. 59, no. 4, p. 19, 2012.

[7] ——, “Randomized competitive algorithms for generalized caching,”
SIAM J. Comput., vol. 41, no. 2, pp. 391–414, 2012.

[8] ——, “Towards the randomized k-server conjecture: A primal-dual
approach,” in SODA, 2010, pp. 40–55.

[9] N. Bansal, N. Buchbinder, A. Madry, and J. Naor, “A polylogarithmic-
competitive algorithm for the k-server problem,” J. ACM, vol. 62, no. 5,
p. 40, 2015.

[10] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. S. Naor, “A
general approach to online network optimization problems,” ACM Trans.
Algorithms, vol. 2, no. 4, pp. 640–660, 2006.

[11] A. Ene, D. Chakrabarty, R. Krishnaswamy, and D. Panigrahi, “Online
buy-at-bulk network design,” in FOCS, 2015, pp. 545–562.

[12] N. Buchbinder and J. Naor, “Improved bounds for online routing and
packing via a primal-dual approach,” in FOCS, 2006, pp. 293–304.

[13] Y. Azar, U. Bhaskar, L. Fleischer, and D. Panigrahi, “Online mixed
packing and covering,” in SODA, 2013, pp. 85–100.

[14] Z. Huang and A. Kim, “Welfare maximization with production costs: A
primal dual approach,” in SODA. SIAM, 2015, pp. 59–72.

[15] N. R. Devanur, K. Jain, and R. D. Kleinberg, “Randomized primal-dual
analysis of ranking for online bipartite matching,” in SODA, 2013, pp.
101–107.

[16] N. Buchbinder, K. Jain, and J. Naor, “Online primal-dual algorithms for
maximizing ad-auctions revenue,” in ESA, 2007, pp. 253–264.

[17] N. Buchbinder and J. S. Naor, “Online primal-dual algorithms for
covering and packing,” Math. Oper. Res., vol. 34, no. 2, pp. 270–286,
2009. [Online]. Available: http://dx.doi.org/10.1287/moor.1080.0363

[18] A. Gupta and V. Nagarajan, “Approximating sparse covering integer
programs online,” Math. Oper. Res., vol. 39, no. 4, pp. 998–1011, 2014.

[19] N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for weighted flow
time,” SIAM J. Comput., vol. 39, no. 4, pp. 1294–1308, 2009.

[20] N. R. Devanur and Z. Huang, “Primal dual gives almost optimal energy
efficient online algorithms.” in SODA. SIAM, 2014, pp. 1123–1140.

[21] Y. Azar, N. R. Devanur, Z. Huang, and D. Panigrahi, “Speed scaling in
the non-clairvoyant model,” in SPAA, 2015, pp. 133–142.

[22] I. Menache and M. Singh, “Online caching with convex costs: Extended
abstract,” in SPAA, 2015, pp. 46–54.

[23] A. Gupta, R. Krishnaswamy, and K. Pruhs, “Online primal-dual for non-
linear optimization with applications to speed scaling,” in WAOA, 2012,
pp. 173–186.

[24] A. Blum, A. Gupta, Y. Mansour, and A. Sharma, “Welfare and profit
maximization with production costs,” in FOCS, Nov 2011, pp. 77–86.

[25] N. R. Devanur and K. Jain, “Online matching with concave returns,” in
Proceedings of the forty-fourth annual ACM symposium on Theory of
computing. ACM, 2012, pp. 137–144.

[26] S. Agrawal and N. R. Devanur, “Fast algorithms for online stochastic
convex programming,” in SODA, 2015, pp. 1405–1424.

[27] K. Bhawalkar, S. Gollapudi, and D. Panigrahi, “Online set cover with
set requests,” in APPROX/RANDOM, 2014, pp. 64–79.

[28] J. Borwein and A. Lewis, Convex analysis and and Nonlinear Optimiza-
tion. Springer, 2006.

[29] S. Khuller, J. Li, and B. Saha, “Energy efficient scheduling via partial
shutdown,” in SODA, 2010, pp. 1360–1372.

[30] L. Fleischer, “Data center scheduling, generalized flows, and submodu-
larity,” in ANALCO, 2010, pp. 56–65.

[31] J. Li and S. Khuller, “Generalized machine activation problems,” in
SODA, 2011, pp. 80–94.

[32] R. Latała, “Estimation of moments of sums of independent real random
variables,” Ann. Probab., vol. 25, no. 3, pp. 1502–1513, 1997. [Online].
Available: http://dx.doi.org/10.1214/aop/1024404522

