
A PTAS for the Steiner Forest Problem in Doubling Metrics

T-H. Hubert Chan
Department of Computer Science

The University of Hong Kong
Email: hubert@cs.hku.hk

Shuguang Hu
Department of Computer Science

The University of Hong Kong
Email: sghu@cs.hku.hk

Shaofeng H.-C. Jiang
Department of Computer Science

The University of Hong Kong
Email: sfjiang@cs.hku.hk

Abstract—We achieve a (randomized) polynomial-time ap-
proximation scheme (PTAS) for the Steiner Forest Problem
in doubling metrics. Before our work, a PTAS is given only
for the Euclidean plane in [FOCS 2008: Borradaile, Klein and
Mathieu]. Our PTAS also shares similarities with the dynamic
programming for sparse instances used in [STOC 2012: Bartal,
Gottlieb and Krauthgamer] and [SODA 2016: Chan and Jiang].
However, extending previous approaches requires overcoming
several non-trivial hurdles, and we make the following technical
contributions.

(1) We prove a technical lemma showing that Steiner points
have to be “near” the terminals in an optimal Steiner tree. This
enables us to define a heuristic to estimate the local behavior
of the optimal solution, even though the Steiner points are
unknown in advance. This lemma also generalizes previous
results in the Euclidean plane, and may be of independent
interest for related problems involving Steiner points.

(2) We develop a novel algorithmic technique known as
“adaptive cells” to overcome the difficulty of keeping track
of multiple components in a solution. Our idea is based on but
significantly different from the previously proposed “uniform
cells” in the FOCS 2008 paper, whose techniques cannot be
readily applied to doubling metrics.

Keywords-Approximation algorithm; Doubling dimension;
Steiner forest problem; Polynomial time approximation
scheme.

I. INTRODUCTION

We consider the Steiner Forest Problem (SFP) in a metric
space (X, d). An instance of the problem is given by a
collection W of n terminal pairs {(ai, bi) : i ∈ [n]}
in X , and the objective is to find a minimum weight
graph F = (V,E) (where V is a subset of X and the edge
weights are induced by the metric space) such that every
pair in W is connected in F .

A. Problem Background

The problem is well-known in the computer science
community. In general metrics, Chlebı́k and Chlebı́ková [1]
showed that SFP is NP-hard to approximate with ratio better
than 96

95 . The best known approximation ratio achievable in
polynomial time is 2 [2], [3]. Recently, Gupta and Kumar [4]
gave a purely combinatorial greedy-based algorithm that also
achieves constant ratio. However, it is still an open problem

This research was funded partially by a grant from Hong Kong RGC
under the contract 17217716.

to break the 2-approximation barrier in general metrics for
SFP.
SFP in Euclidean Plane and Planar Graphs. In light of the
aforementioned hardness result [1], restrictions are placed on
the metric space to achieve (1+ε) approximation in polyno-
mial time. In the Euclidean plane, a randomized polynomial-
time approximation scheme (PTAS) was obtained in [5],
using the dynamic programming framework proposed by
Arora [6]. Later on, a simpler analysis was presented in [7],
in which a new structural property is proved and additional
information is incorporated in the dynamic programming
algorithm. It was only suggested that similar techniques
might be applicable to higher-dimensional Euclidean space.

Going beyond the Euclidean plane, a PTAS for planar
graphs is obtained in [8] and more generally, on bounded
genus graphs. As a building block, they also obtained a
PTAS for graphs with bounded treewidth.
Steiner Tree Problems. A notable special case of SFP is
the Steiner Tree Problem (STP), in which all terminals are
required to be connected. In general metrics, the MST on
the terminal points simply gives a 2-approximation. There is
a long line of research to improve the 2-approximation, and
the state-of-the-art approximation ratio 1.39 was presented
in [9] via an LP rounding approach. On the other hand, it is
NP-hard to approximate STP better than the ratio 96

95 [1].
For the group STP in general metrics, it is NP-

hard to approximate within log2−ε n [10] unless NP ⊆
ZTIME(npolylog(n)). On the other hand, it is possible to
approximate within O(log3 n) as shown in [11]. Restricting
to planar graphs, the group STP can be approximated within
O(log n poly log log n) [12], and very recently, this result is
improved to a PTAS [13].

For more related works, we refer the reader to a survey by
Hauptmann and Karpiński [14], who gave a comprehensive
literature review of STP and its variations.
PTAS’s for Other Problems in Doubling Metrics. Dou-
bling dimension captures the local growth rate of a metric
space. A k-dimensional Euclidean dimension has doubling
dimension O(k). A challenge in extending algorithms for
low-dimensional Euclidean space to doubling metrics is the
lack of geometric properties in doubling metrics. Although
QPTAS’s for various approximation problems in doubling
metrics, such as the Traveling Salesman Problem (TSP)

and STP, were presented in [15], a PTAS was only re-
cently achieved for TSP [16]. Subsequently, a PTAS is also
achieved for group TSP in doubling metrics [17]. Before this
work, the existence of a PTAS for SFP (or even the special
case STP) in doubling metrics remains an open problem.

B. Our Contribution and Techniques

Although PTAS’s for TSP (and its group variant) are
known, as we shall explain later, the nature of SFP and TSP-
related problems are quite different. Hence, it is interesting
to investigate what new techniques are required for SFP.
Fundamentally, it is an important question that whether the
notion of doubling dimension captures sufficient properties
of a metric space to design a PTAS for SFP, even without
the geometric properties that are crucially used in obtaining
approximation schemes for SFP in the Euclidean plane [5].

In this paper, we settle this open problem by giving a
(randomized) PTAS for SFP in doubling metrics. We remark
that previously even a PTAS for SFP in higher-dimensional
Euclidean space is not totally certain.

Theorem I.1 (PTAS for SFP in Doubling Metrics). For
any 0 < ε < 1, there is a (randomized) algorithm that takes
an instance of SFP with n terminal pairs in a metric space
with doubling dimension at most k, and returns a (1 + ε)-
approximate solution with constant probability, running in
time O(nO(1)k) · exp(

√
log n ·O(kε)O(k)).

We next give an overview of our techniques. On a high
level, we use the divide and conquer framework that was
originally used by Arora [6] to achieve a PTAS for TSP
in Euclidean space, and was extended recently to doubling
metrics [16].

However, we shall explain that it is non-trivial to adapt
this framework to SFP, and how we overcome the difficulties
encountered. Moreover, we shall provide some insights
regarding the relationship between Euclidean and doubling
metrics, and discuss the implications of our technical lem-
mas.
Summary of Framework. As in [16], a PTAS is designed
for a class of special instances known as sparse instances.
Then, it can be shown that the general instances can be
decomposed into sparse instances. Roughly speaking, an
instance is sparse, if there is an optimal solution such that
for any ball B with radius r, the portion of the solution in B
has weight that is small with respect to r.

The PTAS for the sparse instances is usually based on a
dynamic program, which is based on a randomized hierar-
chical decomposition as in [15], [16]. This framework has
also been successfully applied to achieve a PTAS for group
TSP in doubling metrics [17]. Intuitively, sparsity is used
to establish the property that with high enough probability,
a cluster in the randomized decomposition cuts a (near)
optimal tour only a small number of times [16, Lemma 3.1].
However, SFP brings new significant challenges when such

a framework is applied. We next describe the difficulties and
give an overview of our technical contributions.

Challenge 1: It is difficult to detect a sparse instance
because which Steiner points are used by the optimal
solution are unknown. Let us first consider STP, which
is a special case of SFP in which all (pairs of) terminals
are required to be connected. In other words, the optimal
Steiner tree is the minimum weight graph that connects all
terminals. Unlike TSP in which the points visited by a tour
are clearly known in advance, it is not known which points
will be included in the optimal Steiner tree.

In [16], a crucial step is to estimate the sparsity of a
ball B, which measures the weight of the portion of the
optimal solution restricted to B. For TSP tour, this can be
estimated from the points inside B that have to be visited.
However, for solution involving Steiner points, it is difficult
to analyze the solution inside some ball B, because it is
possible that there are few (or even no) terminals inside B,
but the optimal solution could potentially have lots of Steiner
points and a large weight inside B.
Our Solution: Analyzing the Distribution of Steiner
Points in an Optimal Steiner Tree in Doubling Metrics.
We resolve this issue by showing a technical characterization
of Steiner points in an optimal Steiner tree for doubling
metrics. This technical lemma is used crucially in our proofs,
and we remark that it could be of interest for other problems
involving Steiner points in doubling metrics.

Lemma I.1 (Formal version in Lemma III.1). For a terminal
set S with diameter D, if an optimal Steiner tree spanning S
has no edge longer than γD, then every Steiner point in
the solution is within O(

√
γ) ·D distance to some terminal

in S, where the big O hides the dependence on the doubling
dimension.

We observe that variants of Lemma I.1 have been consid-
ered on the Euclidean plane. In [18], [19], it is shown that if
the terminal set consists of n evenly distributed points on a
unit circle, then for large enough n, there is no Steiner points
in an optimal Steiner tree. To see how this relates to our
lemma, when n is sufficiently large, it follows that adjacent
points in the circle are very close to each other. Hence,
any long edge in a Steiner tree could be replaced by some
short edge between adjacent terminals in the circle. Our
lemma then implies that all Steiner points must be near the
terminals, which is a weaker statement than the conclusion
in [18], but is enough for our purposes. We emphasize that
the results in [18], [19] rely on the geometric properties of
the Euclidean plane. However, in our lemma, we only use
that the doubling dimension is bounded.
Implication of Lemma I.1 on Sparsity Heuristic. We next
demonstrate an example of how we use this technical lemma.
In Lemma III.3, we argue that our sparsity heuristic provides
an upper bound on the weight of the portion of an optimal

solution F within some ball B.
The idea is that we remove the edges in F within B

and add back some edges of small total weight to maintain
connectivity. We first add a minimum spanning tree H on
some net-points N within B of an appropriate scale γ ·D.
Using the property of doubling dimension, we argue that the
number of points in H is bounded and so is its weight. In one
of our case analysis, there are two sets S and T of terminals
that are far apart d(S, T) ≥ D, and we wish to argue that in
the optimal Steiner tree F connecting S and T , there is an
edge {u, v} of length at least Ω(γ) ·D. If this is the case,
we could remove this edge and connect u and v to their
corresponding net-points directly. For contradiction’s sake,
we assume there is no such edge, but Lemma I.1 implies
that every Steiner point must be close to either S and T .
Since S and T are far apart, this means that there is a long
edge after all.

Conversely, in Lemma III.4, we also use this technical
lemma to show that if the sparsity heuristic for some ball B
is large, then the portion of the optimal solution F inside B
is also large.

Challenge 2: In doubling metrics, the number of cells
for keeping track of connectivity in each cluster could
be too large. Unlike the case for TSP variants [16], [17],
the solution for SFP need not be connected. Hence, in the
dynamic programming algorithm for SFP, in addition to
keeping track of what portals are used to connect a cluster to
points outside, we need to keep information on which portals
the terminals inside a cluster are connected to. In previous
works [5], the notion of cells is used for this purpose.
Previous Technique: Cell Property. The idea of cell property
was first introduced in [5], which gave a PTAS for SFP
in the Euclidean plane using dynamic programming. Since
there would have been an exponential number of dynamic
program entries if we keep information on which portal is
used by every terminal to connect to its partner outside
the cluster, the high level idea is to partition a cluster
into smaller clusters (already provided by the hierarchical
decomposition) known as cells. Loosely speaking, the cell
property ensures that every terminal inside the same cell
must be connected to points outside the cluster in the same
way. More precisely, a solution F satisfies the cell property
if for every cluster C and every cell e inside C, there is
only one component in the portion of F restricted to C that
connects e to points outside C.

A great amount of work was actually needed in [5] and
subsequent work [7] to show that it is enough to consider
cells whose diameters are constant times smaller than that
of its cluster. This allows the number of dynamic program
entries to be bounded, which is necessary for a PTAS.
Difficulty Encountered for Doubling Metrics. When the
notion of cell is applied to the dynamic program for SFP

in doubling metrics, an important issue is that the diameters
of cells need to be about Θ(log n) times smaller than that
of its cluster, because there are around Θ(log n) levels in
the hierarchical decomposition. Hence, the number of cells
in a cluster is Ω(poly log n), which would eventually lead
to a QPTAS only. A similar situation is observed when
dynamic programming was first used for TSP on doubling
metrics [15]. However, the idea of using sparsity as in [16]
does not seem to immediately provide a solution.
Our Solution: Adaptive Cells. Since there are
around Θ(log n) levels in the hierarchical decomposition,
it seems very difficult to increase the diameter of cells
in a cluster. Our key observation is that the cells are
needed only for covering the portion of a solution inside
a cluster that touches the cluster boundary. Hence, we use
the idea of adaptive cells. Specifically, for each connected
component A in the solution crossing a cluster C, we define
the corresponding basic cells such that if the component A
has larger weight, then its corresponding basic cells (with
respect to cluster C) will have larger diameters. Combining
with the notion of sparsity and bounded doubling dimension,
we can show that we only need to pay attention to a small
number of cells.
Further Cells for Refinement. Since the dynamic program
entries are defined in terms of the hierarchical decomposition
and the entries for a cluster are filled recursively with respect
to those of its child clusters, we would like the cells to
have a refinement property, i.e., if a cluster C has some
cell e (which itself is some descendant cluster of C), then
the child C ′ containing e has either e or all children of e as
its cells.

At first glance, a quick fix may be to push down each basic
cell in C to its child clusters. Although we could still bound
the number of relevant cells, it would be difficult to bound
the cost to achieve the cell property. The reason is that the
basic cells from higher levels are too large for the descendant
clusters. When more than one relevant component intersects
such a large cell, we need to add edges to connect the
components. However, if the diameter of the cell is too
large compared to the cluster, these extra edges would be
too costly.

We resolve this issue by introducing non-basic cells for
a cluster: promoted cells and virtual cells. These cells are
introduced to ensure that every sibling of a basic cell is
present. Moreover, only non-basic cells of a cluster will
be passed to its children. We show in Lemma V.5 that the
total number of effective cells for a cluster is not too large.
Moreover, Lemma V.3 shows that the refinement property
still holds even if we only pass the non-basic cells down to
the child clusters. More importantly, we show that as long
as we enforce the cell property for the basic cells, the cell
property for all cells are automatically ensured. This means
that it is sufficient to bound the cost to achieve the cell
property with respect to only the basic cells.

Further Techniques: Global Cell Property. We note that
the cell property in [5] is localized. In particular, for each
cluster C, we restrict the solution inside C, which could
have components disconnected within C but are actually
connected globally. In order to enforce the localized cell
property as in [5], extra edges would need to be added for
these locally disconnected components. Instead, we enforce
a global cell property, in which for every cell e in a
cluster C, there is only one (global) connected component
in the solution that intersects e and crosses the boundary of
cluster C. A consequence of this is that if there are m com-
ponents in the solution, then at most m− 1 extra edges are
needed to maintain the global cell property. This implication
is crucially used in our charging argument to bound the cost
for enforcing the cell property for the basic cells. However,
this would imply that in the dynamic program entries, we
need to keep additional information on how the portals of a
cluster are connected outside the cluster.
Combining the Ideas: A More Sophisticated Dynamic
Program. Even though our approaches to tackle the encoun-
tered issues are intuitive, it is a non-trivial task to balance
between different tradeoffs and keep just enough information
in the dynamic program entries, but still ensure that the
entries can be filled in polynomial time.

II. PRELIMINARIES

We consider a metric space M = (X, d) (see [20], [21]
for more details on metric spaces). For x ∈ X and ρ ≥
0, a ball B(x, ρ) is the set {y ∈ X | d(x, y) ≤ ρ}. The
diameter Diam(Z) of a set Z ⊂ X is the maximum distance
between points in Z. For S, T ⊂ X , we denote d(S, T) :=
min{d(x, y) : x ∈ S, y ∈ T}, and for u ∈ X , d(u, T) :=
d({u}, T). Given a positive integer m, we denote [m] :=
{1, 2, . . . ,m}.

A set S ⊂ X is a ρ-packing, if any two distinct points
in S are of distance more than ρ. A set S is a ρ-cover for
Z ⊆ V , if for any z ∈ Z, there exists x ∈ S such that
d(x, z) ≤ ρ. A set S is a ρ-net for Z, if S is a ρ-packing
and a ρ-cover for Z. We assume that a ρ-net for any ball in
X can be constructed efficiently.

We consider metric spaces with doubling dimension [22],
[23] at most k; this means that for all x ∈ X , for all ρ > 0,
every ball B(x, 2ρ) can be covered by the union of at most
2k balls of the form B(z, ρ), where z ∈ X . The following
captures a standard property of doubling metrics.

Fact II.1 (Packing in Doubling Metrics [23]). Suppose in a
metric space with doubling dimension at most k, a ρ-packing
S has diameter at most R. Then, |S| ≤ (2R

ρ)k.

Given an undirected graph G = (V,E), where V ⊂ X ,
E ⊆

(
V
2

)
, and an edge e = {x, y} ∈ E receives weight

d(x, y) from M . The weight w(G) or cost of a graph is the
sum of its edge weights. Let V (G) denote the vertex set of
a graph G.

We consider the Steiner Forest Problem (SFP). Given a
collection W = {(ai, bi) | i ∈ [n]} of terminal pairs in X ,
the goal is to find an undirected graph F (having vertex set
in X) with minimum cost such that each pair of terminals
are connected in F . The non-terminal vertices in V (F) are
called Steiner points.
Rescaling Instance. Fix constant ε > 0. Since we consider
asymptotic running time to obtain (1 + ε)-approximation,
we consider sufficiently large n > 1

ε . Suppose R > 0 is the
maximum distance between a pair of terminals. Then R is a
lower bound on the cost of an optimal solution. Moreover,
the optimal solution F has cost at most nR, and hence, we
do not need to consider distances larger than nR. Since F
contains at most 4n vertices, if we consider an εR

32n2 -net S
for X and replace every point in F with its closest net-
point in S, the cost increases by at most ε · OPT. Hence,
after rescaling, we can assume that inter-point distance is at
least 1 and we consider distances up to O(n

3

ε) = poly(n).
By the property of doubling dimension (Fact II.1), we can
hence assume |X| ≤ O(nε)O(k) ≤ O(n)O(k).
Hierarchical Nets. As in [16], we consider some parameter
s = (log n)

c
k ≥ 4, where 0 < c < 1 is a universal constant

that is sufficiently small. Set L := O(logs n) = O(k logn
log logn).

A greedy algorithm can construct NL ⊆ NL−1 ⊆ · · · ⊆
N1 ⊆ N0 = N−1 = · · · = X such that for each i, Ni is an
si-net for X , where we say distance scale si is of height i.
Net-Respecting Solution. As defined in [16], a graph F is
net-respecting with respect to {Ni}i∈[L] and ε > 0 if for
every edge {x, y} in F , both x ∈ Ni and y ∈ Ni, where
si ≤ ε · d(x, y) < si+1.

Given an instance W , let OPT(W) be an optimal solution;
when the context is clear, we also use OPT(W) to denote
w(OPT(W)); similarly, OPTnr(W) denotes an optimal net-
respecting solution.

A. Overview

As in [16], [17], we achieve a PTAS for SFP by the
framework of sparse instance decomposition.
Sparse Solution and Dynamic Program. Given a graph
F and a subset S ⊆ X , F |X is the subgraph induced by
the vertices in V (F) ∩ X . A graph F is called q-sparse,
if for all i ∈ [L] and all u ∈ Ni, w(F |B(u,3si)) ≤ q · si.
We show that for SFP there is a dynamic program DP that
runs in polynomial time such that if an instance W has
an optimal net-respecting solution that is q-sparse for some
small enough q, DP(W) returns a (1 + ε)-approximation
with high probability (at least 1− 1

poly(n)).
Sparsity Heuristic. Since the optimal solution is unknown
in advance, we estimate the local sparsity with a heuristic.
For i ∈ [L] and u ∈ Ni, given an instance W , the heuristic
H

(i)
u (W) is supposed to estimate the sparsity of an optimal

net-respecting solution in the ball B′ := B(u,O(si)). We
shall see in Section III that the heuristic actually gives a

constant approximation to some appropriately defined sub-
instance W ′ in B′.
Generic Algorithm. We describe a generic framework that
applies to SFP. Similar framework is also used in [16],
[17] to obtain PTAS’s for TSP related problems. Given an
instance W , we describe the recursive algorithm ALG(W)
as follows.

1. Base Case. If |W | = n is smaller than some constant
threshold, solve the problem by brute force, recalling
that |X| ≤ O(nε)O(k).

2. Sparse Instance. If for all i ∈ [L], for all u ∈ Ni,
H

(i)
u (W) is at most q0 ·si, for some appropriate thresh-

old q0, call the subroutine DP(W) to return a solution,
and terminate.

3. Identify Critical Instance. Otherwise, let i be the
smallest height such that there exists u ∈ Ni with
critical H

(i)
u (W) > q0 · si; in this case, choose u ∈ Ni

such that H
(i)
u (W) is maximized.

4. Decomposition into Sparse Instances. Decompose
(possibly using randomness) the instance W into appro-
priate sub-instances W1 and W2. Loosely speaking, W1

is a sparse enough sub-instance induced in the region
around u at distance scale si, and W2 captures the
rest. We note that H

(i)
u (W2) ≤ q0 · si such that the

recursion will terminate. The union of the solutions to
the sub-instances will be a solution to W . Moreover,
the following property holds.

(1− ε)E[OPT(W1)] ≤OPTnr(W)

− E[OPTnr(W2)], (1)

where the expectation is over the randomness of the
decomposition. Details for this step are supplied in
Section IV.

5. Recursion. Call the subroutine F1 := DP(W1), and
solve F2 := ALG(W2) recursively; return the union
F1 ∪ F2.

Approximation Ratio. We follow the inductive proof as
in [16] to show that with constant probability (where the
randomness comes from DP), ALG(W) returns a solution
of expected length at most 1+ε

1−ε ·OPTnr(W), where expec-
tation is over the randomness of decomposition into sparse
instances in Step 4.

As we shall see, in ALG(W), the subroutine DP is called
at most poly(n) times (either explicitly in the recursion
or the heuristic H(i)). Hence, with constant probability, all
solutions returned by all instances of DP have appropriate
approximation guarantees.

Suppose F1 and F2 are solutions returned by DP(W1)
and ALG(W2), respectively. Since we assume that W1

is sparse enough and DP behaves correctly, w(F1) ≤
(1 + ε) · OPT(W1). The induction hypothesis states
that E[w(F2)|W2] ≤ 1+ε

1−ε · OPTnr(W2). In Step 4,
equation (1) guarantees that E[OPT(W1)] ≤ 1

1−ε ·

(OPTnr(W) − E[OPTnr(W2)]). Hence, it follows that
E[w(F1) + w(F2)] ≤ 1+ε

1−ε · OPTnr(W) = (1 + O(ε)) ·
OPT(W), achieving the desired ratio.
Analysis of Running Time. As mentioned above, if
H

(i)
u (W) is found to be critical, then in the decomposed sub-

instances W1 and W2, H
(i)
u (W2) should be small. Hence, it

follows that there will be at most |X|·L = poly(n) recursive
calls to ALG. Therefore, as far as obtaining polynomial
running times, it suffices to analyze the running time of the
dynamic program DP. Details of the DP can be found in the
full version.

III. SPARSITY HEURISTIC FOR SFP

Suppose a collection W of terminal pairs is an instance
of SFP. For i ∈ [L] and u ∈ Ni, recall that we wish to
estimate OPTnr(W)|B(u,3si) with some heuristic H

(i)
u (W).

We consider a more general heuristic T
(i,t)
u associated with

the ball B(u, tsi), for t ≥ 1. The following auxiliary sub-
instance deals with terminal pairs that are separated by the
ball.
Auxiliary Sub-Instance. Fix δ := Θ(εk), where the constant
depends on the proof of Lemma IV.2. For i ∈ [L], u ∈ Ni
and t ≥ 1, the sub-instance W (i,t)

u is induced by each pair
{a, b} ∈W as follows.
(a) If both a, b ∈ B(u, tsi), or if exactly one of them is in

B(u, tsi) and the other in B(u, (t+ δ)si), then {a, b}
is also included in W (i,t)

u .
(b) Suppose j is the index such that sj < δsi ≤ sj+1. If

a ∈ B(u, tsi) and b /∈ B(u, (t + δ)si), then {a, a′} is
included in W

(i,t)
u , where a′ is the nearest point to a

in Nj .
(c) If both a and b are not in B(u, tsi), then the pair is

excluded.
Defining Heuristic. We define H

(i)
u (W) := T

(i,4)
u (W) in

terms of a more general heuristic, where T
(i,t)
u (W) is the

cost of a constant approximate net-respecting solution of
SFP on the instance W (i,t)

u . To calculate T
(i,t)
u (W), one can

apply the 2-approximate algorithm in [2], and then make the
solution net-respecting. We have T

(i,t)
u (W) ≤ 2(1 + Θ(ε)) ·

OPT(W
(i,t)
u).

One potential issue is that OPTnr(W) might use Steiner
points in B(u, tsi), even if W (i,t)

u is empty. We shall prove
a structural property of Steiner tree in Lemma III.1, and
Lemma III.1 implies Lemma III.2 which helps us to resolve
this issue. Recall that the Steiner tree problem is a special
case of SFP where the goal is to return a minimum cost tree
that connects all terminals.

Lemma III.1. Suppose S is a terminal set with Diam(S) ≤
D, and suppose F is an optimal Steiner tree with termi-
nal set S. If the longest edge in F has weight at most
γD (0 < γ ≤ 1), then for any Steiner point r in F ,
d(r, S) ≤ 4kγ log2

4
γ ·D.

Proof: Since F is an optimal solution, all Steiner points
in F have degree at least 3.

Fix any Steiner point r in F . Denote K := dlog2(γD)e.
Suppose we consider r as the root of the tree F . We shall
show that there is a path of small weight from r to some
terminal. Without loss of generality, we can assume that all
terminals are leaves, because once we reach a terminal, there
is no need to visit its descendants. For simplicity, we can
assume that each internal node (Steiner point) has exactly
two children, because we can ignore extra branches if an
internal has more than two children.

For i ≤ K, let Ei be the set of edges in F that have
weights in the range (2i−1, 2i], and we say that such an
edge is of type i. For each node u in F , denote Fu as the
subtree rooted at u. Suppose we consider Fu and remove
all edges in ∪j≥iEj from Fu; in the resulting forest, let
M

(i)
u be the number of connected components that contain

at least one terminal. We shall prove the following statement
by structural induction on the tree F̂ .

For each node u ∈ F , there exists a leaf x ∈ Fu such
that d(x, u) ≤

∑
i≤K 2i log2M

(i)
u .

Base Case. If u is a leaf, then the statement is true.
Inductive Step. Suppose u has children u1 and u2 such that
{u, u1} ∈ Ei and {u, u2} ∈ Ei′ , where i ≥ i′. Suppose x1

and x2 are the leaves in Fu1
and Fu2

, respectively, from the
induction hypothesis. Observe that M (i)

u = M
(i)
u1 +M

(i)
u2 . We

consider two cases.
(1) Suppose M

(i)
u1 ≤ M

(i)
u2 . Then, we can pick x1 to be

the desired leaf, because the extra distance d(u1, u) ≤ 2i

can be accounted for, as 2M
(i)
u1 ≤ M

(i)
u , and M

(j)
u1 ≤

M
(j)
u for j 6= i. More precisely, d(x1, u) ≤ d(x1, u1) +

d(u1, u) ≤ 2i · (1 + log2M
(i)
u1) +

∑
j≤K:j 6=i 2j log2M

(j)
u1 ≤∑

j≤K 2j log2M
(j)
u , where the second inequality follows

from the induction hypothesis for u1.
(2) Suppose M (i)

u2 < M
(i)
u1 . Then, similarly we pick x2 to

be the desired leaf, because the extra distance is d(u2, u) ≤
2i

′ ≤ 2i. This completes the inductive step.
Next, it suffices to give an upper bound for each M (i) :=

M
(i)
r for root r. Suppose after removing all tree edges in
∪j≥iEj , P and Q are two clusters each containing at least
one terminal. Then, observe that the path in F connecting
P and Q must contain an edge e with weight at least
2i−1. It follows that d(P,Q) ≥ 2i−1; otherwise, we can
replace e in F with another edge of length less than 2i−1 to
obtain a Steiner tree with strictly less weight. It follows that
each cluster has a terminal representative that form a 2i−1-
packing. Hence, we have M (i) ≤ (4D

2i)k, by the packing
property of doubling metrics (Fact II.1).

Therefore, any Steiner point r in F̂ has a terminal within
distance k

∑
i≤K 2i log2

4D
2i ≤ 4kγD log2

4
γ .

Given a graph F , a chain in F is specified by a se-
quence of points (p1, p2, . . . , pl) such that there is an edge
{pi, pi+1} in F between adjacent points, and the degree of

an internal point pi (where 2 ≤ i ≤ l − 1) in F is exactly
2. Full proofs of the following lemmas can be found in the
full version.

Lemma III.2. Suppose S and T are terminal sets in a metric
space with doubling dimension at most k such that Diam(S∪
T) ≤ D, and d(S, T) ≥ τD, where 0 < τ < 1. Suppose
F is an optimal net-respecting Steiner tree connecting the
points in S ∪ T . Then, there is a chain in F with weight at
least τ2

4096k2 ·D such that any internal point in the chain is
a Steiner point.

Lemma III.3. Suppose F is an optimal net-respecting
solution for an SFP instance W . Then, for any i and u ∈ Ni
and t ≥ 1, w(F |B(u,tsi)) ≤ T

(i,t+1)
u (W) +O(sktε)O(k)si.

Proof: Given an optimal net-respecting solution F ,
we shall construct another net-respecting solution in the
following steps.

1. Remove edges in F |B(u,tsi).
2. Add edges corresponding to the heuristic T

(i,t+1)
u (W).

3. Add edges in a minimum spanning tree H of Nj ∩
B(u, (t + 2)si), where sj ≤ Θ(ε

(t+1)k2) · si < sj+1,
where the constant in Theta depends on Lemma III.2;
convert each added edge into a net-respecting path if
necessary. Observe that the weight of edges added in
this step is O(stkε)O(k) · si.

4. To ensure feasibility, replace some edges without in-
creasing the weight.

If we can show that the resulting solution is feasible for
W , then the optimality of F implies the result. We denote
B := B(u, tsi) and B̂ := B(u, (t+ 1)si).
Feasibility. Define V̂1 := {x : x ∈ B | ∃{x, y} ∈ F s.t. y /∈
B and y is connected in F |X\B to some point outside B̂},
and V̂2 := {x : x ∈ B̂ \B | x is connected in F |B̂ to some
point in V̂1, and ∃{x, y} ∈ F s.t. y /∈ B̂}. In Step 4, we
will ensure that all points in V̂1 ∪ V̂2 are connected to the
MST H .

If a pair {a, b} ∈ W has both terminals in B̂, then
they will be connected by the edges corresponding to
T

(i,t+1)
u (W). If a ∈ B̂ and b /∈ B̂, then edges for the

heuristic T
(i,t+1)
u (W) ensures that a is connected to H;

moreover, in the original tree F , if the path from a to b
does not meet any node in V̂2, then this path is preserved,
otherwise there is a portion of the path from a point in V̂2 to b
that is still preserved. If both a and b are outside B̂, then they
might be connected in F via points in V̂2; however, since
all points in V̂2 are connected to H , feasibility is ensured.

We next elaborate how Step 4 is performed. Consider a
connected component U in F |V̂1∪(B̂\B) that contains a point
in V̂1. Let S1 := U ∩ V̂1 and S2 := U ∩ V̂2. If S2 = ∅, then
there is an edge connecting S1 directly to a point outside
B̂. This means that both its end-points are in Nj by the
net-respecting property, and hence S1 is already connected

to H .
Next, if there is a point z /∈ B̂ connected directly to

some point y ∈ S2 such that d(y, z) ≥ si

2 , then by the net-
respecting property, y ∈ Nj and so again U is connected to
H . Otherwise, we have d(S1, S2) ≥ si

2 . We next replace U
with an optimal net-respecting Steiner tree Û connecting
S1 ∪ S2. Since U itself is net-respecting, this does not
increase the cost.

Observing that Diam(S1 ∪ S2) ≤ 2(t+ 1)si, we can use
Lemma III.2 to conclude that there exists a chain in Û from
some point u to v such that its length is at least Θ(1

k2(t+1)) ·
si. Hence, we can remove this chain, and use its weight to
add a net-respecting path from each of u and v to its nearest
point in Nj . This does not increase the cost, and ensures that
both S1 and S2 are connected to H .

Therefore, we have shown that Step 4 ensures that all
points in V̂1 and V̂2 are connected to H .

Corollary III.1 (Threshold for Critical Instance). Suppose
F is an optimal net-respecting solution for an SFP instance
W , and q ≥ Θ(skε)Θ(k). If for all i ∈ [L] and u ∈ Ni,
H

(i)
u (W) ≤ qsi, then F is 2q-sparse.

Lemma III.4. Suppose W is an SFP instance. Consider
i ∈ [L], u ∈ Ni, and t ≥ t′ ≥ 1. Suppose F is a net-
respecting solution for W (i,t)

u . Then, T
(i,t′)
u (W) ≤ 4(1+ ε) ·

w(F) +O(skt
′

ε)O(k)si.

IV. DECOMPOSITION INTO SPARSE INSTANCES

In Section III, we define a heuristic H
(i)
u (W) to detect a

critical instance around some point u ∈ Ni at distance scale
si. We next describe how the instance W can be decomposed
into W1 and W2 such that equation (1) in Section II-A is
satisfied. Full proofs can be found in the full version.

Since the ball centered at u with radius around si could
potentially separate terminal pairs in W , we use the idea
in Section III for defining the heuristic to decompose the
instance.
Decomposing a Critical Instance. We define a threshold
q0 := Θ(skε)Θ(k) according to Corollary III.1. As stated in
Section II-A, a critical instance is detected by the heuristic
when a smallest i ∈ [L] is found for which there exists some
u ∈ Ni such that H

(i)
u (W) = T

(i,4)
u (W) > q0s

i. Moreover,
in this case, u ∈ Ni is chosen to maximize H

(i)
u (W).

To achieve a running time with an exp(O(1)k log(k)) de-
pendence on the doubling dimension k, we also apply the
technique in [17] to choose the cutting radius carefully.

Claim IV.1 (Choosing Radius of Cutting Ball). Denote
T(λ) := T

(i,4+2λ)
u (W). Then, there exists 0 ≤ λ < k such

that T(λ+ 1) ≤ 30k · T(λ).

Cutting Ball and Sub-Instances. Suppose λ ≥ 0 is picked
as in Claim IV.1, and sample h ∈ [0, 1

2] uniformly at random.
Recall that δ := Θ(εk). Define B := B(u, (4 + 2λ + h)si)

and B̂ := B(u, (4 + 2λ+ h+ δ)si). The instances W1 and
W2 are induced by each pair {a, b} ∈W as follows.
(a) If a ∈ B and b ∈ B̂, then include {a, b} in W1.
(b) If a ∈ B and b /∈ B̂, then include {a, a′} in W1 and
{a′, b} in W2, where a′ is the closest point in Nj to a
and sj ≤ δ · si < sj+1.

(c) If both a and b are not in B, then include {a, b} in W2.

Lemma IV.1 (Sub-Instances Are Sparse). The sub-instances
W1 and W2 satisfy the following.

(i) If F1 is feasible for W1 and F2 is feasible for W2, then
the union F1 ∪ F2 is feasible for W .

(ii) The sub-instance W2 does not have a critical instance
with height less than i, and H

(i)
u (W2) = 0.

(iii) H
(i)
u (W1) ≤ O(s)O(k) · q0 · si.

Lemma IV.2 (Combining Costs of Sub-Instances). Suppose
F is an optimal net-respecting solution for W . Then, for
any realization of the decomposed sub-instances W1 and
W2 as described above, there exist net-respecting solutions
F1 and F2 for W1 and W2, respectively, such that (1− ε) ·
E[w(F1)]+E[w(F2)] ≤ w(F), where the expectation is over
the randomness to generate W1 and W2.

Proof: Let B and B̂ be defined as above, and denote
B := B(u, (4 + 2λ+ 1) · si). Hence, B ⊂ B̂ ⊂ B.

We start by including F |B in T1, and including the
remaining edges in F in F2. We will then show how to
add extra edges with expected weight at most ε · E[w(F1)]
to make F1 and F2 feasible. This will imply the lemma.

Define N to be the subset of Nj that cover the points in B,
where sj < δsi ≤ sj+1. We include a copy of a minimum
spanning tree H of N in each of F1 and F2, and make it net-
respecting. This costs at most |N |·O(k)·si ≤ O(ksε)O(k) ·si.

We next include the edges of F in the annulus B̂ \B (of
width δ) into F1. This has expected cost at most δ ·w(F |B).
Connecting Crossing Points. To ensure the feasibility of
F1, we connect the following sets of points to N . We denote:
V1 := {x ∈ B | ∃y ∈ B̂ \ B, {x, y} ∈ F}, V2 := {y ∈

B̂ \B | ∃x ∈ B, {x, y} ∈ F}, and
V3 := {x ∈ B̂ | ∃y /∈ B̂, {x, y} ∈ F}.
We shall connect each point in V1 ∪V2 ∪V3 to its closest

point in N . Note that if such a point x is incident to some
edge in F with weight at least si

4 , then the net-respecting
property of F implies that x is already in N . Otherwise, this
is because some edge {x, y} in F is cut by either B or B̂,
which happens with probability at most O(d(x,y)

si). Hence,
each edge {x, y} ∈ F |B has an expected contribution of
δsi ·O(d(x,y)

si) = O(δ) · d(x, y).
Similarly, to ensure the feasibility of F2, we ensure each

point in the following set is connected to N . Denote V̂1 :=
{x ∈ B | ∃y /∈ B, {x, y} ∈ F}. By the same argument, the
expected cost to connect each point to N is also at most
O(δ) · w(F |B).

Charging the Extra Costs to F1. Apart from using edges
in F , the extra edges come from two copies of the minimum
spanning tree H , and other edges with cost O(δ) ·w(F |B).
We charge these extra costs to F1.

Since T
(i,4)
u (W) > q0 · si and F1 is a net-respecting

solution for W
(i,4+2λ+h)
u , by Lemma III.4, w(F1) ≥

1
4(1+ε) (T (i)(u, 4) − O(skε)O(k) · si) > q0

8 · s
i, by choosing

large enough q0.
Therefore, the cost for the two copies of the minimum

spanning tree H is at most O(ksε)O(k) · si ≤ ε
2 · w(F1).

We next give an upper bound on w(F |B), which is at
most T

(i,4+2(λ+1))
u (W) + O(skε)O(k) · si, by Lemma III.3.

By the choice of λ, we have T
(i,4+2(λ+1))
u (W) ≤

30k · T
(i,4+2λ+1)
u (W). Moreover, by Lemma III.4,

T
(i,4+2λ+1)
u (W) ≤ 4(1+ ε) ·w(F1)+O(skε)O(k) ·si. Hence,

we can conclude that w(F |B) ≤ O(k) · w(F1).
Hence, by choosing small enough δ = Θ(εk), we can

conclude that the extra costs O(δ) · w(F |B) ≤ ε
2 · w(F1).

Therefore, we have shown that E[w(F1)] + E[w(F2)] ≤
w(F) + ε · w(F1), where the right hand side is a random
variable. Taking expectation on both sides and rearranging
gives the required result.

V. A PTAS FOR SPARSE SFP INSTANCES

Our dynamic program follows the divide and conquer
strategy as in previous works on TSP [6], [15], [16] that
are based on hierarchical decomposition. A review of the
hierarchical decomposition techniques as well as full proofs
in this section can be found in the full version.

However, to apply the framework to SFP, we need a
version of the cell property (Definition V.11) that is more
sophisticated than previous works [5], [7]. We shall define
our cell property precisely, and also prove that there exist
good solutions that satisfy the cell property (in Lemma V.6).
Notations and Parameters. Let ht(C) denote the height of
a cluster C, des(C) denote the collection of all descendant
clusters of C (including C), and par(C) denote the parent
cluster of C. For x ∈ R+, let bxcs denote the largest power
of s that is at most x, and dxes denote the smallest power
of s that is at least x. Define γ̂0 := Θ(ε

ks2L), and define
γ̂1 := Θ(εs2). Define γ0 such that 1

γ0
:= d 1

γ̂0
es, and define

γ1 such that 1
γ1

:= b 1
γ̂1
cs. We note that γ0 < γ1.

Definition V.1 (Cell). Suppose C is a cluster of height i. A
p-cell of C is a height-logs p sub-cluster of C.

Definition V.2 (Crossing Component). Suppose C is some
cluster, and F is a solution for SFP. We say that a subset A
crosses C, if there exists points x, y ∈ A such that x ∈
C and y /∈ C. A component A in F is called a crossing
component of C if A crosses C.

The cell property is defined with respect to the effective
cells (Definition V.7), where the effective cells are carefully

chosen to implement our adaptive cells idea which is dis-
cussed in Section I. In the following, we shall introduce the
notions of the basic cells, owner of basic cells, promoted
cells, virtual cells, non-basic cells, and effective cells. All
of these are defined with respect to some feasible solution
to SFP. We assume there is an underlying feasible solution
F when talking about these definitions.
Adaptive Cells. For each cluster C, we shall define its basic
cells whose heights depend on the weights l of the crossing
components of C in the solution F .

Define I1(l) := {i | blcs ≥ si}, I2(l) := {i | γ0γ1 s
i ≤

blcs < si} and I3(l) := {i | i ≤ L, blcs < γ0
γ1
si}. Define a

function h : [L]× R+ → R+, such that

h(i, l) =


γ1s

i, for i ∈ I1(l)

γ1blcs, for i ∈ I2(l)

γ0s
i, for i ∈ I3(l)

Lemma V.1. h(i+1,l)
s ≤ h(i, l) ≤ h(i+ 1, l).

Definition V.3 (Basic Cell). Suppose C is a cluster of
height i, and A is a crossing component of C. Define the
basic cells of A in C, BasA(C), to be the collection of the
h(i, w(A))-cells of C that intersect A. Define the basic cells
of C, Bas(C), to be the union of BasA(C) for all crossing
components A of C.

Definition V.4 (Owner of a Basic Cell). For some cluster C,
define the owner of e ∈ Bas(C) to be the minimum weight
crossing component A such that e ∈ BasA(C).

Definition V.5 (Promoted Cell and Virtual Cell). Suppose
C is a cluster of height i. Let S be the set of sub-clusters
of C that is not in Bas(C) but has a sibling in Bas(C).

Consider each e ∈ S.
• If there exists a sub-cluster C ′ of C such that e ∈

Bas(C ′), then define Proe(C) := des(e) ∩ Bas(C ′),
and define Vire(C) := ∅, where C ′ ⊂ C is any one
that satisfies e ∈ Bas(C ′).

• Otherwise, define Proe(C) := ∅ and Vire(C) := e.
Finally, Pro(C) :=

⋃
e∈S Proe(C), and Vir(C) :=⋃

e∈S Vire(C), and elements in Pro(C) and Vir(C) are
called promoted cells and virtual cells respectively.

Lemma V.2. For any cluster C, if e ∈ Vir(C), then for any
cluster C ′ ⊂ C (C ′ may equal C), e\{e′ ∈ Bas(C ′) | e′ (
e} has no intersection with any crossing component of C ′.

Definition V.6 (Non-basic Cell). We define the non-basic
cells NBas(C) for a cluster C. If C is the root cluster, then
NBas(C) = Pro(C)∪Vir(C)\Bas(C). For any other cluster
C, define NBas(C) := {e ∩ C | e ∈ Pro(C) ∪ Vir(C) ∪
NBas(par(C))\Bas(C)}.

Definition V.7 (Effective Cell). The effective cells of a
cluster C is defined as Eff(C) := Bas(C) ∪ NBas(C).

Definition V.8 (Refinement). Suppose S1 and S2 are col-
lections of clusters. We say S1 is a refinement of S2, if for
any e ∈ S2, either e ∈ S1, or all child clusters of e are in
S1.

Lemma V.3. Suppose C is a cluster that is not a leaf. Define
{Ci}i to be the collection of all the child clusters of C. Then⋃
i Eff(Ci) is a refinement of Eff(C).

Definition V.9 (Candidate Center). Suppose C is a cluster
of height i. The set of candidate centers of C, denoted as
Can(C), is the subset of

⋃i
j=logs γ

2
0s
i Nj that may become a

center of C’s child cluster in the hierarchical decomposition.

Lemma V.4. For any cluster C, the centers of clusters in
Eff(C) are chosen from Can(C), and |Can(C)| ≤ κ, where
κ := O(1

γ0
)O(k).

Lemma V.5. Suppose Eff is defined in terms of a solution
that is (m, r)-light. Then for each cluster C, |Eff(C)| ≤ ρ,
where ρ := O(logs

1
γ0

) · r2 ·O(sγ1)O(k).

Definition V.10 (Disjointification). For any collection of
clusters S, define Dis(S) := {e\

⋃
e′∈S:e′(e e

′}e∈S . We say
e is induced by u in S, if u ∈ S and e = u\

⋃
e′∈S:e′(u e

′,
and the height of e is defined as the height of u.

Definition V.11 (Cell Property). Suppose F is an SFP
solution, and suppose f maps a cluster C to a collection of
sub-clusters of C. We say that f satisfies the cell property
in terms of F if for all clusters C, for all e ∈ Dis(f(C)),
there is at most one crossing component of C in F that
intersects e.

Lemma V.6 (Structural Property). Suppose an instance has
a q-sparse optimal net-respecting solution F . Moreover,
for each i ∈ [L], for each u ∈ Ni, point u samples
O(k log n) independent random radii as in the hierarchical
decompostion framework. Then, with constant probability,
there exists a configuration from the sampled radii that
defines a hierarchical decomposition, under which there
exists an (m, r)-light solution F ′ that includes all the points
in F , and Eff defined in terms of F ′ satisfies the cell
property, where
• E[w(F ′)] ≤ (1 +O(ε)) · w(F),
• m := O(skLε)k and r := O(1)k ·q logs log n+O(kε)k+
O(sε)

k.

Proof: We observe that the argument in [16, Lemma
3.1] readily gives an (m, r)-light solution F̂ with the desired
m and r, and also satisfies E

[
w(F̂)

]
≤ (1 + ε) · w(F).

We shall first show additional steps with additional cost
at most εw(F) in expectation, so that Bas defined in terms
of the resultant solution satisfies the cell property. And then,
we shall show that this implies Eff defined in terms of the
resultant solution also satisfies the cell property (hence no
more additional cost caused).

Maintaining Cell Property: Basic Cells. For i := L,L −
1, L − 2, . . . , 0, for each height-i cluster C, we examine
e ∈ Dis(Bas(C)) in the non-decreasing order of its height.
If there are at least two crossing components that intersect
e, we add edges in e to connect all crossing components
that intersect e. We note that each added edge connects two
components in F , and edges added are of length at most
Diam(e). At the end of the procedure, we define the solution
as F ′. We observe that Bas defined in terms of F ′ satisfies
the cell property.

For each added edge, we charge its weight to one of the
components that it connects to. Then after a rearrangement
(at the end of the procedure), we can make sure each edge
is charged to one of the components it connects to and each
component is charged at most once.
Bounding The Cost. We shall show that for a fixed com-
ponent A, the expected cost it takes charge of is at most
ε ·w(A). Define l := w(A). The expected cost that A takes
is at most the following (up to constant)

L∑
i=1

Pr[A takes an edge in a cell of height i] · si+1.

Define pi := Pr[A takes an edge in a cell of height i].
Then,

L∑
i=0

pi · si+1 ≤
∑

i:si≤2γ1l

si+1 +
∑

i:si>2γ1l

pis
i+1

≤ O(γ1s) · l +
∑

i:si>2γ1l

pis
i+1

≤ O(ε) · l +
∑

i:si>2γ1l

pis
i+1.

Fix an i such that si > 2γ1l, and we shall upper bound pi.
Suppose in the event corresponding to pi, A takes charge of
an edge inside a cell e that is a basic cell of some height-h
cluster. Note that h and e are random and recall that the edge
is inside a cell of height i. We shall give a lower bound of
h.

Lemma V.7. sh ≥ si

2γ0
.

Since the event that the edge is taken by A automatically
implies that A is cut by a height-h cluster, and the proba-
bility that A is cut at a height-j cluster is at most O(k) · lsj
for j ∈ [L], we conclude that

pi ≤
∑

j:sj≥ si

2γ0

Pr[A is cut at height j]

≤ O(k) ·
∑

j:sj≥ si

2γ0

l

sj
≤ O(γ0k) · l

si
.

Hence
∑
i:si>2γ1l

pis
i+1 ≤ O(γ0ksL) · l ≤ O(ε) · l.

Maintaining Cell Property: Effective Cells. Next we show
that Bas defined in terms of F ′ satisfies the cell property
implies that Eff defined in terms of F ′ also satisfies the cell
property.

Fix a cluster C and fix e ∈ Dis(Eff(C)). We shall prove
that there is at most one crossing component of C that
intersects e in F ′. Suppose e is induced by u in Eff(C).

Lemma V.8. If there is no cluster Ĉ such that C ⊂ Ĉ
and u ∈ Vir(Ĉ), then there exists cluster C ′ such that u ∈
Bas(C ′), ht(C ′) ≤ ht(C) and Eff(C) is a refinement of
des(u) ∩ Bas(C ′).

If there exists cluster Ĉ such that u ∈ Vir(Ĉ) and C ⊂ Ĉ,
then by Lemma V.2, there is no crossing component of C
in F ′ that intersects e. Otherwise, there is no cluster Ĉ such
that u ∈ Vir(Ĉ) and C ⊂ Ĉ. By Lemma V.8, there exists
a cluster C ′ such that u ∈ Bas(C ′), ht(C ′) ≤ ht(C) and
Eff(C) is a refinement of des(u)∩Bas(C ′). We pick any one
of such C ′. Define e′ ∈ Dis(Bas(C ′)) as the one induced
by u in Bas(C ′). Since Bas defined in terms of F ′ satisfies
the cell property, there is at most one crossing component
of C ′ that intersects e′.

Lemma V.9. e ⊂ e′.

Since ht(C) ≥ ht(C ′), any crossing component of C is
also a crossing component of C ′. Moreover, Lemma V.9
implies that e ⊂ e′. Hence, if there are two crossing
components A1, A2 of C that intersect e, then A1 and A2 are
also crossing components of C ′ and both of them intersect
e′. However, this cannot happen since Bas satisfies the cell
property, and there is at most one crossing component in C ′

that intersects e′. Therefore, there is at most one crossing
component of C that intersects e.

REFERENCES

[1] M. Chlebı́k and J. Chlebı́ková, “The steiner tree problem on
graphs: Inapproximability results,” Theor. Comput. Sci., vol.
406, no. 3, pp. 207–214, 2008.

[2] M. X. Goemans and D. P. Williamson, “A general approxi-
mation technique for constrained forest problems,” SIAM J.
Comput., vol. 24, no. 2, pp. 296–317, 1995.

[3] A. Agrawal, P. N. Klein, and R. Ravi, “When trees collide: An
approximation algorithm for the generalized steiner problem
on networks,” SIAM J. Comput., vol. 24, no. 3, pp. 440–456,
1995.

[4] A. Gupta and A. Kumar, “Greedy algorithms for steiner
forest,” in STOC. ACM, 2015, pp. 871–878.

[5] G. Borradaile, P. N. Klein, and C. Mathieu, “A polynomial-
time approximation scheme for euclidean steiner forest,” in
FOCS. IEEE Computer Society, 2008, pp. 115–124.

[6] S. Arora, “Polynomial time approximation schemes for eu-
clidean traveling salesman and other geometric problems,” J.
ACM, vol. 45, no. 5, pp. 753–782, 1998.

[7] M. Bateni and M. Hajiaghayi, “Euclidean prize-collecting
steiner forest,” Algorithmica, vol. 62, no. 3-4, pp. 906–929,
2012.

[8] M. Bateni, M. T. Hajiaghayi, and D. Marx, “Approximation
schemes for steiner forest on planar graphs and graphs of
bounded treewidth,” J. ACM, vol. 58, no. 5, p. 21, 2011.

[9] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità, “An
improved lp-based approximation for steiner tree,” in STOC.
ACM, 2010, pp. 583–592.

[10] E. Halperin and R. Krauthgamer, “Polylogarithmic inapprox-
imability,” in STOC. ACM, 2003, pp. 585–594.

[11] N. Garg, G. Konjevod, and R. Ravi, “A polylogarithmic
approximation algorithm for the group steiner tree problem,”
J. Algorithms, vol. 37, no. 1, pp. 66–84, 2000.

[12] E. D. Demaine, M. T. Hajiaghayi, and P. N. Klein, “Node-
weighted steiner tree and group steiner tree in planar graphs,”
ACM Trans. Algorithms, vol. 10, no. 3, pp. 13:1–13:20, 2014.

[13] M. Bateni, E. D. Demaine, M. Hajiaghayi, and D. Marx, “A
PTAS for planar group steiner tree via spanner bootstrapping
and prize collecting,” in STOC. ACM, 2016, pp. 570–583.

[14] M. Hauptmann and M. Karpiński, A compendium on steiner
tree problems. Inst. für Informatik, 2013.

[15] K. Talwar, “Bypassing the embedding: algorithms for low
dimensional metrics,” in STOC. ACM, 2004, pp. 281–290.

[16] Y. Bartal, L. Gottlieb, and R. Krauthgamer, “The traveling
salesman problem: low-dimensionality implies a polynomial
time approximation scheme,” in STOC. ACM, 2012, pp.
663–672.

[17] T. H. Chan and S. H. Jiang, “Reducing curse of dimen-
sionality: Improved PTAS for TSP (with neighborhoods) in
doubling metrics,” in SODA. SIAM, 2016, pp. 754–765.

[18] D. Du, F. Hwang, and S. Chao, “Steiner minimal tree for
points on a circle,” Proceedings of the American Mathemati-
cal Society, vol. 95, no. 4, pp. 613–618, 1985.

[19] D.-Z. Du, F. K. Hwang, and J. Weng, “Steiner minimal trees
for regular polygons,” Discrete & Computational Geometry,
vol. 2, no. 1, pp. 65–84, 1987.

[20] M. M. Deza and M. Laurent, Geometry of cuts and metrics,
ser. Algorithms and Combinatorics. Berlin: Springer-Verlag,
1997, vol. 15.

[21] J. Matoušek, Lectures on discrete geometry, ser. Graduate
Texts in Mathematics. New York: Springer-Verlag, 2002,
vol. 212.

[22] P. Assouad, “Plongements lipschitziens dans Rn,” Bull. Soc.
Math. France, vol. 111, no. 4, pp. 429–448, 1983.

[23] A. Gupta, R. Krauthgamer, and J. R. Lee, “Bounded ge-
ometries, fractals, and low-distortion embeddings,” in FOCS.
IEEE Computer Society, 2003, pp. 534–543.

