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Abstract

We consider the problem of embedding a metric into
low-dimensional Euclidean space. The classical theo-
rems of Bourgain and of Johnson and Lindenstrauss
imply that any metric on n points embeds into an
O(log n)-dimensional Euclidean space with O(log n) dis-
tortion. Moreover, a simple “volume” argument shows
that this bound is nearly tight: the uniform metric on
n points requires Ω(log n/ log log n) dimensions to em-
bed with logarithmic distortion. It is natural to ask
whether such a volume restriction is the only hurdle
to low-dimensional low-distortion embeddings. Do dou-
bling metrics, which do not have large uniform sub-
metrics, embed in low dimensional Euclidean spaces
with small distortion? In this paper, we answer the
question positively and show that any doubling metric
embeds into O(log log n) dimensions with o(log n) dis-
tortion. In fact, we give a suite of embeddings with
a smooth trade-off between distortion and dimension:
given an n-point metric (V, d) with doubling dimen-
sion dimD, and any target dimension T in the range
Ω(dimD log log n) ≤ T ≤ O(log n), we embed the met-
ric into Euclidean space R

T with O(log n
√
dimD /T )

distortion.

1 Introduction

We consider the problem of representing a metric (V, d)
using a small number of dimensions. Often, applications
represent their data as points in a Euclidean space with
thousands of dimensions, and this high-dimensionality
poses a computational challenge: algorithms tend to
have an exponential dependence on the dimension.
Hence we constantly seek ways to combat this “curse of
dimensionality,” by finding low-dimensional yet faithful
representations of the data. In this work, we attempt
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to maintain all pairwise distances, i.e. we seek to
minimize the distortion of an embedding, and ask the
following question: given a metric space (which may or
may not be Euclidean to begin with), what is the least
number of dimensions in which it can be represented
with “reasonable” distortion?

Dimension reduction (in Euclidean spaces) has been
studied extensively. The celebrated “flattening” lemma
of Johnson and Lindenstrauss [29] states that the dimen-
sion of any Euclidean metric on n points can be reduced
to O( log nε2 ) with (1 + ε) distortion, and moreover, this
can be done via a random linear map. This result is ex-
istentially tight: a simple packing argument shows that
any distortion-D embedding of a uniform metric on n
points into Euclidean space requires at least Ω(logD n)
dimensions (and a lower bound pinning down the de-
pendence on ε appears in [6]). Hence we do need the
Ω(log n) dimensions for the uniform metric, and even
allowing O(log n) distortion cannot reduce the number
of dimensions below Ω(log n/ log log n).

It is natural to ask if such “volume” restrictions
form the only bottleneck to low-dimensional embed-
dings. In other words, can metrics that do not have large
uniform sub-metrics be embedded into low-dimensional
spaces with small distortion? The notion of doubling di-
mension [7] makes this idea concrete: roughly speaking,
a metric has doubling dimension dimD = k if and only if
it has (nearly-)uniform submetrics of size about 2k, but
no larger. A metric (or more strictly, a family of met-
rics) is simply called doubling if the doubling dimension
is bounded by a universal constant. (See section 1.2 for
a more precise definition).

A packing lower bound shows that any metric re-
quires Ω(dimD) dimensions for a constant-distortion
embedding into Euclidean space: is this lower bound
tight? We now know the existence of n-point met-
rics with dimD = O(1) that require Ω(

√
log n)-

distortion into Euclidean space of any dimension [24],
but can we actually achieve this distortion with o(log n)-
dimensions? What if we give up a bit in the distortion?
Bourgain’s embedding combined with the JL-lemma
shows that all metrics embed into Euclidean space of
O(log n) dimensions and O(log n) distortion [38], but we
do not know if doubling metrics embed into O(log1−ε n)
dimensions with O(log1−ε n) distortion. Moreover, we



do not know whether this is true even for Euclidean
doubling metrics: while it is conceivable that all Eu-
clidean metrics with dimD = O(1) embed into O(1)
dimensional Euclidean space with O(1) distortion, the
best result known is the JL-Lemma (which is completely
oblivious to the doubling dimension, and is known to be
tight even for doubling metrics).

We make progress on the problem of embedding
doubling metrics into Euclidean space with small dimen-
sion and distortion. (Our results hold for all doubling
metrics, not just Euclidean ones.)

Theorem 1.1. (Ultra-Low-Dimension Embed-
ding) Any metric space with doubling dimension
dimD ≤ O( logn

log logn ) embeds into O(dimD log log n)

dimensions with O( logn√
log logn

) distortion.

Hence we can embed any such metric into few Euclidean
dimensions (i.e., Õ(dimD), where the notation Õ(·) sup-
presses a multiplicative factor polynomial in log log n),
and achieve a distortion comparable to Bourgain’s em-
bedding. Note that to achieve distortion O(log n), any
metric with doubling dimension dimD requires at least
Ω( dimD

log logn ) Euclidean dimensions, and hence we are

within an O(log log n)2 factor to the optimal dimension
for this value of distortion. Theorem 1.1 is a special
case of our general trade-off theorem:

Theorem 1.2. (Main Theorem) Suppose (V, d) is a
metric space with doubling dimension dimD. For any
integer T such that Ω(dimD log log n) ≤ T ≤ lnn, there
exists F : V → R

T into T -dimensional space such
that for all x, y ∈ V , d(x, y) ≤ ‖F (x) − F (y)‖2 ≤
O

(√
dimD

T log n

)
· d(x, y).

Varying the target dimension T , we can get some in-
teresting tradeoffs between the distortion and dimen-
sion. For instance, we can balance the two quantities
and get O(log2/3 n) dimensions and O(log2/3 n) distor-
tion for doubling metrics, as desired. On the other hand,
for large target dimension T = lnn, we get distortion
O(
√
dimD log n), which matches the best known result

from [33]. In the interests of clarity of presentation, we
only show the existence of such embeddings. Standard
techniques (e.g,. [10, 5, 41]) can be used to give algo-
rithmic versions of our results. Moreover, due to space
constraints, some of the proofs have been deferred to
the full version of the paper.

Techniques. Our embedding can be thought of as an
extension of Rao’s embedding [42]: there are O(log n)
copies of coordinates for each distance scale, hence
leading to O(log n log∆) dimensions. As observed
in [2], it is possible to sum up the coordinates over

different distance scales to form one coordinate, and in
expectation the contraction is bounded. Using bounded
doubling dimension, we show that there is limited
dependency between pairs of points (using the Lovasz
Local Lemma), and hence we only need much less than
O(log n) coordinates to ensure that the contraction for
all points are bounded.

For the tradeoff between the target dimension and
the distortion, we apply a random sign (±1) to the con-
tribution for each distance scale before summing them
up to form a coordinate. This process is analogous to
the random projection in JL-type embeddings. Indeed,
we use analysis similar to that in [3] to obtain a trade-
off between the target dimension and the expansion,
although in our case the original metric needs not be
Euclidean.

We give two embeddings: the first one uses a simple
decomposition scheme [24, 44, 17] and illustrates the
above ideas in bounding both the contraction and the
expansion. The resulting embedding has distortion
O(dimD /

√
T · log n) with T dimensions. In order to

reduce the dependence on the doubling dimension to√
dimD, we use uniform padded decomposition schemes

based on [2].

Bibliographic Note. In another paper appearing in
this conference, Abraham, Bartal, and Neiman, also
present results giving embeddings achieving a trade-
off between distortion and dimension as a function
of the doubling dimension dimD and the number of
points n. Though of a similar nature, the two papers
use somewhat different techniques, and the results are
not strictly comparable. For instance, they can achieve
O(dimD)-dimensional embeddings—smaller than ours
by an O(log log n) factor—though with slightly super-
logarithmic distortion. On the other hand, our trade-off
at the higher end of dimension is slightly better. They
also present results on gracefully degrading distortion
and average distortion (in the sense defined in [1, 2]).

1.1 Related Work Dimension reduction for Eu-
clidean space was first studied by Johnson and Lin-
denstrauss [29], using random projections. The results
and techniques have since been sharpened and simpli-
fied in [23, 27, 20, 3, 4]. The embeddings have been de-
randomized, see [21, 43]. Moreover, Matousek [40] has
obtained an almost tight tradeoff between the dimension
of the target space and the distortion of the embedding.
On the other hand, dimension reduction for L1 space
has been shown to be much harder in [13, 37].

The notion of doubling dimension was introduced
by Larman [36] and Assouad [7], and first used in
algorithm design by Clarkson [18]. The properties
of doubling metrics and their algorithmic applications



have since been studied extensively, a few examples of
which appear in [24, 34, 35, 44, 25, 11, 19, 28, 32, 31].

There is extensive work on metric embeddings,
see [26]. Bourgain [12] gave an embedding whose coor-
dinates are formed by distances from random subsets.
Low diameter decomposition is a useful tool and was
studied by Awerbuch [8], and Linial and Saks [39]. Ran-
domized decompositions for general metrics are given
in [9, 16, 22]. Klein et al. [30] gave decomposition
schemes for minor-excluding graphs, which were used
by Rao [42] to obtain embeddings for planar graphs
into Euclidean space. These ideas were developed fur-
ther in [33, 1, 2]. Finally, approximation algorithms for
embeddings into constant dimensional spaces have also
been investigated, both for general metrics [15] and spe-
cial classes of metrics, for instance ultra-metrics [14].

1.2 Notation and Preliminaries We denote a fi-
nite metric space by (V, d), its size by n = |V |, and its
doubling dimension dimD by k. For any positive inte-
ger A, we denote [A] := {0, 1, 2, . . . , A− 1}. We assume
that the minimum distance between two points is 1, and
hence its diameter ∆ is also the aspect ratio of the met-
ric. A ball B(x, r) is the set {y ∈ V | d(x, y) ≤ r}.
Recall that for r > 0, an r-net N for (V, d) is a subset
of V such that (i) for all x ∈ V , there exists y ∈ N such
that d(x, y) ≤ r; and (ii) for alll x, y ∈ N such that
x 6= y, d(x, y) > r.

Definition 1.1. (Doubling Dimension dimD) The
doubling dimension of a metric (V, d) is at most k if
for all x ∈ V , for all r > 0, every ball B(x, 2r) can be
covered by the union of at most 2k balls of the form
B(z, r), where z ∈ V .

Definition 1.2. (Padded Decompostion) Given a
finite metric space (V, d), a positive parameter D > 0
and α > 1, a D-bounded α-padded decomposition is
a distribution Π over partitions of V such that the
following conditions hold.
(a) For each partition P in the support of Π, the
diameter of every cluster in P is at most D.
(b) If P is sampled from Π, then Pr[B(x, Dα ) ⊆
P (x)] ≥ 1

2 , where P (x) is the cluster in P con-
taining x.

2 The Basic Embedding

We give two embeddings in this paper: this section
we present the basic embedding, which achieves the
following trade-off between dimension and distortion.

Theorem 2.1. (The Basic Embedding) Given
a metric space (V, d) with doubling dimension
dimD, and a target dimension T in the range

Ω(dimD log log n) ≤ T ≤ lnn, there exists a map-
ping f : V → R

T such that for all x, y ∈ V ,

Ω
( √

T
dimD

)
·d(x, y) ≤ ||f(x)−f(y)||2 ≤ O(log n) ·d(x, y).

Hence, the distortion is O(dimD logn√
T

).

Note that this trade-off is slightly worse than than the
one claimed in Theorem 1.2 in terms of its dependence
on the doubling dimension; however, the advantage is
that this embedding is easier to state and prove. We will
then improve on this embedding in the next section.

2.1 Basic Embedding: Defining The Embed-

ding The embedding f : (V, d) → R
T we describe is

of the form f := ⊕t∈[T ]Φ
(t), where the symbol ⊕ is used

to denote the concatenation of the various coordinates.
Each Φ(t) : V → R is a single coordinate generated
independently of the other coordinates according to a
probability distribution described as follows. To sim-
plify notation, we drop the superscript t and describe
how a random map Φ : V → R is constructed, and f is
just the concatenation of T such coordinates.

Let Di := Hi, for some constant H ≥ 2. (Later we
see thatH is set large enough to bound the contraction.)
Suppose all distances in the metric space are at least 1,
and I is the largest integer such that DI−1 < ∆. The
mapping Φ : V → R is of the form Φ :=

∑
i∈[I] ϕi. We

describe how ϕi : V → R is constructed, for each i ∈ [I].
Fix i ∈ [I]. We view the metric (V, d) as a weighted

complete graph, and contract all edges with lengths at
most Di/2n. The points that are contracted together in
this process would obtain the same value under ϕi. Let
the resulting metric be (V, di). Here are a few properties
of the metric (V, di).

Proposition 2.1. Suppose for each i ∈ [I], the metric
(V, di) is defined as above. Then, for all x, y ∈ V , the
following results hold.
(a) For all i ∈ [I], di(x, y) ≤ d(x, y) ≤ di(x, y)+

Di

2 .
(b) For j ≥ i, dj(x, y) ≤ di(x, y).

Observe that Proposition 2.1 implies that the metric
(V, di) gives good approximations of the distances in
(V, d) of scales above Di. In particular, (V, di) admits
an O(k)-padded Di-bounded stochastic decomposition.

Proposition 2.2. (Padded Decomposition for
Doubling Metrics [24, 44, 17]) Suppose the met-
ric (V, d) has doubling dimension k. Then, there is an
α-padded Di-bounded stochastic decomposition Πi for
the metric (V, di), where α = O(k). Moreover, the
event {Bi(x,Di/α) ⊆ Pi(x)} is independent of all the
events {Bi(z,Di/α) ⊆ Pi(z) : z 6∈ Bi(x, 3Di/2)}, where
Bi(u, r) := {v ∈ V : di(u, v) ≤ r}.



Suppose Pi is a random partition of (V, di) sampled
from the padded decomposition Πi of Proposition 2.2.
Let {σi(C) : C is a cluster in Pi} be uniform {0, 1}-
random variables, and γi be a uniform {−1, 1}-random
variable. The random objects Pi, σi and γi are sampled
independently of one another. Define ϕi : V → R by

ϕi(x) := γi · κi(x),(2.1)

where κi(x) := σi(Pi(x)) ·min{di(x, V \ Pi(x)), Di/α}.
Hence we take the distance from the point x to

the closest point outside its cluster, truncate it at
Di/α (recall that α is as defined in Proposition 2.2),
and multiply it with the {0, 1} r.v. associated with its
cluster, and the {−1, 1} r.v. associated with the distance
scale i. We shall see that the σi’s play an important role
in bounding the contraction, while the role of γi’s is to
bound the expansion. To summarize, the embedding is
defined to be:

f := ⊕t∈[T ]Φ
(t); Φ(t) :=

∑

i∈[I]

ϕ
(t)
i .(2.2)

We rephrase Theorem 2.1 in terms of the above
randomized construction.

Theorem 2.2. Suppose the input metric (V, d) has
doubling dimension k, and the target dimension T is
in the range Ω(k log log n) ≤ T ≤ lnn. Then, with
non-zero probability, the above procedure produces a
mapping f : V → R

T such that for all x, y ∈ V ,

Ω
( √

T
dimD

)
·d(x, y) ≤ ||f(x)−f(y)||2 ≤ O(log n) ·d(x, y).

In other words, there exist some realization of the var-
ious random objects such that the distortion of the re-
sulting mapping is O(dimD logn√

T
).

Note. Before we begin, note that we consider the
modified metrics (V, di) in order to avoid a dependence
on the aspect ratio ∆ in the expansion bound for the

embedding. Also observe that |ϕ(t)
j (x) − ϕ

(t)
j (y)| ≤

min{dj(x, y), Dj/α}. The proof of the following simple
lemma is given in the full version.

Lemma 2.1. Suppose x, y ∈ V and for each j ∈ [I],
define dj := min{dj(x, y), Dj/α}. Then, the following
results hold.
(a) For each i ∈ [I], ∑j≥i dj ≤ O(logH n) · di(x, y).
(b) For each i ∈ [I],∑j≥i d

2
j ≤ O(logH n)·di(x, y)2.

In particular,
∑

j≥i dj ≤ O(logH n) · di(x, y), and∑
i∈[I] d

2
i ≤ O(logH n) · d(x, y)2.

Proof. We prove statements (a) and (b). The other
statements follow from the two in a straight forward
manner.

Observe that for j ≥ i, dj ≤ dj(x, y) ≤ di(x, y),
where the second inequality follows from Proposi-
tion 2.1(b).

There are three cases to consider depending on
the value of j. The first is for very large j’s when
d(x, y) ≤ Dj

2n : in this case, dj(x, y) = 0. The second case

is for moderate values of j when
Dj

2n < d(x, y) ≤ Dj :
there are at most O(logH n) such j’s. In (a), adding
these up gives a contribution of O(logH n) · di(x, y); in
(b), we have a contribution of O(logH n) · di(x, y)2.

Finally, the last case is for small values of j, when
d(x, y) > Dj . Consider the largest j0 for which this
happens. Then, it follows from Proposition 2.1 that
di(x, y) ≥ dj0(x, y) > Dj0/2. Observing that dj ≤
Dj/α and {Dj} forms a geometric sequence, it follows
that

∑
i≤j≤j0 dj = O(di(x, y)), and

∑
i≤j≤j0 d

2
j =

O(di(x, y)
2).

Combining the three cases gives the result. 2

2.2 Basic Embedding: Bounding Contraction
A natural idea to bound the contraction for a particular
pair of points x, y is to use the padding property of the
random decomposition: if d(x, y) ≈ H i, then at the
corresponding scale i ∈ [I] the two vertices will be in
different clusters, and will contribute a large distance.
This idea has been extensively used in previous work
starting with [42]. However, in these previous works,
we have a separate coordinate for each distance scale,
which leads to a large number of dimensions. Abraham
et al. [2] show that the coordinates for distance scales
can actually be combined to form one single coordinate,
and with constant probability the contraction is still
bounded. Now we want to use a small number of
coordinates as well: to do this, we exploit small doubling
dimension to use the Lovasz Local Lemma and bound
the contraction for all pairs of points.
Fixing the γ’s. As noted in the description of the
embedding, the γ’s do not play any role in bounding
the contraction. In fact, we will show something
stronger : for any realization of the γ’s, there exists some
realization of the P ’s and σ’s for which the contraction
of the embedding f is bounded. For the rest of this
section, we assume that the γ’s are arbitrarily fixed
upfront.

For each i ∈ [I], let the subset Ni be an arbitrary
βDi-net of (V, di), for some 0 < β < 1 to be specified
later.
Bounding the Contraction for some Special
Points. We first bound the contraction for the pairs
in Ei := {(x, y) ∈ Ni ×Ni : 3Di/2 < di(x, y) ≤ 3HDi},
i ∈ [I]. (Note that from Proposition 2.1(a), it follows
that for each (x, y) ∈ Ei, d(x, y) < 4HDi.)

For t ∈ [T ], and (x, y) ∈ Ei, define A
(t)(x, y) to be



the event that all the following happens:
• the vertex x is well-padded: i.e., Bi(x,

Di

α ) ⊆
P

(t)
i (x);

• the vertex y is mapped to 0: σ(t)
i (P

(t)
i (y)) = 0;

• if |∑j>i(ϕ
(t)
i (x) − ϕ

(t)
i (y))| ≤ Di

2α , then

σ
(t)
i (P

(t)
i (x)) = 1, otherwise σ

(t)
i (P

(t)
i (x)) = 0.

Proposition 2.3. (Conditioning on Higher Lev-
els) Let (x, y) ∈ Ei. Suppose for j > i, the random

objects {γ(t)
j , P

(t)
j , σ

(t)
j : t ∈ [T ]} have been arbitrar-

ily fixed. For each t ∈ [T ], sample random partition
P

(t)
i from Proposition 2.2 and random {0, 1}-variables
{σ(t)

i (C) : C is a cluster of P
(t)
i } uniformly, all inde-

pendently of one another. Then, for each t ∈ [T ], with
probability at least 1

8 , the event A
(t)(x, y) happens inde-

pendently over the different t’s.
Moreover, if the event A(t)(x, y) happens, then the

inequality |∑j≥i(ϕ
(t)
j (x) − ϕ

(t)
j (y))| ≥ Di

2α holds; fur-
thermore, for any realization of the remaining random

objects, i.e., γ
(t)
i and {γ(t)

j , P
(t)
j , σ

(t)
j : j < i}, the in-

equality |
∑

i∈[I](ϕ
(t)
i (x)−ϕ

(t)
i (y))| ≥ Di

4α holds, provided

H ≥ 8. (Recall that Di+1 = HDi.)

Proof. Given any realization of the random objects of
scales larger than i, each of the three defining events for
A(t)(x, y) happens independently of one another with
probability at least 1

2 , and hence A
(t)(x, y) happens with

probability at least 1
8 , independently over t ∈ [T ] (since

the random objects at scale i are sampled independently
over t ∈ [T ]).

It follows that if A(t)(x, y) happens, then the partial

sum from large scales up to scale i is |
∑

j≥i(ϕ
(t)
j (x) −

ϕ
(t)
j (y))| ≥ Di

2α . Observe the sum from smaller scales

|∑j<i(ϕ
(t)
j (x) − ϕ

(t)
j (y))| is bounded above by a geo-

metric sum
∑

j<i
Dj

α , which is at most
Di

4α , provided
that H ≥ 8. 2

In order to show that the contraction for the pair
(x, y) is small, we need to show that the event A(t)(x, y)
happens for a constant fraction of t’s. We define C(x, y)
to be the event that for at least T

16 values of t, the

event A(t)(x, y) happens. We conclude that the event
C(x, y) happens with high probability (as a function
of T ), by using a Chernoff bound: if X is the sum
of i.i.d. Bernoulli random variables, then Pr[X <
(1− ε)E[X]] ≤ exp(− 1

2ε
2E[X]), for 0 < ε < 1.

Proposition 2.4. (Using Concentration) Under
the sampling procedure described in Proposition 2.3, the
event C(x, y) fails to happen with probability at most
p := exp(− T

64 ).

Proof. This follows by applying the Chernoff bound
mentioned above with ε = 1

2 . 2

Now that each event C(x, y) happens with high
enough probability, we use the Lovasz Local Lemma

to show that there is some realization of {P (t)
i , σ

(t))
i :

t ∈ [T ]} such that for all (x, y) ∈ Ei, the events
C(x, y) happen simultaneously. In order to use the Local
Lemma, we need to analyze the dependence of these
events. Recall that Ni is a βDi-net of (V, di).

Lemma 2.2. (Limited Dependence) For each
(x, y) ∈ Ei, the event C(x, y) is independent of all but
B := (Hβ )

O(k) of the events C(u, v), where (u, v) ∈ Ei.

Proof. Observe that the event C(x, y) is determined

by the random objects {P (t)
i , σ

(t)
i : t ∈ [T ]}. More

specifically, it is determined completely by the events

{Bi(w,
Di

α ) ⊆ P
(t)
i (w) : t ∈ [T ]} and {σ

(t)
i (P

(t)(w)) =
0 : t ∈ [T ]}, for w ∈ {x, y}. Note that if di(x,w) >
3Di/2, then the corresponding events for the points x
and w are independent. Note that if di(x,w) ≤ 3Di/2,
then d(x,w) ≤ 2Di; moreover, any two net-points in
(V, di) must be more than βDi apart in (V, d). Hence,
observing that the doubling dimension of the given
metric is at most k, for each of x and y, only ( 2Di

βDi
)O(k)

net points are relevant. Now, each net point can be
incident by at most ( 4Hβ )

O(k) edges in Ei. Hence, it

follows that C(x, y) is independent of all but (Hβ )
O(k) of

the events C(u, v), where (u, v) ∈ Ei. 2

Now we can apply the (symmetric form of the)
Lovasz Local Lemma.

Lemma 2.3. (Lovasz Local Lemma) Suppose there
is a collection of events such that each event fails with
probability at most p. Moreover, each event is indepen-
dent of all but B other events. Then, if ep(B + 1) < 1,
then all the events in the collection happen simultane-
ously with non-zero probability.

Proposition 2.5. (One More Level) Suppose for

j > i, the random objects {γ(t)
j , P

(t)
j , σ

(t)
j : t ∈ [T ]} have

been arbitrarily fixed. If T = Ω(k log H
β ), then there is

some realization of {P (t)
i , σ

(t)
i : t ∈ [T ]} such that all

the events {C(x, y) : (x, y) ∈ Ei} happen. In particular,
such a realization does not depend on the γ’s at scale i.

Define E to be the event that for all i ∈ [I], for all
(x, y) ∈ Ei, the event C(x, y) happens. By applying
Proposition 2.5 repeatedly, we show that the event E
happens with non-zero probability.



Proposition 2.6. (Contraction for Nearby Net
Points) Suppose in the construction the γ’s are arbi-
trarily fixed, and the P ’s and σ’s are still random and
independent. Moreover, suppose T = Ω(k log H

β ). Then,
with non-zero probability, our random construction pro-
duces an embedding f : (V, d)→ R

T such that the event
E happens; in particular, there exists some realization
of the P ’s and σ’s such that ||f(x)− f(y)||2 ≥

√
T
4 · Di

4α .

Bounding the Contraction for All Points. We
next bound the contraction for an arbitrary pair (u, v)
of points noting that if all net points do not suffer
large contraction (by the above argument), and all pairs
do not incur a large expansion (by the argument of
Lemma 2.1), then one can extend the contraction result
to all pairs of points. Of course, to do so, the net Ni

must be sufficiently fine. Recall that Ni is a βDi-net for
(V, di).

Lemma 2.4. (Extending to All Pairs) Suppose
the event E happens, and β is small enough such that
1
β = Θ(α logH n). Then, for any x, y ∈ V , there exist

T/16 values of t’s for which
|Φ(t)(x)− Φ(t)(y)| = Ω(d(x, y))/αH.

Hence, by setting H = 16 and 1
β = Θ(α logH n),

and observing α = O(k) from Proposition 2.2 (where k
is the doubling dimension and is at most log n), we have
the following result.

Proposition 2.7. (Bounding Contraction)
Suppose the γ’s are arbitrarily fixed and β is sufficiently
small such that 1

β = Θ(α logH n) and H ≥ 16. Then, for
T = Ω(k log log n), there exists some realization of P ’s
and σ’s that produces an embedding f : V → R

T such

that for all x, y ∈ V , ‖f(x)− f(y)‖2 ≥ Ω(
√
T
k ) · d(x, y).

2.3 Basic Embedding: Bounding Expansion
Recall that E is the event ∩i∈[I] ∩(x,y)∈Ei

C(x, y). We
showed in Proposition 2.6 that Pr[E ] > 0, and if the
event E happens, the resulting embedding f : V → R

T

has bounded contraction. We now bound the expansion
of the embedding f : V → R

T for every pair (x, y) of
points. In order to bound this expansion, the {−1,+1}-
random variables γi will finally be used. Their role
is fairly natural: if the contributions from different
distance scales are simply summed up, then there
would be a factor of |I| (roughly speaking) appearing
in the expansion for each coordinate. However, with
the random variables γi’s, the sum starts to behave
like a random walk, and the expectation of the sum
of the signed contributions would only suffer a factor
of
√
I. In order to make this argument formal, we

use techniques similar to those used in analyzing the
Johnson-Lindenstrauss lemma [3]. The main problem
that arises here is that if we condition on the event E ,
not only the different coordinates of the map but also
the γ’s are no longer independent, and hence we would
not be able to use the “random walk”-like argument.
Instead, we sample the γ’s first and fix the P ’s and
σ’s accordingly in order to apply the large-deviation
arguments.
Fixing the P ’s and σ’s. Suppose the γ’s are sampled
uniformly and independently. From Proposition 2.7,
there exists some realization of the P ’s and the σ’s such
that the contraction of the embedding f is bounded.
Hence, from this point, we can concentrate on bounding
the expansion. Since the γ’s are randomly drawn, the
P ’s and the σ’s are random variables too, and are
functions of the γ’s. Proposition 2.5 gives a clear idea
of the dependency between the random variables: the
P ’s and the σ’s at scale i are determined only by the
random objects at scales strictly larger than i, and in
particular are independent of the γ’s at scale i.

Let us fix x, y ∈ V and define the random variable

S := ||f(x)− f(y)||22 =
∑

t∈[T ]

(Q(t))2,

where Q(t) := Φ(t)(x) − Φ(t)(y). (The coordinates Φ
were defined in (2.1).) We want to show that for large
enough T , the r.v. S does not deviate too much from
its mean with high probability. Then, a union bound
over all pairs (x, y) of points leads to the conclusion
that with non-zero probability, the embedding f has
bounded expansion.

Observe that Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i , where Y

(t)
i :=

κ
(t)
i (x) − κ

(t)
i (y). Define di := min{di(x, y), Di/α}.

Recall that the random variables γ
(t)
i are uniformly

picked from {−1,+1}, and |Y (t)
i | ≤ di. We can illustrate

the dependency between the different random objects in
Figure 1.

For i from I − 1 down to 0, do:

1. For each t ∈ [T ], the value Y (t)
i is picked adver-

sarially from [−di, di], hence possibly depending
on previously picked values {Y (t)

j , γ
(t)
j : j > i, t ∈

[T ]}.
2. For each t ∈ [T ], γ

(t)
i is picked uniformly

from {−1,+1}, and moreover, independent of any
random objects picked thus far.

Figure 1: Sampling the various random variables.



Lemma 2.5. (Computing the m.g.f.) Suppose the
γ’s and Y ’s are picked according to the above descrip-
tion. Moreover, ν2 :=

∑
i∈[I] d

2
i . Then for 0 ≤ hν2 <

1/2, E[exp(hS)] ≤ (1−2hν2)−T/2. Moreover, for ε > 0,
Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.

The proof of Lemma 2.5 appears in Section 2.4.
Using this lemma, we can bound the expansion of the
embedding.

Proposition 2.8. (Bounding Expansion) Suppose
the target dimension T is at most lnn. Then, for
each pair x, y ∈ V , with probability at least 1 − 1

n2 ,
||f(x)− f(y)||2 ≤ O(log n) · d(x, y).

Proof. Let ν2 :=
∑

i∈[I] d
2
i , and recall that S = ||f(x)−

f(y)||22. Then, from Lemma 2.5, we have for ε > 0,
Pr[S > (1 + ε)Tν2] ≤ ((1 + ε) exp(−ε))T/2.

Note that for ε ≥ 8, (1 + ε) exp(−ε) ≤ exp(−ε/2).
Hence, for T ≤ lnn, we set ε := 8 lnn

T and from
Lemma 2.1, we have ν2 =

∑
i∈[I] d

2
i ≤ O(log n)·d(x, y)2.

Hence, with failure probability at most 1
n2 , we have

||f(x) − f(y)||22 ≤ (1 + 8 lnn
T ) · T · O(log n) · d(x, y)2 ≤

O(log2 n) · d(x, y)2. 2

Using the union bound over all pairs (x, y) and
combining with Proposition 2.7 completes the proof for
the low distortion embedding claimed in Theorem 2.2
(modulo the proof of Lemma 2.5, which appears in
the following section). In Section 3, we will give an
embedding improves the dimension-distortion tradeoff,
and proves Theorem 1.2.

2.4 Resolving Dependency among Random
Variables Suppose we wish to bound the magnitude
of the following sum, whose terms are dependent on
one another:

S :=
∑

t∈[T ](Q
(t))2,(2.3)

where for each t ∈ [T ], Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i . The

γ
(t)
i ’s are {−1,+1} random variables; for each i ∈ [I],
the Y

(t)
i ’s are random variables taking values in the

interval [−di, di]. Figure 1 specifies how the various
random variables are being sampled.

A standard technique to analyze the magnitude of
S defined in (2.3) is to consider the moment generating
function (m.g.f.) E[exp(hS)], for sufficiently small h >
0. This is fairly easy when the terms in the summation
S are independent: however, observe that each Y (t)

is dependent on the random objects indexed by j >
i. Moreover, the Q(t)’s are not independent either.

However, we can get around this and prove the following
result, via Lemmas 2.6 and 2.7.

Lemma 2.5 (Computing the m.g.f.) Suppose ν2 :=∑
i∈[I] d

2
i . Then for 0 ≤ hν2 < 1/2, E[exp(hS)] ≤ (1 −

2hν2)−T/2. Moreover, for ε > 0, Pr[S > (1 + ε)Tν2] ≤
((1 + ε) exp(−ε))T/2.

Recall that the problem was that each Y (t) is dependent
on the random objects indexed by j > i. Moreover, the
Q(t)’s are not independent either. To get around this,
we consider random variables related to Q(t). Define
Q̂(t) :=

∑
i∈[I] γ

(t)
i di and Q

(t)
:=

∑
i∈[I] g

(t)
i di, where

the g
(t)
i ’s are independent normal N(0, 1) variables. De-

fine Ŝ :=
∑

t∈[T ] (Q̂
(t))2 and S :=

∑
t∈[T ] (Q

(t)
)2 analo-

gously. Observe that both the Q̂(t)’s and the Q
(t)
’s are

independent over different t’s. Define ν2 :=
∑

i∈[I] d
2
i .

A standard calculation gives us that E[exp(hS)] ≤
(1 − 2hν2)−T/2, for 0 ≤ hν2 < 1/2. We show that
E[exp(hS)] is bounded above by the same quantity.

As observed in [3], by the Monotone Convergence
Theorem, we have E[exp(hS)] =

∑
r≥0

hr

r! E[S
r]. Hence,

we compare the even powers of Q, Q̂ and Q.

Lemma 2.6. The following inequalities hold.

1. For any integer r ≥ 0, E[Q̂2r] ≤ E[Q
2r
].

2. For any real number h > 0, E[exp(hŜ)] ≤
E[exp(hS)].

Proof. The first statement follows from the observation
that E[γ2r

i ] = 1 ≤ E[g2r
i ]. The second statement

follows from the first statement, observing that the

Q̂(t)’s and the Q
(t)
’s are independent, and using the

identity E[exp(hZ)] =
∑

r≥0
hr

r! E[Z
r]. 2

The next lemma resolves the issue that the Q(t)’s
are not independent. The idea is to replace each random

variable Y
(t)
i by a constant di and show that this does

not decrease the expectation of the relevant random
variables.

Lemma 2.7. The following properties hold.
1. For all rt ≥ 0 (t ∈ [T ]), E[∏t∈[T ](Q

(t))2rt ] ≤
E[
∏

t∈[T ](Q̂
(t))2rt ].

2. For h > 0, E[exp(hS)] ≤ E[exp(hŜ)].

Proof. Note the second statement follows from the first
using the identity E[exp(hZ)] =

∑
r≥0

hr

r! E[Z
r], and

hence it suffices to prove the first statement. Let

us define the partial sums Q
(t)
i :=

∑
j≥i γ

(t)
i Y

(t)
i and

Q̂
(t)
i :=

∑
j≥i γ

(t)
i di. We show the following statement

by backward induction on i. The case i = 1 gives the



required result. We show that for i ∈ [I], for all rt ≥ 0
(t ∈ [T ]), E[∏t∈[T ](Q

(t)
i )

2rt ] ≤ E[
∏

t∈[T ](Q̂
(t)
i )

2rt ].
The case i = I follows from the fact that for all

r ≥ 0, for all t ∈ [T ], |Y (t)
I | ≤ dI . Hence, for all rt ≥ 0

(t ∈ [T ]), E[∏t∈[T ](Q
(t)
I )

2rt ] = E[
∏

t∈[T ](Y
(t)
I )2rt ] ≤

E[
∏

t∈[T ](dI)
2rt ] = E[

∏
t∈[T ](Q̂

(t)
I )

2rt ].

Assume that for all lt ≥ 0 (t ∈ [T ]),

E[
∏

t∈[T ](Q
(t)
i+1)

2lt ] ≤ E[
∏

t∈[T ](Q̂
(t)
i+1)

2lt ], for i ≥ 0. Fix
some rt ≥ 0 (t ∈ [T ]).

E[
∏

t∈[T ](Q
(t)
i )2rt ](2.4)

= E[
∏

t∈[T ](Q
(t)
i+1 + γ

(t)
i Y

(t)
i )2rt ](2.5)

= E[
∑ r1,..., rt

l1=0,...,lt=0

∏
t∈[T ]

(2rt

2lt

)
(Q

(t)
i+1)2rt−2lt (Y

(t)
i )2lt ](2.6)

≤ E[
∑ r1,..., rt

l1=0,...,lt=0

∏
t∈[T ]

(2rt

2lt

)
(Q

(t)
i+1)2rt−2ltd

2lt
i ](2.7)

≤ E[
∑ r1,..., rt

l1=0,...,lt=0

∏
t∈[T ]

(2rt

2lt

)
(Q̂

(t)
i+1)2rt−2ltd

2lt
i ](2.8)

= E[
∏

t∈[T ](Q̂
(t)
i )2rt ](2.9)

The equality (2.6) uses the fact that the r.v.’s

γ
(t)
i ’s are independent of all other random variables and

the expectation of an odd power of γ
(t)
i is 0. The

inequality (2.7) follows from the fact that |Y (t)
i | ≤

di. The inequality (2.8) follows from the linearity
of expectation and the induction hypothesis. Finally,
equality (2.9) holds for the same reason as that for (2.6).
This completes the inductive proof. 2

Finally, we are in a position to prove Lemma 2.5:
Proof of Lemma 2.5: From Lemma 2.7, we have
E[exp(hS)] ≤ E[exp(hŜ)], which is at most E[exp(hS)],
by Lemma 2.6. Finally, from a standard calculation [20],
E[exp(hS)] ≤ (1− 2hν2)−T/2, for 0 ≤ hν2 < 1/2.

To prove the second part of the lemma, let hν2 =
ε

2(1+ε) <
1
2 . Then, we have

Pr[S > (1 + ε)Tν2]

= Pr[exp(hS) > exp((1 + ε)Thν2)]

≤ E[exp(hS)] exp(−(1 + ε)Thν2)

≤ (1− 2hν2)−T/2 · exp((1 + ε)Thν2)

= ((1 + ε) exp(−ε))T/2.

which proves the large-deviation inequality. 2

3 A Better Embedding via Uniform Padded
Decompositions

Our basic embedding in the previous section uses a sim-
ple padded decomposition [17], and serves to illustrate
the proof techniques: however, its dependence on dimD

is sub-optimal. In order to improve the dependence of
the distortion on the doubling dimension, we use a more
sophisticated decomposition scheme. We modify the

uniform padded decomposition in [2], by incorporating
the properties of bounded doubling dimension directly
within the construction, to achieve both the padding
property, as well as independence between distant re-
gions.

3.1 Uniform Padded Decompositions

Definition 3.1. (Uniform Functions) Given a
partition P of (V, d), a function η : V → R is uni-
form with respect to the partition P if points in the
same cluster take the same value under η, i.e., if
P (x) = P (y), then η(x) = η(y).

For r > 0 and γ > 1, the “local growth rate”

is denoted by ρ(x, r, γ) := |B(x,rγ|)
|B(x,r/γ)| , and ρ(x, r, γ) :=

minz∈B(x,r) ρ(z, r, γ). All logarithms are based 2 unless
otherwise specified.

We show that if (V, d) has bounded doubling di-
mension, there exists a uniformly padded decomposi-
tion. The following lemma is similar to [2, Lemma 4],
except that it has additional properties about bounded
doubling dimension, and also independence between dis-
tant regions. The proof is given in the full version.

Lemma 3.1. (Uniform Padded Decomposition)
Suppose (V, d) is a metric space with doubling dimen-
sion k, and D > 0. Let Γ ≥ 8. Then, there exists a
D-bounded α-padded decomposition Π on (V, d), where
α = O(k), with the following properties. For each
partition P in the support of Π, there exist uniform
functions ξP : V → {0, 1} and ηP : V → (0, 1)
such that ηP ≥ 1

α . Moreover, if ξP (x) = 1, then
2−7/ log ρ(x,D,Γ) ≤ ηP (x) ≤ 2−7; if ξP (x) = 0, then
ηP (x) = 2

−7 and ρ(x,D,Γ) < 2.
Then, for all x ∈ V , the probability of the event

{B(x, ηP (x)D) ⊆ P (x)} is at least 1
2 . Furthermore, the

event {B(x, ηP (x)D) ⊆ P (x)} is independent of all the
events {B(z, ηP (z)D) ⊆ P (z) : z 6∈ B(x, 3D/2)}.

3.2 The Better Embedding: Defining the Em-
bedding The new embedding is quite similar to the
basic embedding of Section 2.1. We use the uniform
padded decomposition of Lemma 3.1 to define the new
embedding f : (V, d) → R

T . As before, the metric
(V, d) has doubling dimension dimD = k, and suppose
α = O(k) is the padding parameter in Lemma 3.1. Let
Di := Hi, and assume that the distances in (V, d) are
between 1 and HI−1.

Again, the embedding is of the form f :=
⊕t∈[T ]Φ

(t), where each Φ(t) : V → R is generated in-
dependently according to some distribution; for ease of
notation, we drop the superscript t in the following.
Also, each Φ is of the form Φ :=

∑
i∈[I] ϕi. We next

describe how each ϕi : V → R is constructed.



For each i ∈ [I], let Pi be a random partition
of (V, d) sampled from the decomposition scheme as
described in Lemma 3.1. Suppose ξPi

: V → {0, 1}
and ηPi

: V → (0, 1) are the associated uniform
functions with respect to the partition Pi. Let {σi(C) :
C is a cluster of Pi} be uniform {0, 1}-random variables
and γi be a uniform {−1,+1}-random variable. The
random objects Pi’s, σi’s and γi’s are independent of
one another. Then ϕi is defined by the realization of
the various random objects as:

ϕi(x) := γi · κi(x),(3.10)

where κi(x) := σi(Pi(x)) ·min{ξPi
(x)ηPi

(x)−1/2d(x, V \
Pi(x)),

Di√
α
}. Note the difference with (2.1) is in the

definition of κi.
The proof bounding the distortion will proceed

similarly: we show that with non-zero probability, the
embedding f : V → R

T has low distortion.

3.3 The Better Embedding: Bounding Con-
traction for Nearby Net Points Again, we assume
that the γ’s are arbitrarily fixed, and the P ’s and σ’s
are random and independent. For each i ∈ [I], let the
subset Ni be an arbitrary βDi-net of (V, d), for some
0 < β < 1 to be specified later. As in the basic em-
bedding, we first bound the contraction for the pairs
in Ei := {(x, y) ∈ Ni × Ni : 3Di < d(x, y) ≤ 4HDi},
i ∈ [I], and then extend it to all pairs in Section 3.5.
The proof of the following proposition appears in the
full version.

Proposition 3.1. (Contraction for Nearby Net
Points) Suppose T = Ω(k log H

β ). Moreover, the γ’s
are arbitrarily fixed, and the P ’s and σ’s remain random
and independent. Then, there exists some realization of
the P ’s and σ’s such that the embedding f : (V, d)→ R

T

satisfies for all i ∈ [I], for all (x, y) ∈ Ei, ||f(x) −
f(y)||2 ≥

√
T
4 · Di

4
√
α
.

3.4 The Better Embedding: Bounding the Ex-
pansion Again, we sample the γ’s uniformly and inde-
pendently, and use Proposition 3.1 to show there exists
some realization of the P ’s and σ’s such that the result-
ing mapping f : V → R

T has the guaranteed contrac-
tion. Hence, we can focus on analyzing the expansion.

Again, fix x, y ∈ V and let S := ||f(x) −
f(y)||22 =

∑
t∈[T ](Q

(t))2, where Q(t) :=
∑

i∈[I] γ
(t)
i Y

(t)
i ,

and Y
(t)
i := κ

(t)
i (x) − κ

(t)
i (y). Recall that γ

(t)
i

is uniformly picked from {−1,+1}. Denote d :=
max{

√
O(log ρ(x,Di,Γ)),

√
O(log ρ(y,Di,Γ))} ·d(x, y),

and ν2 :=
∑

i∈[I] d
2
i We next bound the magnitudes of

the Yi’s and ν2 in the following Lemma, whose proof
follows the same argument as in [2, Lemma 8].

Lemma 3.2. Consider a particular Yi = κi(x) − κi(y).
Then, |Yi| ≤ di, and ν

2 = O(logH Γ log n) · d(x, y)2.

The proof now proceeds in the same fashion as in
Section 2.3; setting H := 16 and Γ := 128, we have
ν2 = O(log n) · d(x, y)2. Hence, applying Lemma 2.5,
and setting ε := 8 lnn

T as before, we have the following
result.

Lemma 3.3. (Bounding Expansion) Suppose T ≤
lnn. Then, for each pair x, y ∈ V , with probability at
least 1− 1

n2 ,||f(x)− f(y)||2 ≤ O(log n) · d(x, y).

3.5 The Better Embedding: Bounding Con-
traction for All Pairs Now that we have proved that
with non-zero probability, the expansion for every pair
of points is at most O(log n), and the contraction for
nearby net points is bounded, we can show that if the
βDi-net Ni for (V, d) is fine enough (i.e., β is small
enough), then the contraction bound can be extended
to all pairs.

Lemma 3.4. (Bounding Contraction for All
Pairs) Suppose the event E holds and the expansion
of the embedding f is bounded in the manner described
in Lemma 3.3. Suppose β > 0 is small enough such
that β−1 = Θ(

√
α log n), where α = O(k). Then, for all

x, y ∈ V , ||f(x)− f(y)||2 ≥ Ω(
√
T/α) · d(x, y).

Lemmas 3.3 and 3.4 together prove Theorem 1.2.
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[32] Goran Konjevod, Andréa W. Richa, and Donglin Xia.
Optimal-stretch name-independent compact routing in
doubling metrics. In 25th PODC, pages 198–207, 2006.

[33] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor.
Measured descent: a new embedding method for finite
metrics. Geom. Funct. Anal., 15(4):839–858, 2005.

[34] Robert Krauthgamer and James R. Lee. The intrinsic
dimensionality of graphs. In 35th STOC, pages 438–
447. ACM Press, 2003.

[35] Robert Krauthgamer and James R. Lee. Navigating
nets: simple algorithms for proximity search. In 15th
SODA, pages 798–807, 2004.

[36] D. G. Larman. A new theory of dimension. In Proc.
London Math. Soc., 17, 1967.

[37] James R. Lee and Assaf Naor. Embedding the diamond
graph in Lp and dimension reduction in L1. In
Geometric and Functional Analysis (GAFA). Springer
Verlag, 2003.

[38] Nathan Linial, Eran London, and Yuri Rabinovich.
The geometry of graphs and some of its algorithmic ap-
plications. Combinatorica, 15(2):215–245, 1995. (Pre-
liminary version in 35th FOCS, 1994).

[39] Nathan Linial and Michael Saks. Low diameter graph
decompositions. Combinatorica, 13(4):441–454, 1993.
(Preliminary version in 2nd SODA, 1991).
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