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Abstract

High dynamic range (HDR) video reconstruction from
sequences captured with alternating exposures is a very
challenging problem. Existing methods often align low dy-
namic range (LDR) input sequence in the image space using
optical flow, and then merge the aligned images to produce
HDR output. However, accurate alignment and fusion in
the image space are difficult due to the missing details in
the over-exposed regions and noise in the under-exposed
regions, resulting in unpleasing ghosting artifacts. To en-
able more accurate alignment and HDR fusion, we intro-
duce a coarse-to-fine deep learning framework for HDR
video reconstruction. Firstly, we perform coarse alignment
and pixel blending in the image space to estimate the coarse
HDR video. Secondly, we conduct more sophisticated align-
ment and temporal fusion in the feature space of the coarse
HDR video to produce better reconstruction. Considering
the fact that there is no publicly available dataset for quan-
titative and comprehensive evaluation of HDR video recon-
struction methods, we collect such a benchmark dataset,
which contains 97 sequences of static scenes and 184 test-
ing pairs of dynamic scenes. Extensive experiments show
that our method outperforms previous state-of-the-art meth-
ods. Our code and dataset can be found at https://
guanyingc.github.io/DeepHDRVideo.

1. Introduction
Compared with low dynamic range (LDR) images, high

dynamic range (HDR) images can better reflect the visual
details of a scene in both bright and dark regions. Al-
though significant progress has been made in HDR image
reconstruction using multi-exposure images [22, 57, 59],
the more challenging problem of HDR video reconstruction
is still less explored. Different from HDR image reconstruc-
tion, HDR video reconstruction has to recover the HDR
for every input frame (see Fig. 1), but not just for a single
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Figure 1. HDR video reconstruction from sequences captured with
three alternating exposures. Row 1 shows four input LDR frames.
Rows 2–3 are the reconstructed (tonemapped) HDR frames.

reference frame (e.g., the middle exposure image). Exist-
ing successful HDR video reconstruction techniques often
rely on costly and specialized hardware (e.g., scanline ex-
posure/ISO or internal/external beam splitter) [55, 30, 62],
which hinders their wider applications among ordinary con-
sumers. A promising direction for low-cost HDR video re-
construction is to utilize video sequences captured with al-
ternating exposures (e.g., videos with a periodic exposure
of {EV-3, EV+3, EV-3, . . . }). This is practical as many off-
the-shelf cameras can alternate exposures during recording.

Conventional reconstruction pipeline along this direc-
tion often consists of two steps [25]. In the first step,
neighboring frames with different exposures are aligned
to the current frame using optical flow. In the second
step, the aligned images are fused to produce the HDR
image. However, accurate alignment and fusion are diffi-
cult to achieve for LDR images with different exposures as
there are saturated pixel values in the over-exposed regions,
and noise in the under-exposed regions. Recently, Kalan-
tari and Ramamoorthi [23] proposed to estimate the opti-
cal flow with a deep neural network, and used another net-
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work to predict the fusion weights for merging the aligned
images. Although improved results over traditional meth-
ods [24, 38, 25, 32] have been achieved, their method still
relies on the accuracy of optical flow alignment and pixel
blending, and suffers from ghosting artifacts in regions with
large motion (see the second row of Fig. 1). It remains a
challenging problem to reconstruct ghost-free HDR videos
from sequences with alternating exposures.

Recently, deformable convolution [8] has been suc-
cessfully applied to feature alignment in video super-
resolution [56, 54]. However, they are not tailored for LDR
images with different exposures. Motivated by the obser-
vation that accurate image alignment between LDR images
with different exposures is difficult, and the success of de-
formable feature alignment for videos with constant expo-
sure, we introduce a two-stage coarse-to-fine framework for
this problem. The first stage, denoted as CoarseNet, aligns
images using optical flow in the image space and blends
the aligned images to reconstruct the coarse HDR video.
This stage can recover/remove a large part of missing de-
tails/noise from the input LDR images, but there exist some
artifacts in regions with large motion. The second stage, de-
noted as RefineNet, performs more sophisticated alignment
and fusion in the feature space of the coarse HDR video
using deformable convolution [8] and temporal attention.
Such a two-stage approach avoids the need of estimating
highly accurate optical flow from images with different ex-
posures, and therefore reduces the learning difficulty and
removes ghosting artifacts in the final results.

As there is no publicly available real-world video dataset
with ground-truth HDR for evaluation, comprehensive com-
parisons among different methods are difficult to achieve.
To alleviate this problem, we create a real-world dataset
containing both static and dynamic scenes as a benchmark
for quantitative and qualitative evaluation.

In summary, the key contributions of this paper are as
follows:

• We propose a two-stage framework, which first per-
forms image alignment and HDR fusion in the image
space and then in feature space, for HDR video recon-
struction from sequences with alternating exposures.

• We create a real-world video dataset captured with al-
ternating exposures as a benchmark to enable quanti-
tative evaluation for this problem.

• Our method achieves state-of-the-art results on both
synthetic and real-world datasets.

2. Related Work

HDR image reconstruction Merging multi-exposure
LDR images is the most common way to reconstruct HDR
images [9, 39]. To handle dynamic scenes, image alignment
is employed to reduce the ghosting artifacts [51, 20, 48, 36].
Recent methods apply deep neural networks to merge multi-

exposure images [22, 6, 57, 59, 60, 47]. However, these
methods rely on a fixed reference exposure (e.g., the mid-
dle exposure) and cannot be directly applied to reconstruct
HDR videos from sequences with alternating exposures.
Burst denoising technique [35, 18, 33] can also be applied
to produce HDR images by denoising the low-exposure
images. However, this technique cannot make use of the
cleaner details that exist in high-exposure images and have
difficulty in handling extremely dark scenes.

There are methods for HDR reconstruction from a sin-
gle LDR image. Traditional methods expand the dynamic
range of the LDR images by applying image process-
ing operations (e.g., function mapping and filtering) [1, 2,
3, 4, 21, 29]. These methods generally cannot recover
the missing details in the clipped regions. Recent meth-
ods proposed to adopt CNNs for single image reconstruc-
tion [10, 11, 31, 61, 44, 41, 34, 50]. However, these meth-
ods focus on hallucinating the saturated regions and cannot
deal with the noise in the dark regions of a low-exposure
image.

Recently, Kim et al. [26, 27] proposed to tackle the prob-
lem of joint super-resolution and inverse tone-mapping. In-
stead of reconstructing the linear luminance image like pre-
vious HDR reconstruction methods, their goal was to con-
vert a standard dynamic range (SDR) image to HDR display
format (i.e., from BT.709 to BT.2020).

HDR video reconstruction Many existing HDR video re-
construction methods rely on specialized hardware. For ex-
ample, per-pixel exposure [46], scanline exposure/ISO [16,
19, 7], internal [55, 30] or external [42] beam splitter that
can split light to different sensors, modulo camera [62], and
neuromorphic camera [17]. The requirement of specialized
hardware limits the widespread application of these meth-
ods. Recent methods also explore the problem of joint opti-
mization of the optical encoder and CNN-based decoder for
HDR imaging [43, 53].

There are works for HDR video reconstruction from se-
quences with alternating exposures. Kang et al. [25] in-
troduced the first algorithm of this approach by first align-
ing neighboring frames to the reference frame using optical
flow, and then merging the aligned images to an HDR im-
age. Mangiat and Gibson improved this method by a block-
based motion estimation and refinement stage [37, 38].
Kalantari et al. [24] introduced a patch-based optimization
method that synthesizes the missing exposures at each im-
age and then reconstructs the final HDR image. Gryadit-
skaya et al. [15] improved [24] by introducing an adaptive
metering algorithm that can adjust the exposures to reduce
artifacts caused by motion. Li et al. [32] formulated this
problem as a maximum a posteriori estimation. Recently,
Kalantari and Ramamoorthi [23] introduced an end-to-end
deep learning framework that contains a flow network for
alignment and a weight network for pixel blending in image
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Figure 2. Network architecture of the proposed coarse-to-fine framework for videos captured with two alternating exposures.

space. Different from [23], our coarse-to-fine network per-
forms alignment and fusion sequentially in the image space
and feature space for better reconstruction.

3. The Proposed Coarse-to-fine Framework
3.1. Overview

Given an input LDR video {L̃i|i = 1, . . . , n} captured
with alternating exposures {ti|i = 1, . . . , n}1, our goal
is to reconstruct the corresponding HDR video {Hi|i =
1, . . . , n}, as shown in Fig. 1.
Preprocessing Following previous methods [24, 32, 23],
we assume the camera response function (CRF) [14] F of
the original input images L̃i is known. In practice, the
CRF of a camera can be robustly estimated using a linear
method [9]. As in [23], we replace the CRF of the input
images with a fixed gamma curve as Li = (F−1(L̃i))

1/γ ,
where γ = 2.2. This can unify input videos captured un-
der different cameras or configurations. Global alignment
is then performed using a similarity transformation to com-
pensate camera motions among neighboring frames.
Pipeline Due to the existence of noise and missing de-
tails, accurate image alignment between images with dif-
ferent exposures is difficult. To overcome these challenges,
we introduce a two-stage framework for more accurate im-
age alignment and fusion (see Fig. 2). For simplicity, we
illustrate our method for handling videos captured with two
alternating exposures in this paper, and describe how to ex-
tend our method for handling three exposures in the supple-
mentary material.

The first stage, named CoarseNet, aligns images using
optical flow and performs HDR fusion in the image space.
It takes three frames as input and estimates a 3-channel
HDR image for the reference (i.e., center) frame. This stage
can recover/remove a large part of the missing details/noise
for the reference LDR image. Given five consecutive LDR

1For example, the exposure can be alternated periodically in the order
of {EV-3, EV+3, EV-3, . . . } or {EV-2, EV+0, EV+2, EV-2, . . . }.
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Figure 3. Overview of the CoarseNet.

frames {Li|i = i − 2, . . . , i + 2} with two alternating
exposures, our CoarseNet can sequentially reconstruct the
coarse HDR images for the middle three frames (i.e., Hc

i−1,
Hc
i , and Hc

i+1). The second stage, named RefineNet, takes
these three coarse HDR images as input to produce a better
HDR reconstruction for the reference frame (i.e., Hr

i ). It
performs a more sophisticated alignment using deformable
convolution and temporal fusion in the feature space.

3.2. Coarse Reconstruction in the Image Space

The CoarseNet follows the design of [23], containing an
optical flow estimation network, named flow network, and a
blending weight estimation network, named weight network
(see Fig. 3). The major difference is that our CoarseNet has
a smaller number of feature channels, as it only performs
coarse HDR reconstruction. It first warps two neighboring
frames to the center frame using optical flows, and then re-
constructs the HDR image by blending the aligned images.
The network details can be found in the supplementary ma-
terials.
Loss function As HDR images are typically displayed af-
ter tonemapping, we compute the loss in the tonemapped
HDR space. Following [22, 57, 59, 23], we adopt the dif-
ferentiable µ-law function:

T ci =
log(1 + µHc

i )

log(1 + µ)
, (1)
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Figure 4. Structure of the (a) deformable alignment module and
(b) temporal attention fusion module.

where T ci is the tonemapped HDR image, and µ is a param-
eter controlling the compression level and is set to 5000. We
train CoarseNet with the L1 loss Lc =‖ T ci − T̃i ‖1, where
T̃i is the ground-truth tonemapped HDR image. Since both
the flow network and weight network are differentiable, the
CoarseNet can be trained end-to-end.

3.3. HDR Refinement in the Feature Space

Taking three coarse HDR images (i.e., Hc
i−1, Hc

i , and
Hc
i+1) estimated by the CoarseNet as input, the RefineNet

performs alignment and fusion in the feature space to pro-
duce better HDR reconstruction for the center frame, as
the problem of missing contents or noise has been largely
solved in the first stage (see the right part of Fig. 2).

Our RefineNet first extracts a 64-channel feature for each
input (i.e., Fi−1, Fi, and Fi+1) using a share-weight fea-
ture extractor. Features of the neighboring frames are then
aligned to the center frame using a deformable alignment
module [8, 56]. The aligned features are fused using a tem-
poral attention fusion module for the final HDR reconstruc-
tion.
Deformable feature alignment Deformable convolu-
tion [8] has recently been successfully applied to feature
alignment for the problem of video super-resolution (e.g.,
EDVR [56] and TDAN [54]). The core idea of deformable
feature alignment is as follows. Given two features (e.g.,
Fi−1 and Fi) as input, an offset prediction module (can be
general convolutional layers) predicts an offset:

∆pi−1 = f([Fi−1, Fi]). (2)

With the learned offset, the neighboring feature Fi−1 can
be sampled and aligned to the reference frame Fi using de-
formable convolution [8]:

F̃i−1 = DConv(Fi−1,∆pi−1). (3)

We adopt the pyramid, cascading and deformable (PCD)
alignment module [56], which performs deformable align-
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Figure 5. Weight curves for computing the well-exposed regions
for (a) low- and (b) high-exposure reference image. L is the pixel
value of the reference LDR image.

ment in three pyramid levels, as our feature alignment mod-
ule (see Fig. 4 (a)). This alignment process is implicitly
learned to optimize the final HDR reconstruction.
Multi-feature fusion Given the aligned features (F̃i−1, F̃i,
and F̃i+1), we propose a temporal attention fusion module
for suppressing the misaligned features and merging com-
plementary information for more accurate HDR reconstruc-
tion (see Fig. 4 (b)). Each feature is concatenated with the
reference feature as the input for two convolutional layers to
estimate an attention map that has the same size as the fea-
ture. Each feature is then weighted by their corresponding
attention map. Last, three attended features are concate-
nated and fused using a convolutional layer.
HDR reconstruction The reconstruction branch takes the
fused feature as input and regresses the HDR image (Hr

i ).
Two skip connections are added to concatenate encoder fea-
tures of the reference frame to decoder features that have the
same dimensions.

Note that our RefineNet aims to refine the results of
CoarseNet in the not well-exposed regions. For a low-
exposure image, we empirically define that regions with
LDR pixel values smaller than 0.15 are not well-exposed,
while for a high-exposure image, regions with pixel values
larger than 0.9 are not well-exposed [24]. The final pre-
dicted HDR is then computed as

Hi = Mi �Hc
i + (1−Mi)�Hr

i , (4)

where Mi is a mask indicating the well-exposed regions of
the reference frame i, and � is the element-wise product.
Figure 5 shows how Mi is computed for low- and high-
exposure reference image. For example, the well-exposed
mask of a low-exposure reference image Li is computed as

Mi =

{
1, if Li >= 0.15

(Li/0.15)2, if Li < 0.15
(5)

Loss function We adopt L1 loss and perceptual loss to
compute the loss for RefineNet as Lr = Lrl1 + Lrperc. The
L1 loss is defined as

Lrl1 = ‖ Ti − T̃i ‖1 / ‖ 1−Mi ‖1, (6)

where Ti is the tonemapped image of Hi. The loss is nor-
malized by the number of not well-exposed pixels. The per-
ceptual loss is defined as Lrperc =

∑
k ‖ φk(Ti)−φk(T̃i) ‖1



Table 1. Comparison between our dataset and the Kalantari13
dataset [24]. Frame number shows the image number. 2-Exp and
3-Exp indicate videos with two and three exposures, respectively.

Static Scenes
w/ GT

Dynamic Scenes
w/ GT

Dynamic Scenes
w/o GT

6− 9 frames 5− 7 frames 50− 200 frames
Data Size 2-Exp 3-Exp 2-Exp 3-Exp 2-Exp 3-Exp

[24] 1280× 720 - - - - 5 4
Ours 4096× 2168 49 48 76 108 50 50

, where φk(·) extracts image features from the kth layer
of VGG16 network [52]. We use three layers {relu1_2,
relu2_2, relu3_3} to compute the loss.

4. Real-world Benchmark Dataset
In this section, we introduce a real-world benchmark

dataset for qualitative and quantitative evaluation.
Existing real-world video dataset Currently, there is no
benchmark dataset with ground-truth HDR for this prob-
lem. The only public real-world dataset is the Kalantari13
dataset [24], which consists of 9 videos for dynamic scenes
in RGB image format. However, due to the lack of ground-
truth HDR, previous works can only evaluate their methods
qualitatively on this dataset. In addition, this dataset is too
small to be used for possible semi-supervised or unsuper-
vised learning in the future.
Dataset overview To facilitate a more comprehensive
evaluation on real data, we captured a real-world dataset and
generated reliable ground-truth HDR for evaluation. We
used an off-the-shelf Basler acA4096-30uc camera for cap-
turing videos with alternating exposures (i.e., two and three
exposures) in a variety of scenes, including indoor, outdoor,
daytime, and nighttime scenes. The captured videos have a
frame rate of 26 fps and a resolution of 4096× 2168.

Three different types of video data are captured, namely,
static scenes with GT (Dgts ), dynamic scenes with GT (Dgtd ),
and dynamic scenes without GT (Dd).2 Table 1 compares
the statistics between our dataset and Kalantari13 dataset.
Static scenes with GT For static scenes, we captured
49 two-exposure and 48 three-exposure sequences, each
with 15 − 20 frames. The ground-truth HDR frames for
static scenes were generated by merging multi-exposure im-
ages [9]. We first averaged images having the same expo-
sure to reduce noise, and then merged multi-exposure im-
ages using a weighting function similar to [22]. For each
scene, we will release 6− 9 captured frames and the gener-
ated HDR frame.
Dynamic scenes with GT Generating per-frame ground-
truth HDR for dynamic videos is very challenging. Fol-
lowing the strategy used for capturing dynamic HDR im-
age [22], we propose to create image pairs consisting of

2GT is short for the ground-truth HDR.

Static frames

GT HDR
(Tonemapped)

Merge HDR

Input LDRs (three frames)

1 2 3 4 5 6

Reference
frames

Figure 6. Illustration of generating the LDRs-HDR pairs for a
two-exposure scene (3 frames). Row 1 shows the selected image
sequence. Rows 2 and 3 are two sample pairs with low-exposure
and high-exposure reference frames, respectively.

Figure 7. Sample frames in dynamic scenes without GT .

input LDR frames and the HDR of the center frame. We
considered static environment and used a human subject to
simulate motion in videos.

For each scene, we first asked the subject to stay still for
1− 2 seconds, where we can find 2 consecutive still frames
(or 3 frames for three-exposure) without motions for gen-
erating the HDR image for this timestamp. We then asked
the subject to move back-and-forth (e.g., waving hands or
walking). We selected an image sequence whose center
frame was the static frame, and arranged this sequence to
be the proper LDRs-HDR pairs (see Fig. 6 for an example).
For each reference frame with GT HDR, we also created
a pair with a larger motion by sampling the neighboring
frames in a frame interval of 2, which doubles the number
of pairs. In total, we created 76 and 108 pairs for the case of
two-exposure (5 input frames) and three-exposure (7 input
frames), respectively.
Dynamic scenes without GT We captured a larger scale
dataset containing uncontrolled dynamic scenes for quali-
tative evaluation (see Fig. 7 for examples). Specifically, we
captured 50 two-exposure and 50 three-exposure sequences,
each contains around 100 frames. This dataset can also be
used for semi-supervised or unsupervised training in the fu-
ture.
Data processing We saved the raw data of the captured
videos and performed demosaicing, white balancing, color
correction, and gamma compression (γ = 2.2) to convert
the raw data to RGB data using the recorded metadata. In
this paper, we rescaled the images to 1536×813 for evalua-
tion. Both the captured raw data and processed images will
be released.



Table 2. Averaged results on synthetic dataset.
2-Exposure 3-Exposure

Method PSNR HDR-VDP2 HDR-VQM PSNR HDR-VDP2 HDR-VQM
Kalantari13 [24] 37.53 59.07 84.51 30.36 56.56 65.90
Yan19 [59] 39.05 70.61 71.27 36.28 65.47 72.20
Kalantari19 [23] 37.48 70.67 84.57 36.27 65.51 72.58
Ours 40.34 71.79 85.71 37.04 66.44 73.38

5. Experiments

In this section, we conduct experiments on synthetic and
real-world datasets to verify the effectiveness of the pro-
posed method. We compared our methods with Kalan-
tari13 [24], Kalantari19 [23], and Yan19 [59]. Kalan-
tari13 [24] is an optimization-based method and we used the
publicly available code for testing. Note that Yan19 [59] is
a state-of-the-art method for multi-exposure HDR image re-
construction, and we adapted it for video reconstruction by
changing the network input. We re-implemented [23, 59]
and trained them using the same dataset as our method.

We evaluated the estimated HDR in terms of PSNR (in
the µ-law tonemapped domain), HDR-VDP-2 [40], and
HDR-VQM [45]. HDR-VQM is designed for evaluating
the quality of HDR videos. All visual results in the exper-
iment are tonemapped using Reinhard et al.’s method [49]
following [23, 24, 25]. In addition, a user study [5] (i.e.,
pair comparison test) was conducted.

5.1. Training Datasets and Details

Synthetic training dataset Since there is no publicly
available real video dataset with alternating exposures and
their ground-truth HDR, we resort to synthetic data for
training. Following [23], we selected 21 HDR videos [12,
30] to synthesize the training dataset. Since the size of the
HDR video dataset is limited, we also adopted the high-
quality Vimeo-90K dataset [58] to be the source videos.
Please refer to our supplementary material for more details.
Data augmentation As the training data was generated
from clean HDR videos, the resulting input sequences lack
noise in the low-exposure images. To close this gap, we
randomly added zero-mean Gaussian noise (σ = 10−3)
in the linear domain of the inputs. We also perturbed
the tone of the reference image using a gamma function
(γ = exp(d), d ∈ [−0.7, 0.7]) to simulate the possibly in-
accurate CRF [23, 13]. Random horizontal/vertical flipping
and rotation were applied. Patches of size 256 × 256 were
cropped out to be the network input.
Implementation details We trained our method using
Adam optimizer [28] with default parameters. We first
trained the CoarseNet with 10 epochs using a batch size
of 16, and then trained the RefineNet with 15 epochs us-
ing a batch size of 8. The learning rate was initially set to
0.0001 and halved every 5 epochs for both networks. We

Overlapped Input Kalantari13 Kalantari19 Ours GT HDR

Figure 8. Visual results on the synthetic dataset.

Overlapped Input Kalantari13 Kalantari19 Ours GT HDR

Figure 9. Visual results on static scenes augmented with random
global motion. Row 1 is for two-exposure scene and row 2 is for
three-exposure.

then end-to-end finetuned the whole network for 2 epochs
using a learning rate of 0.00002.

5.2. Evaluation on Synthetic Dataset

We first evaluated our method on a synthetic dataset
generated using two HDR videos (i.e., POKER FULLSHOT
and CAROUSEL FIREWORKS) [12], which are not used for
training. Each video contains 60 frames and has a resolu-
tion of 1920 × 1080. Random Gaussian noise was added
on the low-exposure images. Table 2 clearly shows that our
method outperforms previous methods in all metrics on the
this dataset. Figure 8 visualizes that our method can ef-
fectively remove the noise (top row) and ghosting artifacts
(bottom row) in the reconstructed HDR.

5.3. Evaluation on Real-world Dataset

To validate the generalization ability of our method on
real data, we then evaluated the proposed method on the
introduced real-world dataset and Kalantari13 dataset [24].
Evaluation on static scenes We evaluated our method on
Dgts augmented with random global motions (i.e., random
translation for each frame in the range of [0, 5] pixels). We
did not pre-align the input frames for all methods to investi-
gate their robustness against input with inaccurate global
alignment. Table 3 (a) shows that our method achieves
the best results for two-exposure scenes and the most ro-
bust results for three-exposure scenes. Although Kalan-
tari13 [24] shows slightly better averaged PSNR values for
three-exposure scenes (i.e., 39.77 vs. 39.75), it suffers from
the ghosting artifacts for over-exposed regions (see Fig. 9).
Evaluation on dynamic scenes Table 3 (b) summarizes
the results on Dgtd , where our method performs the best in



Table 3. Quantitative results on the introduced real dataset. The averaged results for each exposure and all exposures are shown. Red text
indicates the best and blue text indicates the second best result, respectively.

(a) Results on static scenes with GT (Dgt
s ) augmented with random global motion.

2-Exposure 3-Exposure
Low-Exposure High-Exposure All-Exposure Low-Exposure Middle-Exposure High-Exposure All-Exposure

Method PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2 HDR-VQM PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2 HDR-VQM

Kalantari13 [24] 40.00 73.70 40.04 70.08 40.02 71.89 76.22 39.61 73.24 39.67 73.24 40.01 67.90 39.77 70.37 79.55
Yan19 [59] 34.54 80.22 39.25 65.96 36.90 73.09 65.33 36.51 77.78 37.45 69.79 39.02 64.57 37.66 70.71 70.13
Kalantari19 [23] 39.79 81.02 39.96 67.25 39.88 74.13 73.84 39.48 78.13 38.43 70.08 39.60 67.94 39.17 72.05 80.70
Ours 41.95 81.03 40.41 71.27 41.18 76.15 78.84 40.00 78.66 39.27 73.10 39.99 69.99 39.75 73.92 82.87

(b) Results on dynamic scenes with GT (Dgt
d ).

2-Exposure 3-Exposure
Low-Exposure High-Exposure All-Exposure Low-Exposure Middle-Exposure High-Exposure All-Exposure

Method PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2 HDR-VQM PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2 HDR-VQM

Kalantari13 [24] 37.73 74.05 45.71 66.67 41.72 70.36 85.33 37.53 72.03 36.38 65.37 34.73 62.24 36.21 66.55 84.43
Yan19 [59] 36.41 85.68 49.89 69.90 43.15 77.79 78.92 36.43 77.74 39.80 67.88 43.03 64.74 39.75 70.12 87.93
Kalantari19 [23] 39.94 86.77 49.49 69.04 44.72 77.91 87.16 38.34 78.04 41.21 66.07 42.66 64.01 40.74 69.37 89.36
Ours 40.83 86.84 50.10 71.33 45.46 79.09 87.40 38.77 78.11 41.47 68.49 43.24 65.08 41.16 70.56 89.56

Overlapped Patched Kalantari13 [24] Yan19 [59] Kalantari19 [23] CoarseNet CoarseNet+RefineNet

Figure 10. Visual results on dynamic scenes with GT (two-exposure scene).

all metrics. Compared with our method, the performance of
Kalantari13 [24] drops quickly for dynamic scenes, as this
dataset contains the more challenging local motions. Fig-
ure 10 shows that methods performing alignment and fusion
in the image space [24, 23] produce unpleasing artifacts
around the motion boundaries. In contrast, our two-stage
coarse-to-fine framework enables more accurate alignment
and fusion, and is therefore robust to regions with large mo-
tion and produces ghost-free reconstructions for scenes with
two and three exposures.

Evaluation on Kalantari13 dataset We then evaluated
our method on Kalantari13 dataset. Note that the result
of Kalantari19 [23] for this dataset is provided by the au-
thors. Figure 11 compares the results for three consecutive
frames from THROWING TOWEL 2EXP scene, where our
method achieves significantly better visual results. For a
high-exposure reference frame, our method can recover the
fine details of the over-exposed regions without introducing
artifacts (see rows 1 and 3). In comparison, methods based
on optical flow alignment and image blending [24, 23] suf-
fers from artifacts for the over-exposed regions. For a low-
exposure reference frame, compared with Kalantari13 [24],
our method can remove the noise and preserve the structure

for the dark regions (see row 2). Please refer to our supple-
mentary materials for more qualitative comparisons.

vs. Kalantari13 vs. Kalantari19
0

20%

40%

60%

80%

100%

76% 78%

24% 22%

Vote ours Vote others

Figure 12. User study results.

User study We also
conducted a user study
on the dynamic scene
dataset (3-Exp) to fur-
ther demonstrate the
visual quality of our
results (see Fig. 12).
33 participants were
invited to give prefer-
ence on 36 pairs of im-
age. Note that the GT HDR was also shown for reference.
Overall, 76% and 78% of the users preferred results of our
method over Kalantari13 [24] and Kalantari19 [23], reiter-
ating the effectiveness of our method.

5.4. Network Analysis

We first discussed the network parameter and runtime,
and then conducted ablation study for the proposed method.
Parameters and runtime Table 4 compares the parameter
and runtime of three methods. Note that Kalantari19 [23]
and our method were run on a NVIDIA V100 GPU, while



(a) Input Reference frame (b) Kalantari13 [24] (c) Kalantari19 [23] (d) Ours

Figure 11. Visual comparison on THROWING TOWEL 2EXP scene from Kalantari13 dataset
.

Table 4. Model parameter and runtime for producing an HDR
frame of different resolutions.

2-Exposure 3-Exposure
Method # Parameter 1280× 720 1920× 1080 1280× 720 1920× 1080

Kalantari13 [24] - 125s 185s 300s 520s
Kalantari19 [23] 9.0M 0.35s 0.59s 0.42 0.64
Ours 6.1M 0.51s 0.97s 0.64 1.09s

Kalantari13 [24] was run on CPUs. Our model contains
6.1 million parameters, including 3.1M parameters for
CoarseNet and 3.0M for RefineNet. It takes around 1 sec-
ond for our method to produce an HDR frame with a res-
olution of 1920 × 1080, which is comparable to Kalan-
tari19 [23] and significantly faster than Kalantari13 [24].

Coarse-to-fine architecture To verify the design of our
coarse-to-fine architecture, we compared our method with
two baselines. The first one was CoarseNet, which performs
optical flow alignment and fusion in the image space (sim-
ilar to [23]). The second one was RefineNet† that directly
takes the LDR frames as input and performs alignment and
fusion in the feature space. Experiments with IDs 0-2 in Ta-
ble 5 show that our method achieves the best results on three
datasets, demonstrating the effectiveness of our coarse-to-
fine architecture.

Network design of the RefineNet To investigate the ef-
fect of deformable alignment (DA) module and temporal
attention fusion (TAF) module, we trained two variant mod-
els, one without DA module and one replacing TAF module
with a convolution after feature concatenation. Experiments
with IDs 2-4 in Table 5 show that removing either compo-
nent will result in decreased performance, verifying the net-
work design of the RefineNet.

Table 5. Ablation study on three datasets with two alternating ex-
posures. CNet and RNet are short for CoarseNet and RefineNet.

Synthetic Dataset Dgts Dgtd
ID Method PSNR HDR-VDP2 PSNR HDR-VDP2 PSNR HDR-VDP2

0 CNet 39.25 70.81 40.62 74.51 44.43 77.74
1 RefineNet† 39.69 70.95 37.61 75.30 43.70 78.97
2 CNet + RNet 40.34 71.79 41.18 76.15 45.46 79.09
3 CNet + RNet w/o DA 39.72 71.38 40.52 74.79 45.09 78.24
4 CNet + RNet w/o TAF 40.03 71.66 40.80 76.12 45.17 78.99

6. Conclusion

We have introduced a coarse-to-fine deep learning
framework for HDR video reconstruction from sequences
with alternating exposures. Our method first performs
coarse HDR video reconstruction in the image space and
then refines the coarse predictions in the feature space to re-
move the ghosting artifacts. To enable more comprehensive
evaluation on real data, we created a real-world benchmark
dataset for this problem. Extensive experiments on syn-
thetic and real datasets show that our method significantly
outperforms previous methods.

Currently, our method was trained on synthetic data.
Since we have captured a large-scale dynamic scene dataset,
we will investigate self-supervised training or finetuning us-
ing real-world videos in the future.
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