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Figure 1: Comparisons of video inversion and editing with existing methods. Number in each column denotes the average
editing time over 100 frames. Our RIGID achieves temporal coherent inversion and editing performances with much less time
cost. s. Please refer to the arXiv version to watch this figure as a video clip.

Abstract

GAN inversion is indispensable for applying the powerful
editability of GAN to real images. However, existing methods
invert video frames individually often leading to undesired
inconsistent results over time. In this paper, we propose a
unified recurrent framework, named Recurrent vIdeo GAN
Inversion and eDiting (RIGID), to explicitly and simultane-
ously enforce temporally coherent GAN inversion and facial
editing of real videos. Our approach models the temporal
relations between current and previous frames from three as-
pects. To enable a faithful real video reconstruction, we first
maximize the inversion fidelity and consistency by learning
a temporal compensated latent code. Second, we observe
incoherent noises lie in the high-frequency domain that can
be disentangled from the latent space. Third, to remove the
inconsistency after attribute manipulation, we propose an
in-between frame composition constraint such that the ar-
bitrary frame must be a direct composite of its neighboring
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frames. Our unified framework learns the inherent coherence
between input frames in an end-to-end manner, and there-
fore it is agnostic to a specific attribute and can be applied
to arbitrary editing of the same video without re-training.
Extensive experiments demonstrate that RIGID outperforms
state-of-the-art methods qualitatively and quantitatively in
both inversion and editing tasks. The deliverables can be
found in https://cnnlstm.github.io/RIGID.

1. Introduction

Generative adversarial networks (GANs) have demon-
strated powerful generative ability in synthesizing high-
quality faces from a latent code [9, 11, 12, 47]. It is evi-
denced that the latent space of a well-trained GAN is seman-
tically organized, and shifting the latent code along with a
specific direction results in the manipulation of a correspond-
ing attribute [23, 24, 5, 19, 45, 32]. Hence, many works
migrate this power to real face processing by inverting a real
face image to a latent code [49, 16, 39, 48, 40, 38]. Although
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this two-combo strategy becomes a standard for editing high-
resolution images, applying it to real videos has less been
explored. A naive inversion and editing for each frame can
undoubtedly produce incoherence in the resulted video.

Different from processing images, maintaining temporal
coherence is the core issue for video editing [18, 28, 26].
Specifically, both the GAN inversion and attribute manipula-
tion may introduce discontinuity across frames. IGCI [39]
proposes the first attempt to invert consecutive images si-
multaneously. They leverage the continuity of the inputs
to optimize both the reconstruction fidelity and editability
of the outputs, but they fail to consider the temporal corre-
lation between results (see flickering in Fig. 1b). Recent
work STIT [30] implicitly recovers the original temporal
correlations by the faithful inversion of each frame. It fine-
tunes an individual generator for every input video such that
the generator can capture all the reconstruction details, and
TCSVE [37] extends this idea by proposing a temporal con-
sistency loss that applies on the edited videos. Although
they works well for most cases, they are video- and attribute-
specific (needs to retrain the model for a new video or a new
target attribute), and thus suffers from the expensive training
cost and poor generalization ability.

In this paper, we aim to design a unified approach that
learns the temporal correlations between successive frames
for both inversion and editing, and it can be generalized
to other target attributes without re-training. To this end,
we propose a Recurrent vIdeo GAN Inversion and eDiting
(RIGID) framework, which evolves and enables the image-
based StyleGAN [11, 12] generator to output temporally
coherent frames. The coherence is realized in both inversion
and editing tasks. Given the current and previous frames,
we formulate the inversion as the combination of an image-
based inverted code and a temporal compensated code, while
the latter amends the code with inter-frame similarity for
an accurate and consistent inversion. On the other hand,
we observe that the main sources of temporal incoherence,
like “flickering”, belong to high-frequency artifacts. This
motivates us to disentangle the main video content from
high-frequency artifacts in the latent space, and thus the
“incoherence” can be shared with all the other frames. To
build the temporal correlations after attribute manipulation,
we propose a self-supervised “in-between frame composi-
tion constraint” that applies to consecutive edited frames. It
enforces any intermediate frame that can be composed by
the warping results of their neighbors, which guarantees the
smoothness of generated videos. RIGID is trained on the
video episodes with several tailored losses. During the infer-
ence, it inverts video frames sequentially and therefore can
handle videos with arbitrary lengths and support live stream
editing. More importantly, once our model is trained, it is
attribute-agnostic that can be reused for arbitrary attribute
manipulations without re-training. As shown in Fig. 1f,

RIGID achieves temporal coherent inversion and editing
with far less inference time (compared to those scene- and
attribute-specific methods like STIT). Extensive experiments
demonstrate the superiority over state-of-the-art methods in
terms of quantitative and qualitative evaluations.

In summary, our contributions are three-fold:

• We propose a recurrent video GAN inversion frame-
work that unifies video inversion and editing. It learns
the temporal correlation of generated videos explicitly.

• We model temporal coherence from both inversion and
editing ends. For inversion, we discover the temporal
compensated code and disentangle high-frequency arti-
facts in the latent space. For editing, we present a novel
“in-between frame composition constraint” to confine a
continuous video transformation.

• We achieve attribute-agnostic editing that can vary edit-
ing attributes on the fly, avoiding expensive re-training
of the model. Extensive experiments demonstrate the
effectiveness of our method over state-of-the-arts.

2. Related Works
GAN Inversion. GAN inversion aims at inverting real
images into the latent space of pre-trained generators for re-
construct and edit the real images [1, 39, 21, 33, 35, 29, 27].
Early works optimize the latent code directly for a specific
image with expensive computational cost [4, 1]. Another
class trains a general encoder that maps the real image to the
latent code directly [21, 29, 33]. Particularly, pSp [21] pro-
poses an encoder with pyramid architecture that inverts the
real images into the W+ latent space of StyleGAN. Based
on the same architecture, e4e [29] analyzes the trade-offs
between reconstruction and editability in StyleGAN’s inver-
sion. HFGI [33] introduces the distortion map for improving
the fidelity reconstitution. Existing works mainly focus on
the image-based GAN inversion, inverting the real videos
into GANs has not been well studied.

StyleGAN-based Video Generation and Editing. State-
of-the-art video GANs still cannot generate high quality
results as their image counterparts [28, 6, 34, 30]. Opposite
to design a video generator directly, many works use the pre-
trained image generator (e.g., StyleGAN) for synthesizing
high-quality videos [18, 28, 43, 26]. MoCoGAN-HD [28]
decomposes the motion and content in videos and gener-
ates motion trajectory in StyleGAN’s latent space. Style-
HEAT [43] shares the same decomposition idea, it exploits
the flow field as the motion descriptor for talking face gen-
eration. Recently, StyleGAN-V [26] injects the continuous
motion representations into the StyleGAN. In this paper, we
aim at inverting a real video into a pre-trained StyleGAN for
temporal coherence reconstruction and editing. Few works
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Figure 2: Overview of our RIGID. We first align the faces on two neighbor frames (It−1 and It). Then we concatenate them
with the inverted face Ot−1 and edited face Et−1 in the previous step as the inputs of the recurrent encoder. The encoder
learns the temporal compensated code w′

t and spatial noise map nt, as a complement to the initial latent code wt (acquired
by the “e4e” encoder). In addition, we share the latter part of latent codes across all frames using wl

1 for eliminating the
high-frequency temporal flickering. Both the final inverted latent code wlfd

t and the edited one are fed to the generator,
producing the inverted and edited faces Oa

t and Ea
t . The generated faces are unaligned and blended with the original frames.

Dotted lines denote recurrent inputs from the last time step or outputs to the next step. In addition, a novel in-between frame
composition constraint is proposed that learns the temporal correlation during editing (details can be found in Fig. 3).

concentrate on this task. Latent-Transformer [42] presents
a pipeline for facial video editing by inverting each frame
individually, resulting in the temporal inconsistency in the
edited videos. IGCI [39] introduces the consecutive frames
into GAN inversion for improving the reconstruction quality
and editability. STIT [30] edits the facial videos using Style-
GAN2 [12] by fine-tuning the generator. TCSVE [37] also
optimizes generators with a temporal consistency loss that
applies on the edited videos. Above two optimization-based
work need to re-optimize the generator for a new video or
edit, which is time-consuming. In this paper, we propose a re-
current framework that learns the temporal correlations both
in inverted and edited videos. Once it is properly trained, it
supports various semantic editing methods with low compu-
tational costs.

3. Approach

3.1. Formulation

Given a real face video {It|t = 1, ...T}, our goal is to
invert it to the latent space of pre-trained StyleGAN G to
obtain a set of latent codes, and output the inverted video
{Ot|t = 1, ...T}, where Ot is obtained by feeding the latent
code to G. Meanwhile, we can also obtain an edited video
{Et|t = 1, ...T} by manipulating the latent codes. The key
is that both inverted and edited video should be temporal
coherent.

To address that, we propose a recurrent video GAN inver-

sion and editing framework to explicitly and simultaneously
enforce temporally coherent GAN inversion and facial edit-
ing of real videos. For video inversion, as the original video
of inborn temporal coherence, the best way to maintain in-
version consistency is a faithful reconstruction. In addition,
we propose a “latent frequency disentanglement” strategy
for eliminating the high-frequency temporal flickering in the
latent space. We also propose an in-between frame composi-
tion constraint that builds the temporal correlations of edited
video. The overview of our RIGID can be seen in Fig. 2.

3.2. Coherent Video Inversion

3.2.1 Temporal Compensated Inversion

Given a real video, we can deliver its temporal correlation
to the generated video by a faithful reconstruction. Before
inversion, face alignment is necessary since StyleGAN can-
not handle the entire frame. After the alignment on each
frame, we can obtain a set of aligned faces {Iat |t = 1, ...T}.
We first encode them to the W+ space using image-based
inversion method (e4e [29] in this paper), and obtain the
initial latent codes {wt|t = 1, ...T}, wt ∈ W+. However,
directly using the initial latent codes cannot reconstruct orig-
inal faces accurately due to the missing of temporal context.
We use a recurrent encoder that learns a temporal compen-
sated code as a complement to the initialized one. Moreover,
recovering a high-fidelity face solely in StyleGAN’s W+
latent space is too difficult due to the lack of spatial infor-
mation [13, 33]. Inspired by [2], the encoder also learns a



noise map in StyleGAN’s N space for injecting the spatial
information.

Our goal is to unify inversion and editing in the same
framework. As a result, both the inverted and edited faces
from previous and current time steps are fed to the encoder to
generate the temporal compensated code and the noise map.
Here a ConvLSTM layer [25] is integrated into the encoder
for modeling the spatial-temporal correlations. Specifically,
at time step t, we concatenate the aligned faces Iat−1, Iat , the
last inverted face Oa

t−1, and last edited face Ea
t−1 as inputs.

It outputs a temporal compensated code w′
t and spatial noise

map nt, we add w′
t with the initialized code wt. Then both

added code and noise map nt are sent to the generator for
inversion, that is:

{w′
t, nt} = E(cat(Iat−1, I

a
t , O

a
t−1, E

a
t−1)), (1)

Oa
t = G(wt + w′

t, nt), (2)

where E denotes the recurrent encoder and cat(·, ·, ·, ·) de-
notes the concatenation operator.

3.2.2 Latent Frequency Disentanglement

The fidelity inversion delivers the temporal relations from
the original video to the inverted one. However, frames are
inverted one by one and may lead to subtle inconsistency,
i.e., the unique high-frequency information in a single frame
will be accumulated in a video and leads to temporal flick-
ering. We notice that high-frequency temporal flickering
mainly exists in the appearance of an image. Recent works
evidenced that W+ space is highly disentangled, and the
appearance of the image is synthesized at the higher layer
of StyleGAN, which is controlled by the latter part of the w
latent code [12, 21]. Hence we propose a “latent frequency
disentanglement” strategy that eliminates the temporal flick-
ering by sharing the latter part of w latent code across all the
frames.

Specifically, we first decompose a latent code into the
former part and the latter part, then we reuse the latter part
(corresponding to high layers of StyleGAN) of the first frame
in all the following frames that unify the high frequency
information, that is:

wlfd
t = cat((wt + w′

t)
f , wl

1), (3)

where wlfd
t is the latent code after latent frequency disen-

tanglement, (wt + w′
t)

f is the former part of latent code
wt+w′

t, and wl
1 denotes the latter part of the first latent code.

Now, we can get the final latent codes {ct = {wlfd
t , nt}|t =

1, ...T} for reconstructing a temporal coherent video. That
is, we replace Eq. 2 with following equation:

Oa
t = G(wlfd

t , nt). (4)

The face can be edited by manipulating the latent code
wlfd

t :

Ea
t = G((wlfd

t +−→n ), nt), (5)

where −→n denotes the semantic direction acquired by arbi-
trary semantic editing techniques [23, 24, 5, 42, 41]. It is
noticed that the nt is also determined by edited face Ea

t−1,
and it can be well cooperated with both inverted and edited
code.

3.3. Coherent Video Editing

3.3.1 Post Processing

The generated faces are naturally aligned that lost the tem-
poral coherence. We need to unaligned generated faces
and blend them with the original frame It. Here we fol-
low [42, 30] that blends the face region only. In particular,
we first segment the face region on an original frame by
a pre-trained face parsing model [44] to get the inner face
mask MIt , then we blend the inverted face Oa

t with the orig-
inal frame according to mask MIt , which can be presented
as:

Ot = B(UA(Oa
t ), It,MIt), (6)

where B and UA denote the blending and unalignment re-
spectively.

For the edited face Ea
t , its face region may be modified

after editing, and the face mask of the original frame MIt

cannot well fit with the edited faces. Besides, directly using
the face mask of the edited face also suffers a similar prob-
lem. Hence we use the union of two masks as the blending
mask, that is:

Et = B(UA(Ea
t ), It,MEt

∪MIt). (7)

3.3.2 In-between Frame Composition Constraint

After post processing, we can obtain the inverted and edited
videos. Compared with the inverted videos, temporal cor-
relation in an edited video is more difficult to learn, since
there is no GT edited videos for supervision. We propose
a self-supervised in-between frame composition constraint
that models the temporal correlation in an edited video.

Generally, for a triplet of consecutive frames
{Et−1, Et, Et+1}, the intermediate frame Et can be
composed by flow-based warping results of its neighbor
frames [8, 20, 36]. Specifically, as shown in Fig. 3, let
ft⇒t−1 denotes the optical flow from Et to Et−1 and
ft⇒t+1 is the flow from Et to Et+1, then frames Et−1 and
Et+1 are warped using different flow. And the intermediate
frame can be composed using two warped results according
to a visibility map, that is:

Êt =Vt⇐t−1 ⊙ W(Et−1, ft⇒t−1)+

(1− Vt⇐t−1)⊙ W(Et+1, ft⇒t+1),
(8)
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Figure 3: The in-between frame can be composed by flow-
based warping results of its neighboring frames according to
a visibility map Vt⇐t−1.

where Êt is the composed intermediate frame, Vt⇐t−1 is the
visibility map from frame Et to Et−1, it is a one channel
mask with the same resolution with aligned face frames.
It denotes whether a pixel remains visible when moving
from frame t − 1 to t (0 is fully occluded and 1 is fully
visible). W is the warping operator, and ⊙ denotes element-
wise multiplication. This equation models the temporal
correlations among three consecutive frames.

For the edited videos, both ft⇒t−1 and ft⇒t+1 are avail-
able, the remaining challenge is to estimate the visibility
mask Vt⇐t−1. Since there is no GT for edited videos, we
turn to train a visible net V for estimating the mask. Par-
ticularly, we composite the in-between frame Ît on the real
videos using Eq. 8. Then we align the l1 distance between Ît
and It for training visible net V . After training, we fix the V
and adopt it to the edited frames for estimating the visibility
mask and composing the in-between frame Êt. We minimize
the distance between Êt and Et to form in-between frame
composition constraint:

Libfcc =

T−1∑
t=2

||Et − Êt||1. (9)

This constraint enforces the edited video as smooth as real
video, which guarantees the temporal coherence effectively.
Note that we train the encoder on the video episodes. Particu-
larly, we first collect the outputs {E0, ..., ET } in an episode
via forward propagation, then we apply this constraint to
train the encoder in backward propagation (we use differen-
tiable unalignment).

3.4. Loss Functions

Our RIGID is trained under several tailored losses. Be-
sides the in-between frame composition constraint Lifsc

applied on the edited videos, it also includes reconstruction
and temporal consistency losses on the inverted videos.

Reconstruction Loss. We first introduce the reconstruc-
tion loss Lrec on the inverted faces. Following [21, 33],
it includes a pixel-wise L2 loss for minimizing the recon-
struction error, and LPIPS loss for a better image quality
preservation [46], which can be represented as:

L2 =

T∑
t=1

||Iat −Oa
t ||2, (10)

Llpips =

T∑
t=1

||P (Iat )− P (Oa
t )||2, (11)

Lrec = L2 + αLlpips, (12)

where T is the number of frame in each training episode,
P (·) denotes the perceptual feature extractor, and α is the
balance weight. Following [21], we set α = 0.8.

Temporal Consistency Loss. We also introduce a
warping-based temporal consistency loss Ltc for preserving
the temporal consistency of inverted videos. In particular,
we first calculate the optical flow between two real neighbor
frames, then we warp a real frame according to the flow,
meanwhile, we also warp the inverted frame by the same
flow. Then we minimize the distance on two warped frames
to form the temporal consistency loss, that is:

Ît−1 = W(It−1, ft⇒t−1), (13)

Ôt−1 = W(Ot−1, ft⇒t−1), (14)

Ltc =

T∑
t=2

||Ît−1 − Ôt−1||1, (15)

where ft⇒t−1 is the flow from frame It−1 to It. This loss
enforces the temporal correlation in the videos to be the same
as the input video, and improves the temporal smoothness.

Final Loss. We get the final loss function for training the
RIGID:

Ltotal = λ1Lrec + λ2Ltc + λ3Libfcc, (16)

where {λi} denote the weight factors for balancing loss
terms.

4. Experiments
4.1. Implementation Details

We implement the proposed framework in Pytorch on a
PC with an Nvidia GeForce RTX 3090. We chose the Style-
GAN2 [12] pre-trained on the FFHQ dataset [11] with the
resolution of 256 × 256 as our generator due to its strong
edit ability. The corresponding w latent code has the di-
mension of 14× 512, and we set the early 10× 512 as the
former part and the rest of 4 × 512 as the latter part in the
latent frequency disentanglement. The framework is opti-
mized by the Adam optimizer [14] with the learning rate of
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Figure 4: Qualitative comparison on the video inversion task. Our learning-based RIGID can faithfully reconstruct the video
frames that is comparable to those expensive optimization-based works.

1e−4. We empirically set the balancing weights in Eq. 16
as λ1 = 1, λ2 = 2, and λ3 = 5. Limited by the memory
size of GPU, we set T = 6 in Eq. 15, which indicates each
training episode contains 6 consecutive frames. In addition,
we inject the noise map nt at the resolution of 32× 32 to the
generator.

The recurrent encoder consists of 7 convolutional (Conv)
layers, a ConvLSTM layer, and a fully connected (FC) layer.
We take “Fused Leaky ReLU” as activation in-between
Conv layers. The ConvLSTM layer is integrated between
the Conv and FC layers. The visible net has a U-Net struc-
ture [22], it takes 5 Conv layers as encoder, and 5 Trans-
posed convolutional layers as a decoder. BatchNorm layer
and leakyReLU activation are integrated into between lay-
ers. Besides, a Sigmoid function is applied on output U-Net
for normalizing the visibility map values. Visible net takes
the concatenation of two warped results with 6 channels
as input and outputs a visibility map with 1 channel. It is
trained using Adam optimizer [14] with the learning rate of
1e−4 with 100,000 iterations. Besides, we use pre-trained
FlowNet2 [7] for predicting optical flow, and we implement
warping operation using bi-linear interpolation.

4.2. Experimental Settings

Datasets. We collect datasets both under control and in
the wild environment. We select 72 videos from the con-

trolled RAVDESS dataset [17], which we called RAVDESS-
72 Dataset. It contains 9,045 frames and each video contains
about 120 frames. We also collect 36 videos from the Inter-
net with the various poses, expressions, and backgrounds.
We name them as In-the-Wild-36 Dataset, it contains 7,532
frames in total. We combine two datasets together, use 85
videos for training our RIGID and the rest 23 videos for
testing.

Competitors and Evaluation Metrics. We compare
RIGID with three works, including IGCI [39], Latent-
Transformer [42], STIT [30], and TCSVE [37]. Note that
STIT [30] and TCSVE [37] use the same method for inver-
sion. We use several metrics for evaluating different methods.
For the video inversion task, we use the pixel-wise Mean
Square Error (MSE) and Learned Perceptual Image Patch
Similarity (LPIPS) [46] that evaluates the reconstruction
quality. For evaluating the temporal stability, we use the
flow-based Warp Error (WE) metric. For the edited task, we
follow STIT [30] that use Temporally-Local (TL-ID) and
Temporally-Global (TG-ID) identity preservation metrics
for evaluating the temporal coherence of edited videos. We
also use Fréchet Video Distance (FVD) [31] metric on both
edited and inverted videos. Inference Times (IT) over 100
frames is also reported. Please refer to supplementary for
more details of competitors and evaluation metrics.



Table 1: Video inversion comparisons on two datasets. ↓ denotes the lower the better and the best results are marked in bold,
and the values of MSE are magnified 100 times.

Methods
Metrics RAVDESS-72 Dataset In-the-Wild-36 Dataset IT↓(s)MSE↓ LPIPS↓ WE↓ FVD↓ MSE↓(×e-2) LPIPS↓ WE↓ FVD↓

IGCI [39] 0.99 0.05 154.21 412.33 2.01 0.13 432.98 276.92 1.2×e5
Latent-T. [42] 5.68 0.12 86.356 220.46 5.31 0.22 367.32 165.35 49.2

STIT [30]/TCSVE [37] 0.99 0.05 83.21 171.23 2.32 0.11 293.83 81.03 851.5
RIGID 1.04 0.05 84.62 174.55 2.31 0.12 287.32 74.11 54.5
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Figure 5: Qualitative comparison on video editing. RIGID uses the same post processing as IGCI and Latent-Transformer, but
the edited faces can be better blended with the original background. Besides, compared with STIT and TCSVE, our RIGID
supports shape editing on the face boundary (e.g., “Chubby”).

4.3. Evaluation on Video Inversion

Quantitative Evaluation. We first evaluate the fidelity
and temporal coherence of inverted videos. Quantitative
comparison can be seen in Tab. 1. We can see that both STIT,
IGCI, and TCSVE have lower MSE and LPIPIS values, they
optimize latent codes or generator specifically according to
the video frames, which can reconstruct the target frames
faithfully. IGCI presents the worse performance on WE and
FVD metrics, since it optimizes the latent code for each
image but fails to consider the temporal coherence of consec-

utive frames, making the inverted latent codes less consistent.
In addition, optimization-based methods cost a lot of time
during the inference, especially for IGCI, which takes about
20 minutes for a single frame. Latent-Transformer uses a
learning-based encoder that accelerates the inference speed,
but it processes each frame individually, both the temporal
coherence and reconstruction quality cannot be guaranteed.
With about 15× faster inference than STIT, RIGID achieves
a comparable result on the RAVDESS-72 and In-the-Wild-
36 datasets. RIGID not only inverts the frame faithfully but
also preserves the original temporal relations across frames.



Table 2: Video editing comparisons on two datasets. ↓ denotes the lower the better and vice versa, the best results are marked
in bold.

Methods
Metrics RAVDESS-72 In-the-Wild-36 IT↓(s)TL-ID↑ TG-ID↑ FVD↓ TL-ID↑ TG-ID↑ FVD↓

IGCI [39] 0.94 0.79 834.33 0.93 0.71 499.22 1.2×e5
Latent-T. [42] 0.99 0.93 311.84 0.99 0.87 267.42 49.2

STIT [30] 0.99 0.97 212.04 0.99 0.91 211.34 1.6×e3
TCSVE [37] 0.99 0.97 201.32 0.99 0.92 198.46 3.4×e3

RIGID 0.99 0.97 198.54 0.99 0.93 183.36 54.5

Thanks to temporal compensated inversion, RIGID guaran-
tees the fidelity of inverted faces.

Qualitative Evaluation. The quantitative comparison of
video inversion can be seen in Fig. 4. We can see that two
optimization-based works, IGCI and STIT reconstruct the
frames well. Latent-Transformer utilizes the pSp encoder for
inversion [21], and the results present different skin colors
with original frames. Thanks to the temporal compensation
inversion, our learning-based RIGID presents the competi-
tive results with optimization-based IGCI and STIT on pixel-
wise reconstruction. The video comparison can be seen in
Fig. 1. Latent-Transformer cannot provide accurate recon-
struction. IGCI inverts each frame faithfully, but it cannot
guarantee the temporal coherence across frames, resulting
in serious temporal flickering. STIT achieves high-quality
inversion on a specific video at the cost of long computa-
tional times. In contrast, RIGID builds temporal relations
of inverted videos by the temporal compensated inversion,
yielding temporal coherent inverted videos with much less
time cost.

4.4. Evaluation on Video Editing

Quantitative Evaluation. The quantitative comparison
of video editing can be seen in Tab. 2. We can see that
IGCI [39] has high FVD values on both two datasets. As
discussed above, it cannot produce consistent latent codes,
making the edited frames discontinuous. In addition, IGCI
has lower values on both TL-ID and TG-ID, which evi-
dences that identity information cannot be preserved locally
and globally. Compared with IGCI, Latent-Transformer [42]
uses an encoder for producing latent codes, and the edited
frames are more consistent. STIT [30] optimizes the gen-
erator for each video hence requires many inference times.
RIGID achieves a comparable result on the RAVDESS-72
dataset with 30× faster during the inference. As for the
In-the-Wild-36 Dataset, RIGID outperforms all competitors
with three metrics. This should contribute to our in-between
frame composition constraint. It enforces the smoothness
of edited frames and brings temporal coherence into edited
videos.

Qualitative Evaluation. We present the qualitative com-
parison on video editing in Fig. 1 and Fig. 5. We can see that

ICGI presents blurry edited faces with temporal flickering,
and Latent-Transformer loses temporal coherence on local
details (see bangs in Fig. 1c). In addition, though they use
the same post processing as our RIGID, their edited faces
cannot be well blended with the original background. With-
out considering the temporal coherence of edited frames,
their edited faces have large structure deformations from the
original faces. STIT proposes a “stitching tuning” strategy
for the seamless blending, it enforces the edit frames have
similar transitions around the face boundary with originals.
However, when the target face’s boundary is close to the
background, this method does not support its shape-related
editing (e.g., “Chubby” or “Double Chins”). As shown in
the 1st sample in Fig. 5, STIT fails on the “Chubby” editing.
TCSVE uses the same strategy, hence it fails on this editing.
More video comparisons can be found in the supplementary
materials.

4.5. Ablation Study

In this section, we perform an ablation study to evaluate
our RIGID on the RAVDESS-72 dataset. We develop five
variants with the modification of the modules and the loss
functions: 1) w/o TCC, by removing temporal compensated
code w′

t. 2) w/o NM, by removing noise map nt. 3) w/o
LFD, by removing the latent frequency disentanglement in
the framework. In this variant, frames in the same video
have different latter codes wl

t. 4) w/o Libfcc, by removing
in-between frame composition constraint. 5) w/o Ltc, by
removing the temporal consistent loss Ltc.

The quantitative comparisons with various variants can
be seen in Tab. 3. Compared with RIGID, variant w/o TCC
has a large WE value. Code w′

t introduces the temporal
compensation to the image-based latent code, and brings the
temporal coherence in inverted videos. Variant w/o NM has
large MSE and LPIPS values. Since noise map nt injects
the spatial information to the generator, and improves the
inversion accuracy. Both variant w/o LFD and w/o Ltc

have large WE numbers. Our latent frequency disentangle-
ment strategy unifies the high-frequency information in a
video, and Ltc preserves the temporal consistency from the
original to the inverted video. They learn the temporal re-
lations effectively. We observe that variant w/o Libfcc has



Table 3: Quantitative comparisons with various variants on video inversion and editing. ↓ denotes the lower the better and vice
visa, the best results are marked in bold. The values of MSE are magnified 100 times.

Variants
Metrics Video Inversion Video Editing

MSE↓ LPIPS↓ WE↓ FVD↓ TL-ID↑ TG-ID↑ FVD↓
w/o TCC 1.31 0.07 106.52 208.74 0.98 0.94 321.98
w/o NM 2.28 0.08 96.52 201.22 0.99 0.92 334.98
w/o LFD 1.10 0.06 103.61 215.96 0.99 0.94 309.04
w/o Libfcc 0.93 0.05 705.22 358.04 0.98 0.90 299.12
w/o Ltc 1.08 0.05 122.08 203.54 0.99 0.97 299.34
RIGID 1.04 0.05 84.62 174.55 0.99 0.97 198.54

w/o NM w/o LFD w/o Libfcc RIGID
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Figure 6: Qualitative comparison with different variants.
Variant w/o LFD and w/o Libfcc present noticeable tempo-
ral flickering. Please refer to the arXiv version to watch this
figure as a video clip.

the largest WE and FVD values on inverted videos, though
it is applied to the edited frames. That is because the con-
straint enforces the smoothness of edited frames, and can
be propagated to the latent codes that control the coherence
of inverted frames. Meanwhile, variant w/o Libfcc has the
worse performance on metrics TL-ID and TG-ID. Without
the in-between constraint, the framework cannot guarantee
the identity similarity across frames. By learning the tem-
poral correlations in inverted and edited videos, the final
RIGID achieves the best performance on two tasks.

Qualitative comparison with different variants can be seen
in Fig. 6. We can see variant w/o Libfcc presents annoying
flickering both on the inverted and edited videos, which
evidences the effectiveness of in-between frame composition
constraint. As talked about in the main paper, it builds the
temporal relations of video frames, which guarantees the
smoothness of generated videos. Variant w/o NM cannot
invert the video faithfully. Variant w/o LFD may present
temporal flickering. The final RIGID presents temporal
coherent inversion and editing videos.

5. Conclusion and Discussions

In this paper, we propose RIGID, a novel recurrent frame-
work that learns the temporal correlations between succes-

sive frames for both inversion and editing. RIGID first learn
the temporal correlation of inverted videos by a temporal-
compensated reconstruction. It takes previous and current
faces as input, and produces a temporal compensated code
with a spatial noise map. They, together with the image-
based latent code, are fed to the StyleGAN generator to re-
construct the video frames. Meanwhile, RIGID disentangles
high-frequency artifacts in the latent space for eliminating
the temporal flickering. Furthermore, for learning the tempo-
ral correlation of edited video, we enforce an edited frame
can be composed by the flow-based warping of its neigh-
bor frames. RIGID achieves attribute-agnostic editing with
much less time cost. Extensive experiments demonstrate the
superiority of RIGID.

Limitations. As cropping and alignment of faces are
needed before the inversion, those hair portions outside the
cropped region cannot be edited by our method, which leads
to unnatural conflicts after blending. It may be addressed
by using StyleGAN3 [10] since it can generate unaligned
faces. However, as indicated in [3], StyleGAN3 has a worse
edit ability than StyleGAN2, which is essential in GAN
inversion.

Broader Impact. RIGID can potentially be used for aca-
demic research and commercial applications. It provides a
pipeline for video-based GAN inversion, and benefits the
design of temporal coherent video GANs. Besides, RIGID
can create more facial videos in the media industry. On the
other hand, although not the purpose of this work, it can
potentially be misused for the violation of portrait rights
and privacy. The risk can be mitigated by face forgery de-
tection methods, i.e., we can detecte the blending boundary
using [15].
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