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Abstract

Recent advancements in large-scale pre-trained text-
to-image models have led to remarkable progress in se-
mantic image synthesis. Nevertheless, synthesizing high-
quality images with consistent semantics and layout re-
mains a challenge. In this paper, we propose the adaP-
tive LAyout-semantiC fusion modulE (PLACE) that har-
nesses pre-trained models to alleviate the aforementioned
issues. Specifically, we first employ the layout control map
to faithfully represent layouts in the feature space. Subse-
quently, we combine the layout and semantic features in a
timestep-adaptive manner to synthesize images with real-
istic details. During fine-tuning, we propose the Semantic
Alignment (SA) loss to further enhance layout alignment.
Additionally, we introduce the Layout-Free Prior Preserva-
tion (LFP) loss, which leverages unlabeled data to main-
tain the priors of pre-trained models, thereby improving the
visual quality and semantic consistency of synthesized im-
ages. Extensive experiments demonstrate that our approach
performs favorably in terms of visual quality, semantic con-
sistency, and layout alignment. The source code and model
are available at PLACE.

1. Introduction

Semantic image synthesis aims to generate high-quality im-
ages that are aligned with given semantic maps. It provides
users the flexibility to precisely control the spatial layout
of synthesized images using semantic maps while having
important applications in content creation [6, 7, 54], image
editing [20, 21, 25], and data augmentation [49].

Earlier semantic image synthesis works [14, 19, 26,
37] mainly relied on Generative Adversarial Networks
(GANs) [8] and trained a model using semantic maps as
condition within specific domains. However, due to the
limited scale of the training dataset, the quality and diver-
sity of generated images are usually compromised. Re-
cently, large-scale text-to-image models [30, 31, 33] have
shown high-quality and diverse generation results with
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Figure 1. Comparisons in terms of visual quality as well as layout
alignment and semantic consistency. Zoom in for details.

open-vocabulary textual prompts. Based on these pre-
trained text-to-image models (e.g., Stable Diffusion [31]),
ControlNet [50] and T2I-Adapter [23] introduced an addi-
tional adapter to inject layout guidance for high-quality se-
mantic image synthesis. Nevertheless, these adapters failed
to integrate textual semantics with corresponding regions
accurately, resulting in inconsistent layouts in generated re-
sults, as shown in Fig. 1.

To facilitate the layout consistency, FreestyleNet [48]
proposed an RCA module that forces each intermediate im-
age token to attend to the respective textual semantic, while
fine-tuning the diffusion model with RCA. However, the se-
mantic map used in RCA is directly adapted to the interme-
diate image features in latent diffusion, which is consider-
ably smaller than its original size (e.g., 64 × 64 compared
to 512×512), leading to inevitable layout information loss.
Moreover, the mechanism of RCA disrupts the global inter-
action between image and text tokens, impeding the synthe-
sis of high-quality images.

To alleviate the aforementioned issues, we propose
the adaPtive LAyout-semantiC fusion modulE (termed as



PLACE) as depicted in Fig. 2, which leverages pre-trained
Stable Diffusion for high-quality and faithful semantic im-
age synthesis. Firstly, inspired by the spatio-textual repre-
sentation [1], we introduce the layout control map (LCM),
which represents the layout information faithfully in low-
resolution feature space. Specifically, we explore the pro-
portion of each semantic component within the receptive
field of each image token in the intermediate image fea-
tures and utilize a vector composed of these proportions as
the layout feature for this image token. Such a layout con-
trol map retains layout information accurately in the feature
space and can be then incorporated with textual features to
guide the semantic image synthesis.

Manually constraining the regions influenced by each
semantic component with the layout control map allows
for the manipulation of the layout of synthesized images.
However, we noticed that it also restricts the interaction be-
tween image tokens and global text tokens, compromising
the visual quality of synthesized details. To effectively in-
tegrate layout control maps, while preserving the beneficial
interactions for better visual quality, we develop a timestep-
adaptive layout-semantic fusion module. Specifically, for
each fusion module, a time-adaptive fusion parameter is
learned from time embedding. Subsequently, this param-
eter is employed to adaptively combine our layout control
map with the original cross-attention maps which encap-
sulate the global semantics. The resulting adaptive fusion
maps not only encompass faithful layout information but
also maintain the influence of contextual textual tokens,
thereby improving the visual quality of generated images.

Additionally, we propose effective Semantic Alignment
(SA) loss and Layout-Free Prior Preservation loss to facili-
tate the fine-tuning. The SA loss constrains the weighted
aggregation results of the adaptive fusion map and self-
attention maps to be as close as possible to the original
adaptive fusion maps. It enhances the internal interactions
of image tokens within the same or related semantic re-
gion, consequently improving the layout consistency and
visual quality. Due to the limited scale of datasets, priors of
the pre-trained model are prone to perturbation while fine-
tuning. Our proposed LFP loss helps preserve priors with-
out involving layout annotation during fine-tuning. Specif-
ically, we compute the denoising loss in a layout-free man-
ner with the text-image pairs to preserve the semantic con-
cepts embedded in the pre-trained model. Owing to the en-
hanced preservation and utilization of semantic priors, our
method exhibits better visual quality and semantic consis-
tency, even in new domains (as shown in Fig. 1).

The contributions of this work can be summarized as:
• We introduce the layout control map as a reliable layout

representation and propose an adaptive layout-semantic
fusion module to adaptively integrate the layout and se-
mantic features for semantic image synthesis.

• We propose effective SA and LFP losses. The former en-
hances the layout consistency of generated images, while
the latter helps preserve the semantic priors of pre-trained
models with readily available text-image pairs.

2. Related Work
2.1. Semantic Image Synthesis

Semantic image synthesis aims to synthesize realistic im-
ages with given semantic masks. Previous works primarily
achieved the layout control over generated images through
Generative Adversarial Networks (GANs) [8].

Pix2pix [14] was the first to propose using an encoder-
decoder generator and a PatchGAN discriminator for se-
mantic image synthesis. Pix2pixHD [41] accomplished
high-resolution image synthesis by employing a coarse-to-
fine generator and multi-scale discriminators. SPADE [26]
proposed using spatially adaptive transformations learned
from semantic maps to modulate features and significantly
improved the image quality. Subsequently, CC-FPSE [19]
introduced predicting conditional convolution kernel pa-
rameters based on semantic layouts and utilized a feature
pyramid semantic-embedding discriminator to encourage
the generator to produce images with higher-quality de-
tails and better semantic alignment. More recently, SC-
GAN [43] learned a semantic vector to parameterize con-
ditional convolution kernels and normalization parame-
ters. LGGAN [38] introduced the utilization of a local
class-specific and global image-level generative adversar-
ial network to individually learn the appearance distribu-
tion of each object category and the global image. OA-
SIS [37] innovatively designed a segmentation network-
based discriminator, providing the generator with more po-
tent feedback, thereby generating semantically aligned im-
ages with higher fidelity. Besides, there are also some meth-
ods [22, 28, 35, 39, 44] exploring structural and shape infor-
mation in semantic maps to enhance the quality of images.

Despite significant achievements of previous methods in
semantic image synthesis, generated images still show lim-
ited quality and diversity due to constraints in the scale of
training data and the representation of semantic layouts.

2.2. Layout Controllable Text-to-Image Synthesis

Text-to-image synthesis focuses on generating images con-
ditioned on given text prompts. Benefiting from the pow-
erful diffusion model [12, 36] and extensive text-image
training data, text-to-image synthesis has achieved un-
precedented successes in terms of image quality, diver-
sity, and alignment with the provided text [24, 30, 31, 33].
Among them, the balance between efficiency and quality of
LDM [31] has attracted significant attention, making it the
foundational model for many controllable [50, 52] synthe-
sis, customized image synthesis [4, 9, 17, 32, 45] and some
other fields [13, 51].
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Figure 2. Overview of our method. (a) We utilize the layout control map calculated from semantic map S and PLACE for layout control.
During fine-tuning, we combine the LLDM , LSA, and LLFP as optimization objective. (b) Calculation of the layout control map and
details of the adaptive layout-semantic fusion module. Each vector in the Layout Control Map encodes all the semantic components in the
reception field. The adaptive layout-semantic fusion module blends the layout and semantics feature in a timestep-adaptive way.

Subsequent works investigated the utilization of pre-
trained models to achieve layout-controllable text-to-image
synthesis [1, 15, 27, 46, 47]. The eDiff-I [2] and the Two
Layout Guidance [5] iteratively optimize the alignment be-
tween the constrained cross-attention map and the target
layout. Nevertheless, they can merely roughly control the
positioning of the synthesized objects. ControlNet [50]
and T2I-Adapter [23] encode semantic maps with an ad-
ditional layout encoder. However, constrained by the gen-
eralization capacity of the layout encoder, they fail to over-
come the limitations of layout consistency. Another cat-
egory of methods controls the layout of synthesized im-
ages in a training-free manner. FreestyleNet [48] introduces
Rectified Cross Attention (RCA) to replace the cross atten-
tion module in Stable Diffusion, enabling each text token
to interact exclusively with the corresponding image fea-
ture region. Subsequently, the pre-trained Stable Diffusion
model is fine-tuned on specific domains to adapt to RCA.
FreestyleNet has made progress in semantic consistency
and layout alignment. However, due to the loss of layout
information when utilizing semantic maps with RCA, the
generated images lack sufficient layout alignment. Further-
more, due to the modifications in cross-attention and the
limited scale of fine-tuning datasets, FreestyleNet is prone
to losing priors in the pre-trained model and still exhibits
limitations in visual quality and semantic consistency.

3. Proposed Method
Given a semantic map S ∈ RH×W×C with C semantic
classes, semantic image synthesis aims to synthesize photo-

realistic images that are well aligned with S. The value
of C is determined by the number of semantic categories
specified by the user, rather than the cardinality of a pre-
defined closed set. To enable controllable image synthesis
with desired layouts, we first employ a faithful layout con-
trol map as layout representations in feature space. We then
propose PLACE to adaptively integrate the layout and se-
mantic features, as illustrated in Fig. 2 (b). During fine-
tuning, we further introduce the semantic alignment (SA)
loss to enhance the layout alignment and the layout-free
prior preservation (LFP) loss to improve the performance
of visual quality and semantic consistency. In the follow-
ing subsections, we first give a concise introduction of the
pre-trained text-to-image model we employed, namely Sta-
ble Diffusion [31]. We then provide the details of PLACE
and learning objective.

3.1. Preliminary: Stable Diffusion

Stable Diffusion [31] is a text-to-image synthesis model
based on the diffusion process in the latent space. It com-
prises two components, namely an autoencoder and a con-
ditional latent diffusion model (LDM). The autoencoder E
is designed to learn a latent space that is perceptually equiv-
alent to the image space. Meanwhile, the conditional LDM
ϵθ is parameterized as a U-Net with cross-attention and
trained on a large-scale dataset of text-image pairs via:

LLDM := EE(x),y,ϵ∼N (0,1),t[||ϵ− ϵθ(zt, t, τθ(y))||22], (1)

where ϵ is the target noise, τθ and y are the pretrained
CLIP [29] text encoder and text prompts, respectively, and
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Figure 3. Comparison between naive resize and layout con-
trol map regarding information preservation (downsampling by
8 times). The 1st column displays the original mask of ‘plants,
lights’ and full semantic map, the 2nd column shows the nearest
resized mask and corresponding synthesized image, and the 3rd
column presents the representation of the layout control map and
its generated image. A higher value indicates a higher proportion
of semantics within its patch. Ours preserves more details.

zt is the noisy latent at timestep t.
In the conditional LDM, the text feature is integrated

into the intermediate layers of the U-Net through the cross-
attention modules:

Q = WQ · ϕi, K = WK · τθ(y), V = WV · τθ(y),

Attention(Q,K, V ) = softmax(
QKT

√
d

)V,
(2)

where ϕi is the intermediate image features. WQ, WK , and
WV denote the learnable projection matrices of query, key,
and value, respectively. In the cross-attention module, the
interaction between each text token and image token signif-
icantly influences the layout of the generated image.
3.2. Adaptive Layout-Semantic Fusion Network

In this subsection, we will first introduce our proposed lay-
out control map and then present the details of our adaptive
layout-semantic fusion module.
Layout control map It has been noted that cross-attention
maps in Stable Diffusion are closely related to the layout of
the synthesized image [1, 2]. Specifically, Aca

i,j in the cross-
attention map Aca ∈ R(HW )×N determines the strength of
the association between the i-th image token and the j-th
text token, thus influencing the layout of synthesized im-
ages. Previous works roughly controlled the position of
specific objects in the synthesized image by constraining
the influence region of specific tokens in the cross-attention
map. However, due to the significantly smaller size of the
intermediate image features in LDM (less than or equal
to 64 × 64) compared to that of given semantic layouts
(512 × 512 or larger), simply resizing semantic maps to
adapt to the size of intermediate features inevitably leads

to distortion or even loss of details. For example, as illus-
trated in Fig. 3, even when the semantic map is resized to
only 1/8 of its original size with a naive nearest-neighbor
interpolation, the details of the ‘plants’ are distorted, and
some instances of ‘light’ are lost. Moreover, the image fea-
tures from deeper layers have smaller dimensions, making
it challenging to synthesize images that align precisely with
the given semantic maps.

To address the above issue, we propose a layout control
map that encodes layout information in the low-resolution
feature space with less loss of layout information. For each
token of the intermediate image features, we consider all
the semantic components within its receptive field, along
with the proportion occupied by each class. We then use a
vector composed of these proportions as the layout feature
for this token. As shown at the top of Fig. 2 (b), within the
receptive field of the image token selected by the red border,
there are four semantic categories, namely ‘wall’, ‘ceiling’,
‘window’, and ‘light’, and each corresponding to a different
proportion. The vector formed by the proportions faithfully
encodes the layout information within the receptive field of
this image token. Given a semantic map Ŝ ∈ R(HW )×C

reshaped from S ∈ RH×W×C , the calculation of layout
control map L ∈ R(hw)×N can be formulated as following:

Li,j =

{
|ŜRF (i),S(j)=1|

|RF (i)| , |ŜRF (i),S(j) = 1| ≠ 0

−∞, otherwise,
(3)

where RF (i) denotes the receptive field of the i-th image
token and S(j) is the corresponding semantic channel of
the j-th text token. | · | represents the number of elements in
the set. As can be observed from Fig. 3, our layout control
map encodes faithful layout details, including the branches
and leaves of the plants, and subtle lighting, resulting in a
synthesized image with richer and accurate details.
Adaptive fusion of layout and semantics Although man-
ually restricting the influence region of each semantic com-
ponent with the layout control map can manipulate the posi-
tion of synthesized objects, the synthesis of specific objects
fails to benefit from the global textual context. To appropri-
ately incorporate our layout representations into the image
synthesis process and synthesize high-quality images with
desired layouts, we propose an adaptive layout-semantic fu-
sion module (PLACE). As depicted in Fig. 2 (b), in each fu-
sion module, the time embedding is fed into a linear layer to
predict an adaptive fusion parameter α, which is then used
to integrate the layout control map L and the cross attention
map Aca to produce the adaptive fusion map F and final
output feature O:

F = α (softmax(L⊙Aca)) + (1− α)Aca, O=FV. (4)

By adopting a timestep adaptive parameter α as the weight
to fuse layout and semantic features, the global interactions
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Figure 4. Analysis of adaptive fusion module. (a) shows the variation of adaptive α with respect to the timestep. α decreases as the timestep
progresses. (b) presents the layout control map of the ‘sidewalk’ and the corresponding comparison of the fusion maps (at t = 800/1000)
between fixed α = 1 and adaptive α. (c) illustrates the variation of predicted x̂0 with respect to the sampling steps: one with a fixed α and
the other with an adaptive α. The latter leads to the synthesis of more realistic details. Zoom in for details.

between image tokens and text tokens in the Stable Dif-
fusion are maintained. The interactive mechanism allows
each image token to access contextual information from a
larger set of textual tokens. Such an adaptive integration of
layout and semantics not only helps control the layout of the
synthesized image but also facilitates the synthesis of high-
quality details. The trend of learned adaptive α changing
over timestep validates the effectiveness of our approach.
As shown in Fig. 4 (a), the relatively large value of α dur-
ing the early stages of sampling indicates the crucial role
of the layout control map in determining the initial layout.
However, in later stages, the adaptive α gradually decreases,
suggesting that the influence of the layout control map di-
minishes as the process proceeds. This enables the image
token to actively interact with global textual tokens, thereby
synthesizing more realistic details and high-quality results.
Fig. 4 (c) shows the variations of the predicted x̂0 during the
image synthesis process for both fixed α (α = 1) and adap-
tive α. One can see that in the early sampling phase, the lay-
out of x̂0 is determined, while in the later stages, the model
mainly synthesizes realistic details. Moreover, compared to
the fixed α = 1 case, adaptive fusion allows the image to-
ken to extract information from a greater set of text tokens,
enabling synthesizing images with richer and more realis-
tic details, such as the ‘pedestrian crossing’ in the ‘road’
shown in the figure. This is also corroborated in Fig. 4(b),
where the text token ‘sidewalk’ not only influences its cor-
responding semantic region but also affects other contextual
regions, such as the ‘road’ class. However, this kind of in-
teraction could not be observed under the fixed α condition.

3.3. Learning Objective

During the fine-tuning stage, in addition to the original text-
to-image denoising loss, we also introduce a semantic align-
ment (SA) loss and a layout-free prior preservation (LFP)
loss to facilitate the learning.
Semantic Alignment Loss To further enhance the layout
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Figure 5. Calculation of the Semantic Alignment loss.

alignment of synthesized images, we propose the semantic
alignment loss LSA. As illustrated in Fig. 5, we first uti-
lize the adaptive fusion map F ∈ RN×H×W as weights to
aggregate the self-attention map Asa ∈ R(HW )×H×W , re-
sulting in weighted aggregation maps W ∈ RN×H×W . We
then aim to minimize the difference between them and the
original adaptive fusion maps, which can be formulated as:

Wi =
∑
j

Reshape(Fi)j ·Asa
j ,

LSA =
∑
i

||Wi − Fi||2,
(5)

where Reshape(·) denotes the flatten operation and
Reshape(Fi) ∈ R(HW )×1. LSA effectively encourages
image tokens to interact more with the same and related se-
mantic regions in the self-attention module, thereby further
improving the layout alignment of the generated images.
Layout-Free Prior Preservation Loss Due to the limited
scale of the fine-tuning dataset, the model inevitably suffers
from loss of semantic priors, resulting in suboptimal perfor-
mance of semantic consistency and visual quality. Enlarg-
ing the scale of the fine-tuning dataset is one possible way to
address this issue. However, obtaining a substantial number
of real images annotated with semantic masks is non-trivial.



We introduce a Layout-Free Prior Preservation (LFP)
loss to alleviate this issue. It relies solely on text-image
data pairs to help preserve the prior knowledge of the pre-
trained model, which is relatively more accessible. Dur-
ing each fine-tuning iteration, in addition to sampling reg-
ular paired training data with semantic mask annotations
< zt, S, y, t >, we also extract an additional set of text-
image data pairs < z′t, y

′, t′ > from the Layout Free (LF)
dataset to feed into the network, as shown in Fig. 2 (a). Due
to the absence of semantic masks S′, we explicitly set the
adaptive fusion parameter α to 0 when synthesizing the im-
age. The original denoising loss LLDM and our LFP loss
LLFP can be computed as follows:

LLDM := EE(x),y,ϵ,t,S [||ϵ− ϵθ(zt, t, S, τθ(y))||22, (6)

LLFP := EE(x),y′,ϵ′,t′ ||ϵ′ − ϵθ,α=0(z
′
t, t

′, τθ(y
′))||22. (7)

We collect approximately 300k text-image pairs from Ope-
naImages [16] and Laion-5b [34] datasets as the Layout
Free dataset. More details about the implementation of the
LFP loss can be found in supplementary materials.

Through employing the LFP loss, semantic concepts
present in the pre-trained model are better preserved in the
fine-tuning process, even without the involvement of se-
mantic masks. Experimental results demonstrate that our
model can generate diverse images and exhibit improved
performance in visual quality and semantic consistency.

The optimization objective can be summarized by Eq. 5,
Eq. 6, and Eq. 7 as follows:

L = LLDM + λ1LSA + λ2LLFP , (8)

where λ1 and λ2 are the weight coefficients, and they are
set to 1 as default.

4. Experiments
4.1. Experimental Details

Datasets We conduct our experiments on two challeng-
ing datasets, namely ADE20K [53] and COCO-Stuff [3].
ADE20K consists of 150 semantic categories. It has 20,210
images for training and 2,000 images available for valida-
tion. COCO-Stuff contains 182 semantic categories cover-
ing diverse scenes. It comprises 118,287 training images
and 5,000 validation images. During training, both the im-
ages and semantic maps are resized to 512 × 512. All the
semantic classes present in the image are joined together
with spaces to form the input textual prompt.
Implementation Details We utilize the pre-trained V1-4
Stable Diffusion model [31] as the initialization weights and
fine-tune it with a learning rate of 5×10−6. All experiments
are conducted on a server with 4 NVIDIA V100 32G GPUs.
We fine-tuned for about 300k iterations and the batch size

ADE20K COCO-StuffMethods
mIoU ↑ FID ↓ mIoU ↑ FID ↓

pix2pixHD [41] 20.3 81.8 14.6 111.5
SPADE [26] 38.5 33.9 37.4 22.6

CC-FPSE [19] 43.7 31.7 41.6 19.2
LGGAN [38] 41.6 31.6 N/A N/A
OASIS [37] 48.3 28.3 44.1 17.0

SC-GAN [43] 45.2 29.3 42.0 18.1
SAFM [22] 50.1 32.8 43.3 24.6

RESAIL [35] 49.3 30.2 44.7 18.3
ECGAN [39] 50.6 25.8 46.3 15.7

SDM [42] 39.2 27.5 40.2 15.9
PITI [40] 29.4 27.9 34.1 16.1

ControlNet [50] 36.9 31.2 N/A N/A
T2I-Adapter [23] N/A N/A 20.7 16.8
FreestyleNet [48] 41.9 25.0 40.7 14.4

Ours 50.7 22.3 42.6 14.0

Table 1. Quantitative comparison on the ADE20K and COCO-
Stuff. The upper row shows the results of GAN-based methods,
while the lower row displays the scores of those based on diffusion
models. ↑ (↓) indicates higher (lower) is better.

New Obj. New Sty. New Attri.Methods
mIoU (↑) FID (↓) Text-Alignment (↑) Text-Alignment (↑)

ControlNet 18.2 27.4 0.274 0.284
FreestyleNet 24.6 20.4 0.260 0.269

Ours 33.0 18.1 0.279 0.290

Table 2. Comparison of out-of-distribution synthesis. ↑ (↓) indi-
cates higher (lower) is better.

is 4. During sampling, we employ 50 PLMS [18] sampling
steps with a classifier-free guidance [11] scale of 2.
Evaluation Metrics Following prior works on semantic im-
age synthesis [48], we quantitatively evaluate the results
of in-distribution synthesis with Fréchet Inception Distance
(FID) [10] and the mean Intersection over Union (mIoU).
FID assesses the visual quality of generated images, while
the mIoU measures semantic and layout consistency. Be-
sides, benefiting from the superior prior of the pre-trained
model, our method also shows the capability for out-of-
distribution synthesis. We evaluate this ability from three
perspectives, namely new object, new style, and new at-
tribute. For new object synthesis, we employ the model
fine-tuned on ADE20K to synthesize semantic categories
that exclusively appear in COCO-Stuff (i.e., categories not
contained in the ADE20K). FID and mIoU are adopted to
assess the quality and consistency of the results. Regarding
new style and new attribute synthesis, we synthesize 260
images with 8 new global styles and 6 specific object at-
tributes with the same model. We measure the consistency
of the synthesized results with specific styles or attributes
using CLIP [29] text-image similarity (i.e., text alignment).
More details can be found in supplementary materials.
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Figure 6. Visual comparisons on ADE20K (1st ∼ 3rd rows) and COCO-Stuff (4th ∼ 5th rows).

4.2. Evaluation of In-distribution Synthesis
Quantitative comparisons Table 1 reports the FID and
mIoU performance of our approach compared to other com-
peting methods. The upper rows present the results of
GAN-based methods, while the lower rows display the
scores of methods based on pre-trained text-to-image mod-
els. As shown, our method achieves FID scores of 22.3
and 14.0 on the ADE20K and COCO-Stuff datasets, re-
spectively, which are 2.7 and 0.4 lower than the second-
best scores. In terms of alignment, our method obtains re-
sults comparable to the state-of-the-art. On the ADE20K,
our mIoU score reaches 50.7, while on the COCO-Stuff,
our score is 42.6. The quantitative results indicate that our
method not only achieves comparable performance in se-
mantic and layout consistency to the current state-of-the-
art works but also attains the highest image quality scores.
The reliable layout representation allows our approach to
demonstrate enhanced consistency in layout details com-
pared to other methods based on pre-trained text-to-image
models, on par with the most advanced GAN-based meth-
ods. Moreover, the efficient interaction between layout and
semantic features in the adaptive layout-semantic fusion
plays a vital role in synthesizing high-quality images.
Qualitative comparisons Fig. 6 illustrates the qualitative
comparisons on the ADE20K and COCO-Stuff, from which
the following observations can be made: (1) Our method
produces synthesis results that exhibit higher fidelity to the
semantic layout. For example, the ‘clock’ in the 3rd row
demonstrates improved alignment with the semantic lay-

out. (2) The images synthesized by our method demonstrate
more realistic details. Notable examples include the ‘bed’
in the 1st row, the ‘table’ in the 2nd row, and the ‘pedes-
trian crossing’ in the 5th row. (3) Our method effectively
preserves and utilizes the priors in the pre-trained model.
An example can be seen in the 4th row with the preserva-
tion of the signage. More qualitative results can be found in
supplementary materials.

4.3. Evaluation of Out-distribution Synthesis
Table 2 and Fig. 7 present the quantitative and qualitative
comparisons of out-of-distribution synthesis results respec-
tively. The evaluation of out-of-distribution synthesis com-
prises three aspects, namely new object, new style, and new
attribute. As shown, our method achieves superior quantita-
tive scores in all three aspects compared to both ControlNet
and FreestyleNet. Especially in the new object category,
our method achieves a significant mIoU improvement of 8.4
compared to FreestyleNet. From the visual comparison, it
is evident that our method synthesizes out-of-distribution
images with not only better semantic consistency with the
given conditions (i.e., new semantic, new style, and new
attribute) but also maintains good performance in terms of
layout alignment. For instance, in Fig. 7, the ‘anime’ style
in the 1st row, the ‘rainbow’ in the 3rd row, and the ‘bird’
in the 4th row are all faithfully consistent with the provided
conditions. The ‘bird’ and the ‘bear’ in the 4th row demon-
strate strong layout alignment. More results can be found in
supplementary materials.



new style : in anime

new style : in Minecraft

new attribute : sky with rainbow

new object : bear, bird

semantic label ground-truth ControlNet FreestyleNet Ours

Figure 7. Visual comparison of out-of-distribution synthesis.

4.4. Ablation Study
We conduct the ablation study with variant models fine-
tuned on the ADE20K dataset to validate the effectiveness
of our method. Our baseline model employs a simple near-
est resized semantic map to determine the region of influ-
ence for each text token based on given semantic maps. It
does not involve adaptive fusion and is fine-tuned only with
denoising loss. Besides, we utilize a more comprehensive
vocabulary, wherein a greater number of synonyms are em-
ployed to represent the same semantic category.

The comparisons of quantitative and qualitative results
are presented in Table 3 and Fig. 8, respectively. In Table 3,
LCM denotes the Layout Control Map. Ada-α indicates
the usage of the timestep-adaptive parameter during fusion,
SA represents Semantic Alignment loss, and LFP refers to
Layout-Free Prior Preservation loss. The ✓indicates the
adoption of the corresponding module or strategy during
the experiments. We compared the FID and mIoU scores
of ADE20K and the new object classes (denoted by ‘New
Obj.’) from COCO-Stuff. More qualitative results can be
found in supplementary materials.
Layout control map From (1) and (2) in Table 3, the lay-
out control map significantly improves the mIoU scores, in-
creasing from 43.5 to 48.6 for in-distribution synthesis and
from 25.3 to 28.5 for out-of-distribution synthesis. Besides,
from Fig. 8, with the layout control map, our method can
generate images that adhere closely to given layouts (e.g.,
the ‘table’ and ‘plants’ in 1st row, and the ‘street light’ in
2nd row), demonstrating its effectiveness.
Adaptive α for fusion Referring to the (1) and (3) as well as
the (2) and (5) in Table 3, with the adaptive layout-semantic
fusion, the FID scores on the ADE20K decrease by 1.2 and
0.7, respectively. It is evident that the adaptive fusion en-
hances the quality of the synthesized images. In Fig. 8, the
results using adaptive fusion exhibit more realistic details

Semantic label Baseline +LCM +Ada-α +SA +LFP

Figure 8. Visual comparisons of different variants.

Methods ADE20K New Obj.
LCM Ada-α SA LFP mIoU ↑ FID ↓ mIoU* ↑ FID ↓

(1) 43.5 24.2 25.3 20.2
(2) ✓ 48.6 23.4 28.5 19.8
(3) ✓ 46.2 23.0 26.5 19.4
(4) ✓ 46.7 23.9 27.1 19.9
(5) ✓ ✓ 50.1 22.7 29.4 19.3
(6) ✓ ✓ ✓ 50.9 22.8 29.9 19.4
(7) ✓ ✓ ✓ 49.8 22.3 32.8 18.1
(8) ✓ ✓ ✓ ✓ 50.7 22.3 33.0 18.1

Table 3. Quantitative comparison of five variants on Ade20K in the
ablation study. The mIoU* denotes the mIoU scores of semantic
classes that are exclusively present in the COCO-Stuff dataset.

(e.g., ‘window’ and ‘road’ in 1st and 2nd rows).
Semantic Alignment loss Both the (1) and (4) along with
the (5) and (6) in Table 3 indicate that the semantic align-
ment loss contributes to the consistency of the layout. The
mIoU scores increase by 3.2 and 0.8 on the ADE20K, indi-
vidually. As shown in Fig. 8, the alignment loss also helps
synthesize more realistic instances (e.g., 3rd row).
Layout Free Prior Preservation loss The LFP loss better
preserves the semantic priors in the pre-trained model, re-
sulting in improved performance for visual quality and se-
mantic consistency. The (5) and (7) in Table 3 show that the
LFP loss leads to a 3.4 increase in the mIoU score and a 1.2
decrease in the FID score for new object synthesis. From
experiments (6) and (8), the mIoU and FID scores of syn-
thesized new objects improved by 3.1 and 1.3, respectively.
With LFP loss, the 3rd row in Fig. 8 presents a realistic
‘cat’, even though it has never appeared in training dataset.
5. Conclusion
In this paper, we first present a novel layout control map for
reliable representations of layout features. We further com-
bine the semantic and layout features adaptively, resulting
in the synthesis of high-quality images that are faithfully
aligned with given semantic layouts. Additionally, we pro-
pose a semantic alignment loss to facilitate the layout align-
ment and a layout-free prior preservation loss to maintain
semantic priors of pre-trained models for fine-tuning. Ex-
tensive quantitative and qualitative results demonstrate that
PLACE exhibits remarkable visual quality, semantic con-
sistency, and layout alignment for both the in-distribution
and out-of-distribution semantic image synthesis.
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