
Blind Image Super-resolution with Elaborate Degradation Modeling on
Noise and Kernel

Zongsheng Yue1, Qian Zhao2, Jianwen Xie3, Lei Zhang4, Deyu Meng2,5, Kwan-Yee K. Wong1

1The University of Hong Kong, Hong Kong, China 2Xi’an Jiaotong University, Xi’an, China
3Cognitive Computing Lab, Baidu Research, Bellevue, USA
4The Hong Kong Polytechnic University, Hong Kong, China

5Peng Cheng Laboratory, Shenzhen, China

Abstract

While researches on model-based blind single image
super-resolution (SISR) have achieved tremendous suc-
cesses recently, most of them do not consider the image
degradation sufficiently. Firstly, they always assume im-
age noise obeys an independent and identically distributed
(i.i.d.) Gaussian or Laplacian distribution, which largely
underestimates the complexity of real noise. Secondly, pre-
vious commonly-used kernel priors (e.g., normalization,
sparsity) are not effective enough to guarantee a rational
kernel solution, and thus degenerates the performance of
subsequent SISR task. To address the above issues, this
paper proposes a model-based blind SISR method under
the probabilistic framework, which elaborately models im-
age degradation from the perspectives of noise and blur
kernel. Specifically, instead of the traditional i.i.d. noise
assumption, a patch-based non-i.i.d. noise model is pro-
posed to tackle the complicated real noise, expecting to
increase the degrees of freedom of the model for noise
representation. As for the blur kernel, we novelly con-
struct a concise yet effective kernel generator, and plug it
into the proposed blind SISR method as an explicit ker-
nel prior (EKP). To solve the proposed model, a theoreti-
cally grounded Monte Carlo EM algorithm is specifically
designed. Comprehensive experiments demonstrate the su-
periority of our method over current state-of-the-arts on
synthetic and real datasets. The source code is available
at https://github.com/zsyOAOA/BSRDM .

1. Introduction

Single image super-resolution (SISR) is a fundamental
problem in computer vision. It aims to recover the sharp
detailed high-resolution (HR) counterpart from an observed
low-resolution (LR) image. Image degradation, the func-
tional opposite of image super-resolution, is the process of

generating a LR image from the HR one. Unfortunately,
the degradation model is always unknown while compli-
cated, making the blind SISR problem extremely challeng-
ing. How to rationally and practically model the degrada-
tion is therefore of great significance in blind SISR.

Early methods [14, 24, 44, 45] simply regard SISR as
an interpolation problem. They have fast processing speed
but always blur high frequency details. Later methods be-
gin to consider the image degradation, and can be roughly
divided into two categories, namely model-based methods
and learning-based methods. From the Bayesian perspec-
tive, model-based methods [11,20,25,36,40,42] firstly build
a generative model based on the image degradation and then
estimate the blur kernel and the HR image under the maxi-
mum a posteriori (MAP) framework. Such MAP estimation
is implemented for each LR image individually, and thus
tends to achieve better generalization for unknown degrada-
tions. Learning-based methods [10, 25, 56, 65], on the other
hand, aim to learn a unified super-resolver based on a large
amount of LR/HR image pairs synthesized according to the
pre-assumed degradation model. Recently, to improve their
generalization, some works [8,16,28,51,54] attempt to learn
the degradation model from unpaired real image data. How-
ever, these learning-based methods rely heavily on the col-
lected training data, and may suffer from a severe perfor-
mance drop when unseen degradations show up in testing.
In this paper, we follow the model-based methodology for
its better generalization capability.

Most of the model-based blind SISR methods can be
generally formulated as the following MAP problem:

max
x,k

log p(y|x,k) + log p(k) + log p(x), (1)

where y, x, and k denote the observed LR image, the un-
derlying HR image, and the blur kernel, respectively. The
last term represents the image prior, while the first and sec-
ond terms deliver our knowledges on the degradation model
(i.e., noise distribution and kernel prior). Most of the exist-
ing methods focus on designing more rational image priors,
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Figure 1. An overview of the proposed SISR method and the corresponding EM algorithm. A probabilistic model is constructed to depict the generation
process of the observed LR image, which mainly involves two groups of parameters, including the latent variable z and the model parameters {α,L,λ}.
A Monte Carlo EM algorithm is designed to alternately update them in the E-Step and M-Step, respectively.

such as gradient profile [42], sparsity [7, 20], DIP [46] and
so on [9, 11, 22, 32, 34, 38]. However, they often do not suf-
ficiently consider the degradation model:

• As for noise modeling, most of current method adopt
the independent and identically distributed (i.i.d.) Gaus-
sian or Laplacian distribution to model the noise. Such
a simple noise assumption, however, usually underes-
timates the complexity of real image noise and shows
limited robustness in practical applications. For exam-
ple, the most common camera sensor noise affected by
the in-camera pipeline is signal-depedent, and thus ex-
hibits evident non-i.i.d. property in statistics.

• As for kernel modeling, traditional methods often ig-
nore it or adopt some heuristic priors, e.g., normaliza-
tion (i.e., the kernel elements sum to 1) [17] and spar-
sity [3], which usually cannot guarantee a rational kernel
solution. Recently, Liang et al. [25] trained an implicit
mapping parameterized as a convolutional neural net-
work (CNN) from the latent noises to anisotropic Gaus-
sian kernels, and then embedded it into the blind SISR as
a kernel prior. Albeit achieving evident performance im-
provement, this method depends on a time-consuming
and labor-cubersome pre-training phase. Moreover, the
fitting error, which is inevitable during training, may be
enlarged in the alternate iterations between the kernel
estimation and super-resolution tasks. The performance
of blind SISR can be therefore further improved by de-
signing an explicit yet effective kernel prior.

To address the above issues, this paper proposes a prob-
abilistic blind SISR method that elaborately considers the
noise and kernel modeling (see Fig. 1). To better model
the complicated real noise, a patch-based non-i.i.d. Gaus-
sian noise assumption is adopted instead of the conventional
i.i.d. one. Under such setting, each p×p image patch has its
own noise parameter, which complies better with the config-

urations of real noise. As for blur kernel, we observe that it
can be formulated as an explicit and differentiable function
in terms of the covariance matrix. This inspire us to con-
struct an explicit kernel prior (EKP) for the generally used
anisotropic Gaussian kernel, which can be easily embedded
into current deep learning (DL)-based blind SISR methods.
In summary, the contributions of this work is three-fold:
1. Different from the commonly-used i.i.d. Gaussian or

Laplacian distribution, a patch-based non-i.i.d. noise
distribution is employed in the proposed method, mak-
ing it able to handle complicated real noise.

2. A generative kernel prior named EKP is novelly con-
structed for the blind SISR task. It is with explicit and
concise form, and substantiated to be able to attain a
more stable kernel estimation for SISR.

3. A theoretically grounded Monte Carlo EM algorithm
(see Fig. 1) is designed to solve our proposed model.

2. Related Work

In this section, we briefly review the literatures on image
degradation models and blind SISR.

2.1. Image Degradation Model

Image degradation model is a long-standing and open
research topic in SISR. The most common and also sim-
plest degradation model is bicubic downsampling, which is
widely used to synthesize training and testing data in many
SISR works [6, 11, 19, 23, 64]. More general degradation
models, consisting of a sequence of blurring, downsam-
pling and noise addition, are also widely adopted by pre-
vious works [37, 41, 58, 61, 65]. Recently, Zhang et al. [59]
propose a more practical degradation model by introducing
a random shuffle strategy among the blurring, downsam-
pling and noise addition, and more practical camera sensor



and JPEG compression noises in the noise addition proce-
dure. Furthermore, Wang et al. [47] consider the common
ringing and overshoot artifacts, and propose a high-order
degradation model to cover a larger degradation space.

2.2. Blind SISR Methods

As mentioned in the introduction, other than the heuristic
interpolation-oriented methods [14, 18, 24, 44], most of the
existing methods can be loosely divided into two categories,
namely model-based and learning-based methods. Even
though this paper focuses on model-based methods, we also
briefly review learning-based methods for completeness.
Model-based Methods. Model-based methods mainly fo-
cus on designing the three terms in Eq. (1), i.e, the like-
lihood, kernel prior, and image prior. The image prior
has received more attentions in the past decades. Typical
traditional image priors include total variation (TV) [38],
hyper-Laplacian [22], gradient profile [42], sparsity [20],
and non-local similarity [7]. With the prevalence of deep
learning, more DL-base image priors have been proposed.
A representative work is proposed by Ulyanov et al. [46],
namely deep image prior (DIP), to capture the low-level
image statistics. Shocher et al. [41] attempt to recover the
HR image using the prior of patch recurrence across scales.
More related works can be found in [2, 34].

Kernel prior is another important part in the MAP frame-
work. Traditional blind SISR methods only consider some
heuristic kernel priors, such as normalization [17] and spar-
sity [3]. Recently, some works begin to implicitly model
the kernel by DNN. For example, Ren et al. [36] propose to
model the kernel prior using a multilayer perceptron (MLP),
while Liang et al. [25] train a flow-based kernel prior named
FKP for blind SISR. Instead of such an implicitly model-
ing manner, this paper attempts to design an explicit and
concise kernel prior, hoping to induce a more stable kernel
estimation in blind SISR task.

As for the likelihood, most of the existing methods adopt
an i.i.d. Gaussian or Laplacian distribution, which often
fails to comply with the configurations of real noise and
causes a performance drop in real scenarios. To address
this issue, this work employs a non-i.i.d. noise modeling
method to better deliver the real noise configurations and
thus improve its generalized capability.
Learning-based Methods. The main idea of learning-
based methods is to learn a super-resolver from large
amount of pre-simulated LR/HR image pairs. Dong et
al. [6] firstly propose to learn an end-to-end CNN mapping
from LR to HR images. Later, plenty of CNN architectures
are designed for SISR [13,19,26,31,43,48,64]. Recently, a
flurry of unpaired SISR methods [8,16,28,51,54] have been
proposed, due to the fact that real LR images rarely come
with the corresponding HR images in practice.

3. The Proposed Method
3.1. Degradation Assumption

Various degradation models have been proposed in pre-
vious works. Most of them can be written as a downsam-
pling with a subsequent noise addition process, i.e.,

y = D(x;k, ↓s) + n, (2)

where y and x denote the LR and HR images, respectively,
D(x;k, ↓s) represents the downsampling process with a
blur kernel k and s-fold downsampler ↓s, and n is the noise.
In fact, the real LR image may be also obtained by firstly
adding noise and then downsampling the HR image [59],
which makes the noise more complicated. This process can
also be formulated in the same format as Eq. (2), i.e.,

y = D(x+ n;k, ↓s) = D(x;k, ↓s) + n̂, (3)

where n̂ = D(n;k, ↓s). Hence, we only need to consider
the degradation sequence in Eq. (2).

For the blur kernel k, we assume it to be the general
anisotropic Gaussian kernel which is sufficient for SISR
as pointed out in [37, 58]. Furthermore, considering dif-
ferent settings for the downsampler ↓s (e.g., bicubic [19]
and direct1 [58]) and the imposed order between the blur-
ring and downsampling procedures (i.e., (x∗k) ↓s [58] and
(x ↓s)∗k [62], where ∗ is the convolution operator), we can
obtain multiple different degradation assumptions based on
Eq. (2). This paper aims to propose a blind SISR method
with elaborate considerations on noise and kernel model-
ing, which does not depend on the format of the downsam-
pler and the specific imposed order between the blurring and
downsampling procedures. For the ease of presentation, we
adopt the most widely used degradation assumption to con-
struct our SISR model in the next subsection, i.e.,

y = (x ∗ k) ↓ds +n, (4)

where ↓ds is the direct downsampler with a scale factor s.

3.2. Probabilistic SISR Model

In this subsection, we are going to build our blind SISR
method based on the degradation model in Eq. (4),
Non-i.i.d. Noise Modeling. Different from the traditional
i.i.d. Gaussian or Laplacian noise assumption on the whole
image, a patch-based non-i.i.d. noise model is proposed in
this work. Given any observed LR image y ∈ Rh×w, where
h and w denote the image height and width, respectively, we
regard y as N (N = hw) highly overlapped p× p patches.
Furthermore, we assume that the noises contained in each
patch obey a different zero-mean Gaussian distribution with

1Direct downsampler with a scale factor s means keeping the upper-left
pixel for each distinct s× s patch and discarding the rest.



its own variance parameter. Specifically, considering the i-
th image patch centered at yi, we have

yi ∼ N
(
yi|[(x ∗ k) ↓ds ]i, λi

)
, i = 1, 2, · · · , N, (5)

where λi is the noise variance for the i-th image patch.
In previous researches, they often assume the noise as

additive white Gaussian noise (AWGN), which is indeed a
special case of our non-i.i.d. noise distribution. By regard-
ing the whole image as one large patch with size h × w,
our noise model then naturally degenerates to AWGN, but
with noise variance parameter being automatically updated
during learning (see Sec. 4) instead of manually adjusted.
Kernel Prior. Based on the anisotropic Gaussian assump-
tion on the blur kernel, we construct a concise yet effective
kernel prior. For any blur kernel k with size (2r+1)×(2r+
1), it is defined as follows:

kij =
1

2π

√
|Λ| exp

{
−1

2
STΛS

}
, i, j ∈ {−r, · · · , r},

(6)
where Λ is the precision matrix, S =

[
i
j

]
is the spatial

coordinate. From Eq. (6), it can be observed that the blur
kernel is completely determined by the precision matrix Λ
after fixing the kernel size. Note that Eq. (6) is differen-
tiable w.r.t. Λ. This implies that it can be regarded as a
kernel generator, in which Λ can be easily optimized with
stochastic gradient descent (SGD) under the DL framework.

Another tricky issue is how to guarantee the positive-
definiteness of the precision matrix Λ during optimization.
Inspired by the Cholesky decomposition, we reparameterize
Λ as follows:

Λ = LLT , (7)

where L ∈ R2×2 is a lower triangular matrix. By substi-
tuting Eq. (7) into Eq. (6), we obtain the following explicit
kernel prior termed EKP,

kij = h(L) =
1

2π
|L| exp

{
−1

2
STLLTS

}
. (8)

In practice, to make L be triangular during optimization, we
rewrite L as L = Q ⊙M , where M = [ 1 0

1 1 ] and ⊙ is the
Hadamard product, and turn to optimize Q.

To our best knowledge, the most effective kernel prior for
SISR is FKP [25]. The main idea of FKP is to firstly train
a deep generator that maps the latent noises to anisotropic
Gaussian kernels, and then use the pre-trained generator to
estimate the blur kernel by only adjusting the latent noises.
The inevitable fitting error of this generator may be enlarged
when applying it in blind SISR, and thus limits the final
performance. Comparing with FKP, the advantages of our
proposed EKP is three-fold: 1) EKP is an explicit kernel
generator that does not rely on pre-training, making it more
convenient to be used in SISR. 2) The generated kernel by

EKP is always an exact anisotropic Gaussian kernel, which
naturally avoids the issue of fitting error in FKP. 3) In EKP,
the kernel k is completely controlled by L, which contains
much fewer parameters than that of the latent noise vector
in FKP (3 vs. 112/152/192 for scale 2/3/4, respectively).
This makes EKP more easier to be optimized after pluging
into the blind SISR as a kernel prior.
Image Prior. We employ a CNN-based generator G to gen-
erate the HR image from the latent space, i.e.,

x = G(z;α), (9)

where z and α denote the latent variable and network pa-
rameters, respectively. As demonstrated in [46], G is very
easy to overfit onto the image noise due to the powerful
fitting capability of CNN. Therefore, we introduce the con-
ventional hyper-Laplacian prior to constrain the statistical
regularity of the generated HR image through the following
joint distribution of α and z:

(α, z) ∼ p(α, z) = p(α|z)p(z), (10)

p(α|z) ∝ exp

(
−ρ

2∑
k=1

|fk ∗G(z;α)|γ
)
, (11)

p(z) = N (z|0, I), (12)

where {fk}2k=1 are the gradient filters along the horizontal
and vertical directions, ρ and γ are both hyper-paramters.

As for the generator G, we follow the “hourglass” archi-
tecture in DIP [46] but use a tiny version that contains much
fewer parameters. The detailed network architecture can be
found in supplementary material (SM).

3.3. MAP Estimation

According to Eqs. (5)-(12), a full probabilistic model is
constructed. Under the MAP framework, our goal turns to
maximize the following posterior:

p(α,L,λ|y) ∝
∫

p(y|α,L,λ, z)p(α|z)p(z)dz. (13)

Note that we have omitted the prior terms p(L) and p(Λ),
since they are set as non-informative priors in our model.
Taking the logarithm of both sides of Eq. (13), we have the
following maximization problem:

max
α,L,λ

log p(α,L,λ|y)

= log

∫
p(y|α,L,λ, z)p(α|z)p(z)dz + const. (14)

4. Inference Algorithm
Inspired by [52, 53], we design a Monte Carlo

expectation-maximization (EM) algorithm [5] to solve



Algorithm 1 Inference procedure for the proposed method

Input: observed LR image, hyper-paramter settings.
Output: the super-resolved HR image IHR.

1: Initialize the model parameters {α,L,λ} and the latent
variable z.

2: while not converged do
3: E-Step: Sample the latent variable z from pold(z|y)

following Eq. (15).
4: M-Step: (a) Update parameters α and L with fixed

λ according to Eq. (18).
5: (b) Update noise variance parameter λ with

fixed α and L according to Eq. (19).
6: end while
7: IHR = G(z;α).

Eq. (14), which alternately samples the latent variable z
from its posterior p(z|y) in E-Step and updates the model
parameters {α,L,λ} in M-Step. The whole inference
framework is illustrated in Fig. 1.
E-Step. Given current model parameters {αold,Lold, λold},
we denote the posterior of z under them as pold(z|y). In E-
Step, our goal is to sample z from pold(z|y) using Langevin
dynamics [50]:

z(τ+1) = z(τ) +
δ2

2

[
∂

∂z
log pold(z|y)

] ∣∣∣∣
z=z(τ)

+ δζ(τ), (15)

where τ indexs the time step for Langevin dynamics, δ de-
notes the step size, ζ is the Gaussian white noise used to
prevent trapping into local modes. A key note to calculate
Eq. (15) is ∂

∂z log pold(z|y) = ∂
∂z log pold(z,y), and the de-

tailed calculation can be found in SM.
In practice, a small trick to accelerate the convergence

speed of Monte Carlo sampling in Eq. (15) is to start from
the previous updated z in each learning iteration. We empir-
ically found that it performs very stably and well by simply
sampling 10 times according to Eq. (15).
M-Step. Let’s denote the sampled latent variable in E-
step as z̃, M-Step aims to maximize the approximate lower
bound of Eq. (14) w.r.t. the model parameters {α,L,λ}:

max
α,L,λ

Q(α,L,λ) =

∫
pold(z|y) log p(y|α,L,λ,z)p(α|z)p(z)dz

≈ log p(y|α,L,λ, z̃)p(α|z̃)p(z̃). (16)

Equivalently, Eq. (16) can be reformulated into a minimiza-
tion problem as follows:

min
α,L,λ

E(α,L,λ) =
1

2

∥∥∥∥ 1

λ
⊙

{
y −

[
G(z̃;α) ∗ h(L)

]
↓ds

}∥∥∥∥2

2

+ ρ

2∑
k=1

|fk ∗G(z̃;α)|γ . (17)

To solve Eq. (17), we alternately update the model param-
eters {α, L} and λ. Specifically, for α and L, they can be
directly optimized by SGD based on the back-propagation
(BP) algorithm [39]:

Wnew = Wold − η
∂

∂W
E(α,L,λ), W ∈ {α,L}, (18)

where η is the learning rate. Actually, we adopt the more
advanced Adam [21] algorithm to update α and L instead
of the SGD strategy of Eq. (18), which empirically makes it
converge much faster.

For the noise variance λ, we consider λi in the p × p
patch centered at the i-th pixel. Fortunately, based on the
i.i.d. Gaussian assumption within this image patch, we have
the following closed-form solution for λi:

λi =
1

p2

∑
j∈N(i)

{
yj −

[(
G(z̃;αold) ∗ h(Lold)

)
↓ds

]
j

}2

, (19)

where N(i) is the index set of the pixels in the p × p patch
centered at i.

It should be noted that the first term of (17) can be re-
garded as a re-weighted L2 loss with weight 1

λ , which is
automatically updated through Eq. (19) during optimiza-
tion. Detailed description of the proposed EM algorithm
is presented in Algorithm 1.

5. Experimental Results
We conducted extensive experiments to verify the effec-

tiveness of the proposed method in this section. For ease of
presentation, we briefly denote our blind super-resolution
method with elaborate degradation modeling on noise and
kernel as BSRDM in the rest of this paper.

5.1. Experimental Setup

Model Settings. Throughout the experiments, we empir-
ically set the hyper-paramters ρ and γ to be 0.2 and 2/3,
respectively. The setting on γ lies on the fact that the hyper-
Laplacian with exponent γ = 2/3 is a better model of image
gradient than a Laplacian or Gaussian [22]. To update the
model parameters α and L in M-Step, the Adam [21] al-
gorithm with default settings in Pytorch [35] is used. The
learning rates for α and L are set as 2e-3 and 5e-3, respec-
tively. As for the patch size p of the noise model, we provide
two different settings. For the synthetic Gaussian noise in
Sec. 5.2, we regard the whole image as one special image
patch. While for synthetic camera sensor noise in Sec. 5.2
and real image noise in Sec. 5.3, we set p to 15. For fair
comparison, the quantitative results of our method are aver-
aged by running it five times with different random seeds.
Comparison Methods. To evaluate BSRDM, we com-
pare it against five methods, including one learning-
based method RCAN [64], and four model-based meth-
ods, namely CSC [11], ZSSR [41], DoubleDIP [36], and



Table 1. Averaged PSNR/SSIM/LPIPS results of the comparison methods under different degraded combinations on Set14. The best results are highlighted
in bold. The gray results indicate unfair comparisons due to the mismatched degradations. Note that the results are averaged on six degradations with
different blur kernels as shown in Fig. 2 on Set14.

Noise
types Scale Metrics Methods

CSC [11] RCAN [64] ZSSR-B [41] ZSSR-NB [41] DoubleDIP [36] DIPFKP [25] BSRDM (ours)

Case 1

×2
PSNR↑ 24.87 24.99 25.04 30.27 23.98 27.45 29.56
SSIM↑ 0.686 0.690 0.701 0.841 0.637 0.752 0.815
LPIPS↓ 0.318 0.321 0.311 0.263 0.397 0.340 0.278

×3
PSNR↑ 21.96 22.02 22.06 26.49 20.38 26.59 28.19
SSIM↑ 0.551 0.553 0.566 0.741 0.498 0.712 0.768
LPIPS↓ 0.397 0.390 0.391 0.362 0.469 0.383 0.328

×4
PSNR↑ 20.18 20.08 20.23 23.73 17.98 25.66 26.76
SSIM↑ 0.475 0.474 0.490 0.618 0.394 0.679 0.720
LPIPS↓ 0.464 0.452 0.460 0.522 0.533 0.419 0.381

Case 2

×2
PSNR↑ 24.43 24.52 24.72 26.73 23.42 26.95 28.01
SSIM↑ 0.648 0.651 0.671 0.723 0.618 0.734 0.771
LPIPS↓ 0.404 0.404 0.385 0.387 0.427 0.385 0.359

×3
PSNR↑ 21.70 21.73 21.81 24.74 20.03 25.31 26.24
SSIM↑ 0.523 0.526 0.544 0.657 0.475 0.662 0.706
LPIPS↓ 0.493 0.495 0.481 0.469 0.516 0.468 0.443

×4
PSNR↑ 20.03 19.99 19.98 23.79 18.02 24.18 24.79
SSIM↑ 0.454 0.454 0.475 0.619 0.376 0.608 0.648
LPIPS↓ 0.553 0.556 0.543 0.521 0.586 0.529 0.507

Figure 2. Six Gaussian kernels used to synthesize the LR images.

DIPFKP [25]. Specifically, RCAN is a blind SISR method
trained under the bicubic degradation; CSC attempts to
recover high frequency image details using convolutional
sparse coding; ZSSR is a zero-shot method that exploits the
patch recurrence across scales in a single image; DoubleDIP
and DIPFKP are both blind SISR methods but with different
kernel priors. In the synthetic experiments of Sec. 5.2, we
consider both blind and non-blind settings for ZSSR, and
denote them as “ZSSR-B” and “ZSSR-NB”, respectively.
For ZSSR-B, we use the default setting of its official code,
in which the degradation model is assumed to be a bicubic
downsampler followed by AWGN noise. While for ZSSR-
NB, the ground truth blur kernels are pre-provided by us.
Noted that ZSSR, DoubleDIP, DIPFKP, and BSRDM all
employ deep CNN to generate HR image. Thus the compar-
ison with them can better verify the marginal effects brought
up by the noise and kernel modeling in BSRDM.

5.2. Evaluation on Synthetic Data

In this part, we quantitatively evaluate different meth-
ods on two commonly-used datasets, i.e., Set14 [57] and
DIV2K100 [1]. DIV2K100 contains 100 high resolution
images of the validation set of DIV2K, and we crop a
1024 × 1024 patch around the center from each image in
our experiments due to GPU memory limitation. The LR
images are synthesized via Eq. (4). To conduct a thorough
comparison, we consider diverse degradations combined
with different blur kernels and noise types. For blur ker-
nels, two isotropic Gaussian kernels with different widths
(i.e., 1.2 and 2.0) and four anisotropic Gaussian kernels are
chosen as shown in Fig. 2. Furthermore, we consider two

(a) Clean Image (b) Noisy Image (c) Noise

Figure 3. Illustration of camera sensor noise of Case 2. From left to right:
(a) clean image; (b) simulated noisy image with camera sensor noise; (c)
absolute residual (or noise) between (a) and (b).

noise types as follows:
• Case 1: Gaussian noise with noise level 2.55, which is

widely used in current SISR literatures [55, 58].
• Case 2: Camera sensor noise simulated by [4, 12], one

typical example is shown in Fig. 3.
Especially, the noise in Case 2 is very close to real cam-
era noise, and is thus suitable for evaluating different meth-
ods under the degradations with complicated real noise. As
for the quantitative metrics, except for the commonly-used
PSNR and SSIM [49], we also adopted LPIPS [63] to com-
pare the perceptual similarity between the recovered HR im-
age and ground-truth. Note that PSNR and SSIM are calcu-
lated in the luminance channel like most of the SISR litera-
tures, while LPIPS is directly calculated in RGB channels.
Comparison with SotA Methods. Table 1 lists the PSNR,
SSIM, and LPIPS results of different methods under diverse
degradations on Set14. The comparison on DIV2K100 can
be found in SM. From Table 1, we can see that the proposed
BSRDM achieves the best or at least the second best results
for all degradations. For the degradation with scale factor
2 and Gaussian noise, ZSSR-NB achieves the best perfor-
mance. While for the degradation with scale factor 2 and
camera sensor noise, BSRDM outperforms ZSSR-NB, in-
dicating that BSRDM is able to handle more complicated
noise due to its non-i.i.d. noise modeling. Comparing with
current state-of-the-arts (SotA) method DIPFKP, the evi-
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Figure 4. Super-resolution results of different methods for two degradations with Gaussian noise (top row) and camera sensor noise (bottom row) under
scale factor 3 on Set14. The blur kernel is shown on the upper-right conner of the zoomed LR image.
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Figure 5. Three super-resolution results of different methods on real LR images with scale factor 4. Please zoom in for best view.

dently superiority of BSRDM demonstrates the importance
of the noise and kernel modeling in SISR, since they both
use the same network architecture to generate HR image
even though BSRDM has fewer parameters (see Sec. 5.4).

Two visual results on Gaussian noise (top row) and cam-
era sensor noise (bottom row) are shown in Fig. 4. Note
that we only display the five best methods due to page limi-
tation, and the complete results can be found in SM. We can
easily observe that: 1) In the case of Gaussian noise, all the
comparison methods can remove such simple AWGN noise.
Due to the better kernel modeling, the proposed BSRDM
evidently achieves sharper results. 2) Under camera sensor
noise, the recovered images of the four comparison meth-
ods still contain some obvious noises or artifacts, mainly be-
cause their i.i.d. Gaussian noise assumption largely deviates
from the true noise distribution. On the contrary, BSRDM is
able to remove most of the noises and preserves clear image

details. This demonstrates the effectiveness of the proposed
non-i.i.d. noise assumption under the complicated noise.

Ablation Studies. The core contributions of this paper
mainly include the non-i.i.d. noise modeling manner and
the constructed kernel prior EKP. To justify their effective-
ness, we design two baseline methods. In the first baseline
(denoted as Baseline1), we replace the non-i.i.d. noise as-
sumption with the conventional i.i.d. one. Similarly, in the
second baseline (denoted as Baseline2), the proposed EKP
kernel prior is replaced with FKP [25], which is the current
most effective kernel prior to our best knowledge.

We compare BSRDM with these two baselines on differ-
ent degradations that combine the six blur kernels in Fig. 2
and camera sensor noise under scale factor 2 on Set14. The
detailed results are listed in Table 2. Firstly, comparing
with Baseline1, the performance gain of BSRDM is mainly
brought up by the non-i.i.d. noise assumption, which makes



Table 2. Ablation studies under camera sensor noise with scale
factor 2 on Set14. The PSNR/SSIM/LPIPS results are averaged
on the six kernel settings as shown in Fig. 2.

Methods Noise Assumption Kernel Prior PSNR / SSIM / LPIPSI.i.d Non-i.i.d. FKP EKP
Baseline1 ✓ ✓ 27.76 / 0.768 / 0.373
Baseline2 ✓ ✓ 27.52 / 0.765 / 0.362

BSRDM (ours) ✓ ✓ 28.01 / 0.771 / 0.359

200 300Iterations:  1 10050

(a) (b)
Figure 6. (a) Estimated kernels by our method at the 1st, 50th,
100th, 200th, and 300th iterations, (b) Ground-truth blur kernel.

it be able to better deal with such signal-depedent camera
sensor noise. Secondly, the superiority of BSRDM over
Baseline2 indicates that our proposed kernel prior EKP is
more effective than FKP as analysed in Sec. 3.2.

Figure 6 displays the estimated blur kernels by our
method in different iterations during optimization. Note that
the blur kernel is initialized as an isotropic Gaussian kernel
with width s (i.e., the 1st iteration), where s is the scale
factor. From this figure, we can see that the kernel is gradu-
ally adjusted toward the ground truth. After 300 iterations,
the estimated kernel is very close to the ground truth, which
facilitates a good super-resolution result.

5.3. Evaluation on Real Data

To further justify the effectiveness of BSRDM in real
SISR task, we evaluate it on RealSRSet [59], which con-
tains 20 real images from internet or the existing testing
datasets [15, 29, 30, 60]. Figure 5 shows three typical ex-
amples that include different scenarios in SISR, i.e., natural
image (top row), cartoon image (middle row), and text im-
age (bottom row). It can be easily seen that the proposed
BSRDM achieves evidently better visual results than the
other comparison methods. In the first and second exam-
ples (bottom and middle row of Fig. 5), the LR images
contain some obvious camera sensor noises or artifacts.
Most of the comparison methods cannot finely deal with
these cases, and tend to enlarge the noises or artifacts after
super-resolution. The proposed BSRDM is able to remove
most of these noises or artifacts and preserve clearer image
structures due to its more robust non-i.i.d. noise model-
ing. For the commonly-used “chip” example (bottom row
of Fig. 5) in SISR, the super-resolution results of the com-
parison methods are all very blurry, which may be caused
by the fact that the estimated kernel does not match with the
true one. On the contrary, BSRDM can obtain a relatively
sharper and cleaner HR image because the proposed EKP
makes it easier to estimate a rational blur kernel.

As pointed out by [59], we also find that current non-
reference metrics (e.g., NIQE [33], NRQM [27], and PI [1])

Table 3. Comparison results of different methods on model size (K) and
runtime (s).

Methods ZSSR DoubleDIP DIPFKP BSRDM
Scale ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

Time (s) 56 117 235 90 194 361 91 190 333 53 108 190
# parameters (K) 225 2396 2396 762

are not consistent with our perceptual visual system in real
SISR task. We put the detailed quantitative comparisons in
terms of non-reference metrics and more visual results in
SM due to page limitation.

5.4. Comparison on Model Size and Runtime

Table 3 lists the comparison results on model size (num-
ber of parameters) and runtime with existing model-based
SISR methods. For fair comparison, we consider three typ-
ical methods (i.e., ZSSR, DoubleDIP, and DIPFKP) that
are all accelerated by GPU, and the runtime results in Ta-
ble 3 are tested on a GeForce RTX 2080 Ti GPU. Specif-
ically, we fix the LR image size as 256 × 256 and count
the elapsed time of super-resolving it to size of 512 × 512,
768×768, and 1024×1024 with scale factor 2, 3, and 4, re-
spectively. From Table 3, it can be easily observed that: 1)
Our BSRDM has a moderate number of parameters compar-
ing with other methods. 2) Even though BSRDM contains
more parameters than ZSSR, it still has the similar speed
with ZSSR. What’s more, BSRDM is a little faster than
ZSSR under scale factor 4. 3) Comparing with current SotA
method DIPFKP, BSRDM is not only with faster speed but
also much fewer parameters. Taking all of the comparisons
on model size, runtime, and the performances on SISR into
consideration, it should be rational to say that BSRDM is
effective and potentially useful in real applications.

6. Conclusion

In this paper, we have proposed a new blind SISR
method under the probabilistic framework, which elabo-
rately considers the degradation modeling on noise and ker-
nel. Specifically, to better fit the complicated real noise, a
patch-based non-i.i.d. noise distribution is adopted in our
method. As for the blur kernel, we construct an explicit yet
effective kernel prior named EKP and apply it in the pro-
posed method. Through extensive experiments, we have
verifed the effectiveness and superiority of the proposed
method on synthetic and real datasets. We believe that this
work can benefit the blind SISR research community.
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