
Design and Analysis of Clusters with Single I/O Space*

Roy S. C. Ho1, Kai Hwang1, 2, and Hai Jin1,2

The University of Hong Kong1 and University of Southern California2

Email: scho@csis.hku.hk, kaihwang@usc.edu, hjin@eee.hku.hk

Abstract - Support of Single System Image (SSI) services
is the main approach that enables better utilization of
PC/workstation clusters. Some SSI services can be easily
built with the support of other low-level, elementary, SSI
services. In this paper, we describe a Single I/O Space
architecture for achieving a SSI at the I/O subsystem
level. Furthermore, we demonstrate how the Single I/O
Space can facilitate the development of other key SSI
services. Typical SSI services which can benefit from the
Single I/O Space include single file hierarchy, single
memory space, checkpointing systems and single process
space with process migration facilities. Benchmark
performance results show that our design achieves both
performance and storage size scalabilities that are
essential to building I/O-intensive clusters.

Keywords: Cluster computing, Single system image,
parallel I/O, distributed RAID, and single I/O space.

1. Introduction

Clusters have proven their potentials in the area of
low-cost, but high-performance, parallel computing.
Support of Single System Image (SSI) services is the main
approach that enables better utilization of clusters in terms
of convenience, performance, scalability, and reliability
[5][6]. Specifically, cluster computing demands a single
I/O space in distributed, I/O intensive, operations. The
construction of an efficient I/O framework with the SSI
services provided is essential for supporting all kinds of
I/O intensive application in scalable cluster environments.

The Single I/O Space (SIOS) project is initiated and its
aim is to build a SSI with high availability services for
disk I/O operations in scalable cluster environments using
commodity hardware and software. Our main objective is
to obtain a single address space for all data blocks in the
cluster with high performance scalability, availability and
compatibility with current cluster architectures and
__

* This research was supported by Hong Kong RGC grants HKU 2/96C
and HKU 7022/97E, by the Area of Excellence (AOE) information
technology development fund at HKU, and by a special research grant
from the USC Engineering School.

applications. Figure 1 illustrates the SSI service provided
by the SIOS from the viewpoint of cluster users.

Besides, some important SSI services can be easily
built with the support of other low-level, elementary SSI
services. It can be shown that the SIOS facilitates the
development of a number of key SSI services. In this
aspect, SIOS is a basic, but powerful, infrastructure to
achieving a SSI cluster.

SSI services enable a cluster of PCs or workstations to
be used as a single computing unit in a scalable and
efficient manner. In other words, SSI services target at
getting most out of the theoretical computing power of the
cluster nodes, while hiding the physically distributed
architectures. Furthermore, the design of SSI services
should provide scalable performance when more nodes
and components are added into the clusters.

In this paper, we present the SIOS architecture and its
impacts on cluster computing. The paper is organized as
follows: Section 2 introduces some basic concepts about
the SIOS. Section 3 describes the detailed design of the
SIOS. Section 4 discusses how the SIOS facilitates the
construction of a highly available SSI cluster. Section 5
presents a set of benchmark results on the developed
prototype of the SIOS. Finally, a conclusion is made in
Section 6 with more future work.

2. Designing SIOS at Device Driver Level

Previous research showed that a SSI for disk I/O
operations could be implemented in the user level
[4][9][15], the file system level [1][3][7] and the device
driver level [8][14]. User level designs are believed to
have higher portability and lower implementation cost.
However, they usually cannot provide a complete SSI
while users still have to use specific application
programming interfaces (APIs) and identifiers in order to
exploit full functionality of the packages. Furthermore,
using system calls and kernel facilities to perform file and
network I/O may decrease the performance. File system
level designs can have full control in data distribution
while providing a complete SSI to the user. However,
changing the file system does not guarantee strict
compatibility with current applications and the required

Without the Single I/O Space, the users see a cluster of
workstations, each with their own local I/O devices.
Remote I/O can only be done through established
services like NFS, with poor scalability and performance
degradations.

With the support of Single I/O Space, the users perceive
an illusion that they are using a single, large storage.
Remote I/O can be done as if the devices are attached
locally.

Figure 1: Concept of SIOS Services

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Cluster
node

Single I/O Space Services

UsersUsers

development and deployment costs are relatively high.
Device driver level designs avoid most problems found in
the other levels. They can provide a complete SSI to the
file systems and the users while minimizing the file
systems modifications. The major drawback of this
approach is that it is difficult to control the distribution
pattern of files for performance optimization purposes.
We chose to design and implement our SIOS prototype in
the device driver level.

In this section, we present our design of the SIOS.
First, we outline our design objectives. Second, we
introduce the primary building block of the SIOS, the
Cooperative Device Driver.

2.1. Design Objectives

We chose to design our prototype in the device driver
level. Our design has the following objectives.

A single address space for all data blocks in the
cluster - We provide the single address space by
constructing a Cooperative Device Driver (CDD) as the
disk device driver for each node in the cluster. These
CDDs communicate and cooperate to form the single
address space for each data block in the cluster. The file
system in each node will perceive an illusion that it is
using a large disk, and this illusion is provided by the
CDD. We will discuss this in details in Section 2.2 and
Section 4.1.

High availability features supported - High
availability features can be supported by implementing
some established technologies directly in the CDDs. We
have implemented RAID-5 and RAID-1 architectures in
our prototype, other architectures such as RAID-10 can be
easily deployed by modifying a specific program module
in our SIOS design. For instance, the SIOS with the
RAID-5 configuration can withstand a single disk failure
while keeping all the data online.

Performance and Size Scalability - There is no

central server in our design and the CDDs only maintain a
peer-to-peer relationship with the others. So, scalability
can be guaranteed by the server-less design as proposed in
[1]. Further, we eliminate the potential bottleneck by
striping the data across the distributed RAID disks. We do
expect performance gain by parallel accesses of striped
files.

The size of the buffer cache in our CDD design will be
increased so that we are able to get a remote data block
from remote memory, instead of remote disk, if that data
block has been cached-in. In this way, all the buffer
caches cooperate to form a large cache for the large
storage provided by the SIOS. With a fast network,
performance gain can be achieved by the cooperative-
caching effect [2] and remote disk I/O operations should
have the performance at least comparable, or even better
than, that of local disk I/O operations.

High compatibility with current cluster
applications - This is a “clean” design in the sense that
we have limited all implementation in a single level while
avoiding the changes in the other parts of the systems. In
particular, file system modifications can be minimized.
This guarantees high compatibility with current
applications and reduces implementation costs.

2.2. Distributed Cooperative Device Drivers

The SIOS consists of CDDs distributed throughout the
cluster nodes, each node runs a copy of the CDD as its
disk device driver. A CDD is constructed in the device
driver and the buffer cache levels. The block device
buffer cache is included in the CDD for maintaining data
consistency. The CDDs in a cluster cooperate to obtain a
single address space for each data block in the cluster,
thus providing an illusion of a single, large disk to the file
systems above. In this way, remote data retrievals are
transparent to upper layers and the operations performed
should be the same as if the data is accessed locally.

A Cooperative
Device Driver

(CDD)

Cluster node

Local FS

CDD CDD CDD CDD

SIOS

Application

Cluster node

Local FS

Application

Cluster node

Local FS

Application

Cluster node

Local FS

Application

Communications
between CDDs
through network

An illusion of
a single large

disk

Figure 2: Distributed Cooperative Device Drivers (CDDs)

Figure 2 illustrates the whole picture.

3. CDD Architecture

In this section, we first explain the internal design of a
CDD and introduce the device masquerading technique as
the enabling mechanism to build the SIOS. Second, the
data consistency issues among the distributed disks are
discussed.

3.1. Device Masquerading Technique and the
Internal Design of a CDD

The device masquerading technique is the key concept
to design CDDs. The idea is to redirect all I/O requests to
the remote disks. The results of the requests, including the
requested data, are transferred back to the originating
nodes. This mechanism gives an illusion to the operating
systems that the remote disks are attached locally.

Fig. 3a illustrates the device masquerading technique.
As shown in the figure, each cluster node has only one
physical disk attached. The CDDs run cooperatively to
redirect I/O requests to the remote disks. Each node
perceives the illusion that it has two physical disks
attached locally. Fig. 3b shows the internal design of a
CDD. The disk manager receives and processes the I/O
requests from the remote CDD client modules. The CDD
client module redirects the local I/O requests to remote
disk managers. The consistency module is responsible for
maintaining data consistency among the distributed disks.

A CDD can be configured to run as a disk manager or
a CDD client, or both at the same time. This means that
there are three possible statuses for a cluster node: (1) a
disk manager which contributes its local disk storage to
the other nodes, (2) a client which accesses the remote
disks donated by the other disk managers, and (3) both of
the above.

Software RAID architectures can be implemented
easily with the support of CDDs to form distributed RAID
architectures. All the data transfers and the data
consistency issues are handled transparently within the
CDDs and the RAID drivers only need to maintain the
data distribution and the related policies. Combining the
CDD and the RAID concepts shows three advantages.
First, RAID architectures add the fault tolerance
capability to the I/O subsystem. Second, RAID creates a
single address space across all distributed disks. Third, the
CDDs support transparent data transfers and data
consistency management that make the constructions of
distributed RAID architectures much easier.

3.2. Data Consistency Issues

Data consistency problems arise when multiple cluster
nodes have cached copies of the same set of disk data
blocks. Previous approaches [1][16] addressed this issue
in the file system level. In our design, data consistency
checking is supported in the disk driver level. This
approach simplifies the design and the implementation of
distributed file management services. Data consistency
among the CDDs is maintained in block level.

A data consistency model similar to that used in the
Frangipani file system [16] is used in our CDD design.
Multiple-reader/single-writer locks are used for
synchronization among the cluster nodes. A write lock of
a data block permits a CDD client to read, modify and to
cache modified copy in its own memory. A read lock of a
data block permits a CDD client to cache a read-only
copy of this data block.

A CDD client must get the appropriate lock before it
read/write a data block. If a data block is not locked, any
CDD client can get the read or write lock of that block
immediately. Only one CDD client can hold the write
lock of a data block at one time, while read locks may be
granted to multiple CDD clients. If one CDD client holds

Node 2Node 1

CDD CDD

Virtual disksPhysical disks

Communications
through the network Cooperative Disk Driver (CDD)

Disk Manager CDD Client
Module

Data Consistency Module

Communications through the network

 (a) Device masquerading (b) CDD architecture

Figure 3: Architecture Design of the Cooperative Disk Drivers (CDDs)

a write lock while another client is requesting a read/write
lock of the same data block, the first client needs to flush
its cache entries to the disks. It will release the lock if a
write lock is being requested; otherwise the lock will be
downgraded to a read lock. If one CDD client holds a read
lock while another client is requesting a write lock, the
first client will invalidate its cache entries and release the
lock.

We introduced a special lock-group table for
developing distributed file management services. Each
record in this table corresponds to a group of data blocks
that have been granted to a specific CDD client with read
or write permissions. The locks in each record are granted
and released atomically. This lock-group table is
replicated among the Data Consistency Modules in the
CDDs. A set of query functions is also supported for
checking purposes. Based on these facilities, the CDDs
guarantee certain file management operations, e.g.
creating directories, can be performed in an atomic
manner. Distributed file systems developed on top of
CDDs can design their own concurrent file access
policies, e.g. per-file locking, without taking care of the
remote communications involved. In our prototype, the
implemented policy is sufficient to carry out the
benchmark experiments.

4. Designing SSI Clusters with SIOS

SSI services enable a cluster of PCs or workstations to
be used as a single computing unit in a scalable and
efficient manner. In this connection, SIOS plays an
important role in developing and supporting different SSI
services. [5][6][11] give comprehensive descriptions on
different SSI services for cluster computing. In the

following paragraphs, we explain how some of these SSI
services can be supported by, and benefit from, the SIOS
service. The services that we discuss include the single
file hierarchy, single memory space, checkpointing
facilities, single process space, and process migration
support.

4.1. Single File Hierarchy

Single file hierarchy is an illusion of a single, huge file
system image that transparently integrates distributed
disks. In other words, all files in a cluster are stored in a
single hierarchy, and they can be accessed through
ordinary calls such as open, read, etc. [6]. Apart from the
conveniences it offer, the Single File Hierarchy is
particularly useful for process migration, where the
migrated process can still access the opened files at the
same locations in a directory tree.

The SIOS not only gives an illusion of a single disk to
the users, but to the local file systems too. This means
each local file system will perceive the illusion that it is
using a single disk as if the disk is attached locally. Since
each file system in the cluster is using the same disk
storage provided by the SIOS, a complete, single file
hierarchy is formed automatically.

The functionalities of single file hierarchy have
already been partially provided by existing distributed file
systems [6]. Typical examples include the Network File
System (NFS) [13] and the Andrew File System (AFS)
[10]. However, their performances usually degrade when
the number of clients is getting large. The SIOS provides
scalable performance through its server-less design while
supporting a complete SSI to the users.

Cluster node

Physical
Memory

Cluster node

Physical
Memory

Swappable
memory pages

SIOS Support

Figure 4: Distributed Shared Virtual Memory

Node 1 Node 2 Node 3

SIOS Support

Disk

DSM and DSVM

P2

Node 1 Node 2 Node 3

SIOS Support

Disk

DSM and DSVM P1
P2

P1 migrated
to node 2

P1

Figure 5: Process Migration Supported by SIOS

4.2. Single Memory Space

Single memory address space gives the users an
illusion of a big, centralized main memory, which in
reality may be a set of distributed local memories [6].
Several approaches have attempted to achieve single
memory address space, or Distributed Shared Memory
(DSM), on clusters [12]. However, most of them mainly
emphasized on distributed shared physical memory. SIOS
can extend this idea to Distributed Shared Virtual
Memory (DSVM) for all large-scale, out-of-core, cluster
applications, by providing an efficient I/O storage to the
current DSM packages. It will be shown in Section 5 that
the I/O bandwidth delivered by the SIOS is much higher
than a single disk, thus providing an efficient storage for
swapping memory pages. Figure 4 shows how DSVM can
be implemented on top of SIOS.

DSVM can utilize the efficient storage provided by the
SIOS easily because SIOS provides an illusion of a single
disk to each cluster node so that the current DSM
packages can be extended to support DSVM by using the
established paging mechanisms in the operating systems.
Further, the I/O overhead for swapping memory pages
can be balanced among all the cluster nodes, while each
node’s local memory can access the shared virtual
memory as if it is on a single-node architecture. It should
be emphasized that a DSM package developed for a
reliable cluster should have fault-tolerant features so that
if one or more nodes fail, the whole memory address

space will not collapse. In this connection, the fault-
tolerant features of the DSVM can be partially supported
by the SIOS.

4.3. Checkpointing Facilities

Checkpointing facilities record each process’s state on
some permanent storage periodically so that if there are
any software or hardware failures, the process can be
restarted at the most updated, recorded state, instead from
the very beginning. Implementing a checkpointing system
requires a checkpointing scheme design and a stable
storage, which can tolerates disk access failures. SIOS can
provide the stable storage since it tolerates disk failures.
As a result, with the support of SIOS, the implementation
of a checkpointing system can focus on the checkpointing
scheme, rather than on the stable storage.

One example is the distributed checkpointing scheme
proposed in [5]. Different levels of checkpointers are
stored independently on local and remote disks. In this
case, a SIOS based on a mirroring architecture hides the
physical distribution of data so that the checkpointing
system only needs to store the checkpointers “locally”
while the data is actually saved in the remote disks. If
there are any failures and the processes need to be
restarted, the corresponding checkpointers can be
retrieved from the other disks. In this connection,
different configurations of the SIOS (e.g. RAID-1, RAID-
5, RAID-10, etc.) can support different data distribution
patterns required in various checkpointing systems.

4.4. Single Process Space and Process Migration

A single process space means all user processes, no
matter on which nodes they reside, share a uniform
process identification scheme [6]. All processes should be
able to communicate to the others as if they are all run in
a single node. SIOS facilitates the implementation of
DSVM, which indirectly supports the transparency for
inter-process communication through shared-memory.

There are several pieces of information that have to be
maintained for a process to migrate to another node

0

1

2

3

4

5

6

7

1 4 8 12 16

Number of clients

A
g

g
re

g
at

e
b

an
d

w
id

th
 (

M
B

/s
)

RAID-5

RAID-1

NFS

(c) Small Write (4KB)

0

1

2

3

4

5

6

7

8

9

10

1 4 8 12 16

Number of clients

A
g

g
re

g
at

e
b

an
d

w
id

th
 (

M
B

/s
)

RAID-5

RAID-1

NFS

(a) Large Read (10MB)

0

1

2

3

4

5

6

7

1 4 8 12 16

Number of clients

A
g

g
re

g
at

e
b

an
d

w
id

th
 (

M
B

/s
)

RAID-5

RAID-1

NFS

(b) Large Write (10MB)

Figure 6: Aggregate I/O Bandwidth with
Increasing Clients

successfully: accesses to files, communications with the
other processes, and shared memory segments with the
other processes. SIOS helps to maintain the accesses to
files as the storage can be accessed in any node of the
cluster. Furthermore, shared memory segments can also
be maintained by the support of DSVM. However, a
single network space is needed in order to restore
communication channels with the other processes after a
process is migrated. Figure 5 shows how process
migration can be supported by the SIOS.

As shown in Figure 5, Process 1 (P1) is originally
running in Node 1. It has a shared memory region with
the other process P2 and it opens several files in the SIOS
storage. If P1 is migrated to Node 2, the accesses to the
opened files can be restored automatically while the
access to the shared memory segment is maintained by
the DSM and the DSVM systems.

5. Benchmark Performance Results

In this section, we present the experimental results
obtained in raw disk I/O experiments. The experiments
were designed to test the scalability of the CDD
architecture. The prototype cluster was built with sixteen
400 MHz Pentium II PCs running the Linux kernel
version 2.2.5. These PC nodes are connected by a 100
Mbps Fast Ethernet switch. At present, each node is
attached with one 10-GB disk. With 16 nodes, the total
capacity of the disk array is 160 GB. All 16 disks form a
single I/O space. To test the cooperative operations
among the distributed nodes, RAID-5 and RAID-1
architectures were ported with the support of CDDs. The
NFS is used as a baseline for comparison purposes.

5.1. Bandwidth Results With Increasing Clients

Figure 6 shows the performance of the RAID-5,
RAID-1 and the NFS architectures. The results on large
read are given in Fig. 6a. In this test, each client reads a
10MB-long file from all the disks. Therefore, the test is
truly focused on the parallel I/O capability of the disk
array. All the files are set to be uncached and each client
only reads its own private file. All read operations are
performed simultaneously, with the help of an
MPI_Barrier() call. The bandwidth results of small read
are not reported as they are very close to that of large read
in all numbers of clients.

The NFS throughput is limited at 2.6 MB/s regardless
of the number of clients, due to the fact that sequential I/O
is performed by the NFS on a central server. As the
number of client increases, the NFS becoming the
bottleneck shows a declining performance. The two RAID
architectures, in contrast, show nearly linear scalability in
bandwidth. The RAID-5 architecture scales up to a

bandwidth of 9.5 MB/s for 16 clients. RAID-1 lags
behind with a show of 6.33 MB/s for 16 clients.

Fig. 6b shows the large write bandwidths of the three
I/O subsystems. In this test, each client writes a 10MB-

0

1

2

3

4

5

6

7

2 4 8 12 16

Number of I/O nodes

A
g

g
re

g
at

e
b

an
d

w
id

th
 (

M
B

/s
)

RAID-5

RAID-1

(b)Large Write (10MB)

0

1

2

3

4

5

6

7

2 4 8 12 16

Number of I/O nodes

A
g

g
re

g
at

e
b

an
d

w
id

th
 (

M
B

/s
)

RAID-5

RAID-1

(c) Small Write (4KB)

0

1

2

3

4

5

6

7

8

9

10

2 4 8 12 16

Number of I/O nodes

A
g

g
re

g
at

e
b

an
d

w
id

th
 (

M
B

/s
)

RAID-5

RAID-1

(a) Large Read (10MB)

Figure 7: Aggregate I/O Bandwidth with
Increasing Disk Number

long file to the cache and issues a special sync() call to
flush the data blocks to the disks. Fig. 6c shows the small
write bandwidths of the three I/O subsystems. In this test,
each client writes a 4KB-long file to the I/O subsystem.
All write operations among the clients are also
synchronized in these experiments. In both experiments,
the NFS scales in performance up to four clients, even
higher than that of RAID-5, due the caching effect at the
NFS server. When the number of client exceed four, the
NFS bandwidth drops to a low 2.77 MB/s.

For parallel writes of either a large file (Fig. 6b) or a
small block (Fig. 6c), RAID-5 scales slowly due to the
heavy overhead involved in parity calculations. For small
writes, the RAID-5 bandwidth becomes even worse.
RAID-5 shows better performance in large write than
small write because full-stripe writes can be performed in
large write in which old parities and data blocks need not
to be read before the write operations. In contrast, old data
and parity blocks must be read in advance in the case of
small write. In both cases, a considerable amount of CPU
time has been spent in calculating parity information, and
this accounts for the poor I/O performance in RAID-5.
RAID-1 scales even better than RAID-5, but its
bandwidth saturates early to a 5.95 MB/s in both large
and small write experiments, due to the fact that only half
of the available bandwidth is used for transferring data.
However, both RAID architectures show increasing
bandwidth with the number of clients, when compared to
the declining performance of the NFS.

5.2. Bandwidth Results With Increasing Disk
Array Sizes

Bandwidth results are plotted in Fig.7 against the disk
array size. The results are shown for the two RAID
architectures. The number of clients is kept at 16, while
all caches are bypassed in the experiments.

Figure 7a shows the performance in long read
operations in which each client writes a 10MB-long file to
the I/O subsystem synchronously. Again, the results of
small read are not shown as they are very close to the long
read results. As indicated in the diagram, both RAID
architectures show high bandwidth scalability when the
disk array size increases. RAID-1 scales up to 5.95 MB/s
while RAID-5 scales up to 9.1 MB/s. Figure 7b shows the
benchmark results for large writes. The bandwidths of
RAID-1 and RAID-5 are 5.72MB/s and 4.29MB/s,
respectively. Again, the parity calculation overhead in
RAID-5 accounts for its poor performance. Figure 7c
shows that the performance of RAID-5 drops further to
3.08MB/s due to the small write overheads. However, in
all cases, the two RAID architectures show increasing
performance when the disk array size is getting large.

Based on these experiments, the CDD platform is

proved to be a good alternative to the NFS for I/O-
intensive cluster computing. Both RAID-1 and RAID-5
architectures, with the support of CDDs, show high
scalability in bandwidth when compared to the results of
NFS.

6. Related Work and Conclusions

The development of the SIOS was inspired by several
research projects. The xFS and the Tertiary Disk projects
at Berkeley [1][14], and the Petal/Frangipani project at
Compaq Digital [8][16], all have influenced our design
philosophy. The main difference between our approach
and these projects is that we include data consistency
checking in the device driver level. The CDDs work
cooperatively to hide the details involved in transferring
the data and maintaining the consistency. With the
support of CDDs, the design of a distributed file system
can be focused on the concurrent file access policies and
the related performance considerations. In this case, the
implementation cost and the complexity of a distributed
file system can be reduced.

Our SIOS architecture cleanly separates the I/O
subsystem in a cluster into the file systems and a set of
distributed CDDs. All SSI services for I/O operations are
provided by the CDDs while the file system modifications
are minimized. Its simple architecture suggests that some
enabling services for cluster computing can be designed
and implemented in a cost-effective manner. Furthermore,
it has been shown that some desired SSI services for
cluster computing could be built on top of the SIOS. In
this aspect, the SIOS is a basic, but powerful,
infrastructure to achieving a complete SSI cluster.
Benchmark performance results show that our SIOS
design offers performance and size storage size
scalabilities. We do believe the SIOS design can improve
the I/O subsystem of clusters in terms of convenience,
scalability, performance and availability.

The first prototype is implemented on the Trojans
cluster at University of Southern California and the
cluster at the University of Hong Kong. More extensive
research work on the SIOS project will be carried out to
address the load-balancing issues raised in I/O-intensive
cluster environments.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.
Roselli, and R. Wang. “Serverless Network File
Systems”. ACM Trans. on Computer Systems, Jan.
1996, pp.41-79.

[2] M. Dahlin, R. Wang, T. Anderson, D. Patterson.
“Cooperative Caching: Using Remote Client
Memory to Improve File System Performance”.
Proceedings of Operating System Design and
Implementation, 1994.

[3] D. G. Feitelson, P. F. Corbett, J. P. Prost, and S.
J.Baylor. “Parallel Access to Files in the Vesta File
System”. Proceedings of the conference on
Supercomputing ’93 , 1993, Page 472.

[4] I. Foster, D. Kohr, Jr., R. Krishnaiyer, and J. Mogill.

“Remote I/O: Fast Access to Distant Storage”.
Proceedings of the Fifth Annual Workshop on I/O in
Parallel and Distributed Systems, November 1997,
pp.14-25.

[5] K. Hwang, H. Jin, E. Chow, C.L. Wang, and Z. Xu.
“Designing SSI Clusters with Hierarchical
Checkpointing and Single I/O Space”. IEEE
Concurrency Magazine, March 1999, pp.60-69.

[6] K. Hwang and Z. Xu. Scalable Parallel Computing:
Technology, Architecture, Programming. McGraw-
Hill, New York, 1998.

[7] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K.
Shirriff and M. Thadani. “Solaris MC: A Multi-
Computer OS”. Proceedings of 1996 USENIX
Conference, 1996.

[8] E. K. Lee and C. A. Thekkath. “Petal: Distributed
Virtual Disks”. Proceedings of the Seventh
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Cambridge, MA, October 1996, pp.84-92.

[9] W. B. Ligon III and R. B. Ross. “An Overview of
the Parallel Virtual File System”. Proceedings of the
1999 Extreme Linux Workshop, June, 1999.

[10] J. H. Morris, M. Satyanarayanan, M. H. Conner, J.
H. Howard, D. S. H. Rosenthal, and F. D. Smith.
“Andrew: A Distrubuted Personal Computing
Environment”. Communications of the ACM, Vol.
29, No. 3, March 1986, pp.184-201.

[11] G. F. Pfister. “The Varieties of Single System
Image”, Proceedings of IEEE Workshop on
Advances in Parallel and Distributed System, IEEE
CS Press, 1993, pp.59-63.

[12] J. Protic, M. Tomasevic, and V. Milutinovic.
Distributed Shared Memory, Concepts and Systems.
IEEE Computer Society, Los Alamitos, California,
1998.

[13] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon, “Design and Implementation of the
Sun Network Filesystem”, Proc. of the USENIX
Conference, June 1985, pp.119-130.

[14] N. Talagala, S. Asami, D. Patterson, and K. Lutz.
“Tertiary Disk: Large Scale Distributed Storage”,
UCB Technical Report No. UCB//CSD-98-989.

[15] R. Thakur, W. Gropp, and E. Lusk. “An Abstract-
Device Interface for Implementing Portable Parallel-
I/O Interfaces”. Proceedings of the 6th Symposium
on the Frontiers of Massively Parallel Computation,
October 1996, pp.180-187.

[16] C. A. Thekkath, T. Mann, and E. K. Lee.
“Frangipani: A Scalable Distributed File System”.
Proceedings of ACM Symposium of Operating
Systems Principles, Oct. 1997, pp.224-237.

