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This article addresses the problem of controlling the density and dynamics of smoke (a gas phenomenon) so that the synthetic
appearance of the smoke (gas) resembles a still or moving object. Both the smoke region and the target object are represented
as implicit functions. As a part of the target implicit function, a shape transformation is generated between an initial smoke
region and the target object. In order to match the smoke surface with the target surface, we impose carefully designed velocity
constraints on the smoke boundary during a dynamic fluid simulation. The velocity constraints are derived from an iterative
functional minimization procedure for shape matching. The dynamics of the smoke is formulated using a novel compressible
fluid model which can effectively absorb the discontinuities in the velocity field caused by imposed velocity constraints while
reproducing realistic smoke appearances. As a result, a smoke region can evolve into a regular object and follow the motion of
the object, while maintaining its smoke appearance.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically
based modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation

General Terms: Algorithms, Experimentation, Theory
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1. INTRODUCTION

Amorphous but elegantly moving matters, such as clouds, fog, and smoke, give people plenty of space
for imagination. We are excited when a cloud in the sunset sky assumes the approximate shape of an
animal or some other real object. It is indeed an exhilarating event because of its rareness. For the
same reason, ghosts and deities are usually described as manifesting themselves from smoke or clouds.
A famous fairy tale has the following scene:

As Aladdin rubbed the lamp to try to get a better look, the lamp came to life; the lamp launched
a long, blue stream upward; the blue smoke rose toward the ceiling, and finally became an
enormous, blue genie!

We would like to develop techniques for digitally reproducing similar effects. Such techniques have
many applications in the entertainment industry, especially in advertising and film making. In some of
the recent movies, there have been voxel water horses emerging from a flooding river [Kapler 2002], and
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the mummy manifests itself from sand. Our goal in this article is to introduce methods that produce
physically plausible motion for a gas phenomenon, which at the same time, assumes a recognizable
static or dynamic shape. In the rest of the article, we choose smoke as a representative of such gas
phenomena. Nevertheless, the approach introduced here is not only limited to smoke.

Our goal in this article has the following implications:

—the motion during two-way transitions between irregular smoke regions and regular object shapes
should be natural and have realistic smoke appearances;

—the global shape of the smoke should be able to approximate a static or moving object for an arbitrarily
long period of time while maintaining its characteristic local structure and motion;

—When smoke objects interact with each other or with the environment, the objects should exhibit the
properties of smoke so that a strong wind or other regular objects can easily destroy the shape of
such objects.

An example with a smoke horse is shown in Figure 1(a) to illustrate this goal.
Smoke consists of a collection of light-scattering tiny particles floating in the air. Creating dramatic

effects is challenging since the smoke density in a fluid medium always tends to drift from a nonuniform
distribution to a uniform one. Solving the proposed problem requires the maximum level of control of
this process while maintaining a believable appearance of smoke. When there is a conflict between
controllability and physics rules, we choose to relax the physics rules since the desired effects can
largely be considered a supernatural phenomenon. Our goal in this article is consistent with one of
the general objectives of graphics research: the development of techniques that allow easy user-level
control of the modeling and animation processes.

This article presents an effective solution to the proposed problem. Our solution involves implicit
functions (level sets) defined for both smoke-object transitions and object motion. Since they are func-
tions of both space and time, these level sets represent both the shape of the target objects as well as
their evolution over time. These implicit functions serve as the underlying “storyboard” guiding the
motion of the smoke. Thus, the problem becomes how to impose constraints on the motion of the smoke
so that the smoke density distribution approximately matches these evolving level sets while the real-
istic appearance of smoke is being maintained. This is actually a control problem that can be solved by
a dynamic feedback process. The basic idea of our solution lies in the use of artificial feedback forces on
the smoke so that subtle changes in the movement of the smoke reduces the shape discrepancy between
the smoke and the target object. Such feedback forces are actually realized by velocity adjustments and
constraints. They do not exist in the real world, and need to be carefully orchestrated to achieve the
desired effects.

Major contributions of this article include an overall framework for solving the proposed problem,
an automatic scheme for target object matching based on velocity constraints imposed on the motion
of the smoke, and an empirical compressible fluid model for effectively integrating constraints into
the velocity field. These velocity constraints are derived from a shape matching functional. Simple but
effective methods for smoke objects to interact with each other or the environment are also developed.

2. RELATED WORK

The modeling of smoke and other gaseous phenomena has received much attention from the computer
graphics community over the last two decades. Early models focused on a particular phenomenon and
animated the smoke density directly without modeling its velocity [Gardner 1985; Perlin 1985; Perlin
and Hoffert 1989; Ebert et al. 1998]. Additional details were added using solid textures whose parame-
ters were animated over time. A common feature shared by these models and the voxel tool presented
in Kapler [2002] is that they lack any dynamical feedback which is crucial to realistic animation.
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.
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Fig. 1. (a) An initial smoke blob evolves into a smoke horse. A wind blows the head away. When the wind recedes, the head
grows back. (b) The underlying shape transformation for the smoke-horse transition.

A more natural way to model the motion of smoke is to simulate the equations of fluid dynamics. In
recent work, relatively coarse grids were used in Foster and Metaxas [1997b] to produce nice smoke
motion in three-dimensions. Their simulations are only stable if the time step is sufficiently small.
To alleviate this problem and make the simulations more efficient, Stam [1999] introduced a new
model which is unconditionally stable and could be run at any speed in. This was achieved using a
combination of a semi-Lagrangian advection scheme [Staniforth and Cote 1991] and implicit solvers.
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Vorticity confinement and a higher-order interpolation technique were introduced in Fedkiw et al.
[2001]. As a result, the simulations can keep finer details on relatively coarse grids. Recently, this fluid
simulation method has been generalized to surfaces of arbitrary topology, including Catmull-Clark
subdivision surfaces [Stam 2003] and triangle meshes [Shi and Yu 2004].

The level set method [Osher and Sethian 1988; Sethian 1999; Osher and Fedkiw 2001] is a robust
computational method to track the surface of a volume of fluid. In Foster and Fedkiw [2001], Foster
and Fedkiw made important contributions to fluid simulation and control through the introduction of
a hybrid liquid volume model, combining implicit surfaces and massless marker particles. The work
was further improved in terms of accuracy in Enright et al. [2002] by using particles on both sides of
the interface between air and water. The level set method has also inspired interesting methods for
fast surface reconstruction from unorganized points [Zhao et al. 2001], and geometric object editing
[Museth et al. 2002]. What is important in these methods is the quality of the resulting static geometry
instead of the dynamic surface evolution itself. In comparison, we are more concerned with the quality
of the dynamics themselves for the realistic appearance of smoke.

In terms of fluid control, Stam [1996] applied multiple types of vector fields to control the global
trajectories of fluids. Foster and Metaxas [1997a] introduced embedded controllers that allow animators
to specify and control a three-dimensional fluid animation. In Foster and Fedkiw [2001] and Lamorlette
and Foster [2002], animator-designed “fake” space curves and surfaces can be applied to control the
motion and structures of fluids. The tangents of the curves or the normals of the surfaces indicate the
directions of motion. However, none of these attempts allows the user to enforce higher-level objectives,
such as matching the shape of a still or moving object.

A technique to make fluids match regular shapes was first reported in Yu and Shi [2002], which
involves carefully designed force fields and a modified diffusion equation for smoke gathering. A similar
approach that can produce results with improved visual quality was also taken by Fattal and Lischinski
[2004]. Although being able to control the smoke density, the smoke gathering term in these techniques
tends to generate “ghosting” effects, which means that the target shape looks like it is simply emerging
from an amorphous cloud of smoke. In comparison, the level set method, taken by this article, can better
control the smoke shape without introducing this type of artifact.

A gradient-based iterative optimization approach for controlling fluid simulations through user-
specified objectives was introduced in Treuille et al. [2003] and McNamara et al. [2004]. The problem is
cast as matching dynamically-evolved fluid density with the specified density distributions at a set of
keyframes. The elegant part of this approach is dynamically simulating the derivatives of the velocity
field in the same framework for simulating the velocity field itself. However, since the derivatives of the
velocity field with respect to each control parameter need to be computed throughout a portion of an
animation sequence, this approach is computationally expensive. The adjoint method was adopted in
McNamara et al. [2004] to significantly improve the efficiency of these derivative evaluations for each
iteration. Since it is a gradient-based optimization, a number of iterations are still necessary before
convergence, and there is also the peril of local minima. In comparison, the method introduced in this
article is noniterative, and therefore, less expensive.

In the aforementioned methods, once the fluid density converges to the target shape, the fluid either
becomes static without dynamic appearances, or starts to evolve freely without any control. However,
the method in this article can maintain interesting dynamic fluid appearances around the target shapes
for an arbitrarily long time. In addition, since we adopt distance transforms, our method is less likely
to be trapped in local minima.

Warping and morphing techniques [Wolberg 1990; Gomes et al. 1997] are very useful tools for trans-
forming images and objects. Warping does not have a clear target image or object, while morphing
usually produces transition between two objects. Sims [1992] introduced a technique for successively
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warping images using vector fields in. However, the results from the operation are not well controlled.
3D volume morphing methods [Hughes 1992; Lerios et al. 1995; Turk and O’Brien 1999; Alexa et al.
2000] can achieve well-behaved shape interpolation by considering both boundary and interior points.
Actively moving implicit surfaces [Desbrun and Cani-Gascuel 1998] can be used to generate metamor-
phosis between shapes without a correspondence. Most morphing techniques focus on the smoothness of
the planned transition instead of its physical plausibility. In many experiments, we adopt the method in
Turk and O’Brien [1999] to generate an underlying shape transformation guiding smoke-object shape
transitions.

3. OVERVIEW

In our method, we define an implicit function for the target object and try to drive an irregularly shaped
smoke region so that a specific isosurface of the density distribution of the smoke closely matches the
boundary (zero) level set of the target object. The implicit function for the target object is named the
guiding implicit function and is denoted as D(x, t), where x represents a point in a 2D or 3D space, and
the extra variable t means the target shape may move or deform over time. The density distribution of
the simulated smoke is denoted as ρ(x, t). We use dynamic force feedback to actively influence the smoke
isosurface so that the resulting dynamic surface, represented by �ρ = {x|ρ(x, t)−τ = 0}, approximately
matches the zero level set of the target object, �D = {x|D(x, t) = 0}, where τ is a threshold used for
defining a boundary isosurface for the smoke region which is assumed to have internal densities higher
than τ . Note that ρ(x, t) − τ = 0 is actually an implicit function for the smoke region. At every time
step, given the shape discrepancy between the two isosurfaces, feedback forces are applied to the smoke
boundary to reduce the amount of discrepancy. Since forces and accelerations are connected through
Newton’s law, in practice, such feedback forces are actually realized by velocity adjustments.

There are two essential stages in an animation where smoke evolves into an object. The first stage
involves a shape transition between the smoke region and the target object. In the second stage, the
transformed smoke region needs to keep track of the object’s own nonrigid deformation or rigid-body
motion. These two stages can be treated in a unified framework. The initial smoke region obtained by
thresholding can be considered as an irregular object. 3D shape morphing techniques can be applied to
generate a morph sequence between the initial smoke shape and the target object shape (Figure 1(b)).
As a result, we can obtain an intermediate shape at any instance during the whole transition period.
Thus, the shape transition between the smoke and the target object can be viewed as a nonrigid shape
deformation, and any method designed for the second stage can be applied as well to this stage, where
the morph sequence is used to generate the guiding implicit function which the smoke tries to match.
Therefore, we only need to develop an approach for the smoke to track object motion. A static object is
a special case for this problem.

Nevertheless, tracking object motion using the smoke is by no means trivial. When there is tem-
poral coherence and the frame-to-frame motion of the target object is small, it is possible to obtain
velocity constraints on the boundary isosurface of the smoke by exploiting the local gradient flow of
the boundary. If a physical simulation of the smoke satisfies these boundary velocity constraints, the
difference between the two boundary isosurfaces will be decreased. However, when there is fast frame-
to-frame motion, the target object from two consecutive frames might have a huge gap in position or
orientation. Local gradient structure of the implicit functions cannot guarantee efficient tracking re-
sults any more. When this happens, we use the target object to transport the smoke inside from its
location in the previous frame, to its location in the current frame as if the target object is a con-
tainer with a hard boundary. The hard boundary disappears once the smoke is in position again.
Note that this step may not be physically realistic, and is specially designed to achieve the desired
phenomenon.
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The overall solution to the proposed problem has the following components:

—The animator needs to pick a target object and choose a smoke region from a simulation. A 3D morph
sequence is created between the initial smoke shape and the target object. The target object for each
frame is voxelized into a discrete implicit function.

—For each frame, the system determines whether large motion has occurred by checking the amount of
overlap between the two underlying object shapes at the previous and current frames. The strategy
for smoke transportation is executed if the amount of overlap falls below a predefined threshold.
Small motion tracking is always performed, whether large motion occurred or not.

—During each iteration, the system also simulates potential interactions among multiple smoke objects
and interactions between a smoke object and its environment. The shape of a smoke region may
be destroyed during such interactions, and a new morph sequence can be generated between the
remaining smoke and the target object.

4. GUIDING OBJECTS

The input to our system includes the target objects and their motion. When the objects are not static, the
configuration of the objects needs to be specified at every frame. The type of motion may include simple
rigid-body motion, more complicated articulated body motion, or even nonrigid deformations. All target
objects are internally represented as implicit functions. Our representation for the guiding implicit
function D(x, t) is the signed distance function, which is zero on the object boundary and positive at
the interior. The signed distance function has the advantage of conveniently providing the shortest
distance between any point on the smoke boundary and the boundary of the guiding implicit function.
Therefore, input objects need to be converted to this representation even if they are already given as
implicit functions.

Since smoke simulation will be performed on a volume grid, the smoke implicit function ρ(x, t) − τ

is always directly represented on this discrete grid in the form of a density value at each voxel. The
boundary isosurface of this function is obtained by labeling the voxels containing a density value close to
the threshold τ . The signed distance function of a guiding object at a specific frame is also represented on
the same volume grid by first discretizing the object’s original representation, followed by a conversion
to signed distance values.

As discussed in Section 3, a part of the animation may involve a shape transition between the smoke
region and the target object. An intermediate shape should be generated at each frame during this
transition. This intermediate shape serves as the guiding object for that frame, and it needs to be
represented as an implicit function as well. In practice, we apply 3D shape morphing and masking
techniques (see Section 7.1) to generate a shape transition sequence which can produce such an in-
termediate shape at any intermediate frame. These intermediate shapes should be represented as or
converted to signed distance functions whenever they are needed.

5. SHAPE MATCHING

5.1 Velocity Constraints for Small Motion

Suppose at a certain time ti during simulation, the guiding implicit function is D(x, ti). We would like
to evolve the smoke density at the previous step, ρ(x, ti−1), so that the zero isosurface of the updated
function, ρ(x, ti) − τ , approximately matches the boundary of the guiding object.

Since we are concerned with matching two isosurfaces, let us first look at a criterion for measuring
shape discrepancy. If we represent an object as a point set, two objects A and B exactly match each
other if and only if both sets A− B and B − A are empty, which is also equivalent to that the volumes of
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.
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both A− B and B − A are zero. The summed volumes of these two sets indicate the level of discrepancy
between two shapes. Mathematically, we need to use characteristic functions of the shapes and integrals
to represent these two volumes. Let us define χD(x, ti) = 1 if D(x, ti) ≥ 0, and χD(x, ti) = 0, otherwise;
and define χρ(x, ti−1) = 1 if ρ(x, ti−1) − τ ≥ 0, and χρ(x, ti−1) = 0, otherwise. The level of discrepancy
between the two zero isosurfaces can be measured by the following integral,

ev =
∫

χρ(x, ti−1)(1 − χD(x, ti))dx +
∫

χD(x, ti)(1 − χρ(x, ti−1))dx, (1)

where the global minimum is zero and can be reached when the two characteristic functions coincide.
Equation (1) can be simplified to

∫
χDdx + ∫

χρ(1 − 2χD)dx, where χρ is the shape variable, and χD
is the fixed guiding shape for a specific frame since we would like ρ(x, ti−1) to approximate D(x, ti).
Therefore, reducing the shape discrepancy between the two is equivalent to minimizing the following
functional, ∫

χρ(1 − 2χD)dx. (2)

According to calculus of variations [Gelfand and Fomin 1963], one can show that the first variation
of the integral in Equation (2), with respect to the smoke boundary surface, is simply based on the
second part of its integrand and the normal directions of the smoke boundary. Therefore, the negative
variational gradient minimizing the functional in Equation (2) with respect to the smoke boundary is
as follows.

δev

δ�ρ

∣∣∣∣
x=xb

= (1 − 2χD)
∇ρ

‖∇ρ‖
∣∣∣∣
x=xb

, (3)

where �ρ represents the smoke boundary, and ∇ρ

‖∇ρ‖ represents the unit inward normal at the smoke
boundary. Detailed discussion on the derivation of this variational gradient is presented in Appendix A.

Consider a specific point xb on the boundary of the smoke, the sign of D(xb, ti) indicates its location
with respect to the guiding object. Note that the gradient of ρ(x, ti−1) at xb points to the interior of
the smoke and is perpendicular to the boundary. Under the small motion assumption, the smoke and
guiding object should have overlap. If xb is inside the guiding object, we need to move it slightly along
the negative gradient direction; otherwise, move it along the positive gradient direction. Equation (3)
means iteratively perturbing all the smoke boundary points simultaneously in this way would gradually
decrease the costs in Equation (2) and Equation (1). Since a new smoke boundary is formed by the
relocated points after each iteration, the gradient of the new boundary should be used for moving points
in the subsequent iteration. This scheme for functional minimization resembles gradient descent for
regular function minimization. As gradient descent, this scheme cannot always converge to the global
minimum if the initial shape of the unknown is not sufficiently close to the target shape. For example,
if the smoke region does not have overlap with the guiding object, this scheme would gradually shrink
the smoke region until it disappears and, at the same time, decrease the cost in Equation (1) to the
volume of the guiding object which is actually a correct local minimum.

In the current context, we can modify the above iterative minimization scheme to avoid the local
minimum for two separate shapes. When D(xb, ti) is negative, indicating xb is outside the guiding
object, it should be moved in a direction in which the directional derivative of D(x, ti) is positive to
bring it closer to the boundary of the guiding object. Since this condition must be satisfied either by
the positive or by the negative gradient direction of ρ(x, ti−1), we only need to choose the right one of
these two instead of always following the positive gradient. We still keep the original scheme when xb
is inside the guiding object.
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Since we would like to realistically evolve the boundary of ρ(x, ti−1) − τ into the target shape, the
dynamic evolution should follow the above iterative procedure to minimize the integral in Equation (1),
as well as follow the physics rules in smoke simulation as closely as possible. To achieve these goals, the
smoke simulation should satisfy velocity constraints derived from the minimization procedure. Since
Equation (3) shows a first-order scheme, we should adopt its direction field, but adjust its magnitude
to improve stability.

A velocity u on the smoke boundary can be decomposed into a normal component un and a tangential
component ut. Based on Equation (3), the normal component un at a smoke boundary point xb, at time
ti, is defined to be

un(xb, ti) = Cn · min(dmax, |D(xb, ti)|) · ∇ρ

‖∇ρ‖ · msgn(xb, ti), (4)

where Cn is a constant scaling parameter, |D(xb, ti)| is the magnitude of the signed distance function,
indicating how far away xb is from the current boundary of the guiding object, dmax is a clamping
upper bound for the distance, and msgn(xb, ti) adjusts the direction of the velocity vector according to
our modified scheme. Specifically, msgn(xb, ti) = −1, if D(xb, ti) > 0; msgn(xb, ti) = sgn(∇D · ∇ρ), if
D(xb, ti) ≤ 0. The incorporation of the term min(dmax, |D(xb, ti)|) can alleviate overshooting when xb is
already close to the boundary of the guiding object. However, this term should only be present in the
normal component when the smoke region already has some overlap with the guiding object. Otherwise,
it would reduce the velocity of the smoke to zero when it touches the boundary of the guiding object, and
keep the smoke from entering the object. Various situations for setting up normal velocity constraints
are summarized in Figure 2. Note that when the volume of the smoke differs from the object, these
velocity constraints do not preserve mass. This is a tradeoff we need to make between physics and shape
matching.

Constraints on the tangential component are also crucial. Although the tangential component does
not directly affect the shape of the level sets, it does affect the surrounding velocity field. While a zero
tangential component would make the smoke surface less alive, the numerical stability of the shape
matching procedure may be compromised if it becomes overly large. The maximum allowable tangential
component is actually dependent on the local geometry of the smoke surface. If the surface is flat,
the tangential displacement can be large without destroying the original shape while a highly curved
surface is certainly more vulnerable. Therefore, the magnitude of the tangential component should have
an upper bound related to the surface curvature. Since we would like to follow physical simulation as
faithfully as possible, we can simply clamp the physically-generated tangential components against the
upper bound when their magnitude becomes too large. Thus, the constrained tangential component is
simply defined to be

ut(xb, ti) = min
(

‖u∗
t‖,

Ct

K

)
u∗

t

‖u∗
t‖

, (5)

where u∗
t is the tangential component generated from a simulation, Ct is a constant parameter, and K is

the surface curvature. In practice, we use mean curvature. A robust implementation of mean curvature
on a volume grid can be found in Museth et al. [2002].

Note that the normal and tangential velocity constraints are derived velocities for matching two
shapes. They are different from those constraints defined in Fedkiw et al. [2001] and Foster and Fedkiw
[2001] for fluid-object interaction and fluid control. Our guiding objects are invisible “ghost” objects,
and they do not directly interact with the smoke.
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Fig. 2. Normal velocity constraints on the smoke boundary for various situations. They are based on our revised minimization
scheme for Equation (2). (a) The smoke region is completely outside the guiding object; (c) the smoke region partially overlaps
with the guiding object; (b) & (d) a portion of the smoke boundary touches the boundary of the guiding object. The smoke velocity
should not be affected in (b), while it should be reduced to zero in (d); (e) the smoke region is completely inside the guiding object;
(f) the smoke region encloses the guiding object.

5.2 Velocity Constraints for Large Motion

When the frame-to-frame motion of the guiding object becomes excessively large, the two instances of
the guiding object at two consecutive frames may have little overlap, or no overlap at all. Although the
matching scheme developed in the previous section can eventually converge, many iterations would be
needed to actually reach convergence. For efficiency considerations, we directly transport the smoke
from the location of the first object instance to the second. During this direct transportation, the guiding
object is assumed to have hard boundaries, and the part of the smoke that is already inside becomes
trapped and moves together with the guiding object. Meanwhile, velocity constraints should still be
imposed at the boundary and interior of the guiding object so that these constraints can bring along
the surrounding region and generate turbulent flows to create a fluid appearance and “evidences” for the
large motion. These constraints are not for transporting the smoke inside the guiding object. Suppose
a point on the guiding object moved from xi−1 to xi during two consecutive frames at time ti−1 and ti, a
velocity constraint

uL = xi − xi−1

ti − ti−1

should be imposed at xi−1 at time ti−1. There is such a constraint for every voxel on and inside the
guiding object at ti−1. Note that the smoke transportation scheme in this section only accounts for
large rigid-body motion and leaves nonrigid deformation to the velocity constraints in the previous
section.
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The velocity constraints we have come up with need to be applied either at the boundary or interior
of the smoke when the shape difference between the guiding object and the smoke region becomes
sufficiently large. To make this statement more concrete, we are going to discuss in the following
sections how to measure the shape difference and how to detect and evolve the smoke boundary.

5.3 Error Metrics

We use two different error metrics for measuring the shape difference. The velocity constraints are
only applied when the specific metric being used exceeds some threshold. The first one is the volume
discrepancy ev, defined in Equation (1). The second metric is a generalization of the Lp norm to object
boundaries,

eLp =
(∫

�ρ

Dp(x, t)dx

)1/p

, (6)

where p is positive, �ρ is the boundary of the smoke, and D(x, t) is the distance function for the guiding
object at time t. The latter two quantities have been defined in Section 3. A special case of the Lp norm
is the L∞ norm, which is equivalent to

eL∞ = max
x∈�ρ

D(x, t). (7)

Although the velocity constraints were derived using the first metric, both metrics have the same
global minimum and can effectively reduce the shape difference. However, the dynamic behavior of
the smoke under their respective control can be quite different, especially when p becomes large
in the second metric. For instance, ev allows small portions of the smoke boundary to be far away
from the guiding object as long as the integral remains small, while eL∞ keeps all the boundary points
of the smoke within a certain distance from the guiding object. As a result, ev or eLp , with low p values,
give rise to more realistic smoke appearances on the boundary and less clear object structures, while
eLp , with high p values, becomes more appropriate when clear object structures are desirable.

5.4 Smoke Evolution and Boundary Detection

The smoke implicit function φ = ρ − τ is evolved passively over time by the wind velocity field {u},
which may be partially constrained. It can be easily shown [Osher and Sethian 1988] that the equation
to update φ is as follows.

φt + u · ∇φ = 0. (8)

Except for the density threshold τ for boundary detection, this equation coincides with the advection
equation for the smoke density in Fedkiw et al. [2001]. This equation can be solved either by the semi-
Lagrangian method, or by the upwind scheme [Sethian 1999]. Note that both operate on the whole
voxel grid instead of boundary voxels only. We have implemented both methods. Both of them can
produce visually realistic results. Since a smoke boundary tends to evolve relatively slowly, the choice
of a numerical method is not very critical.

Our normal and tangential velocity constraints are positioned at the boundary of the smoke region.
Enforcing these constraints requires the detection of the smoke boundary at every time step. This can
be easily achieved since this smoke boundary is just the zero isosurface of the smoke implicit function.

6. SMOKE SIMULATION FOR CONSTRAINED VELOCITIES

Since we exploit velocity constraints to achieve shape matching, a smoke simulation framework that
can effectively incorporate hard-wired velocity constraints without producing visual discontinuities is
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.
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desirable. Before we introduce our revised model for smoke simulation, let us first have a look at the
already adopted mathematical formulations for fluid simulation in the graphics literature [Foster and
Metaxas 1997b; Stam 1999; Yngve et al. 2000; Fedkiw et al. 2001].

6.1 Previous Formulations

The dynamics of a compressible fluid can be modeled using the following Navier-Stokes equations:

∂ρ f

∂t
= −∇ · (ρu), (9)

ρ f
∂u
∂t

= −ρ f (u · ∇)u + ν∇2u + ν

3
H(u) + ρ f f − ∇ P, (10)

where ρ f is the density of the fluid which is different from the smoke density, u represents the velocity
field, P is the pressure term, f is an external force field, and ν is the kinematic viscosity of the fluid. The
x component of H(u) is ∇ · ( ∂u

∂x ), and the y and z components are defined similarly. The first equation
arises from the conservation of mass, but the volume of the fluid is compressible with increasing density
for a decreasing volume. The second equation is for the conservation of momentum; the first term on the
right hand side is the convective term; the second and third terms model accelerations due to viscous
forces; the last two terms model accelerations due to external forces and forces arising from the pressure
gradient.

These equations can effectively model high-speed velocity fields such as shock waves generated by
explosions [Yngve et al. 2000]. However, a strict time step condition is necessary for stable numerical
solutions. For liquids and low-speed gaseous phenomena, the compressibility effects are negligible, and
conservation of mass becomes equivalent to conservation of volume. The assumption of incompressibility
leads to the following equations which make more efficient numerical methods possible.

∇ · u = 0, (11)
∂u
∂t

, = −(u · ∇)u − 1
ρ f

∇ P + ν∇2u + f, (12)

where the first equation means the fluid is volume-preserving, and the second one is similar to the
corresponding equation in the aforementioned model for compressible fluids. In Stam [1999], Stam de-
veloped an unconditionally stable numerical method for these equations by adopting semi-Lagrangian
tracing and the Helmholtz-Hodge Decomposition.

If we focus on gases, the effects of viscosity are also negligible. Therefore, the diffusion terms in the
above models can be left out. Simulating gaseous phenomena thus reduces to solving the following
incompressible and inviscid Euler equations [Fedkiw et al. 2001]:

∇ · u = 0, (13)
∂u
∂t

= −(u · ∇)u − ∇ P + f, (14)

where the factor 1
ρ f

in Equation (12) has been integrated into the “pressure” P which is used to guarantee
zero divergence, but does not represent actual pressure anymore.

6.2 An Empirical Equation for Compressible Gases

The basic framework in this article is a dynamic feedback system where the velocity constraints defined
in Section 5 are dynamically updated every time step, according to the shape discrepancy between the
smoke region and the underlying guiding object. The purpose of such velocity constraints is to reduce
the amount of discrepancy. These velocity constraints have poor spatial and temporal coherence because
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constraints at spatially or temporally adjacent voxels may be quite different. In addition, the constraints
are only imposed at the boundary of the smoke region which is essetially a thin layer in the simulation
volume. Since these artifical velocity constraints do not exist in the real world, we argue that existing
fluid simulation methods cannot incorporate them without introducing artifacts.

First, the incompressible scheme in Equations (13) and (14) does not work well. If we impose veloc-
ity constraints which generate discontinuities in the velocity field, concentrated high pressure tends to
appear rapidly in regions nearby to guarantee zero divergence. Those sudden high pressures further in-
fluence surrounding velocities and generate temporal discontinuities and visual artifacts. Such artifacts
have been observed in our experiments. Second, existing compressible schemes would not fit our pur-
pose very well, either. Simulating true compressibility is very expensive and requires a strict time step
condition. On the other hand, an unphysical scheme called “artificial compressibility” was introduced
in Chorin [1967]. It allows a certain degree of compressibility during a transition period and converges
to incompressible fluid simulation when a steady solution has been reached. However, this convergence
is achieved over time, instead of within each time step, and is only guaranteed when external forces are
absent. In our simulation, incoherent external forces are exerted constantly at every time step since
we need to update the velocity constraints. Thus, the scheme in Chorin [1967] may not converge. In
addition, the sound speed used in this scheme needs to be unusually small to prevent temporal discon-
tinuities. An unreasonable sound speed further compromises the realism in the simulation results.

The nature of our control scheme demands a new fluid simulation technique which does not have
to be physically accurate, but needs to produce results that are visually appealing. What we need
is a simulation technique that approximates the behavior of incompressible fluids while absorbing
discontinuities where velocity constraints are present. We would also like the technique to be stable
and efficient. To achieve our goals, we propose an empirical scheme that does not strictly enforce
incompressibility. Recall that the pressure P in Equation (14) can be estimated numerically using the
Poisson equation [Stam 1999; Fedkiw et al. 2001]

∇2 P = 1
t

∇ · u, (15)

where t is the size of the simulation time step. It has been shown in Stam [1999] that imposing
a feedback force field −∇ P to the velocity field strictly enforces zero divergence. Our technique first
decomposes the pressure field into two components, −µt∇2 P and P ′ = P + µt∇2 P , where µ is a
constant factor with units of area divided by time, and the negative sign in front of the first component
is due to the fact that a local maximum of P is typically a local minimum of ∇2 P . Note that the first
component is the negative Laplacian of the pressure field, and the second one is a blurred version of
the original pressure. This decomposition of the pressure field, in turn, splits the feedback force field
into two components, µ∇(t∇2 P ) and −∇ P −µ∇(t∇2 P ). To allow a certain degree of compressibility,
especially in the regions with velocity constraints, our scheme only applies the first force component to
the velocity field immediately, while buffering the second one for later time steps. Thus, the discretized
version of Equation (14) changes to

u(t + t) − u(t)
t

= −(u · ∇)u + µ∇(t∇2 P ) + f. (16)

Because of Equation (15), t∇2 P in Equation (16) can be replaced with ∇ · u. If we further replace
the left-hand side of Equation (16) with a continuous partial derivative of the velocity field, we arrive
at the following single partial differential equation that is capable of simulating compressible gaseous
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.



Controllable Smoke Animation With Guiding Objects • 13

phenomena:

∂u
∂t

= −(u · ∇)u + µ∇(∇ · u) + f, (17)

where 0 ≤ µ < ∞, with a typical value between 0 and 1. It is used to adjust the magnitude of the
feedback force from the pressure field to the velocity field.

Since our scheme only uses a filtered version of the original pressure every time step, the feedback
force from the pressure to the velocity field is weakened. Nevertheless, this does not mean a portion
of the pressure simply disappears, but mean that the release of the energy preserved in the rest of
the pressure is delayed. In Appendix B, we show that, for a bounded workspace, without sources and
sinks, ∇(∇ · u) = 0 everywhere is equivalent to ∇ · u = 0 everywhere. This result indicates that our
new formulation of the feedback force from the pressure to the velocity field can eventually reduce
the divergence of the velocity to zero when there are no external forces. In addition, our formulation
allows large time steps and does not involve a sound speed. While other decompositions are possible, the
Laplacian operator in our pressure decomposition makes it particularly convenient to robustly obtain
the components through a diffusion process, which will be discussed in Section 7.2.

In practice, we have found that our formulation can effectively reproduce realistic fluid motion as
well as incorporate frequently inserted velocity constraints, without generating obvious visual discon-
tinuities (see Section 8.1).

7. IMPLEMENTATION

7.1 Shape Transition

7.1.1 Variational Shape Morphing and Interpolation. As our first option, we apply the shape trans-
formation method introduced in Turk and O’Brien [1999] to generate a morph sequence between the
shape of a smoke region and a target object. This method represents the whole morph sequence as a
variational implicit function defined in a space of n + 1 dimensions. This implicit function, which is
based on radial basis functions, interpolates the source and target shapes defined in an n-dimensional
space and handles topological shape changes automatically. The extra dimension is aligned with the
temporal axis so that the source and target shapes are n-dimensional slices of the implicit function at
time zero and one, respectively. In our situation, we apply this method to obtain an interpolating 4D
function �(r, s) such that �(r, 0) and �(r, 1) reproduce the starting smoke shape and the target object,
respectively. By fixing s to a value between 0 and 1, �(r, s) represents the analytic from of an inter-
mediate shape. In practice, we found that the rate of shape transformation usually was not uniform
and the target shape started to loom only when the time became very close to one, if the target shape
was complicated and the parameter s was scheduled linearly with respect to the actual time scale.
Therefore, we decided to warp the temporal axis and schedule s as a piecewise linear function of the
actual time t used for an animation. The local slope of the piecewise linear function is used to adjust the
transformation rate and make it perceptually more uniform. Better morph sequences can be obtained
when the source and target objects are well aligned in terms of position and orientation. The amount
of relative translation and rotation should then be uniformly distributed back across the frames of the
resulting sequence so that there is simultaneous deformation, translation, and rotation from frame-to-
frame. It is desirable for the intermediate shapes to have an approximately constant volume since a
gas usually does not significantly change volume even when it is compressible. Therefore, we verify the
volume at each intermediate frame, and apply morphological operations on the voxel grid to shrink or
expand the shape.

The same variational implicit functions for shape transformation can be used for surface interpolation
[Carr et al. 2001; Turk and O’Brien 2002]. Therefore, they can be used for generating an analytic
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implicit function to approximate a polygonal mesh model by interpolating the vertices of the mesh. The
interpolating implicit function and the polygonal mesh have the same dimensionality. Guiding objects
originally represented as polygonal meshes are converted into implicit functions in this way.

7.1.2 Shape Masking. Shape masking is an easier-to-implement alternative for generating shape
transitions. In this scheme, the target object can be simply a fixed shape undergoing rigid-body motion.
We also require an additional masking shape, M (x, t), whose scale, position, and orientation can all
vary with time. The guiding shape at each time step is defined to be the intersection between the target
and masking objects. For example, the masking object can be a moving sphere with changing radius. At
the beginning of a transition, the sphere has a tiny radius and does not have any overlap with the target
object. The sphere then moves closer to the target object while increasing its radius so that the amount
of overlap becomes larger. At the end, the sphere encompasses the target object and the transition is
complete. One caveat with this scheme is that the volume of the guiding shape changes with time,
which requires an increasing amount of smoke during the transition.

7.2 Numerical Smoke Simulation

We have implemented numerical solutions for two formulations, our new compressible fluid formula-
tion and the incompressible and inviscid formulation in Fedkiw et al. [2001]. We also implemented
enhancements that allow the integration of our velocity constraints. The details of these enhancements
will be introduced in the next section.

The implementation of the incompressible scheme consists of three basic steps [Fedkiw et al. 2001]:
compute an intermediate fluid velocity field, {u∗}, from Equation (14), ignoring the pressure term by
first adding external force  times the time step, and then solving the advection part, (u · ∇)u, by using
semi-Lagrangian tracing [Staniforth and Cote 1991]; obtain the pressure P by solving the Poisson
equation,

∇2 P = 1
t

∇ · u∗; (18)

where t is the size of the time step; finally, subtract the gradient of P from the intermediate velocity,

u = u∗ − t∇ P. (19)

To simulate our compressible fluid formulation, we still keep the first step unchanged, but revise the
other two. Although our formulation does not involve pressure, directly solving Equation (17) may not
be stable. Introducing pressure during the numerical process improves stability. Therefore, we actually
solve Equations (15) and (16) instead. In the above steps, after obtaining the pressure by solving the
Poisson equation, we apply a diffusion process,

∂ P
∂t

= µ∇2 P, (20)

and solve for the new pressure, P ′, using a stable implicit method,

P ′ − P
t

= µ∇2 P ′, (21)

where the Laplacian of the new pressure ∇2 P ′, instead of ∇2 P , appears on the right-hand side. The new
pressure can be obtained by solving the sparse linear system arising from discretizing this equation.
Finally, the intermediate velocity is updated as follows,

u = u∗ + µt∇(∇2 P ′). (22)
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Note that solving the diffusion equation to obtain the new pressure is an extra step we performed
during smoke simulation.

We discretize the workspace into a finite volume grid. Keep all vector components on the faces of the
voxels, and retain all the scalar fields at the center of each voxel. The velocity at any point inside a voxel
can be obtained by linearly interpolating each component of the velocity vector separately. Additional
implementation details about discretization and estimation of finite differences can be found in Fedkiw
et al. [2001] and Stam [1999].

Our overall numerical solution involves multiple (around three) time steps between two consecutive
frames. Small and large object motion tracking are carried out in separate time steps. There is at
most one optional time step dealing with large motion between two frames. And there may be one or
more time steps for small motion tracking since multiple iterations may be necessary to achieve good
boundary matching. In the following, we introduce the details of these time steps in the context of the
numerical solution for the incompressible formulation in Fedkiw et al. [2001]. It is straightforward to
modify these details for our compressible fluid formulation.

A time step for small motion tracking has the following substeps:

—Compute the intermediate fluid velocity field {u∗}, detect the boundary of the smoke region using a
density threshold, and set up velocity constraints at the boundary by modifying {u∗}.

—Solve the final fluid velocity field using Equations (18) and (19), while satisfying the constraints.
—Use the obtained velocity field to evolve the smoke density distribution applying the semi-Lagrangian

method.

The optional time step for large motion between two frames is executed before the other time steps. It
has the following substeps:

—Obtain the intermediate fluid velocity field and set up velocity constraints for large motion.
—Solve the final fluid velocity field while satisfying the constraints.
—Use the obtained velocity field to evolve the smoke outside the guiding object. Use the guiding object

to transport the smoke inside, and the transported smoke density overwrites existing density at each
destination voxel.

If we choose to apply our compressible fluid formulation, the second substeps in both types of time steps
should solve Equations (18), (21), and (22) instead. It is straightforward to apply additional vorticity
confinement [Fedkiw et al. 2001] in the second substeps as well since these substeps are basically
the major part of a single forward simulation step. In our experiments, we always apply vorticity
confinement.

7.3 Enforcing Velocity Constraints

Most of the time, we only set up and enforce velocity constraints at a selected subset of the voxels on
the smoke boundary for small motion tracking. This process is initiated once the adopted error metric
(see Section 5.3) exceeds a prescribed threshold. A larger threshold produces more lively smoke motion,
while a smaller threshold shows the object boundary more clearly. The voxels on the smoke boundary
are sorted according to their distance to the guiding object. Voxels with larger distance are assigned
higher priority. Velocity constraints are assigned to the boundary voxels with highest priority first.
If the shape discrepancy does not drop significantly, additional voxels with the next level of priority
become constrained. This process continues until the error drops below the threshold, or most of the
boundary voxels are constrained. Once the error becomes sufficiently small, constrained voxels get
released gradually in the reversed order.
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The desired velocity constraints are imposed after the computation of the intermediate velocity field
{u∗}. Solving the Poisson equation may alter the velocities in these constraints and make it difficult
for the smoke to converge to the target shape if these constraints are not explicitly enforced. Enforcing
these constraints means the constrained velocities should not be affected during this step. Equation (19)
indicates that ∇ P should be zero at the constrained voxels. Therefore, the pressure p needs to satisfy
such gradient constraints in addition to the Poisson equation.

Using finite differences to discretize both left- and right-hand sides of Equation (18), we obtain a
sparse linear system of equations, AP = b, where P is the vector of unknown pressures, and A is the
coefficient matrix with a sparse structure. A discrete gradient estimation at a voxel involves three or
six of its direct neighbors, depending on whether central differences are being used. For symmetry
consideration, when ∇ P = 0 at voxel (i, j , k), we impose that P (i, j , k) should equal the pressure at
its six direct neighbors. For every equation involving P (i, j , k) in the linear system, we need to replace
P (i, j , k) with the pressure at one of its direct neighbors. Eventually, we can eliminate P (i, j , k) from all
the equations. Changes like this result in a linear system with a reduced number of unknown variables.
Preconditioned conjugate gradient (PCG) with Incomplete Cholesky Factorization (ICF) [Golub and
Loan 1996] is a natural choice to solve this sparse linear system.

Since the smoke boundary surface is typically a closed surface, we avoid strictly enforcing boundary
conditions everywhere on the surface because that would result in a singular matrix A if the volume
inside the smoke region is not preserved. When it is necessary to cover the whole smoke boundary
with constraints, we reduce the density of the constraints by setting a small distance threshold dt .
Any voxels within that distance from a constrained voxel are not allowed to be constrained. We typically
choose dt to be between 1 and 3 voxels. Alternatively, Dirichlet boundary conditions can be adopted by
directly specifying pressure values on the smoke boundary. For example, one can force voxel (i, j , k)
and all its direct neighbors to have zero pressure.

7.4 Smoke Transportation for Large Motion

We assume that the frame-to-frame motion of the guiding object can be decomposed into a rigid-body
transformation and a nonrigid deformation. Smoke transportation only handles large rigid transforma-
tion and leaves small rigid transformation, as well as additional nonrigid deformation, to small motion
tracking. To move the smoke to a new position and orientation specified by the rigid transformation, we
apply backward mapping with a modified trilinear interpolation scheme. A voxel inside the transformed
object takes the smoke density at a corresponding position in the original object. The density at the
corresponding position should be interpolated only from the densities at those surrounding voxels that
are also inside the original object to preserve the object boundary.

7.5 Thin Parts

It is hard for the smoke surface to reach some of the thin parts of the guiding object. That is because
the gradient and curvature estimations are inaccurate at these locations due to insufficient sampling.
We explicitly label those voxels that should have smoke but actually do not after a long time. If there is
a smoke-filled voxel which is adjacent to one of those tagged voxels, we set a velocity constraint at the
first voxel and the velocity points to the tagged voxel. Thus, smoke can be propagated gradually into
the thin parts.

7.6 Time Complexity

Since we enforce shape matching by embedding velocity constraints into a conventional smoke simu-
lation, the time complexity of our approach is slightly higher than the latter. The extra work at each
time step includes obtaining the signed distance function of the guiding object and solving the diffusion
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Fig. 3. A comparison between two smoke formulations. The first row is generated by a model-enforcing incompressibility. The
second row is generated by our model with compressibility. They are visually similar, which indicates our model can also produce
realistic smoke appearances. Grid size 200 × 200 × 200.

equation for the pressure, among others. The complexity of the distance transform is O(n log m), where
n is the number of voxels in the grid and m is the maximum number of voxels on the propagating front
[Sethian 1999]. In the worst case, m = O(n), which usually does not occur unless the object boundary
becomes close to a fractal surface. In all our experiments, the actual running time of the distance trans-
form is less than an original smoke simulation step without constraints. The complexity of solving the
sparse linear system arising from the diffusion equation is on the same order as that of solving the
Poisson equation which is part of the original simulation. Solving these two equations is the most time-
consuming step that occupies approximately 60% of the total running time. The complexity of all the
other extra work is linearly proportional to the size of the voxel grid. Therefore, in practice, our complete
algorithm maintains the same order of magnitude of the original complexity of smoke simulation.

8. EXPERIMENTAL RESULTS

We have successfully tested our complete algorithm in a variety of examples. Some of the images from
these examples are shown in Figure 1 and Figures 4–8. The target objects in these examples include
both free-form objects and letters. Most of the target objects are converted to implicit functions from
triangular meshes. If there are multiple objects in the same example, smoke simulation was performed
on all of them simultaneously. Most of the simulations have been finished on an AMD 2100+ processor.
A voxel grid of size between 64 × 64 × 64 and 200 × 200 × 200 has been adopted for the simulations.
The examples took 15 seconds/frame on the lower end of the grid resolution and 60 seconds/frame on
the higher end. The final images were rendered by ray-tracing the smoke volume density distribution
[Kajiya and von Herzen 1984].

The density threshold τ for smoke boundary detection is interactively determined at the beginning
of the smoke-object shape transition and fixed throughout a whole simulation. We have found that
typically this threshold falls between 0.1 and 0.5. In the following, we specify other parameters used
during experiments for a normalized grid with one unit length for each of its dimensions. In Equation (4),
we typically set dmax between 0.05 and 0.1, and set Cn around 25. In Equation (5), we set Ct around 2.
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Fig. 4. Two heart-shaped smoke objects collide and merge into one. Grid size 128 × 128 × 128.

Fig. 5. Large motion tracking for a synthetic character. Constraints for large motion induce a velocity field for the environment.
There are a few sources on the floor to produce smoke for the environment. Grid size 128 × 128 × 128.

These parameters were chosen with the assumption that the maximum velocity of the smoke is around
1 unit-length per-second. Obviously, by adjusting the maximum velocity, we can change the overall pace
of the smoke.

8.1 Validation of the Compressible Fluid Model

We have validated our empirical fluid model by visually comparing the results from our model with
results from the model in Fedkiw et al. [2001]. We have performed two different types of comparisons.
The first set of comparisons are between smoke simulations without velocity constraints. They are
meant to verify whether our model can be used for a general smoke simulation as opposed to the special
application in this article. As a result, the visual quality of the smoke sequences generated by our model
is comparable to those in Fedkiw et al. [2001]. It can produce realistic smoke appearances with rolling
effects. Figure 3 shows one comparison in this category.

The second type of comparisons are between simulations with our derived velocity constraints.
We have confirmed from these comparisons that our new model can integrate these velocity con-
straints better with fewer visual artifacts. Introducing our velocity constraints into a model enforc-
ing incompressibility would generate obvious artifacts since the nonzero divergence caused by the
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Fig. 6. (a)-(c) A smoke cow generated by our method; (d)-(f) a smoke cow generated by the hard boundary scheme. Grid size
128 × 128 × 128.

Fig. 7. The smoke switches back and forth between the shapes of a “check” and an “X”. Only one cycle is shown here. Grid size
128 × 128 × 128.

constraints influence surrounding velocities immediately. The reason our model can perform better is
that it can absorb velocity discontinuities into pressure and release the energy in the pressure gradually.

8.2 Interaction with the Environment

The smoke objects should interact with the environment like smoke. When there is a sufficiently strong
wind, the animator can choose to release the velocity constraints in the influence region of the wind
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Fig. 8. (a)-(d) Smoke rises to form the shape of four letters. The shapes start to disappear once the velocity constraints are
released in (d). Grid size 128 × 128 × 128.

and let the smoke move freely. When there is an intervening real object, the animator can release the
original velocity constraints in the contact region and let the smoke be controlled by the boundary
conditions on the real object surface as in Fedkiw et al. [2001]. In the example shown in Figure 1(a),
a strong wind blows away the head of a smoke horse. However, the head grows back when the wind
recedes. This is because we keep the underlying target object unchanged, and the target object induces
velocity constraints pointing towards the head region. In such examples, the animator needs to specify
the spatial region where constraints should be released as well as the starting time and duration. In
Figure 1(a), the user simply places a partitioning plane at the bottom of the horse’s neck. Constraints
on the same side of the plane as the head are released for a short period of time. To preserve temporal
coherence, the number of constraints can be decreased or increased gradually to produce a smooth
transition.

8.3 Interaction between Smoke Objects

When two smoke objects collide, their density distributions overlap and they should naturally merge into
a larger smoke region since they do not have hard boundaries. Other scalar fields, such as temperature
and color, can also be advected by semi-Lagrangian tracing and blended together in the same way as
the density. The underlying guiding objects should either be merged or replaced with a new one which
may require a new shape transition. Velocity constraints should only be imposed on the new boundary
afterwards. In the example shown in Figure 4, two heart-shaped smoke objects merge into a larger one
and their original colors get advected and blended together. The heart-shaped target object is defined
by a closed-form implicit function: (2x2 + y2 − z2 − 1)3 − 0.1x2z3 − y2z3 = 0.

8.4 Large Motion

To demonstrate large motion tracking, we use a synthetic character equipped with motion-captured
data as the underlying guiding object. The limbs of this articulated character have large frame-to-frame
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motion so that a small amount of smoke escapes. We also put a few smoke sources on the floor. The results
from this example are shown in Figure 5. In general, smoke does not move very fast. Its appearance
would look less natural if we force the smoke to follow fast motion. Nevertheless, it can be clearly seen
that the velocity constraints induced by the fast motion of the limbs creates an interesting velocity field
for the rest of the environment and the smoke around the character follows this velocity field.

8.5 Tradeoff between Control and Smoke Appearance

The number of velocity constraints on the smoke boundary is the most important factor affecting the
realism of the smoke simulation because our velocity constraints are kinematic constraints that do
not involve dynamics. The shape of the smoke region is free to evolve without any constraints, but is
guaranteed to match the guiding object with dense constraints. Thus, we can achieve various levels of
tradeoff between control and smoke appearance by changing the number of constraints. However, the
user does not have direct control over the number of constraints which is automatically adjusted at
each time step according to the error metrics, the error thresholds, and other parameters, as discussed
in Section 5.3 and 7.3. There are no velocity constraints at all if the shape discrepancy is below the
error threshold(s); otherwise, the number of constraints is increasing, and realism is partially given
up for control. Therefore, in general, larger error thresholds allow more realistic smoke appearance,
but less object structures. The parameter µ in Equation (17) can also affect the liveliness of the smoke.
Larger µ’s provide stronger force feedback from the pressure, and typically lead to more lively motion.
Figure 9 gives a comparison of the visual quality generated by different combinations of error metrics,
thresholds, and µ. In this experiment, we chose to use both ev and eL∞ simultaneously. For ev, the
threshold is set between 0% and 5% of the volume of the target object. For eL∞ , the error threshold is
set between 0 and 4 voxels in a 128 × 128 × 128 grid. µ is set between 0.1 and 0.3.

8.6 Comparisons with other Control Schemes

A simple solution to our problem is to perform smoke simulation in the volume enclosed by the boundary
surface of the guiding implicit function. Obviously, the smoke is forced to follow the object when it moves.
This solution is similar to our scheme for large motion, but the hard boundary used for large motion
disappears once the smoke has been moved to the target location. There are a few limitations with
this solution using a hard boundary. Even though the boundary surface is not visualized during final
rendering, it will still be obvious since the smoke stops or reflects at the boundary. A smooth, hard
boundary for the smoke is not a realistic phenomenon. The second problem is that the smoke tends
to be stationary, without interesting motion, inside a closed volume with a limited size. A side-by-side
comparison is made between this simple scheme and our method in Figure 6. In the results generated by
our method, the smoke close to the boundary of the target object still has natural motion and advection.

Our control scheme also has advantages and differences if compared to the method in Treuille et al.
[2003] and McNamara et al. [2004]. First, our scheme is more efficient by introducing velocity con-
straints instead of evaluating derivatives of the velocity field with respect to all control parameters.
The time complexity of our method is on the same order of magnitude as a single smoke simulation
without shape matching. For example, Figure 7 shows an example where the smoke switches back and
forth twice between the shapes of a “check” and an “X” on a 128 × 128 × 128 grid. It took only 4 hours
15 minutes to generate the 1250-frame sequence. Second, our scheme can maintain dynamic smoke
appearances around a shape for an arbitrarily long time. Nevertheless, if we release the velocity con-
straints, the smoke becomes free to evolve (Figure 8(d)). As shown in Figure 1(a), we can also release
some of the constraints, and then regain control as we wish. A notable difference is that our algorithm
is targeted at object shapes, while the method in Treuille et al. [2003] is designed for arbitrary density
distributions at keyframes.
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Fig. 9. A comparison of the visual quality of the smoke objects by different combinations of error metrics, thresholds, and the
pressure diffusion parameter. (a) The error thresholds ev = 0%, eL∞ = 0 voxels, and the diffusion parameter µ = 0.1; (b) ev = 3%,
eL∞ = 2.5 voxels, and µ = 0.1; (c) ev = 5%, eL∞ = 4 voxels, and µ = 0.3. Grid size 128 × 128 × 128.

A video including the aforementioned examples may be found at:
http://www-sal.cs.uiuc.edu/~yyz/movie/smoke_obj.avi

9. CONCLUSIONS AND FUTURE WORK

We have presented a novel technique to control the density and dynamics of smoke (a gas phenomenon)
so that the synthetic appearance of the smoke (gas) resembles a still or moving object. The main focus
has been on controllability and appearance. In order to match the smoke surface with the target sur-
face, we represent both smoke and objects as implicit functions and impose carefully designed velocity
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Fig. 10. Moving points on the smoke boundary along their respective normal directions can reduce the shape discrepancy
between the smoke region and the target object most quickly.

constraints derived from a shape matching functional. An empirical compressible fluid model has been
introduced for effectively integrating constraints into the velocity field while maintaining realistic fluid
appearances. The overall framework represents a significant advance over previous methods for con-
trolling fluids. The implementation of our system is built upon recent advances in smoke simulation
and shape transformation.

We would like to extend this work to 2D images and video objects. The difference between a 3D object
and a 2D image is that an object is a binary function, while an image has multiple levels of intensities
or colors. Matching the smoke boundary with the object boundary should be extended to matching the
level sets of smoke density with the level sets of image intensities or colors. Nevertheless, we expect the
approach introduced here can be generalized to handle that circumstance by matching the boundaries
of these level sets. Unlike 3D animated objects addressed in this article, the motion of video objects is
unknown, and needs to be solved using computer vision techniques such as optical flow [Beauchemin
and Barron 1995; Black and Anandan 1996]. Once the motion of these objects has been estimated, the
approach in this article can also be adapted to produce fluid appearances for them.

APPENDIX

A. VARIATIONAL GRADIENT

In this section, we provide an intuitive derivation of Equation (3) from Equation (2) in a 2D space. The
derivation for a 3D space can be obtained similarly. The smoke boundary is first discretized into a finite
set of points. Consider one of the points xi shown in Figure 10. We need to perturb the position of xi
to reduce the integral in Equation (2). Obviously, xi should move further into the interior of the target
object. If xi moves along the local normal at xi by an infinitesimal distance, Equation (2) is reduced
by an amount equal to the area enclosed by the polygon xi−1xixi+1xN

i , where xN
i represents the new

location of xi. If xi moves along some other arbitrary direction to x′
i by the same infinitesimal distance,

Equation (2) is reduced by an amount equal to the area enclosed by the polygon xi−1xixi+1x′
i. Since xixN

i
is perpendicular to the local boundary, when the lengths of xi−1xi and xixi+1 become sufficiently small,
the area of xi−1xixi+1xN

i is guaranteed to be larger than the area of xi−1xixi+1x′
i. That is, Equation (2)

can be decreased most quickly by moving xi along the local normal of the smoke boundary. This also
holds for all other points on the same boundary. By increasing the number of points in the boundary
discretization, the distance between two adjacent points can be arbitrarily close to zero. By definition
[Gelfand and Fomin 1963], the variational derivative of the functional in Equation (2), with respect
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to the geometry of the smoke boundary, exists. The variational derivative, with respect to a specific
boundary point, is the unit normal vector at that point, multiplied by an appropriate sign given in
Equation (3).

B. AN EQUIVALENT CONDITION FOR ∇ · U = 0

We show that, for a bounded workspace �, without sources and sinks, ∇(∇ · u) = 0 everywhere  is
equivalent to ∇ · u = 0 everywhere. Without loss of generality, suppose there exists a point x0 ∈ � such
that ∇ · u(x0) > 0. Since � is bounded, ∫

�

(∇ · u)dx = 0.

Therefore, there must be another point x1 ∈ � such that ∇ · u(x1) < 0. Consider an arbitrary path
between x0 and x1. There must exist a point xm on that path such that ∇(∇ · u(xm)) �= 0. Otherwise,
∇ · u(x0) = ∇ · u(x1). Thus, ∇ · u must be zero everywhere.
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