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Robust Feature-Preserving Mesh Denoising
Based on Consistent Subneighborhoods

Hanqi Fan, Yizhou Yu, and Qunsheng Peng

Abstract—In this paper, we introduce a feature-preserving denoising algorithm. It is built on the premise that the underlying surface of
a noisy mesh is piecewise smooth, and a sharp feature lies on the intersection of multiple smooth surface regions. A vertex close to a
sharp feature is likely to have a neighborhood that includes distinct smooth segments. By defining the consistent subneighborhood as
the segment whose geometry and normal orientation most consistent with those of the vertex, we can completely remove the influence
from neighbors lying on other segments during denoising. Our method identifies piecewise smooth subneighborhoods using a robust
density-based clustering algorithm based on shared nearest neighbors. In our method, we obtain an initial estimate of vertex normals
and curvature tensors by robustly fitting a local quadric model. An anisotropic filter based on optimal estimation theory is further applied
to smooth the normal field and the curvature tensor field. This is followed by second-order bilateral filtering, which better preserves
curvature details and alleviates volume shrinkage during denoising. The support of these filters is defined by the consistent

subneighborhood of a vertex. We have applied this algorithm to both generic and CAD models, and sharp features, such as edges and

corners, are very well preserved.

Index Terms—Denoising, features, clustering, shared nearest neighbors, normals, curvature tensors, quadrics, bilateral filtering.

1 INTRODUCTION

IGITAL scanning devices are widely used to acquire

high-resolution 3D models in recent years. It has
become commonplace to model detailed 3D shapes by
scanning real physical models. However, the acquired data
inevitably have noise from various sources [1], [2]; there-
fore, smoothing algorithms are required to improve the
quality of the reconstructed meshes for further processing.
One of the major obstacles is that sharp features, including
creases and corners that are very important for real models,
are often corrupted by noises, and most existing techniques
tend to more or less blur sharp features since they typically
make use of the entire neighborhood of a vertex when
performing noise removal even though different neighbors
may receive different weights.

As we know, a surface with sharp features is actually
piecewise smooth and a feature lies on the intersection of
multiple smooth surface segments. When we perform noise
removal for a point lying on one of the surface segments, it is
much desired for that point to receive influence from
neighboring points lying on the same surface segment only.
Nevertheless, there exist challenging technical problems we
need to solve before realizing this goal. First, how can we
classify noisy vertices as features and nonfeatures? Second, in
the presence of noise, how can we identify piecewise smooth
surface segments in the neighborhood of a vertex? Third, how
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should we effectively perform noise removal for a curved
surface region while preserving curvature and volume?

In this work, we introduce a piecewise surface denoising
method that can effectively preserve sharp features and
volume (Fig. 1). Because the surface normal varies con-
tinuously within a smooth region while changes abruptly
across sharp features, we attempt to exploit normals as the
primary cue for identifying piecewise smooth surface
segments. Nevertheless, normal estimations are unreliable
when vertices are corrupted with noise. This approach of
using normals to assist the identification of discontinuities
has been described as a “chicken and egg” problem [3] ,
since a normal is well defined only when local smoothness
is assumed, but in the presence of noise, this computation is
unreliable, even worse near a discontinuity.

We tackle this problem with a few effective techniques.
First, a relatively reliable estimate of normals is obtained by
robustly fitting a quadric approximation of the local surface
geometry. Second, to identify piecewise smooth surface
segments, we explicitly divide the normals within a vertex’s
neighborhood into multiple groups using a class of noise-
resistant clustering techniques in data mining, called
density-based clustering techniques. Specifically, we adopt
a robust clustering algorithm based on shared nearest
neighbors (SNN), which aims to find clusters of widely
differing sizes, shapes, and densities in noisy data [4]. Each
resulting cluster forms a subneighborhood. Third, before
actual noise removal for vertex positions, we perform noise
removal for normals and curvature tensors using a filtering
algorithm based on the optimal estimation theory [5], which
is on combining measurements from multiple noisy sources
to provide an optimal estimate of a target. Such filtering
happens within the consistent subneighborhood of every
vertex. Our algorithm effectively filters normals, principal
curvatures, and principal directions in a cascaded manner.

Published by the IEEE Computer Society
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Fig. 1. (a) An initial mesh extracted from a noisy volume. (b) The
denoised model from our method.

The final denoising procedure applied to a vertex’s
position is chosen according to the category of the vertex.
For a nonfeature vertex, we apply second-order bilateral
filtering within the vertex’s consistent subneighborhood
using an estimated local quadric surface. Being a more
accurate approximation of the local geometry, higher order
bilateral filters can better preserve local surface curvatures,
and therefore, alleviate volume shrinkage. To preserve the
sharpness of a feature vertex, its denoised position is the
point along its normal vector that is closest to the tangent
planes of its neighbors.

2 REeLATED WORK

There has been much work in the area of surface denoising
in recent years [6], [7], [8], [9], [10], [11], [12], [13], [14].
Techniques for curvature-minimizing geometric fairing can
also be found in [15], [16], [17]. Taubin [6] pioneered a
signal processing approach to triangle mesh smoothing.
Mesh fairing with mean curvature flow was introduced by
Desbrun et al. [7] for smoothing irregular meshes. Ohtake
et al. [18] further improved this work by integrating it with
parameterization regularization. Such work has been
extended to perform feature-preserving surface denoising
[8], [19] by making diffusion nonlinear or anisotropic.
Recently, Fleishman et al. [11] and Jones et al. [12]
successfully extended the bilateral filter from image
denoising [20] to mesh denoising, which has a close
relationship with anisotropic diffusion [21] and can be seen
as a robust statistical technique [22]. These two papers
define a fast, feature-preserving anisotropic filter. In [11], a
vertex and its normal define a parameterization plane, over
which a bilateral filter is applied to the neighborhood of that
vertex. However, a vertex on a sharp edge that these
algorithms aim to preserve is defined by the intersection of
two planes rather than one. Bilateral filters cannot handle
such situations well even though they automatically assign
much smaller weights to outliers. Fleishman et al. [11] have
also pointed out that their method gives rise to a certain
amount of volume shrinking. Takeda et al. [23] extended the
original bilateral filter [20] in image processing by using
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higher order local approximations of the signal. Duguet
et al. [14] proposed a similar idea for mesh denoising that
fits a quadric surface at each vertex to extend the method of
Jones et al. [12]. Bilateral filters are applied to normals and
curvature tensors in two passes, and a quality parameter
based on local quadric approximation errors was intro-
duced to further control the weights of the bilateral filters.
These local quadric surfaces play the same role as tangent
planes in Jones et al. [12]. This second-order technique
achieves better results than Jones et al. [12]. However, it is a
drifting method that does not explicitly determine whether
there are multiple piecewise smooth regions near a vertex. It
alters the vertex density over a mesh surface by making
vertices near a sharp feature move toward that feature.
Hildebrandt and Polthier [24] use a prescribed mean
curvature (PMC) flow to remove noise while preserving
and sharpening geometric features and preventing bound-
ary shrinkage. This approach works perfectly at low noise
levels. When the noise became reasonably large; however, it
would create features that are not present in the original
mesh. Some other two-stage feature-preserving mesh
denoising methods [25], [26], [27], [28] have also been
proposed, which first filter face normals and then update
vertex positions under the guidance of the filtered normals.
These methods produce fairly good results. However, most
of them cannot preserve small-scale discontinuities very
well, especially when the noise level is reasonably high.
The assumption of an underlying piecewise smooth
surface has been previously utilized in surface reconstruc-
tion from point clouds. Such reconstructions can leave
sharp features in the original point cloud intact. Based on
implicit modeling of a distance field, Hoppe et al. [29]
introduce a method for reconstructing piecewise smooth
surfaces in multiple passes, and sharp features are defined
by two polygons with a crease angle that is larger than a
threshold. Fleishman et al. [3] improved the moving least-
squares (MLSs) technique by introducing a robust statistical
method for reconstructing piecewise smooth point-set
surfaces [30]. Their approach uses a forward search
technique for outlier detection, which divides a point cloud
into multiple smooth regions. Sharp features are defined as
intersections of these smooth regions. However, since this
approach computes the subneighborhoods independently
for each point, it creates jagged edges due to the fact that
nearby points may construct different neighborhoods [31].

3 OVERVIEW

We extend the piecewise smoothness assumption pre-
viously used for point-set surfaces [29], [3], [31] to noisy
meshes, and devise a series of algorithms to achieve robust
mesh denoising that preserves sharp features. That is, we
assume that a mesh surface consists of smooth regions as
well as sharp features in between these regions. A smooth
region can be either planar or curved. A sharp feature can
be an edge, where two smooth regions intersect, or a corner,
where more than two smooth regions meet.

Our method begins with a classification of vertices into
three categories, sharp features, interior points of a smooth
region, and points close to the boundary of a smooth region.
This is made possible by checking whether the neighbor-



FAN ET AL.: ROBUST FEATURE-PRESERVING MESH DENOISING BASED ON CONSISTENT SUBNEIGHBORHOODS 3

hood of a vertex can be sufficiently modeled by a quadric
surface (Section 4). When the quadric fitting error is
sufficiently large, the vertex is considered a feature. An
interior point is a nonfeature vertex that does not have any
sharp features in its neighborhood. The remaining vertices
belong to the third category, transitional points.

After obtaining an initial estimate of vertex normals from
Section 4, we perform density-based normal clustering inside
the neighborhood of every feature or transitional vertex to
identify piecewise smooth regions (Section 5). Each resulting
cluster forms a subneighborhood, and the consistent sub-
neighborhood of a transitional vertex is defined as the one
whose geometry and normal orientation are most consistent
with those of the central vertex. For an interior vertex, its
entire neighborhood is defined as a consistent neighborhood.
Since our mesh denoising algorithm relies on normal and
curvature estimations which can be noisy themselves, we
improve their estimation using a filtering algorithm based on
the optimal estimation theory (Section 6.1). Such filtering is
performed within the consistent subneighborhood of every
interior or transitional vertex.

The actual denoising procedure applied to a vertex is
chosen according to the category of the vertex. For an
interior or transitional vertex, we directly apply second-
order bilateral filtering within its consistent subneighbor-
hood (Section 6). If the vertex is a feature point, we first
estimate a smooth surface, a tangent plane in our
implementation, for each vertex in its entire neighborhood,
and then its denoised position is simply the point along its
normal vector that is closest to these estimated surfaces.

Since we frequently make use of quadric surfaces and
principal curvatures, the following definition will be useful.
Let p be a point on a differentiable surface region S. A local
frame at p is defined as follows: Its origin is at p. One of its
axes is aligned with the surface normal at p,n,. The other
two axes are aligned with the principal directions at p. Let
e; and ey be orthogonal unit vectors aligned with the
principal directions for which the normal curvature at p
takes on maximum and minimum values k., and K.
Then, A, = (p,e1, e, 0y, Kpay, Kmin) is often collectively
referred to as the augmented Darboux frame at p [32].

4 RoBuUST QUADRIC ESTIMATION

The local geometry around a surface point p can be viewed
as a height field over its tangent plane. Because a second-
order polynomial can faithfully represent this height field
up to its second-order derivatives, which represent essential
information characterizing local geometric properties, it is
sufficient to fit second-order surfaces to estimate the normal
and principal curvatures at p.

Estimating all the parameters of a parabolic quadric at p
is separated into two subproblems [33]: estimating the
surface normal and estimating the principal directions. We
first construct a local frame from current normal at p and
transform its nearest neighbors into this frame. The quadric
surface model has the following form:

fo(x) = 6%, (1)

where = [a,b,c,d,e, f] is a coefficient vector and x =
(22, zy, 4%, x,y,1]" is the second-order polynomial basis
vector. Because there exists noise, in order to minimize
the sum of residues along the local z-axis,

arg;ninzvﬂ(xi) - zil, (2)

we adopt a robust statistics technique, iteratively re-
weighted least squares (IRLSs) [34], to reduce the influences
of the outliers, including noises and discontinuities. The
iterative minimization thus becomes

argmin S w(x)|fo(x) = [, (3)

where the weight w(x;) is computed by applying the
Gaussian kernel to the residue at x; from the previous
iteration.

However, IRLS does not take spatial locality into account,
which are especially important when the center point is on
or near a sharp feature. In order to make the estimated
quadric model more local and precise, we extend this single
Gaussian kernel to a double Gaussian kernel as follows:

w(x;) = wa(x;) - ws(x;),
wa(x;) = exp (—||x; — x||° /207), (4)
wy(x;) = exp (—|| fa(x:) — 2% /207),

where wy controls the locality influence and oy is the largest
distance between x and its k nearest neighbors, while w;
controls the residual influence and o, is the standard
deviation of the residuals. Once the coefficient vector  has
been determined, we update the local frame according to
the new normal, n = [—d, —e, 17 /(d? + ¢2 + 1)/, and then,
repeat these IRLS and normal estimation steps. This process
stops when the incremental change in the direction of the
normal falls below a tolerance level. Principal curvatures
and directions can then be derived from the last estimated
quadric. Specifically, the principal curvatures are

a+c+/(a—c)+b?

and

a+c—r/(a—c)+b2

respectively. Since the initial normal is obtained from a rough
estimation, the normal is refined during the iterative process,
which gives rise to more precise curvature estimation.

4.1 Sharp Feature Detection

The estimation of a local quadric surface entails a
minimization of a weighted sum of squared distances as
in (3). Note that this fitting error is not likely to completely
vanish. We use the error from the best fit to indicate the
quality of surface fitting. Local quadratic surface approx-
imation is assumed to be accurate if the corresponding
fitting error is low. Let x; be the fitting error at vertex i. The
quality coefficient at this vertex is defined as follows [14]:

g = exp( =X /), (5)
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Fig. 2. lllustration of quality coefficients. (a) The noise corrupted models.
(b) Red points are classified as feature points (¢; < 0.1), blue ones have
best fitting quality (¢; > 0.4), and green ones have intermediate fitting
quality.

where o, is the standard deviation of the fitting errors.
Thus, ¢; € [0, 1], and we choose vertices with low-quality
coefficients as sharp features. As illustrated in Fig. 2, the
quality coefficient becomes worse around sharp edges or in
the presence of noise.

From the estimated quality coefficients, vertices are
classified into three categories. 1) Feature points, with
gi <e. A large e classifies more points as features than
necessary, while a small one may miss some of the real
features. Based on histograms of the quality coefficients
computed for multiple meshes (Fig. 3), we chose ¢ = 0.1 that
worked very well in all our experiments. However, points
satisfying this condition may not be real features, but noises.

(a) (b)

Fig. 3. Two typical histograms of the quality coefficients on the
corresponding noisy models used in our paper. Each histogram has
40 bins which uniformly cover the range [0, 1]. It is clear that the lowest
10 percent of the bins forms a local peak. (a) Fandisk. (b) Bunny.
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Fig. 4. Since normals in the red region have larger variations than those
in the yellow region, DBSCAN is able to separate vertices in these
regions into different clusters, and therefore, can achieve denoising
without blurring the sharp edge between these regions.

This would not impose a problem, and the techniques
presented in Sections 5 and 6 can deal with such misclassi-
fications in a graceful way. 2) Interior points, without any
feature points in its predefined neighborhood. 3) Transitional
points, nonfeature points with feature points in its neighbor-
hood. A true interior point may be misclassified as a
transitional point if some of its neighbors have been
misclassified as feature points. As discussed in Section 5.1
and Fig. 6d, our method can still function correctly.

5 DEeNsITY-BASED NORMAL CLUSTERING

As discussed earlier, we would like to identify piecewise
smooth regions in the neighborhood of feature and
transitional vertices before applying any specifically tai-
lored denoising procedure. Because the surface normal
varies continuously within the same smooth region but
changes abruptly across region boundaries, the normal
vectors within a piecewise smooth neighborhood form
multiple clusters on the Gaussian sphere. Normal disconti-
nuities at region boundaries give rise to noticeable gaps in
between these clusters, each of which may have a different
density due to the curvature of the corresponding surface
region. Based on these observations, we perform normal
clustering within the neighborhood of every vertex (Fig. 4).
Since our estimated surface normals are corrupted with
noises as well, we adopt a density-based clustering
algorithm frequently used in data mining. This algorithm
has a strong capability in detecting clusters corrupted with
outliers.

Density-based clustering algorithms, such as DBSCAN
[35], locate transition boundaries among multiple clusters
each of which has a relatively more uniform internal
density. To make such algorithms less sensitive to density

(a) (b)

Fig. 5. Computation of SNN similarity between two points. The weight for
the link between the two black points is set to the number of neighbors
they share.



FAN ET AL.: ROBUST FEATURE-PRESERVING MESH DENOISING BASED ON CONSISTENT SUBNEIGHBORHOODS 5

() (d

Fig. 6. Four typical clustering scenarios. The black dot represents the
central vertex of the neighborhood, and the yellow ones have been
classified as features, which do not participate in the clustering process.
(a) The central point is a corner vertex. The entire neighborhood is
divided into at least three clusters (red, cyan, and pink clusters). (b) The
central point is on an edge. The neighborhood is divided into two
clusters (red and pink clusters). (c) The central point is near an edge.
The pink points form the consistent subneighborhood, while the red
ones do not since their locations and normals are further away from
those of the central point. (d) The central point lies on a flat surface
region and some of its noise-corrupted neighbors are misclassified as
features (yellow). Most nonfeature vertices in the neighborhood form a
single cluster (pink), which also forms the consistent subneighborhood.

variations within the same cluster, Erroz et al. [4] improved
the original DBSCAN algorithm with shared nearest
neighbor (SNN) density, which has succeeded in finding
climate indices [36]. This powerful improved algorithm first
finds the nearest neighbors of each data point, and then,
defines the similarity (distance) between pairs of points in
terms of how many nearest neighbors they share. By this
definition of similarity, this algorithm identifies core points,
and then, builds clusters around these points.

The same as Jarvis-Patrick’s approach [37], an SNN
similarity graph needs to be constructed first for normals of
vertices within the neighborhood of a mesh vertex. There is
a node in the graph for each normal. For each pair of
normals n, and n, a link is created between their
corresponding graph nodes, if and only if the two normals
are on each other’s k nearest normal lists, and the strength/
weight of the link between n, and n, that is, their
similarity, is defined as

similarity(n,, n,) = size(NN(n,) "1 NN(n,)), (6)

where NN(n,) and NN(n,) are the nearest normal lists of
n, and n,, respectively.

Since SNN similarity is a robust measure of similarity
(distance), we can use it in the nearest neighbor approach to
density estimation. In detail, SNN density measures the
degree to which a node is surrounded by similar nodes in the

similarity graph, which means the number of neighbors with
a link strength equal to or greater than Eps. Nodes in areas of
either a high or low density typically have a relatively high
SNN density, while nodes in areas where there is a transition
from a low to high density, i.e.,, nodes that are between
clusters, tend to have a low SNN density. For our problem,
vertex normals on a local surface region with sharp features
usually have such a character. There are low SNN density
normal sets between the smooth subregions.

The nodes that have an SNN density greater than MinPts
are further defined as core points. These points are in the
interior of a cluster, which includes those core points that
are within a similarity (distance) of Eps of each other. All
noncore points that are not within a radius of Eps of a core
point are eliminated. These points are regarded as outliers,
and such elimination can make the filtering of the normal
field more effective and robust. A border point, which is
defined as a noncore and nonnoise point, is assigned to the
cluster where its nearest core point belongs.

In conclusion, the main steps of the SNN density-based
clustering algorithm are as follows:

1. Compute the SNN similarity graph for normals of
vertices in a neighborhood on the mesh and the SNN
density of each graph node.

Label the core points.

Form clusters from the core points.

Eliminate noisy outliers.

Assign each border point to the nearest cluster.

PESCEE

The most important parameter is the size of the nearest
normal lists, k, which determines the granularity of the
clusters. If k is too large, the algorithm tends to find only a
few large clusters of nodes, since small local variations in
similarity do not have an impact. On the other hand, if £ is
too small, even a uniform cluster would be broken up into
many tiny pieces due to local variations in the similarity,
and the algorithm tends to find many small clusters.
Another parameter, MinPts, should be less than the size of
the nearest normal lists since we only consider k& most
similar normals of a given normal. A larger Eps can better
resist noise during clustering. But an overly large Eps
would give rise to very small clusters since Eps also
determines when to merge core points into the same cluster.
To identify core points reliably, we should set MinPts
larger than Eps. However, an overly large MinPts would
leave few nodes in each cluster and render the clustering
result useless. Altogether we choose a relatively small Eps
to detect very loosely connected nodes as noisy points and a
relatively large MinPts to reliably identify core points.

In comparison with other popular clustering techniques,
including K-means clustering and mean shift clustering,
density-based clustering is better suited for outlier detection
and neighborhood clustering where the number of clusters
is unknown. K-means clustering has two inherent limita-
tions: it does not pay attention to natural cluster boundaries
due to the adoption of euclidean distance, and the number
of clusters has to be known a priori. Mean shift clustering is
not suitable either because it does not detect outliers and
always assign every normal to a cluster even when the
normal is corrupted with extreme noise.
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5.1 Consistent Subneighborhoods

Once the improved DBSCAN algorithm divides a local
neighborhood into piecewise smooth surface segments by
means of normal clustering, we still need to determine the
consistent subneighborhood of every transitional point.
Note that every normal cluster has a corresponding vertex
cluster in the neighborhood since there is a vertex
associated with each normal. For a vertex cluster C in the
neighborhood of a transitional point p, its center ¢ and
correlation matrix M are defined as

qu(‘q
c= = 7
ic (7)

Seecla—c)a—rc¢)"
Il

The eigenvectors {vg, vy, v} of the correlation matrix
together with the corresponding eigenvalues {Xg, A1, A2},
where Ay < A; < Xy, define the correlation ellipsoid that
indicates the configuration of the vertices in C. If Ay < \| =
A2 holds, which means that the ellipsoid is nearly flat, the
vertices in C' approximately lie on a planar surface segment
[38]. Furthermore, vy is an approximation of the surface
normal. ¢ and vy together serve as the least-squares solution
of fitting a plane to the vertices within C. To further judge
whether vertex p lies on this surface segment, we check the
distance between the vertex normal and the surface normal
as well as the distance from the vertex p to the plane. The
consistent subneighborhood is chosen to be the one with the
smallest discrepancies in both position and normal orienta-
tion. In another word, the cluster with the smallest product
of these two distances is chosen as the consistent sub-
neighborhood. All the vertices in the consistent subneigh-
borhood are recorded as p’s true neighbors, and other
neighbors are simply ignored in subsequent filtering steps.

As shown in Fig. 6, in the event that a true interior point
were misclassified as a transitional point because some of
its noise-corrupted neighbors had been misclassified as
feature points, density-based clustering would still be able
to assign most of its neighbors to a single large cluster,
which then forms its consistent subneighborhood. All
subsequent filtering steps discussed in Section 6 can still
function correctly using this subneighborhood and produce
very good denoising results.

M=

(8)

6 SEeEcoND-ORDER MESH DENOISING

Fleishman etal. [11] and Jones etal. [12] extend bilateral filters
[20] from images to meshes. Theidea of Fleishman etal. [11] is
to take the tangent plane at each vertex as a local
parameterization plane. The heights of the vertices over this
plane are synonymous with the gray-scale values of animage.
They formulate the bilateral filter for mesh denoising as:

_ 2pen Welllpi — P[)Ws(hi)hi
Ypen Welllpi = pIDWa(hi)

where d is a signed distance with respect to the tangent
plane, N is the neighborhood of p, nj, is the normal at p, and
hi = <np, p; — p>. The spatial weighting function is defined
as W.(z) = exp(—2?/20?), and the feature-preserving

d (9)

weighting function is defined as W(z) = exp(—2?/20?). 0.
is simply the largest distance between p and the k nearest
neighbors, while o, is the standard deviation of h;s. The
position of vertex p is updated as follows:

Pp=p+d-n, (10)

This method is simple and effective, and achieves good
results. However, in high-curvature regions, using a single
parameterization plane could smooth sharp features rela-
tively fast even though bilateral filters can discount the
influence of outliers to a certain extent.

We apply different denoising procedures for feature and
nonfeature vertices. For nonfeature vertices, we make use of
an estimated local quadric surface, such as the one obtained
in Section 4, to perform second-order bilateral filtering. In
comparison to [11], we define the height h; of neighbor p;
over the quadric surface as the distance from p; to this
quadric along the normal nj,. Otherwise, our second-order
bilateral filter follows the same formula as in (9). The filtered
vertex position can be obtained from (10). The reason to use
a quadric surface instead of a plane is that the quadric is a
higher order and more accurate approximation of the local
geometry. It can better preserve volume (Table 3) and local
surface curvature. Note that the neighborhood N used in
our bilateral filter includes only neighbors in the consistent
subneighborhood determined in Section 5.1. By excluding
outliers and vertices in other subneighborhoods from the
filtering process, we achieve more accurate and feature-
preserving results.

For vertices classified as sharp features, because they are
defined as the intersection of multiple local surface
segments, we obtain their denoised positions by minimiz-
ing the quadric error metric defined in Garland and
Heckbert [39] which was originally used for triangle mesh
simplification. One deviation from the minimization in [39]
is that we optimize this metric along the normal direction,
which can achieve better results (Fig. 7).

In detail, in the neighborhood of a feature vertex p, we
first fit a plane to each cluster resulted from density-based
clustering, and then, reset the normal at p to be the average
normal of these planes. For example, in Fig. 5, the normal of
p is set to the average of three plane normals each of which
is defined by a cluster of cyan, red, and pink vertices,
respectively. Once the normal at p has been refined, we
apply a nondrifting scheme to optimize the position of p.
The optimal position is defined to be the point on the normal
that minimizes the following weighted quadric error:

2 p.en Wi |nf(p +tn,) +d; H2

Zp,,eN w; ’

(11)

arg min
t

where

wi = exp (=[] (p + tny) + d[|* /%), (12)

N is the neighborhood around p, n, is the normal at p, and
n; and d; are, respectively, the normal and offset of the
tangent plane at a neighbor p,. This optimization is actually
a minimization of the weighted average distance between p
and the tangent planes at all neighbors, and o is the
standard variation of these distances. It has a quadric
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Fig. 7. (a) The input mesh is corrupted by Gaussian noise. (b) Sharp
features could not be preserved without neighborhood clustering.
(c) Directly minimizing the quadric error metric in [39] gives rise to a
drifting method that produces wavy edges. (d) In contrast, our
nondrifting method performs best, and can perfectly preserve sharp
edges and corners.

energy function, and therefore, has a closed-form solution.
Note that this energy-minimizing technique can still
function very well in the event that a noise-corrupted
vertex is misclassified as a feature point.

6.1 Optimal Estimation of Darboux Frames

Up to now, normals and curvatures are estimated from
noisy vertex positions. Normals are first-order differential
properties, while curvatures and principle directions are
second-order differential properties. Noises amplify their
influences on such estimated differential properties. It is
desired to remove such ill influences before second-order
bilateral filtering is performed using normals and quadrics.
This is achieved using the optimal estimation theory.

An optimal estimator utilizes all measurement data plus
prior knowledge about a system. It relies on the variance of
the past prediction errors of a noisy source to determine its
contribution in predicting the behavior of a target in the
next iteration [5]. The curvature consistency framework in
[40] adopts this idea and conducts an iterative process to
obtain an optimal estimation of the augmented Darboux
frame at every vertex. Consider a vertex p and its
neighborhood {q]}JeN Denote the Darboux frame esti-
mated during iteration k for vertex p as Af. At each
iteration k, we intersect the normal vector at p with the
quadric at q; and further derive a local Darboux frame
A} _, on this quadric at the intersection using A;~", which
is the Darboux frame estimated during iteration’ k —1 for
vertex q;. The detailed derivation can be found in [41]. This
Darboux frame serves as the predicted version of the

| Diffusion of normals |

<
[~
\ 2
| Diffusion of curvatures |

A2

Diffusion of principle directions

\ 4
End

Fig. 8. The flow chart of our cascaded iterative method for curvature
tensor filtering.

Darboux frame at p using the Darboux frame estimated in
the previous iteration at q; since the quadric at q; is an
accurate local second-order model and can provide a
reasonable estimation of the second-order properties at p.
In summary, the Darboux frames are iteratively updated

as follows:
= A(kAL (13)
JeEN
where
Ez(k 1)
exp| — 2207
A(k) = . (k)1> (14)
2en eXP( m)
2 2 2
E; (k) = E; (k—1)+ ej(lc)7 (15)

()

Fig. 9. Results from our improved curvature consistency algorithm.
(a) Original curvatures. (b) Filtered curvatures after four iterations.
(c) The color map of the curvature visualizations in (a) and (b).



(a)

(b)

Fig. 10. Denoising result for the FEMME model. (a) The original model
contaminated with real noise. (b) The denoised model generated from
our method.

(k) = Ak — Ak (16)
o2(h) = == 3" E2(K). (17)
' INl &
JEN
Note that in the first iteration, we need to set A;(1) = ‘—]{,‘ and

E?(0) =0.

J(O£1e problem with this iterative estimation method is
that it updates all components of an augmented Darboux
frame simultaneously using the same weighting function
and the metric for estimation errors also fuses the errors
of all components together even though the range of
individual components may be widely different. For
example, the principal curvatures may approach infinity,
while the vector components always have unit length.
Thus, the iterations may be primarily driven by the
curvature components without sufficient attention to the

(a) (b)
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vector components [42]. We solve this problem by
developing a cascaded iterative method to update various
components in a sequential order. In our revised method,
each iteration consists of three phases, which respectively
improves the estimation of normals, two principal
curvatures, and the principal direction e;. A result from
our algorithm is shown in Fig. 9.

In the first phase, only the normal vectors are updated.
Thus, (13) becomes

nf = " N(knf_, (18)

JeN

and the error metric is defined to be the angular distance
between estimated normals:
k
-nf
_ # . (19)
’ n‘]]’\p|

In the second phase, two principal curvatures x =
(Kmags Kmin) are updated simultaneously as follows, while
the normal and principal directions are held constant:

k 2 k
Ky, = Z )\j(k)fﬂqup.

jeN

(20)

And the error metric is defined as follows:

() = [[nf — k1P [let — ek [+ Ik — 65 % (21)

In the third phase, only the principal direction e; is
updated as follows, while the other components are held
constant:

el = Z )\j?(k:)elfj.

jEN

(22)

The error metric is still the same as (21). In order to preserve
the orthogonality of the Frenet frame, e; is projected to the
tangent plane defined by n,. As shown in Fig. 8, we
alternate the second and third phases two to five iterations
and each phase is executed around three times within each
iteration. The specific choice depends on the noise level.
Larger noise needs more iterations.

(d ()

Fig. 11. A comparison of mesh denoising results among our method, bilateral filtering [11], and higher order bilateral filtering [14]. The original model
is corrupted with Gaussian noises with o = 15 percent of the mean edge length. The second row shows zoomed views. As presented, Fleishman
et al. [11] removed noises, but at the same time, blurs the sharp features inevitably, while Duguet et al. [14] did slightly better. In contrast, the result
of our method keeps most of the original sharp features. (a) Original model. (b) Noise-corrupted model. (c) Bilateral filtering. (d) High-order filtering.

(e) Our method.



FAN ET AL.: ROBUST FEATURE-PRESERVING MESH DENOISING BASED ON CONSISTENT SUBNEIGHBORHOODS 9

(a

) (b) (

(d) ()

Fig. 12. A comparison of mesh denoising results from our method, bilateral filtering [11], and high-order bilateral filtering [14]. The original model is
corrupted with large-scale Gaussian noises with o = 50 percent of mean edge length. The second row shows a zoomed view of an ear. As
presented, Fleishman et al. [11] removed noises, but at the same time, noticeably shrunk the volume in areas such as the ears, while Duguet et al.
[14] could not completely remove noises. The result of our method is most similar to the original model. (a) Original model. (b) Noise-corrupted

model. (c) Bilateral filtering. (d) High-order filtering. (e) Our method.

Liu et al. [42] proposed a related method that defines the
error between principal curvatures using two parts. The
first part is the euclidean distance between the vectors of
principal curvatures, and the second one is based on the
angular distance between corresponding principal direc-
tions. That is,

e}(k) = ||/-i[’j — K, and e?(k) = sinfd". (23)

k

‘Ij’\pH
The weighting function X;(k) = Aj(k) - X(k). This scheme
encounters problems in the vicinity of umbilical points
because the estimated principal directions are unstable
around umbilical points, which, in turn, leads to unstable

weighting functions. Our method alleviates this problem
because none of our error metrics considers principal
directions only. Liu et al. [42] also proposed another error
metric which is defined as the determinant of the difference
of two curvature tensors. This error metric vanishes when
the difference tensor becomes singular. The method by
Duguet et al. [14] adopts the same error metric and has the
same problem too.

7 EXPERIMENTAL RESULTS AND DISCUSSION

We have implemented the techniques presented in previous
sections and successfully tested them on the following three

(a) (b) (© (d () ()

Fig. 13. Comparison between our method and other feature-preserving methods on the IGEA model with Gaussian noise (o = 10 percent of mean
edge length) added. The second row shows zoomed views of the left eye of the model. Our method preserves small-scale features best. (a) Original
model. (b) Noisy model. (c) PMC [24]. (d) Sun et al. [27]. (e) Sun et al. [28]. (f) Our method.
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(a) (b) (© (d () ()

Fig. 14. Comparison between our method and other feature-preserving methods on the FANDISK model with Gaussian noise (o = 20 percent of
mean edge length) added. The second row shows zoomed views of a shallow feature on the model. Our method perfectly preserves this feature.
(a) Original model. (b) Noisy model. (c) PMC [24]. (d) Sun et al. [27]. (e) Sun et al. [28]. (f) Our method.

classes of meshes, generic meshes with real (Figs. 10 and 15)
or synthetic noise (Figs. 13 and 12), CAD models with
synthetic noise (Figs. 14 and 11), and a mesh extracted from
volume data with nonuniform volume noise (Fig. 1). As
discussed in previous sections, our method involves only a
small number of parameters which were held constant on
all experimental results reported in this section. Since we
detect consistent subneighborhoods, our method is insensi-
tive to the original size of the neighborhood. We always use
a neighborhood size of 30. When density-based clustering is
performed, we set k =8, Eps = 2, and MinPts = 6.

In Fig. 1, we show denoising results of a twirl that was
extracted from volume data with nonuniform noise. This
model is not uniformly sampled with low-curvature parts
undersampled. Nonuniform sampling makes it harder to
preserve sharp features while removing noise. However,
our method achieved an almost perfect result.

Fig. 11 shows a comparison between our method and
existing bilateral filtering methods, including Fleishman
et al. [11] and Duguet et al. [14]. This comparison
demonstrates the effectiveness of our method for both
denoising and feature preservation. We can observe that the
other methods have more or less blurred the sharp features.

Fig. 15. Denoising a real scan. (a) From left to right are the input noisy model, the result from Fleishman et al. [11], and our result. (b) We show
zoomed views of the fingers in the scanned model. The image in the middle shows the result from Fleishman et al., while our result on the right

demonstrates that our method can better preserve small wrinkles.
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(a)

i oy
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Fig. 16. Denoising with an increasing noise level. (a) Original Wedge model. (b) Denoised result of a model with additive noise of 40 percent of the
mean edge length. (c) Denoised result of a model with additive noise of 80 percent of the mean edge length. (d) With additive noise of 100 percent of
the mean edge length, features in the denoised result become rougher and planar regions start to undulate.

We have also compared these methods on the Stanford
bunny model (Fig. 12). With the presence of large noise,
Fleishman et al. [11] noticeably shrink volume and create
minor self-intersections around the tip of an ear (Fig. 12c).
As for the technique in Duguet et al. [14], Fig. 12d shows
that it cannot smooth the surface very well, even worse on
the ears.

(a) (b)

Fig. 17. Feature detection on models with a nonstationary sampling
density. (a) Two noisy models acquired from real objects. (b) Detected
feature points (red) over the models in (a) (only the point clouds are
rendered here to indicate the original sampling density).

We have compared our method with a few recent
feature-preserving denoising methods. Figs. 13 and 14
clearly show that our method can better preserve small-
scale features and shallow discontinuities than other
methods while removing noises.

Fig. 16 shows the results from our method on a model
with an increasing level of noise. If the noise level is not
high enough to make the sharp features indistinguishable,
the presented algorithm recovers features perfectly
(Fig. 16b). As the noise level increases, a small number of
feature points are classified as transitional points since the
information carried by these features are not distinguish-
able from smooth regions. Blurring occurs on the un-
recognized features (Fig. 16¢c). As the noise level becomes
even larger, more and more features mix with noise and
blurring happens more frequently (Fig. 16d).

The correct detection of feature points relies on the
sampling density over the mesh surface. The Nyquist-
Shannon sampling theorem states that signal reconstruction
is possible only when the sampling frequency is at least
twice as high as the highest frequency in the original signal.
In our algorithm, we try to reconstruct the original signal
using second-degree polynomial fitting. When the sampling
density is not too low on the features, our algorithm is able
to detect them. Fig. 17 shows that on the nonuniformly
sampled models, our algorithm successfully finds out
feature points in regions with a reasonable sampling
density, while points in regions with a low sampling
density are unlikely to be classified as features even when
they are real features. As mentioned earlier, the perfor-
mance of our algorithm would not degrade severely even
when it cannot detect feature points accurately. We have
applied our method to meshes with nonuniform sampling
density and real noise. Femme is a model acquired with 3D
photography [43], and Palm is digitized with laser scan-
ning. Figs. 10 and 15 show that our method successfully
removed noise on these models while preserving features as
much as possible.

Table 1 reports the running time of our algorithm on a
few meshes using a PC with a 2.8 GHz Intel Pentium D
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TABLE 1
Timing Report on a Few Meshes Using Our Algorithm

[ Model | Figure | # Vertices | Time (seconds) |
Twirl 1 28,876 3.141
Femme 10 40,928 4.018
Block 11 45,540 4.596
Bunny 12 34,834 5.339
Palm 15 62,566 6.122

TABLE 2

Timing Comparison with Other Methods
(All Timings are Reported in Seconds)

Model Fandisk Igea

Figure 14 13

# Vertices 45,430 | 134,345

PMC ([24]) 8.179 24.929

Sun et al. ([27]) 0.661 2.117

Sun et al. ([28]) 0.685 2.228

Ours 4.557 13.404

TABLE 3
Volume Ratios (Denoised/Original) of the Closed Models

Model Igea | Fandisk Block
Figure 13 14 11
# Vertices 134,345 45,430 | 45,540
Bilateral ([11]) 0.998 0.991 0.991
PMC ([24]) 0.997 0.989 0.989
Sun et al. ([27]) 0.998 0.993 0.990
Sun et al. ([28]) 0.998 0.993 0.990
Ours 0.999 0.998 0.993

processor and 1 GB RAM. Our code was optimized using
Intel’s SIMD instructions [44] and compiled with GCC-4.3.2.
This table shows that the running time grows with the
number of vertices. It takes a longer time to smooth Bunny
than Block although Bunny has less vertices. This is because
more iterations are applied to remove the large noise on
Bunny. Table 2 gives a comparison of running times among
a few methods. It can be seen that our method can achieve
high-quality results in a reasonable amount of time. We can
further significantly improve the performance of our code
with multithreading on multicore CPUs. Table 3 shows that
our method better preserves volume than other methods.

8 CONCLUSIONS

We have presented a feature-preserving mesh denoising
algorithm. It is built on the premise that the underlying
surface of a noisy mesh is piecewise smooth. By defining the
consistent subneighborhood of a vertex and applying
various filtering processes within the consistent subneigh-
borhood, we can completely remove the influence from
neighbors in other subneighborhoods during denoising.
Our method identifies piecewise smooth subneighborhoods
using a robust density-based clustering algorithm based on
shared nearest neighbors. We adopt second-order bilateral
filters for vertex positions and a filter based on the optimal
estimation theory for normals and curvature tensors.
Experiments show that our method can effectively preserve
volume as well as sharp features.
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