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Abstract. The shapes of many natural and man-made objects have curved con-
tours. The images of such contours usually do not have sufficient distinctive fea-
tures to apply conventional feature-based reconstruction algorithms. This paper
shows that both the shape of curves in 3-D space and the camera posescan be
accurately reconstructed from their perspective images with unknown point cor-
respondences given that the curves have certain invariant properties such as sym-
metry. We show that in such cases the minimum number of views needed for a
solution is remarkably small: one for planar curves and two for nonplanar curves
(of arbitrary shapes), which is significantly less than what is required bymost
existing algorithms for general curves. Our solutions rely on minimizing theL2-
distance between the shapes of the curves reconstructed via the “epipolar geom-
etry” of symmetric curves. Both simulations and experiments on real images are
presented to demonstrate the effectiveness of our approach.

1 Introduction
One of the main thrusts of research in computer vision is to study how to reconstruct the
shapes of 3-D objects from (perspective) images. Dependingon the choice of the mod-
els for the shape (e.g., surfaces, volumes, or points), the reconstruction methods differ.
On one hand, surface- and volume-based approaches are excellent for reconstructing
free-form objects, but typically require precise precalibrated camera poses and suffi-
cient variations (texture or shading) on the surfaces to achieve accurate reconstruction.
On the other hand, when the objects (or scene) have discrete feature points (or lines),
camera poses, calibration and the 3-D structures can be simultaneously recovered from
the images via the well-established methods in multiple-view geometry [1, 2].

Nevertheless, free-form natural or man-made objects with curved contours are ubiq-
uitous in the real world, and very often their images do not have sufficient texture or
feature points for us to apply conventional algorithms to accurately recover the surfaces
and camera poses. So what can we do when we need to recover suchcurved shapes as
well as camera poses from images without enough feature points to start with? In gen-
eral, this is a very daunting task and in fact an impossible one unless certain constraints
are imposed on either the shapes or the camera motions.

In this paper, we show that if the shape boundary consists ofsymmetric curves, the
shape of the curves and the camera poses are strongly encodedin the perspective im-
ages and can be recovered accurately from as few as two images– via the “epipolar
geometry” of symmetric curves. All that is needed is the correspondence between en-
tire curves, and no prior correspondences between points onthe curves are required.



Furthermore, if the symmetric curves in space are planar, both the shape of the curves
and the camera pose can be recovered uniquely from a single view.

Relation to prior work. While multiple-view geometry of points, lines, and planes
have been extensively studied and well-understood, recentstudies have gradually turned
to use curves and surfaces as basic geometric primitives formodeling and reconstructing
3-D shapes. The difficulty in reconstruction of curves is that the point correspondences
between curves are not directly available from the images because there are no distinct
features on curves except the endpoints. An algorithm in [3]was proposed to automat-
ically match individual curves between images using both photometric and geometric
information. The techniques introduced in [4, 5] aimed to recover the motion and struc-
ture for arbitrary curves from monocular sequences of images. It was realized that it
is not possible to uniquely and accurately reconstruct boththe shape and camera poses
for an arbitrary 3-D curve from an arbitrary set of views. Therefore, some restrictions
need to be put on the views and curves themselves to guaranteea unique reconstruction.
It was shown that, under circular motions, curved objects can be recovered from their
silhouettes or contours [6–9]. The algorithm given in [10] can reconstruct symmetric
shapes made of generalized cylinders. Reconstruction of curves from multiple views
based on affine shape method was studied in [11, 12]. The reconstruction of algebraic
curves from multiple views has been proposed by [13, 14].

This paper introduces symmetry as a very effective constraint to solve the recon-
struction problem for 3-D curves. Such methods are very useful in practice since sym-
metric curves are ubiquitous in a wide range of natural and man-made scenes (e.g.,
leaves, signs, containers). Symmetry has long been exploited as a very effective cue in
feature-based reconstruction methods [15–19]. Our work generalizes such methods to
feature-less smooth curves.

Contribution of this paper. In this paper, we propose a novel approach for the re-
construction of curves in space and the recovery of camera poses by imposing global
symmetry constraints on the original shapes of the curves. As part of the derivation,
we establish the precise conditions and minimal number of views required for a unique
solution: a) there is always a two-parameter family of ambiguous solutions in recon-
structing general symmetric curves from a single view; b) nevertheless if the curves are
planar (in space), the solution becomes unique; c) for general symmetric curves, two
generic views are sufficient to give a unique solution (summarized in Table 1).

2 Symmetric Curve Representation
2.1 Perspective Image of a Curve
A parameterized curveγ(t) in R

n with parametert ∈ [ta, tb] is a continuous map

γ(·) : t 7→ γ(t) ∈ R
n, t ∈ [ta, tb]. (1)

A curveγ is an equivalence class of parameterized curves because a curve can be arbi-
trarily parameterized. Two parameterized curvesγ1, γ2 are said to be equivalent if there
exists a continuous, monotonically increasing reparameterization functionσ : t 7→ t′

such that
γ1(t) = γ2(σ(t)). (2)

The image of a 3-D parameterized curveΓ (t) in R
3, t ∈ [ta, tb] taken atg0 =

(R0, T0) is a 2-D parameterized curveγ(s) in R
2 with parameters ∈ [sa, sb]. s =



σ(t) is a reparameterization oft. If the camera is calibrated, the image curveγ(s) in
homogeneous image coordinates and the space curveΓ (t) in spatial coordinates are
related by

λ(s)γ(s) = Π0g0Γ (t), (3)

wheres = σ(t), sa = σ(ta), sb = σ(tb), andΠ0 = [I, 0] is the standard projection
matrix. The parameters, t may be the same, i.e. the reparameterizationσ can be an
identity function, which however we do not assume to know at this point.

2.2 Image of Symmetric Curves
Now we consider a pair of curvesΓ, Γ ′ that are reflectively symmetric to each other
with respect to a central planePr.3 Without loss of generality, we assume that the two
curves are symmetric with respect to theyz-plane of a selected canonical coordinate
frame. The reflection can be represented by a Euclidean motion gr = (Rr, 0), where

Rr
.
=



−1 0 0
0 1 0
0 0 1


 ∈ O(3) ⊂ R

3×3. (4)

ThenΓ ′(t) = grΓ (t). If one image of the symmetric curves is taken atg0 = (R0, T0),
the images of the two curves are:

λ(s)γ(s) = Π0g0Γ (t), λ′(s′)γ′(s′) = Π0g0grΓ (t), (5)

wheres = σ(t), sa = σ(ta), sb = σ(tb) ands′ = σ′(t), s′a = σ′(ta), s′b = σ′(tb).

2.3 Corresponding Points and Epipolar Geometry of Symmetric Curves
Notice that we can rewrite the equation for the image of the second curve as

λ′(s′)γ′(s′) = Π0g0grg
−1

0
(g0Γ (t)).

Therefore, the image of the two symmetric curves can be interpreted as two images of
the same curve taken with a relative camera pose

g0grg
−1

0
= (R, T )

.
= (R0RrR

T
0
, R0RrT0).

Under this interpretation, the two images(γ(s), γ′(s′) of the pair of points(Γ (t), Γ ′(t))
become the two images of a single pointΓ (t) in space taken from two different views.
These corresponding image points should satisfy the epipolar constraint

γ′(s′)T T̂Rγ(s) = 0, ∀s ∈ [sa, sb], s′ ∈ [s′a, s′b], σ−1(s) = σ′−1(s′), (6)

where we usêT to indicate the skew-symmetric matrix associated toT such thatT̂ v =
T × v for all v ∈ R

3. From the definition ofRr, R andT , it is not difficult to show that
T̂R = T̂ . Hence the above epipolar constraint is simplified to:

γ′(s′)T T̂ γ(s) = γ′(s′)T γ̂(s)T = 0, σ−1(s) = σ′−1(s′). (7)

We callT the “vanishing point” for the pair of symmetric curves sinceit is parallel to
the line defined by each pair of corresponding points(Γ (t), Γ ′(t)).

The two reparameterizationσ(·) andσ′(·) can be made the same in the following
polar coordinates for the pair of curves. If the vanishing pointT ∈ R

3 is known4,

3 In this paper, we work primarily with reflective symmetry. But the same method, with some
modification, can be applied to curves with translational or rotational symmetry.

4 T is in homogeneous coordinates and‖T‖ = 1.



the intersection of the two image curvesγ and γ′ with any ray throughT are two
corresponding image points5. The angle of the rayθ and the distance to the vanishing
point T establish the polar coordinates. The angleθ becomes a suitable parameter for
the two curves so thatγ(θ) andγ′(θ) are always two corresponding symmetric points.
The epipolar constraint in polar coordinates becomes

γ′(θ)T γ̂(θ)T = 0, ∀θ ∈ [θa, θb]. (8)

γ(θ)
γ′(θ)

θ

r

T

Fig. 1. Corresponding points can be easily obtained for a pair of symmetric curves in polar coor-
dinates(r, θ).

3 Reconstruction of Symmetric Curves from Images
3.1 Ambiguity in Reconstruction of Symmetric Curves from a Single View
There are essentially three different cases for the image ofa pair of symmetric curves
that we illustrate in Figure 2. When the two pairs of end pointsof γ andγ′ are separate
as in case (a), the vanishing pointT is uniquely determined and so is the correspondence
between points on the two image curves. In the remaining cases (b) and (c), extra con-
straints need to be imposed on the symmetric curves sought inorder to have a unique
solution. We will focus on case (c) which is the most general case.

As illustrated in Figure 3, if the actual vanishing pointT is given, the 3-D depths
for each pair of corresponding points in image can be uniquely determined via the
following “triangulation” equation [15]:[

T̂ γ(θ) −T̂ γ′(θ)
TT γ(θ) TT γ′(θ)

] [
λ(θ)
λ′(θ)

]
=

[
03×1

2d

]
, (9)

whered is the distance from the camera center to the symmetry planePr. The first
row of this equation means that T is the vanishing point of thefamily of parallel lines

5 Using polar coordinates is convenient when there is only one intersection between a ray and
an image curve. However, when there are multiple intersections, the correspondences among
the intersections with a knownT should be set up as follows. Suppose the sequence of inter-
sections with curveγ is {p0, p1, ..., pm}, and the sequence of intersections with curveγ′ is
{q0, q1, ..., qn}. Thenm = n, andpi corresponds toqm−i.
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Fig. 2. (a) T is uniquely determined by the two pairs of end points; (b)T is determined by one
pair of end points up to a line; (c)T is a two-parameter family.
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o
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Fig. 3. If the vanishing pointT is given, the 3-D depths for each pair of corresponding points in
image can be uniquely determined.

betweenΓ (θ) andΓ ′(θ). The lineoT is parallel to the family of linesΓ (θ)Γ ′(θ) in
3-D. The second row of the equation implies that the distances from the pointsΓ (θ),
Γ ′(θ) to the symmetry planePr are equal. However, if the correctT is not known, the
above equation always has a unique solution forλ(θ) andλ′(θ) for an arbitrarily chosen
T . Furthermore the recovered 3-D curvesΓ (θ) = λ(θ)γ(θ) andΓ ′(θ) = λ′(θ)γ′(θ)
are indeed symmetric. We hence have proven the following lemma:

Lemma 1. Given a pair of curves γ and γ′ on the image plane and an arbitrary feasible
vanishing point T , there exists a pair of curves in space Γ and Γ ′ such that γ and γ′

are their images, respectively.

Lemma 1 states an unfortunate fact: for the pair of 2-D image curves shown in
Figure 1, almost any choice of the vanishing pointT results in a valid 3-D interpretation
of the curves as the image of some pair of symmetric curves in 3-D. Therefore, for case
(c) of Figure 2, there is a two-parameter family of pairs of symmetric curves in 3-D that
give rise to the same pair of image curves; for case (b), thereis a one-parameter family.

3.2 Reconstruction of Planar Symmetric Curves from a Single View



From the above discussions, the reconstruction of a pair of general symmetric curves
from a single view is in general anill-posed problem,6 unless some additional condi-
tions are imposed upon the class of curves of interest. Most symmetric curves in prac-
tice are planar curves, and we first examine if this additional information may lead to a
unique solution.

For the pair of planar symmetric curves in case (c) of Figure 2, the central linelc of
the curves in the image is determined by connecting the two end points.7 As before, the
true vanishing pointT leads to a correspondence of the two curves. Letγ(θ), γ′(θ) and
lc(θ) be corresponding points on the two curves and the central line. Also,lc should lie
on the central planePr. With the additional planar constraints, Equation (9) gives rise
to 


T̂ γ(θ) −T̂ γ′(θ) 03×1

TT γ(θ) TT γ′(θ) 0
γ(θ) γ′(θ) −2lc(θ)







λ(θ)
λ′(θ)
λc(θ)


 =




03×1

2d
03×1


 , ∀θ ∈ [θa, θb]. (10)

After eliminatingλc(θ) by multiplying l̂c(θ) on both sides of the third row, the equation
becomes




T̂ γ(θ) −T̂ γ′(θ)
TT γ(θ) TT γ′(θ)

l̂c(θ)γ(θ) l̂c(θ)γ
′(θ)




[
λ(θ)
λ′(θ)

]
=




03×1

2d
03×1


 , ∀θ ∈ [θa, θb]. (11)

This equation can be rewritten as



T̂ γ(θ) −T̂ γ′(θ) 03×1

TT γ(θ) TT γ′(θ) 2d

l̂c(θ)γ(θ) l̂c(θ)γ
′(θ) 03×1







λ(θ)
λ′(θ)

1


 .

= M(T, θ)Λ(θ) =
[
07×1

]
, ∀θ ∈ [θa, θb].

(12)Thenecessary condition for a valid solution ofT for planar symmetric curves is

rank[M(T, θ)] = 2, ∀θ ∈ [θa, θb]. (13)

Since only the correct vanishing pointT can satisfy the above rank condition, a
criterion for finding the correctT is

T = arg
(
rank[M(T, θ)] = 2

)
, ∀θ ∈ [θa, θb]. (14)

OnceT is found, the depth vectorΛ can also be obtained as

Λ(θ) = null(M(T, θ)). (15)

In practice, the rank condition will not be exactly satisfiedby anyT due to noise. We
may chooseΛ(θ) to be the eigenvector ofM(T, θ) that is associated with the small-
est eigenvalue. So we want to find theT such that

∫ θb

θa

‖M(T, θ)Λ(θ)‖2dθ is mini-
mized. Let the singular value decomposition (SVD) of the matrix M be M(T, θ) =
U(T, θ)Σ(T, θ)V (T, θ)T ,

6 Except for the special case (a) of Figure 2.
7 For case (b), the image of the central line can also be determined fromγ andγ′ and we here

do not elaborate due to the limit of space.



T = argmin
(∫ θb

θa

‖M(T, θ)Λ(θ)‖2 dθ
)

= argmin
( ∫ θb

θa

Σ3,3(T, θ)2 dθ
)
, (16)

whereΣ3,3 is the smallest singular value ofM . OnceT is found, the depth vectorΛ is
recovered as the third column ofV (T, θ). In Section 4, we will show how this simple
criterion gives accurate reconstruction of planar symmetric curves.

3.3 Reconstruction of General Symmetric Curves from Two Views
For a pair of general symmetric curves, according to Lemma 1,a single view is not
enough for a unique recovery. In this subsection, we show that how an extra view may
resolve this problem.

As an example, Figure 4 illustrates two images of a pair of (reflectively) symmetric
curves. IfT1 andT2 are the correct vanishing points in the two image planes, theimages

a1

b1

a2

b2

I1 I2

γ1
γ′

1

γ′

2

γ′

2

T1

T2

Fig. 4. Two images of a pair of symmetric curves. Assume that(R21, T21) is the relative mo-
tion from the first view to the second.T1 andT2 are the vanishing points of the two images,
respectively.

of the curves satisfy the two equations:
[

T̂1γ1(θ1) −T̂1γ
′

1
(θ1)

TT
1

γ1(θ1) TT
1

γ′

1
(θ1)

] [
λ1(θ1)
λ′

1
(θ1)

]
=

[
03×1

2d1

]
, ∀θ1 ∈ [θa, θb].

[
T̂2γ2(θ2) −T̂2γ

′

2
(θ2)

TT
2

γ2(θ2) TT
2

γ′

2
(θ2)

] [
λ2(θ2)
λ′

2
(θ2)

]
=

[
03×1

2d2

]
, ∀θ2 ∈ [θa, θb].

(17)

For simplicity, we typically choosed1 = d2 = 1/2 at this moment. The correct relative
scale betweend1 andd2 can be determined at a later stage. Given any two vanishing
pointsT1 andT2, from Lemma 1, the above triangulation equations in generalhave so-
lutions for[λ1(θ1), λ1(θ1)

′] and[λ2(θ2), λ
′

2
(θ2)]. We thus obtain two pairs of symmet-

ric 3-D curve[Γ1(θ1), Γ
′

1
(θ1)] and[Γ2(θ2), Γ ′

2
(θ2)] via triangulation.[Γ1(θ1), Γ ′

1
(θ1)]

and [Γ2(θ2), Γ ′

2
(θ2)] are in the two camera coordinates of the two views. IfT1 and

T2 are the correct vanishing points, the reconstructed curvesare all related to the same
pair of 3-D symmetric curvesΓ andΓ ′ = grΓ in space via the rigid transformations
g01 = (R01, T01) andg02 = (R02, T02) (the two camera poses), respectively,

Γ1(θ1) = g01Γ (θ1), Γ ′

1
(θ1) = g01grΓ (θ1),

Γ2(θ2) = g02Γ (θ2), Γ ′

2
(θ2) = g01grΓ (θ2).

(18)

The distance between the end points of the curves should be preserved under rigid
transformations. So the correct ratio betweend1 andd2 can be determined as



d1

d2

=
‖Γ1(θa1) − Γ1(θb1)‖

‖Γ2(θa2) − Γ2(θb2)‖
=

‖lc1‖

‖lc2‖
. (19)

With respect to each view, the canonical poseg0 of the curves can be recovered from
symmetry as follows. Because the vanishing pointT is orthogonal to the central plane,
T can be chosen as thex-axis of the canonical frame; the central linelc = Γ (θa)−Γ (θb)
is chosen to be they-axis since it is in the central plane; an endpoint, say for example
Γ (θa), can be selected to be the origin of the canonical frame. Thenthe R0 can be
retrieved as

R0 =
[
T,

lc
‖lc‖

, T̂
lc
‖lc‖

]
∈ R

3×3, T0 = Γ (θa) ∈ R
3. (20)

From eitherΓ1 orΓ2, the 3-D curves in the canonical frame,Γ01 orΓ02 respectively,
can be recovered. According to the Lemma 1, all possibleT1 andT2 in the two image
planes can generate two sets of curvesΓ01(T1) andΓ02(T2). If the vanishing pointsT1

andT2 are correct,Γ01 andΓ02 should be identical. Therefore, the true curveΓ is the
intersection of the two sets. This gives the necessary condition for the correct vanishing
points,

[T1, T2] = arg
(
Γ01(T1) = Γ02(T2)

)
. (21)

For real images with noise, the equality may not be achieved.The following opti-
mization criterion can be used to findT1, T2 by minimizing

[T1, T2] = argmin
(
distance(Γ01(T1), Γ02(T2))

)
. (22)

There are many different choices in the distance between twocurves. We use the sim-
plest Euclidean distance, also known in functional analysis as theL2-distance:8

distance(Γ1, Γ2)
.
=

∫ tb

ta

‖Γ1(t) − Γ2(t)‖
2 dt, (23)

whereΓ1 andΓ2 are both parameterized by their arc lengtht. Notice that the above
criterion is rather different from most curve reconstruction algorithms that are based on
minimizing the reprojection error in the images via the notion of “bundle-adjustment”
(e.g., see [11]). The above method minimizes the discrepancy in the shapes of the re-
constructed 3-D curves in space. Furthermore, the method can be easily generalized if
multiple images of the same curves are given.

The optimalT1 andT2 can be found via any nonlinear optimization scheme chosen
at the user’s discretion.9 For case (b) of Figure 2, the vanishing points will lie on the
line generated by the two separate end points. So the search for T1 and T2 is two-
dimensional. For case (c) of Figure 2, eachT1 andT2 is two dimensional, and therefore
the search is in a four-dimensional space. For curves with general shapes, the solution
is always unique.

To conclude Section 3, we summarize all cases of symmetric curves studied so far
in Table 1, in terms of ambiguities in reconstruction from one or two views.

8 We have also tried other distances such asL1-distance andC1-distance. They all give similar
reconstruction results for the simulations and experiments conducted in thispaper.

9 For the simulations and experiments given in this paper, we used the simple MATLAB function
“fminsearch.” We observed standard convergence rate from such an off-the-shelf nonlinear
optimization toolbox. The convergence rate may be improved with a custom-designed algo-
rithm and initialization.



General curves# of solutions
case (a)case (b) case (c)

Planar curves

One view unique 1-family 2-family unique
Two views unique unique unique unique

Table 1. Ambiguity in reconstruction of symmetric curves: A single view is not enough for re-
construction of general symmetric curves, except for case (a) of Figure 2, but sufficient for planar
symmetric curves. Two or more views are needed for reconstruction of generally shaped sym-
metric curves.

4 Experimental Results
4.1 Simulations

One view of planar curves. To test the performance of the proposed methods, we have
conducted extensive simulations. In the first simulation, apair of planar 3-D symmetric
curves in case (c) of Figure 2 are generated. A perspective image of their curves is ob-
tained from a pin-hole camera model. In order to test the robustness of our algorithm,
5% asymmetry is added onto the 3-D symmetric curves10 and white Gaussian noise is
added to the projected image curves with standard deviationσ. The added noise cor-
responds to approximately one pixel in standard deviation for a 400x320 pixel image.
A large variety of view points are tested. From the simulations, we found that the view
angleα between the camera optical axis and the central planePr is the most important
factor for the accuracy in reconstruction. The Table 2 showsthe error as a function of
the angleα. Only the angles from+10◦ to +70◦ are tested because the negative side
will give similar results due to symmetry. The shape error istheL2-distance between
the curves reconstructed and the ground truth.11 The camera pose error is the angle
(in degrees) between the original camera rotation matrix and the rotation matrix recon-
structed. The results indicate that the shape error and the camera pose error increase
with an increasing angleα. However, even in the worst case, the errors remain very
small, which indicates that our method is quite effective.

view angleα (degree) 10 20 30 40 50 60 70 80

shape error (L2-distance) 0.01700.01680.02230.02640.02710.03200.03610.0375
camera pose error (degree)0.25290.55710.50900.31930.32750.39160.50661.2401

Table 2. The error of the shape and camera pose as a function of the view angleα between the
camera axis and the central plane. It indicates that the shape error andthe camera pose error in
general increase when the angleα is increasing.

Two views of general curves. In the second simulation, a pair of non-planar 3-D curves
in case (c) of Figure 2 is generated, and two images are obtained from two view points.
A large variety of view points are tested. It is discovered from the simulation results that
the relative view angleα′ = |α1−α2| (difference in the angles between the two camera
axes and the central plane) is the most important factor. Only the angles from10◦ to 60◦

10 We make the curves slightly asymmetric by adding to the curves deformationof a magnitude
up to5% of the maximum distance between the two curves.

11 The length of the curves is always normalized to be one for comparison.



are tested because other angles will result in similar results due to symmetry. Table 3
shows the error as a function of the angleα′. The shape error is the distance between the
curves reconstructed from the noisy images and the ground truth. The results indicate
that the shape error and the camera pose error in general decrease with the increasing
of the relative view angleα′. However, all of these errors remain small.

relative view angleα′ (degree) 10 20 30 40 50 60

shape error (L2-distance) 0.02530.02280.02640.02210.02450.0203
average camera pose error (degree)3.86004.45823.76423.22663.84703.4047

Table 3. The error of the shape and camera pose as a function of the relative view angleα′

between the two camera axes. It indicates that the shape error and the camera pose error in general
decrease when the angleα′ increases.

4.2 Experiments on Real Images

Figure 5 shows an example of a reconstructed umbrella. This example belongs to the
case (b) of Figure 2. The whole umbrella can be reconstructedfrom a single image
using the two-view method because the stripes on the umbrella are all identical and two
stripes in one view can be treated as two views of the same stripe.

Fig. 5. Left: A single image that is used to recover the whole umbrella. The vanishing lines ob-
tained from the optimization are shown in the image. Middle: The frame of the umbrella re-
covered from two stripes. Right: A synthetically rendered view of the completely reconstructed
umbrella from the top.

Figure 6 shows an example of leaves whose contours can be considered as planar
curves, which is in the category of Figure 2 (c). The recovered structures as well as a
synthetically rendered image of the reconstructed leaves are shown. This experiment
verifies that from only one single view, the structure of symmetric planar curves can be
recovered accurately.

Figure 7 shows a reconstruction of a 3-D leaf from two views. It is an example
of general curves in the category of Figure 2 (c). The recovered structure as well as a
synthetically rendered image of the reconstructed leaf areshown. We can see that the
shape of the leaf has been convincingly recovered.



Fig. 6. Left: A single image that is used to recover the leaves. The vanishing lines obtained from
the optimization are shown in the image. Middle: The shape of the leaf boundaries and the camera
pose recovered from the image. Right: A synthetically rendered image ofthe reconstructed leaves.

On a Pentium III 866MHz computer with MATLAB 6.0, the algorithm completes
in 5 minutes for the one-view examples and 10 minutes for the two-view examples.

5 Conclusions and Future Work
In this paper, we have provided simple and effective algorithms for the simultaneous re-
construction of both the shape of smooth symmetric curves and the camera poses from
as few as one or two images without feature correspondences to start with. Both sim-
ulations and experiments show that the results are remarkably accurate. In the future,
we plan to combine our methods with surface techniques for symmetric shape recon-
struction. We will also study the effects of various deformations on the reconstruction
of such shapes.
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