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Abstract. The shapes of many natural and man-made objects have curved con-
tours. The images of such contours usually do not have sufficientatigérfea-
tures to apply conventional feature-based reconstruction algorithinis p&per
shows that both the shape of curves in 3-D space and the cameracposes
accurately reconstructed from their perspective images with unknow gor-
respondences given that the curves have certain invariant preustie as sym-
metry. We show that in such cases the minimum number of views needed fo
solution is remarkably small: one for planar curves and two for nonplaunaes
(of arbitrary shapes), which is significantly less than what is requirethbgt
existing algorithms for general curves. Our solutions rely on minimizing'the
distance between the shapes of the curves reconstructed via the “egipoia-
etry” of symmetric curves. Both simulations and experiments on realémace
presented to demonstrate the effectiveness of our approach.

1 Introduction

One of the main thrusts of research in computer vision isudyshow to reconstruct the
shapes of 3-D objects from (perspective) images. Deperddirthe choice of the mod-
els for the shape (e.g., surfaces, volumes, or points) gt@nistruction methods differ.
On one hand, surface- and volume-based approaches aréerkéet reconstructing
free-form objects, but typically require precise preaatbd camera poses and suffi-
cient variations (texture or shading) on the surfaces téesetaccurate reconstruction.
On the other hand, when the objects (or scene) have disa&tieré points (or lines),
camera poses, calibration and the 3-D structures can bdtamaausly recovered from
the images via the well-established methods in multipemgeometry [1, 2].

Nevertheless, free-form natural or man-made objects withazl contours are ubig-
uitous in the real world, and very often their images do natehsufficient texture or
feature points for us to apply conventional algorithms tousately recover the surfaces
and camera poses. So what can we do when we need to recovaerusuetl shapes as
well as camera poses from images without enough featurésptistart with? In gen-
eral, this is a very daunting task and in fact an impossibkewnriess certain constraints
are imposed on either the shapes or the camera motions.

In this paper, we show that if the shape boundary consistgnahetric curves, the
shape of the curves and the camera poses are strongly enoadithedperspective im-
ages and can be recovered accurately from as few as two imagasthe “epipolar
geometry” of symmetric curves. All that is needed is the espondence between en-
tire curves, and no prior correspondences between pointeeonurves are required.



Furthermore, if the symmetric curves in space are planah te shape of the curves
and the camera pose can be recovered uniquely from a sirayle vi

Relation to prior work. While multiple-view geometry of points, lines, and planes
have been extensively studied and well-understood, retedies have gradually turned
to use curves and surfaces as basic geometric primitivesddeling and reconstructing
3-D shapes. The difficulty in reconstruction of curves id tha point correspondences
between curves are not directly available from the imageause there are no distinct
features on curves except the endpoints. An algorithm invgg] proposed to automat-
ically match individual curves between images using botbt@metric and geometric
information. The techniques introduced in [4, 5] aimed tworeer the motion and struc-
ture for arbitrary curves from monocular sequences of irmafjevas realized that it
is not possible to uniquely and accurately reconstruct talshape and camera poses
for an arbitrary 3-D curve from an arbitrary set of views. éfere, some restrictions
need to be put on the views and curves themselves to guasuatgque reconstruction.
It was shown that, under circular motions, curved objectslmarecovered from their
silhouettes or contours [6-9]. The algorithm given in [L&haeconstruct symmetric
shapes made of generalized cylinders. Reconstructionrgésifrom multiple views
based on affine shape method was studied in [11, 12]. The s&aation of algebraic
curves from multiple views has been proposed by [13, 14].

This paper introduces symmetry as a very effective comdttaisolve the recon-
struction problem for 3-D curves. Such methods are veryulgefpractice since sym-
metric curves are ubiquitous in a wide range of natural and-made scenes (e.g.,
leaves, signs, containers). Symmetry has long been esglai a very effective cue in
feature-based reconstruction methods [15-19]. Our worleigdizes such methods to
feature-less smooth curves.

Contribution of this paper. In this paper, we propose a novel approach for the re-
construction of curves in space and the recovery of camesaspby imposing global
symmetry constraints on the original shapes of the curvespakt of the derivation,
we establish the precise conditions and minimal numberefisirequired for a unique
solution: a) there is always a two-parameter family of ambigs solutions in recon-
structing general symmetric curves from a single view; hieneneless if the curves are
planar (in space), the solution becomes unique; c) for gérsgmmetric curves, two
generic views are sufficient to give a unique solution (sunized in Table 1).

2 Symmetric Curve Representation
2.1 Perspective Image of a Curve
A parameterized curve(t) in R™ with parametet € [t,, tp] is a continuous map
’Y() it 7(t) € an te [taatb}' (1)
A curve+ is an equivalence class of parameterized curves becauseeadaun be arbi-

trarily parameterized. Two parameterized curygsy, are said to be equivalent if there
exists a continuous, monotonically increasing reparanzetion functions : ¢ — t’

such that
7(t) = y2(a(1)). )
The image of a 3-D parameterized cur’ét) in R3, ¢t € [t,,t;] taken atgy =
(Ro,To) is a 2-D parameterized curvgs) in R? with parameters € [s,, sp]. s =



o(t) is a reparameterization of If the camera is calibrated, the image curg) in
homogeneous image coordinates and the space dujein spatial coordinates are

related by

A(s)y(s) = HogoI'(t), ©)
wheres = o(t),s, = o(ta),ss = o(ts), andIly = [I,0] is the standard projection
matrix. The parametes, ¢ may be the same, i.e. the reparameterizatioran be an
identity function, which however we do not assume to knovit point.

2.2 Image of Symmetric Curves
Now we consider a pair of curves I’ that are reflectively symmetric to each other
with respect to a central plarfe..2 Without loss of generality, we assume that the two
curves are symmetric with respect to the-plane of a selected canonical coordinate
frame. The reflection can be represented by a Euclidean mgtie- (R,., 0), where
-100
R, =] 010 € 0(3) C R**3, 4)
001
ThenI'(t) = g.I'(t). If one image of the symmetric curves is takeg@t= (R, Tp),
the images of the two curves are:

A($)y(s) = HogoI'(t),  N(s')7'(s) = Iogogr (%), ()
wheres = o (t), sq = 0(ta), Sp = o(ty) ands’ = o’(t), s, = o’'(ta), s, = o’ (tp).

2.3 Corresponding Pointsand Epipolar Geometry of Symmetric Curves
Notice that we can rewrite the equation for the image of tlese curve as

N (s (s") = Mogogrgy * (90T (t))-
Therefore, the image of the two symmetric curves can befrgéed as two images of
the same curve taken with a relative camera pose

909r95 "+ = (R, T) = (RoR, R, RoR, Ty).
Under this interpretation, the two imagess), v/ (s’) of the pair of point$I°(¢), I (t))
become the two images of a single palnt) in space taken from two different views.
These corresponding image points should satisfy the egipohstraint

Y (\TTRy(s) =0, Vs € [sa,53), 8" € [sh,55], 071 (s) =o' (s'),  (6)

where we usé’ to indicate the skew-symmetric matrix associated teuch thatl'v =
T xv fgr all v € R3. From the definition oR?,., R andT, it is not difficult to show that
TR = T. Hence the above epipolar constraint is simplified to:

V() Ty(s) =+ (s) ()T =0, o7 (s) =0""!(s). (7)
We callT the “vanishing point” for the pair of symmetric curves sintes parallel to
the line defined by each pair of corresponding poidt&t), I (t)).
The two reparameterization(-) ando’(-) can be made the same in the following
polar coordinates for the pair of curves. If the vanishing poifit € R3 is knowrf,

% In this paper, we work primarily with reflective symmetry. But the samého, with some
modification, can be applied to curves with translational or rotational syrgme
4T is in homogeneous coordinates difl|| = 1.



the intersection of the two image curvesand ' with any ray throughl" are two
corresponding image poirtsThe angle of the ray and the distance to the vanishing
point T" establish the polar coordinates. The angjlgecomes a suitable parameter for
the two curves so that(6) and+’(6) are always two corresponding symmetric points.
The epipolar constraint in polar coordinates becomes

YOV OT =0, V0 € [0a,05)- ®)

Fig. 1. Corresponding points can be easily obtained for a pair of symmetriesumypolar coor-
dinates(r, 9).

3 Reconstruction of Symmetric Curvesfrom Images
3.1 Ambiguity in Reconstruction of Symmetric Curvesfrom a Single View
There are essentially three different cases for the imagepafir of symmetric curves
that we illustrate in Figure 2. When the two pairs of end poaits and+’ are separate
as in case (a), the vanishing paints uniquely determined and so is the correspondence
between points on the two image curves. In the remainingsdd@geand (c), extra con-
straints need to be imposed on the symmetric curves sougitlér to have a unique
solution. We will focus on case (c) which is the most geneaakc
As illustrated in Figure 3, if the actual vanishing poifitis given, the 3-D depths
for each pair of corresponding points in image can be unjgdetermined via the
following “triangulation” equation [15]:
[ T(0) —Ty’(@)] [)\(9)} B [ogxl} )
TTy(0) TT~' ()| [N ()] | 2d |’

whered is the distance from the camera center to the symmetry pfandhe first
row of this equation means that T is the vanishing point offémeily of parallel lines

5 Using polar coordinates is convenient when there is only one interseatoreén a ray and
an image curve. However, when there are multiple intersections, thespomdences among
the intersections with a knowh should be set up as follows. Suppose the sequence of inter-
sections with curvey is {po, p1, ..., pm }, and the sequence of intersections with cuyés
{0, 41, ---, gn }- Thenm = n, andp; corresponds t@,, ;.



(@) (b) (©

Fig.2. (a) T is uniquely determined by the two pairs of end points;{bs determined by one
pair of end points up to a line; () is a two-parameter family.

Fig. 3. If the vanishing poinfl” is given, the 3-D depths for each pair of corresponding points in
image can be uniquely determined.

betweenl’(§) and I"'(6). The lineoT is parallel to the family of lined”(6)I(6) in
3-D. The second row of the equation implies that the distaficen the points(9),
I () to the symmetry plané, are equal. However, if the corre€tis not known, the
above equation always has a unique solutiomféy) and\’ (9) for an arbitrarily chosen
T. Furthermore the recovered 3-D cunE§)) = A(0)~y(0) andI”(9) = N (0)7'(0)
are indeed symmetric. We hence have proven the followingriam

Lemma 1. Givena pair of curves~ and~’ ontheimage planeand an arbitrary feasible
vanishing point 7', there exists a pair of curvesin space I" and I’ such that ~ and +/
are their images, respectively.

Lemma 1 states an unfortunate fact: for the pair of 2-D imagwes shown in
Figure 1, alImost any choice of the vanishing pdinesults in a valid 3-D interpretation
of the curves as the image of some pair of symmetric curvedinBherefore, for case
(c) of Figure 2, there is a two-parameter family of pairs ahsyetric curves in 3-D that
give rise to the same pair of image curves; for case (b), tkea®ne-parameter family.

3.2 Reconstruction of Planar Symmetric Curvesfrom a Single View



From the above discussions, the reconstruction of a paiepéal symmetric curves
from a single view is in general aH-posed problem® unless some additional condi-
tions are imposed upon the class of curves of interest. Mostetric curves in prac-
tice are planar curves, and we first examine if this additiofarmation may lead to a
unigue solution.

For the pair of planar symmetric curves in case (c) of Figutb& central lind,. of
the curves in the image is determined by connecting the twigpeimts’! As before, the
true vanishing poinf” leads to a correspondence of the two curvessl(é}, +'(9) and
1.(9) be corresponding points on the two curves and the centelAitso,l. should lie
on the central plan®,.. With the additional planar constraints, Equation (9) givise

Ty(0) —T7(0) 031 | [AO) 031

TTy(0) TTH'(0) 0 NO)| =] 2d |, V0elba,0).  (10)
(@) A(0) —21.(0)] [A(0) 03x1

After eliminating.(¢) by muItipIyinglAc(e) on both sides of the third row, the equation

becomes
Ty(O) ~T70)] g7 [0
ATTW(G) ATT~y’(9) [X(o } =1|2d |, V€l 0) (11)
1(0)7(6) 1c(6)7'(0) Os>x1
This equation can be rewritten as
Tv(0) =T~ (0) 03x1] [A©)

TTy(0) TTy'(0) 2d | [N(0)| = M(T,0)A0) = [07x1], VO € [0a, 0]
1c(0)7(0) 1(0)7'(0) 031 1

Thenecessary condition for a valid solution off” for planar symmetric curves is(12)

|rank M (T,0)] =2, V0 € [0a,0,]- | (13)

Since only the correct vanishing poifit can satisfy the above rank condition, a
criterion for finding the correct is

T = arg(rankM (T, 0)] = 2), VO € [0,, 0] (14)
OnceT is found, the depth vectot can also be obtained as
A(0) = null(M (T, 0)). (15)

In practice, the rank condition will not be exactly satisfilgdanyT" due to noise. We
may choosel(#) to be the eigenvector a¥/ (7, 0) that is associated with the small-
est eigenvalue. So we want to find tiiesuch thatf;ab | M(T,0)A(0)]|>do is mini-
mized. Let the singular value decomposition (SVD) of therirat/ be M(T,0) =
U(T,0)X(T,0)V(T,0)T,

5 Except for the special case (a) of Figure 2.
" For case (b), the image of the central line can also be determinedhfimmd~’ and we here
do not elaborate due to the limit of space.



9}] eb
T = argmin ( / M (T, 0)A(0)]? d@) — argmin ( 55.3(T,0)>2 d¢9>, (16)
0a Oa
whereXs 5 is the smallest singular value 8f. OnceT is found, the depth vectot is
recovered as the third column &f(7, ). In Section 4, we will show how this simple
criterion gives accurate reconstruction of planar symimetrrves.

3.3 Reconstruction of General Symmetric Curvesfrom Two Views
For a pair of general symmetric curves, according to Lemma dingle view is not
enough for a unique recovery. In this subsection, we shoththa an extra view may
resolve this problem.

As an example, Figure 4 illustrates two images of a pair dfgcévely) symmetric
curves. IfT} andT; are the correct vanishing points in the two image planesntages

11 IZ
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b1 b2

Fig. 4. Two images of a pair of symmetric curves. Assume {tfai,, 7>1) is the relative mo-
tion from the first view to the second} andT: are the vanishing points of the two images,
respectively.

of the curves satisfy the two equations:

Ty (61) =T, (61)] [A(61)] _ [03x1
{ij(el) T74(01) | [iton] = (3] vor e
TQ’YQ(GQ) —TQ’Yé(eg) >\2(92) O3><1
P ko) o) = [301] - v € o
For simplicity, we typically choosé; = d» = 1/2 at this moment. The correct relative
scale between; andd, can be determined at a later stage. Given any two vanishing
pointsT; andTs, from Lemma 1, the above triangulation equations in gerfexaé¢ so-
lutions for[A1(01), A1(61)'] and[A2(62), A5(02)]. We thus obtain two pairs of symmet-
ric 3-D curve[I(61), I (01)] and[I:(02), I'5(02)] via triangulation[I (0,), I (61)]
and[I5(02), I4(62)] are in the two camera coordinates of the two viewsl’jlfand
T, are the correct vanishing points, the reconstructed cuaneall related to the same
pair of 3-D symmetric curve$’ andI” = g,.I" in space via the rigid transformations
go1 = (Ro1,To1) andgoz = (Ro2, To2) (the two camera poses), respectively,

I'(01) = gnI'(01), I7(61) = gorg-I(61), (18)
I5(02) = go2I'(02),  I5(02) = go19-1'(02).
The distance between the end points of the curves should ds=med under rigid
transformations. So the correct ratio betwéerandd, can be determined as

(17)



di_ |[13(0a1) = T (Os)[ _ [lleal (19)
dy | 12(0a2) — I2(0n2)ll  [lle2]l’

With respect to each view, the canonical pggef the curves can be recovered from
symmetry as follows. Because the vanishing p@iri¢ orthogonal to the central plane,
T can be chosen as theaxis of the canonical frame; the central lipe= I"(6,)—I"(6y)
is chosen to be thg-axis since it is in the central plane; an endpoint, say fangxe
I'(0,), can be selected to be the origin of the canonical frame. ThetR, can be
retrieved as

Ro = |T, Hé—H Tﬁ] eER3, T, =TI(4,) € R>. (20)
From eitherl; or I';, the 3-D curves in the canonical frandey, or I, respectively,
can be recovered. According to the Lemma 1, all possibland7% in the two image
planes can generate two sets of curiggT1) andl2(73). If the vanishing pointd?;
andT; are correct/y; and s should be identical. Therefore, the true cuivés the
intersection of the two sets. This gives the necessary tiondor the correct vanishing
points,

[T’l7 TQ] = arg(F01(T1) = FOQ(TQ)). (21)
For real images with noise, the equality may not be achieVad.following opti-

mization criterion can be used to fifid, 75 by minimizing
[Tl, TQ] = argmin (diStanCéF()l(Tl), I (Tg))) . (22)

There are many different choices in the distance betweerctmees. We use the sim-
plest Euclidean distance, also known in functional analgsithel 2-distance?

distancér, I) = / " |11 (t) — Ia(t)]|? dt, (23)

ta

wherelI; and 5 are both parameterized by their arc lengtiNotice that the above
criterion is rather different from most curve reconstractalgorithms that are based on
minimizing the reprojection error in the images via the aotof “bundle-adjustment”
(e.g., see [11]). The above method minimizes the discrgpanthe shapes of the re-
constructed 3-D curves in space. Furthermore, the methotde®asily generalized if
multiple images of the same curves are given.

The optimall} and7; can be found via any nonlinear optimization scheme chosen
at the user’s discretiohFor case (b) of Figure 2, the vanishing points will lie on the
line generated by the two separate end points. So the seard) fand T is two-
dimensional. For case (c) of Figure 2, edghandTs; is two dimensional, and therefore
the search is in a four-dimensional space. For curves witleige shapes, the solution
is always unique.

To conclude Section 3, we summarize all cases of symmetriesistudied so far
in Table 1, in terms of ambiguities in reconstruction froneam two views.

8 We have also tried other distances sucliaglistance and -distance. They all give similar
reconstruction results for the simulations and experiments conducted atheés.

° For the simulations and experiments given in this paper, we used the simBleAB function
“f m nsear ch.” We observed standard convergence rate from such an offhgglérsonlinear
optimization toolbox. The convergence rate may be improved with a cudesigned algo-
rithm and initialization.



General curves
case (a)case (b] case (c
One view unique|1-family|2-family|  unique
Two views || unique| unique| unique unique

# of solutiong Planar curves

Table 1. Ambiguity in reconstruction of symmetric curves: A single view is not erofay re-
construction of general symmetric curves, except for case (apafé-2, but sufficient for planar
symmetric curves. Two or more views are needed for reconstrucfiger®rally shaped sym-
metric curves.

4 Experimental Results
4.1 Simulations

Oneview of planar curves. To test the performance of the proposed methods, we have
conducted extensive simulations. In the first simulatiopeia of planar 3-D symmetric
curves in case (c) of Figure 2 are generated. A perspectiggerf their curves is ob-
tained from a pin-hole camera model. In order to test theswimss of our algorithm,
5% asymmetry is added onto the 3-D symmetric cul¥esmd white Gaussian noise is
added to the projected image curves with standard deviatidrhe added noise cor-
responds to approximately one pixel in standard deviatiworaf400x320 pixel image.

A large variety of view points are tested. From the simulationve found that the view
anglea between the camera optical axis and the central plaris the most important
factor for the accuracy in reconstruction. The Table 2 shihweserror as a function of
the anglen. Only the angles from-10° to +70° are tested because the negative side
will give similar results due to symmetry. The shape errahisL2-distance between
the curves reconstructed and the ground ttitfihe camera pose error is the angle
(in degrees) between the original camera rotation matrikthe rotation matrix recon-
structed. The results indicate that the shape error andaimem pose error increase
with an increasing angle. However, even in the worst case, the errors remain very
small, which indicates that our method is quite effective.

|view anglex (degree) || 10 | 20 | 30 | 40 | 50 | 60 [ 70 | 80 |
shape errorf*-distance) [[0.01700.01680.02230.02640.02710.03200.03610.0375
camera pose error (degrg€)25290.55710.50900.31930.32750.39160.50661.2401

Table 2. The error of the shape and camera pose as a function of the view amhgieveen the
camera axis and the central plane. It indicates that the shape errtiteandmera pose error in
general increase when the anglés increasing.

Two views of general curves. In the second simulation, a pair of non-planar 3-D curves
in case (c) of Figure 2 is generated, and two images are @otdiom two view points.

A large variety of view points are tested. It is discoveremhiithe simulation results that
the relative view angle’ = |a; — 2| (difference in the angles between the two camera
axes and the central plane) is the most important factoy elangles from0° to 60°

19 We make the curves slightly asymmetric by adding to the curves deformaftemmagnitude
up to5% of the maximum distance between the two curves.
1 The length of the curves is always normalized to be one for comparison.



are tested because other angles will result in similar teslule to symmetry. Table 3
shows the error as a function of the angleThe shape error is the distance between the
curves reconstructed from the noisy images and the groutial fFhe results indicate
that the shape error and the camera pose error in generalagecwith the increasing
of the relative view angle’. However, all of these errors remain small.

|relative view anglex’ (degree) || 10 [ 20 [ 30 | 40 | 50 [ 60 ]
shape errork*-distance) 0.02530.02280.02640.02210.02450.0203
average camera pose error (degnée36004.45823.76423.22663.847(03.4047

Table 3. The error of the shape and camera pose as a function of the relativeawigle o/
between the two camera axes. It indicates that the shape error andt@gase error in general
decrease when the angléincreases.

4.2 Experimentson Real Images

Figure 5 shows an example of a reconstructed umbrella. Kaisple belongs to the
case (b) of Figure 2. The whole umbrella can be reconstructed a single image
using the two-view method because the stripes on the urataedlall identical and two
stripes in one view can be treated as two views of the sanpeestri

Fig.5. Left: A single image that is used to recover the whole umbrella. The vagidimes ob-
tained from the optimization are shown in the image. Middle: The frame of thierella re-
covered from two stripes. Right: A synthetically rendered view of the detaly reconstructed
umbrella from the top.

Figure 6 shows an example of leaves whose contours can b&leoets as planar
curves, which is in the category of Figure 2 (c). The recodesteuctures as well as a
synthetically rendered image of the reconstructed leax@slaown. This experiment
verifies that from only one single view, the structure of syetric planar curves can be
recovered accurately.

Figure 7 shows a reconstruction of a 3-D leaf from two viewss lan example
of general curves in the category of Figure 2 (c). The re@etructure as well as a
synthetically rendered image of the reconstructed leaShosvn. We can see that the
shape of the leaf has been convincingly recovered.
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Fig. 6. Left: A single image that is used to recover the leaves. The vanishing lotaged from
the optimization are shown in the image. Middle: The shape of the leaf baaadad the camera
pose recovered from the image. Right: A synthetically rendered imafe ofconstructed leaves.

On a Pentium Il 866MHz computer with MATLAB 6.0, the algdmih completes
in 5 minutes for the one-view examples and 10 minutes forslveview examples.

5 Conclusionsand Future Work

In this paper, we have provided simple and effective algorg for the simultaneous re-
construction of both the shape of smooth symmetric curvddfamcamera poses from
as few as one or two images without feature correspondencsart with. Both sim-
ulations and experiments show that the results are remigrikaburate. In the future,
we plan to combine our methods with surface techniques fomsgtric shape recon-
struction. We will also study the effects of various defotimas on the reconstruction
of such shapes.
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