
Quick Collision Detection of Polytopes

in Virtual Environments

Kelvin Chung and Wenping Wang

tlchung�cs�hku�hk wenping�cs�hku�hk

Department of Computer Science

University of Hong Kong

Pokfulam Road� Hong Kong

Abstract

The problem of collision detection is fundamental to inter�
active applications such as computer animation and virtual
environments� In these �elds� prompt recognition of possible
impacts is important for computing real�time response� We
present a simple exact collision detection algorithm for
convex polytopes� The algorithm �nds quickly a separating
plane between two polytopes if they are non�colliding� or
else reports collision if it cannot possibly �nd a separating
plane� In the case of non�collision� the separating plane
found for one time frame is cached as a witness for the
next time frame� an idea borrowed from ����	 this use of
time coherence further speeds up the algorithm in dynamic
applications� Both temporal and geometric coherences are
exploited to make this algorithm run in expected constant
time empirically�

� Introduction

The problem of collision detection has been extensively
studied in many �elds� Most of the research makes use of
rectangular bounding boxes or a hierarchy of them as the
�rst step to quickly eliminate non�interference objects� For n
bounding boxes� a sweep and prune technique ��� can achieve
an expected O�n	e
 time by projecting the corner points of
three�dimensional bounding boxes onto the x� y� z axes and
sorting them at each time instant� Other methods to reduce
the complexity of the bounding box tests include spatial
subdivision ���� octree ���� scheduling ��� and progressive
re�nement ����

When the bounding boxes of objects overlap� usually an
exact collision detection algorithm is called� In ���� a face
octree is built for the faces of objects that intersect the

�Permission to make digital� hard copy of all or part of this
material without fee is granted provided that copies are not
made or distributed for pro�t or commercial advantage� the ACM
copyright�server notice� the title of the publication and its date
appear� and notice is given that copying is by permission of the
Association for Computing Machinery� Inc� �ACM�� To copy
otherwise� to republish� to post on servers or to redistribute to
lists� requires prior speci�c permission and�or a fee�

overlapping region of bounding boxes to check for possible
intersection� In ��� the rectangular box of an object is
subdivided into cells with each cell containing a list of facets
intersecting the cell� Intersection is done by considering only
the facets in the overlapped cells� In ���� a data structure�
called a �BRep�Index�� is used for quick spatial access of
polyhedra in order to localize contact regions between two
objects� In ����� an expected linear time algorithm which
computes the minimum distance and the separating plane
of two objects is proposed� In ���� the separating planes for
all pairs of non�interference objects are found by the above
expected linear time algorithm and cached ���� to facilitate
collision detection using temporal coherence� However� it
still takes linear time in the following time frame to test the
validity of the cached separating plane� In ����� an algorithm
with sub�quadratic running time algorithm to detect colli�
sion between polytopes is proposed� When the motion is
restricted to be translational only� the best theoretical time
for detecting collision between two polytopes is O�log� n
�
using the hierarchical representation of convex polyhedra
����� which needs O�n
 preprocessing time to build� In
����� the ideas of ��� and ��� are extended to deal with
concave polytopes� Other methods to detect collision usually
decompose the object into hierarchical structure and can
deal with concave polyhedra� They include the octree ��� ���
the BSP tree ��� and the OBB�Tree���� techniques� Among
them� OBB�Tree is more e�cient than others� However�
for convex polyhedra geometric coherence can be exploited
to achieve better performance without decomposing the
polyhedra�

The method in ��� maintains a pair of closest features for
each pair of polytopes and calculates the Euclidean distance
between the features to detect collision based on Voronoi re�
gions� This method takes advantage of geometric coherence
and runs in expected constant time if the polytopes do not
move swiftly� Since this algorithm needs to compute and
store the Voronoi region for each feature �vertex� edge� or
face
 on the boundary� and to handle di�erent cases when
walking around on the boundary in order to �nd the closest
features pairs� the implementation is not trivial� Moreover�
in most applications the closest features are not of great
interest to the program when the polytopes do not collide�
So it is not worth continuing to compute the closest features
once it is known that a separating plane exists between the
two polytopes�

Our algorithm is a major improvement on existing algo�

rithms in terms of running time� implementation simplicity�
and memory requirement� It extends the idea in ���� of
searching for a separating plane between two polytopes� But
we search a separating plane with a di�erent method and
verify its validity in expected constant time instead of linear
time as in ����� If there is no collision� our algorithm will
�nd a proper separating plane quickly� or else it will report
collision after testing some simple conditions� It makes use
of temporal coherence by caching a separating plane for
successive time frames� Our algorithm does not compute the
closest features as done in ���� although such features may
be useful in animation for computing collision impulse when
a collision is detected� Our algorithm considers polyhedral
vertices only� instead of all boundary features �vertices�
edges� and faces
 as in ���� so it is more e�cient and simpler
to implement� Temporal and geometric coherences are
exploited to make the algorithm run in expected constant
time�

� Separating Vector Searching

Algorithm

��� Algorithm Overview

Our algorithm is an exact collision detection algorithm
between convex polytopes� The idea is to detect collision
between polytopes quickly using the fact that two polyhedra
do not collide if and only if there exists a separating
plane between the two objects ����� At each iteration� the
algorithm �nds a candidate plane and uses constant time to
verify whether this plane is a separating plane� If it is a
separating plane then the polytopes do not collide� and this
plane is cached to be used as the initial plane in the search
for a separating plane in the next time frame� otherwise the
algorithm continues to search for a separating plane� If the
algorithm has determined that a separating plane cannot
possibly exist �to be explained later
� it reports collision�

��� The Algorithm

De�nition �� Let V�P
 denote the set of vertices of
polytope P � A supporting vertex of P in the direction S
is p � V�P
 such that S � p � maxfS � p�jp� � V�P
g�

In fact� for a supporting vertex p of P � we have S � p �
maxfS � p�jp� � Pg�

Lemma �� For a vector S� let p be a supporting vertex of
polytope P in the direction S and q be a supporting vertex
of polytope Q in the direction �S� If S � �q � p
 � �� then
P and Q do not intersect�

Proof� Since S��q�p
� �� we have S�q� S�p� which implies
S � q � S � �p 	 q
�� � S � p� By de�nition� S � p � S � p�

for any p� � P and S � q� � S � q for any q� � Q� So
S � q� � S � �p	 q
�� � S � p�� Hence the plane containing
the point �p 	 q
�� with normal vector being S separates
properly P and Q� �

To understand the idea of our algorithm� a �D version
is �rst presented� Figure ��i
 shows two non�overlapping
convex polygons P and Q� Note that De�nition � and

Lemma � also hold for the �D case� with the term �polytope�
being replaced by �convex polygon��

Brie�y� the algorithm works as follows� Given two convex
polygons P and Q� initially a unit vector S� is chosen and
a supporting vertex p� of P in the direction S� is found�
Similarly� a supporting vertex q� of Q in the direction �S�
is found� Then the following criterion is tested� By Lemma
�� with i � �� P and Q do not collide if

Si � �qi � pi
 � �� ��

Any vector Si satisfying the above condition is called a
separating vector of P and Q� or just a separating vector
since P and Q are often clear from the context� Note
that we consider the case where S� � �q� � p�
 � � to be
non�collision� although in this case P and Q may touch each
other� A separating vector w of P and Q has the property
that w � �q� � p�
 � � for any p� � P and any q� � Q�

In general� if the above test fails for Si� P and Q may still
not collide� In this case we �nd a new direction Si�� from
Si by

Si�� � Si � ��ri � Si
ri� i � �� �� � � � � ��

where ri � �qi � pi
�k�qi � pi
k� See Figure ��iii
� Note
that Si���Si� and ri lie on the same plane� and the angle
between Si�� and Si is bisected by a vector perpendicular
to ri�

This choice of Si�� from Si is based on the following
observation� Consider two non�intersecting circular disks P
and Q in the plane� See Figure ��ii
� It can be veri�ed
that if S� is not a separating vector� the S� given by ��

is a separating vector� �This argument is also true of two
non�intersecting balls in �D�
 So in the general �D case we
choose Si�� by ��
 in the hope that the Si�� thus chosen
converges quickly to some separating vector� provided that
P and Q do not collide�

If ��
 does not hold and collision conditions �to be given
later
 are not satis�ed� the above procedure is repeated�
The �rst Sk that satis�es ��
 is a separating vector of P
and Q� and k is the number of iterations performed by the
algorithm�

This algorithm works exactly the same way in �D case�
It is proved in the next section that if the two polytopes do
not collide and the condition ��
 does not hold� Si will get
closer to any �xed separating vector by each iteration� In
each time frame� if the two polytopes do not collide� the
separating vector and the two supporting vertices found
are cached� The separating vector is used as the initial
vector S� in the next time frame� As objects usually do
not move swiftly in virtual environment� so this vector is
likely to be the separating vector in the next time frame
or as an initial vector it can help get a report on collision
more quickly� Similarly� the supporting vertices found in the
previous time frame are used as initial points to search for
the new supporting vertices in the next time frame� Because
of convexity� local search is su�cient to locate the supporting
vertices� Therefore the separating vector searching step runs
in expected constant time due to temporal and geometric
coherences�

Conditions for reporting collision when the two polytopes
collide will be discussed in a later section�

��
��
��

���
���
���

������
������
������

���������
���������
���������
���������
���������
���������

(i) (iii)(ii)

((q−p)XS)X(q−p)
i i i i i

����
����
����

�����
�����
�����
�����
�����

P0

q
0

q
1 Q

P P0

s0

s0

p1 p1

s1

s1

q
1

q
0−s1

−s0

P Q si

q
i

p
i

−qi
p
i

si+1

Figure �� Searching for a separating vector �i� the idea �ii� in the case of circles �iii� choosing Si���

��� Searching for Supporting Vertices

The searching algorithm outlined in ��� is used to �nd
a supporting vertex pi on P and qi on Q� with respect to
Si and �Si� respectively� In the search the current vertex
p� on P is compared to its neighboring vertices to see if
Si �p� is the largest� If yes� the current vertex is a supporting
vertex� if not� this vertex is replaced by a neighboring vertex
p�� with the largest Si � p��� This process is repeated until
a supporting vertex is found� Notice that the supporting
vertex may not be unique but this does not a�ect our
algorithm� Because of convexity� this search can always
�nd a supporting vertex eventually� If we assume that
polytopes move slowly between time frames �which is usually
the case in virtual environment
� then the initial vertex for
the search is close to the required supporting vertex usually�
So empirically the searching step takes expected constant
time because the search is performed locally on the surface
of the polytopes� This has been veri�ed by experiments� A
supporting vertex q on Q can be found similarly�

In implementaton� there is no need to transform each ver�
tex of polytope P or Q from its de�ning coordinate system to
the world coordinate system and then take the dot product
with Si in order to �nd a supporting vertex� Instead� a
more e�cient way is to transform vector Si to the de�ning
coordinate system of the polytope by the inverse of the
rotation matrix of the polytope� and the search is performed
in the de�ning coordinate system� After a supporting vertex
is found� it is transformed to the world coordinate system�
Thus only two coordinate transformations are required for
locating each supporting vertex�

��� Preprocessing

In a virtual environment� most collision detection algorithms
use bounding boxes as the �rst step to eliminate non�
interference polytopes� When bounding boxes of polytopes
overlap for the �rst time� we can choose S� � �qc �
pc
�jjqc�pcjj where pc and qc are the centroids of P and Q
respectively� A centroid can be approximated by the average
of all vertices of the polytope� We choose this initial S�
because the separating vector is likely to be close to this
direction� Then an arbitrary vertex can be used as an initial
vertex for searching supporting vertices of P and Q�

For better e�ciency� we pre�compute supporting vertices

in a number of pre�de�ned directions and store them in a
�D table� Then� for any given direction S�� a supporting
vertex in the table with the direction close to S� is retrieved
in constant time and is used as the initial vertex to search
for a supporting vertex with respect to S�� The larger is
the size of this �D table� the better approximation does
this initial point provide� and the more quickly does this
searching algorithm locate a supporting vertex� A table of
size �� �� is used in our implementation�

� Proof of Convergence

Lemma �� If polytopes P andQ do not collide and Si�ri � �
in the i�th searching step� then for any separating vector w
of P and Q�

Si�� �w � Si �w� i � �� �� � � � � ��

Proof� By Eqn� ��
�

Si�� �w � Si �w� ��ri � Si
�ri �w
�

Since ri �w � � as w is a separating vector�

Si�� �w� Si �w � ���ri � Si
�ri �w
 � �� �

Hence if the two polytopes do not collide and Si is not a
separating vector� then Si�� given by Eqn� ��
 is closer to
any separating vector w than Si is� since by Lemma � the
angle between Si�� and w is smaller than the angle between
Si and w�

Another property of the algorithm is that if the pair pi
and qi appear in two consecutive steps i�e� ri�� � ri� then
P and Q do not collide� as indicated by the following lemma�

Lemma �� If Si � �qi � pi
 � � and pi�� � pi� qi�� � qi�
then Si�� � ri�� � �� i�e� P and Q do not collide�

Proof� Since

Si�� � ri�� � Si � ri�� � ��ri � Si
�ri � ri��

� Si � ri � ��ri � Si
�ri � ri
 � �Si � ri � ��

by Lemma �� P and Q do not collide� ��

...

...
...

...

(i) (ii) (iii)

E

r

r r

r

w

E O

r

r
r

r r

w

0

1 2

k

0

1
2

i3

M L

r’

r’
r’ r’

r’

1

i−1
0

2
i

new W
i

i

i
H

i

Figure �� Determine the existence of a separating vector�

� Collision Condition

��� Minkowski Sum

It can be shown ���� that P and Q collide i� O � M
where O is the origin and M � Q 	 ��P
 � fq � p jp �
P� q � Qg is the Minkowski sum of P and �Q� So� as M is
convex� if the origin is outside M there exists w such that

m �w � � for all m �M �

and this w is a separating vector� Conversely� w does not
exist if there is a collision� Geometrically� Eqn� �
 implies
that there exists a separating plane E passing through the
origin such that all the points r�� � � �� rk on the unit sphere
lie on one side of the plane E �see Figure ��i

� where
ri � mi�jjmijj � �qi � pi
�jjqi � pijj� Therefore� if it is
not possible to �nd such a plane E� then the two polytopes
collide�

��� Existence of a Separating Plane

When a point ri is added� an incremental algorithm is
used to �nd a plane Ei with normal vector wi such that
r� � � �� ri all lie on the positive half space of Ei� Initially�
w� is chosen to be the midpoint of r� and r�� At the i�th
iteration� if ri �wi�� � �� then ri also lies on the positive half
space of Ei��� so we set wi � wi��� otherwise� ri must be
one of the boundary points on the convex hull �a spherical
polygon
 formed by r�� � � �� ri on the surface of the sphere

�see Figure ��ii

� If there exists a plane �Ei passing through
the origin such that all the above points lie on one side of
�Ei� then we can always rotate �Ei into a plane �Ei such that
�Ei touches ri and all the points rj� j � �� �� � � � � i� are on one

side of �Ei�

Let Hi denote the plane passing through the origin with
normal vector ri� Then project the r�� � � � � ri along the
vector ri into points r��� � � � � r

�

i on the plane Hi� If there
exists a line L on the plane Hi that passes through the
origin such that all the points r��� � � � � r

�

i on Hi lie on one
side of the line L� then wi is taken to be the vector on the
plane Hi perpendicular to L �see Figure ��iii

� Conversely�
if such a line L does not exist� then there does not exist a

vector wi such that Eqn� �
 is satis�ed� that is� the two
polytopes collide� Note that the existence of the line L can
be determined in O�i
 time�

��� Termination

In the above searching process� by Lemma �� if
mi � qi � pi � Q � P repeats itself in two consecutive
steps� P and Q do not collide� However� if mi reoccurs
after more than one steps before Eqn� ��
 is satis�ed� we
cannot conclude that P and Q do not collide� In this case�
in order to prevent the algorithm from running without stop�
we set Si�� � wi which is found in subsection ��� Then the
vector mi�� � qi�� � pi�� thus found with Si�� � wi has
the following property�

Lemma �� If mi��
 mj for some j� � � j � i� then
Si�� � wi is a separating vector of P and Q� that is� P and
Q do not collide�

Proof� Since
Si�� �mi�� � wi �mj � ��

by Lemma �� P and Q do not collide� �

Lemma implies that either the algorithm stops with Si��
being a separating vector or the mi�� is a new vertex of M
that has not been visited before� This gaurantees that the
total number of vertex pairs repeated during the search is
at most the number of vertices in M � So the algorithm will
terminate in a �nite number of steps�

To summarize� the vector Si�� is either generated from Si
by Eqn� ��
 or set to be wi when there is a reoccurrence of
mi � qi � pi� For a sequence of vectors fSig thus de�ned�
when Si �ri � � for some i for the �rst time� we can conclude
that Si is a separating vector� and the polytopes P and Q do
not collide� The polytopes P and Q collide if there does not
exist wi such that wi �rj � �� j � �� �� � � � � i for some i� Note
that whenmi reoccurs in two consecutive steps� P and Q do
not collide by Lemma �� Note that Lemma � and Lemma
 are used because of numerical errors in implementation�
For simplicity� they do not appear in the pseudo code of the
algorithm �see the appendix
�

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

P1

��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������

P
2

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

P3

�������
�������
�������
�������
�������
�������

P
4

Figure �� A hierarchical representation of a polygon�

� Complexity

As pointed out earlier� the dynamic version of our
algorithm makes use of time coherence between successive
frames so to run in expected constant time� Let the number
of vertices in P and Q be n and m respectively� Without
making use of coherence� our implementation uses O�n	m

time to search for new supporting vertices in P and Q� and
O�i
 time to detect collision at the i�th iteration� So the
worst time complexity is O��n	m	 k
 � k
� where k is the
total number of iterations performed�

The time complexity for searching a new supporting ver�
tex in P can be reduced to O�log n
 with O�n
 preprocessing
time� using the hierarchical representation of polytopes �����
A hierarchical representation of polytope P with vertex
set V�P
 is de�ned as a sequence of polytopes hier�P
 �
fP�� � � � � Phg such that

�i
 P� � P and Ph is a simplex�
�ii
 Pi�� � Pi� for � � i � h�
�iii
 V�Pi��
 � V�Pi
� for � � i � h� and
�iv
 the vertices in V�Pi
�V�Pi��
 form an independent
set in Pi for � � i � h�

An example of hierarchical representation in �D case is
shown in Figure �� Note that this representation P is not
unique� It is proved in ���� that the height of the hierarchical
representation� h� is O�log n
� Using this representation� we
can �nd a supporting vertex of polytope P in direction S by
�rst �nding the supporting vertex vh of polytope Ph� which
takes constant time since Ph is a simplex� Then local search
is used to �nd the supporting vertex vi of Pi in direction S
starting from vi��� for i � h� �� h� �� � � � � ��

Lemma �� For i � �� � � � � h � �� let vi�� be a supporting
vertex of Pi�� with respect to direction S� Then either vi��
is also a supporting vertex Pi with respect to direction S or
a supporting vertex vi of Pi with respect to S is a neighbor
of vi�� in Pi�

Proof� Let vi be a supporting vertex of Pi with respect to S�
Since Pi�� � Pi� S � vi � S � vi��� When S � vi � S � vi���
clearly� vi�� is also a supporting vertex of Pi with respect
to S�

When S � vi � S � vi��� we must have vi 	� Pi��� for
otherwise vi would be a supporting vertex in Pi��� instead
of vi��� Suppose vi is not a neighbor of vi�� in Pi�
By property �iv
 of the hierarchical representation� all the
neighbors of vi are vertices of Pi��� and these neighbors

do not include vi��� Therefore the open line segment
vivi�� has nonempty intersection with the polytope Pi���
Let a point in this nonempty intersection vivi��

T
Pi�� be

v� � �� � �
vi 	 �vi�� for some � with � � � � �� Then

S � v� � ��� �
S � vi 	 �S � vi�� � S � vi���

This contradicts that vi�� is a supporting vertex of Pi��
with respect to S� Hence vi is a neighbor of vi�� in Pi� �

Since h � O�log n
� a supporting vertex of P � P� can be
found in O�log n
 time� assuming that the degrees of vertices
in Pi are bounded by a constant�

Besides� it takes constant time to check whether a pair
of supporting vertices has been visited previously in the
algorithm� The method is to keep track of a �D array
with each entry being a counter for a pair of vertices�
Initially all the entries are reset to zero� There is also a
variable called timestamp� which is incremented every time
the collision detection algorithm is called� During the search
for a separating vector� if the counter for a pair of supporting
vertices is not equal to the timestamp� that counter is set
to the timestamp� if it is equal to the timestamp� the pair
has been visited before� When the maximum limit for the
counter is reached� which is the maximum long integer of
the language used� all the entries are reset to zero�

Hence the worst case running time of the separating vector
searching algorithm can be reduced to O��log n 	 logm 	
k
 � k
� So far the only upper�bound known to us for k
is O�mn
� However� with temporal coherence takes e�ect
in virtual environment� it is found empirically that k is very
small even for very large n� For an ellipsoid�shaped polytope�
k � �� when n � ����� The empirical running time of this
algorithm in a dynamic environment is almost constant�

� Experiments

Experiments have been carried out to investigate the
number of the searching steps k for polytopes with di�erent
number of vertices n� The simulation uses ��� polytopes of
the same number of vertices moving in a closed environment�

Polytopes of three di�erent shapes are used� ellipsoid�
a thin rod� and �at plate� obtained by randomly sampling
points on the surface of an ellipsoid� a thin rod� and a
�at plate� respectively� They provide a variety of di�erent
shapes for testing� Each object has its translational velocity
equal to �� of its radius and rotational velocity �� degrees
per time frames� When there is a collision between two
polytopes� their rotational and translational velocities are

0

10

20

30

40

50

60

70

80

90

100

2 7 12 17

Translational velocity in % of object radius
Figure 4(iv)

T
im

 e
/ s

n=20(CF)

n=200(CF)

n=20(SV)

n=200(SV)

n=500(SV)

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Rotational velocity in degree per tim e frame

Figure 4(v)

T
im

 e
/ s

n=20(CF)

n=200(CF)

n=20(SV)

n=200(SV)

n=500(SV)

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No of se arching step k when ther e is no collision

Figure 4(i)

P
re

ce
n

ta
g

e
o

f
co

lli
s

io
n

te
st

Ellispoid

Flat plate

Rod

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of se arching step k (Over all)
Figure 4(ii)

P
re

ce
n

ta
g

e
o

f
co

lli
s

io
n

te
st

Ellispoid

Flat plate

Rod

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 7 12 17 22 27 32

Density (% of volum e occupy by polytopes)
Figure 4(vi)

T
im

 e
/ s n=20(CF)

n=20(SV)

n=500(SV)

n=500(CF)

0

10

20

30

40

50

60

0 200 400 600 800 1000
No of vertex in polytope

Figure 4(iii)

M
ax

im
 u

m
 v

al
ue

o
f

se
ar

ch
in

g
st

ep
k

Ellipsoid

Rod

Flat plate

reversed� In the experiment� a precomputed �� �� table for
the supporting vertices is used as explained in section ���

Figure �i
 measures the value of k when collision test is
called between non�colliding objects of ��� vertices� This
collision test is called only when the tightest rectangular
bounding boxes �as found in ���
 of two polytopes overlap�
The results show that more than ��� of non�colliding
objects are identi�ed in �rst three steps for all three
shapes� Moreover� for the case of ellipsoid more than ���
of non�colliding objects can be identi�ed in the �rst four
steps� Figure �ii
 measures the value of k when collision
test is called for both colliding and non�colliding objects of
��� vertices� The results show that on average more than
��� of collision tests can be completed within �rst three
searching steps� Moreover� for polytopes of di�erent number
of vertices� a similar curve to that in Figure �i
� Figure �ii

is obtained �not shown in the �gure
� This indicates that the
algorithm runs in almost expected constant time� We also
noticed that there are reoccurences of supporting vertices
during the search for separating planes in less than ���� of
collision tests for the polytopes which do not collide�

In Figure �iii
� the maximum value of k for each case
recorded is shown� From this �gure� the maximum value of
k is around �� for ellipsoid� increases slightly from �� to �
for �at plate and increases from �� to �� for rod when n
increases from �� to ����� It is noticed that the algorithm
performs best for ellipsoid�shaped objects� and becomes less
e�cient for objects of plate�shape or rod�shape� The results
also indicate that even in the worst example we construct as
for thin rods and �at plates� the maximum value of k is small
as compared to n� Besides� it is noted that this worst case
value of k happens very rarely �� ����� of collision test

in the experiments� This explains why our algorithm runs
signi�cantly faster than others on average as shown in the
next experiment� especially in virtual environments where
we can make use of temporal coherence�

We have compared our algorithm with the closest features
tracking algorithm� which is the fastest algorithm so far ����

To measure the performance of our algorithm� the lowest
layer of the I COLLIDE ��� source code� which detects colli�
sion between two polytopes using the closest feature tracking
algorithm �CF
� is replaced by our separating vector algo�
rithm �SV
� The simulation is done on SGI�Indy machine
�R���
� with a total of ��� polytopes of the above three
shapes and the same number of vertices in the environment�
Figure �iv
 shows that� when the translational velocity is
changed from �� to ��� of object radius per time frame� the
simulation time of SV algorithm increases slightly� however�
the simulation time of CF algorithm increases substantially�
That is because when the translational velocity increases�
CF algorithm needs more time to locate the closest points
between polytopes and travel from one feature to another�
while �nding a supporting vertex is faster in SV algorithm�
Moreover� the I COLLIDE library needs to call another
linear programming algorithm when there is a recycling
of features� The simulation time for CF algorithm when
n � ��� is around ���� seconds so it is not included in
Figure �iv
 and Figure �v
� As a result� for velocity that
is ��� of object radius per time frame and the number of
vertices of each polytope n � ���� nearly �� times speedup
by SV algorithm is achieved�

Figure �iv
 shows that� when the rotational velocity is
increased from � degrees to � degrees per time frame�
SV algorithm takes only a little longer time� while the CF
algorithm takes substantially longer time� Here the set up
is the same as above�

Lastly� Figure �v
 shows the comparison when only the
density of the environment changes� Again� SV algorithm is
faster and more e�cient than CF algorithm in all cases�

� Conclusion

We have proposed an e�cient exact collision detection
algorithm for polytopes in virtual environments� The
algorithm is based on a simple technique to quickly locate
a separating plane between two polytopes if they do not
collide� or otherwise test some simple conditions to report
collision� Our algorithm is fast and simple to implement�
Taking advantage of geometric and temporal coherences
in a dynamic environment� our algorithm uses caching�
preprocessing� and local search to run in expected constant
time� These results have been veri�ed by experiments�

As the contact points between two objects when they
collide provide useful information for impulse computation�
one of the remaining research problems is to consider
reporting e�ciently the contact points between colliding
objects in our algorithm�

Also� we noticed that the number of searching steps
k for some polytopes is far greater than average� So
another problem we are investigating is to characterize those
polytopes which our algorithm has to take many search steps
to process�

References

�� D� J� Cohen� M�C� Lin� D� Manocha� and M� Ponamgi�
I�Collide� An interactive and exact collision detection
system for large�scale environments� Proceeding of Sym�
posium of Interactive �D Graphics� pp� �������� �����

�� M� Moore and J� Wilhelms� Collision detection and
response for computer animation� Computer Graphics�
Vol� ��� No� � pp� �������� �����

�� W� Thibault and B� Naylor� Set operations on poly�
hedra using binary space partitioning trees� ACM
Computer Graphics� � pp� �������� �����

� A� Foisy� V� Hayward� and S� Aubry� The use of aware�
ness in collision prediction� International Conference on
Robotics and Automation� pp� ������� IEEE� �����

�� A� Smith� Yoshifumi Kitamu� Haruo Takemura� and
Fumio Kishino� A simple and e�cient method for ac�
curate collision detection among deformable polyhedral
objects in arbitrary motion� Virtual Reality Annual
International Symposium� pp� ������� IEEE� �����

�� A� Garcia�Alonso� N� Serrano and J� Flaquer� Solv�
ing the collision detection problem� IEEE Computer
Graphics and Applications� ����
� pp� ����� ����

�� Y� Yang and N� Thalmann� An improved algorithm
for collision detection in cloth animation with human
body� First Paci�c Conference on Computer Graphics
and Application� pp� �������� �����

�� M� Lin and J� Canny� E�cient collision detection
for animation� Proceedings of the Third Eurographics
Workshop on Animation and Simulation� Cambridge�
�����

�� W� Bouma and G� Vanecek� Collision detection and
analysis in a physical based simulation� Proceedings of
Eurographics Workshop on Animation and Simulation�
pp� �������� September� �����

��� D� Bara�� Curved surfaces and coherence for non�
penetrating rigid body simulation� Computer Graphics�
Vol� �� No� � pp� ������ �����

��� Rich Rabbitz� Fast collision detection of moving convex
polyhedra� Graphics Gem IV� AP Professional� pp� ���
���� ����

��� D�P� Dobkin and D�G� Kirkpatrick� A linear algorithm
for determining the separation of convex polyhedra�
Journal of Algorithms Vol� �� pp� �������� �����

��� M� C� Lin� E�cient Collision Detection for Animation
and Robotics� PhD thesis� Department of Electrical
Engineering and Computer Science� University of Cal�
ifornia� Berkeley� December �����

�� Philip M� Hubbard� Collision Detection for Interactive
Graphics Applications� IEEE Transactions on Visual�
ization and Computer Graphics� Vol� �� No� �� pp�
�������� �����

��� E� G� Gilbert� D� W� Johnson� and S� S� Keerthi� A fast
procedure for computing the distance between complex
object in three�dimensional space� IEEE Journal of
Robotics and Automation� ��
��������� �����

��� Elmar Schomer and Christian Thiel� E�cient collision
detection for moving polyhedra� Proceedings of the
Eleventh Annual Symposium on Computational Geom�
etry� pp� ������ �����

��� M� Ponamgi� D� Manocha� and M� Lin� Incremental
algorithms for collision detection between solid models�
Proceedings of ACMSiggraph Symposium on Solid
Modeling� pp� ������� �����

��� R� T� Rockafellar� Convex Analysis� Princeton Univer�
sity Press� �����

��� B� Chazelle and D� Dobkin� Detection is easier than
computation� ACM Symposium on Theory of Comput��
�� � pp� ������� �����

��� S� Gottschalk� M� Lin and D� Manocha� OBB�Tree�
A Hierarchical Structure for Rapid Interference Detec�
tion� to appear in Proceedings of SIGGRAPH ����

APPENDIX

��

Detection collision between P and Q with rotation matrix Rp� Rq and

translation Tp� Tq respectively� invRp and invPq are the inverse of the

matrix Rp and Rq� respectively�

Assume that the centers of P and Q are at the origin in the local coordinate

system�

��

Quick�Collision�P� Q� Rp� Rq� invRp� invRq� Tp� Tq�

�

If �bounding boxes overlap for the first time� �

S 	
Tq � Tp� �� where
x� is the normalized vector of vector x ��

use S to get vertices p and q from the precomputed table �� section ��� ��

�

else �

retrieve S� p� q from cache

�

k 	 �

do �

k��

p 	 SearchSupportVertex�P� p� invRp�S� �� section ��� ��

q 	 SearchSupportVertex�Q� q� invRq���S��

r�k 	
�q�Rq � Tq� � �p�Rp � Tp��

dp 	 dotproduct�S� r�k�

if � dp �	 �� � �� Lemma � ��

save S� p� q �� cache the values ��

return non�collision

�

if �r�k has appeared before� �

S 	 w �� Lemma � ��

�

else

�

if �k 	 ��

w 	
r�� � r���

if ��dotproduct�w� r�k�
 �� and �FindSeparatePlane�r�k� w��

return collision �� section ��� ��

save r�k

S 	 S � ��dp�r�k �� Eqn� ��� ��

�

� while �TRUE�

�

