Quick Collision Detection of Polytopes

in Virtual Environments

Kelvin Chung and Wenping Wang

tlchung@cs.hku.hk

wenping@cs.hku.hk

Department of Computer Science
University of Hong Kong
Pokfulam Road, Hong Kong

Abstract

The problem of collision detection is fundamental to inter-
active applications such as computer animation and virtual
environments. In these fields, prompt recognition of possible
tmpacts is important for computing real-time response. We
present a simple exact collision detection algorithm for
convex polytopes. The algorithm finds quickly a separating
plane between two polytopes if they are non-colliding, or
else reports colliston if it cannot possibly find a separating
plane. In the case of non-collision, the separating plane
found for one time frame is cached as a witness for the
next time frame, an idea borrowed from [10]; this use of
time coherence further speeds up the algorithm in dynamic
applications. Both temporal and geometric coherences are
exploited to make this algorithm run in expected constant
time empirically.

1 Introduction

The problem of collision detection has been extensively
studied in many fields. Most of the research makes use of
rectangular bounding boxes or a hierarchy of them as the
first step to quickly eliminate non-interference objects. For n
bounding boxes, a sweep and prune technique [1] can achieve
an expected O(n+e) time by projecting the corner points of
three-dimensional bounding boxes onto the z, y, # axes and
sorting them at each time instant. Other methods to reduce
the complexity of the bounding box tests include spatial
subdivision [3], octree [2], scheduling [4], and progressive
refinement [14].

When the bounding boxes of objects overlap, usually an
exact collision detection algorithm is called. In [5], a face
octree is built for the faces of objects that intersect the

OPermission to make digital/ hard copy of all or part of this
material without fee is granted provided that copies are not
made or distributed for profit or commercial advantage, the ACM
copyright /server notice, the title of the publication and its date
appear, and notice is given that copying is by permission of the
Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

overlapping region of bounding boxes to check for possible
intersection. In [6] the rectangular box of an object is
subdivided into cells with each cell containing a list of facets
intersecting the cell. Intersection is done by considering only
the facets in the overlapped cells. In [9], a data structure,
called a “BRep-Index”, is used for quick spatial access of
polyhedra in order to localize contact regions between two
objects. In [15], an expected linear time algorithm which
computes the minimum distance and the separating plane
of two objects is proposed. In [11] the separating planes for
all pairs of non-interference objects are found by the above
expected linear time algorithm and cached [10] to facilitate
collision detection using temporal coherence. However, it
still takes linear time in the following time frame to test the
validity of the cached separating plane. In [16], an algorithm
with sub-quadratic running time algorithm to detect colli-
sion between polytopes is proposed. When the motion is
restricted to be translational only, the best theoretical time
for detecting collision between two polytopes is O(log® n),
using the hierarchical representation of convex polyhedra
[12], which needs O(n) preprocessing time to build. In
[17], the ideas of [1] and [8] are extended to deal with
concave polytopes. Other methods to detect collision usually
decompose the object into hierarchical structure and can
deal with concave polyhedra. They include the octree [1, 7],
the BSP tree [3] and the OBB-Tree[20] techniques. Among
them, OBB-Tree is more efficient than others. However,
for convex polyhedra geometric coherence can be exploited
to achieve better performance without decomposing the
polyhedra.

The method in [8] maintains a pair of closest features for
each pair of polytopes and calculates the Euclidean distance
between the features to detect collision based on Voronoi re-
gions. This method takes advantage of geometric coherence
and runs in expected constant time if the polytopes do not
move swiftly. Since this algorithm needs to compute and
store the Voronoi region for each feature (vertex, edge, or
face) on the boundary, and to handle different cases when
walking around on the boundary in order to find the closest
features pairs, the implementation is not trivial. Moreover,
in most applications the closest features are not of great
interest to the program when the polytopes do not collide.
So it is not worth continuing to compute the closest features
once it is known that a separating plane exists between the
two polytopes.

Our algorithm is a major improvement on existing algo-

rithms in terms of running time, implementation simplicity,
and memory requirement. It extends the idea in [11] of
searching for a separating plane between two polytopes. But
we search a separating plane with a different method and
verify its validity in expected constant time instead of linear
time as in [11]. If there is no collision, our algorithm will
find a proper separating plane quickly, or else it will report
collision after testing some simple conditions. It makes use
of temporal coherence by caching a separating plane for
successive time frames. Our algorithm does not compute the
closest features as dome in [8], although such features may
be useful in animation for computing collision impulse when
a collision is detected. Our algorithm considers polyhedral
vertices only, instead of all boundary features (vertices,
edges, and faces) as in [8], so it is more efficient and simpler
to implement. Temporal and geometric coherences are
exploited to make the algorithm run in expected constant
time.

2 Separating Vector Searching
Algorithm

2.1 Algorithm Overview

Our algorithm is an exact collision detection algorithm
between convex polytopes. The idea is to detect collision
between polytopes quickly using the fact that two polyhedra
do mnot collide if and only if there exists a separating
plane between the two objects [18]. At each iteration, the
algorithm finds a candidate plane and uses constant time to
verify whether this plane is a separating plane. If it is a
separating plane then the polytopes do not collide, and this
plane is cached to be used as the initial plane in the search
for a separating plane in the next time frame; otherwise the
algorithm continues to search for a separating plane. If the
algorithm has determined that a separating plane cannot
possibly exist (to be explained later), it reports collision.

2.2 The Algorithm

Definition 1: Let V(P) denote the set of vertices of
polytope P. A supporting vertex of P in the direction S
is p € V(P) such that S-p = max{S - p'|p’ € V(P)}.

In fact, for a supporting vertex p of P, we have S-p =
max{S - p'|p’ € P}.

Lemma 1: For a vector S, let p be a supporting vertex of
polytope P in the direction S and q be a supporting vertex
of polytope Q in the direction —S. If S-(q — p) > 0, then
P and Q do not intersect.

Proof: Since S-(q—p) > 0, we have S-q > S-p, which implies
S-q>S-(p+q)/2 >S-p. By definition, S-p > S - p’
for any p' € Pand S-q' > S.-q for any q' € Q. So
S-q" >S-(p+q)/2 > S p'. Hence the plane containing
the point (p + q)/2 with normal vector being S separates
properly P and . O

To understand the idea of our algorithm, a 2D version
is first presented. Figure 1(i) shows two non-overlapping
convex polygons P and . Note that Definition 1 and

Lemma 1 also hold for the 2D case, with the term “polytope”
being replaced by “convex polygon”.

Briefly, the algorithm works as follows. Given two convex
polygons P and @, initially a unit vector Sg is chosen and
a supporting vertex po of P in the direction Sg is found.
Similarly, a supporting vertex qo of) in the direction —Sgo
is found. Then the following criterion is tested. By Lemma
1, with ¢ = 0, P and @ do not collide if

Si- (a4 —pi) > 0. (1)

Any vector S; satisfying the above condition is called a
separating vector of P and @, or just a separating vector
since P and @ are often clear from the context. Note
that we consider the case where Sg - (qo — po) = 0 to be
non-collision, although in this case P and ¢ may touch each
other. A separating vector w of P and @) has the property
that w-(q' — p’) > 0 for any p’ € P and any q' € Q.

In general, if the above test fails for S;, P and @ may still
not collide. In this case we find a new direction S;y; from

S; by
Sit1 =S; —2(ri- Sy)ri, :=0,1,..., (2)

where ¥; = (qi — pi)/||(ai — pi)||- See Figure 1(iii). Note
that Si41,S;, and r; lie on the same plane, and the angle
between Sit1 and S; is bisected by a vector perpendicular
to r;.

This choice of Sij;1 from S; is based on the following
observation. Consider two non-intersecting circular disks P
and @ in the plane. See Figure 1(ii). It can be verified
that if Sg is not a separating vector, the Sy given by (2)
is a separating vector. (This argument is also true of two
non-intersecting balls in 3D.) So in the general 2D case we
choose Siy1 by (2) in the hope that the Si;1 thus chosen
converges quickly to some separating vector, provided that

P and @ do not collide.

If (1) does not hold and collision conditions (to be given
later) are not satisfied, the above procedure is repeated.
The first Sy that satisfies (1) is a separating vector of P
and @, and k is the number of iterations performed by the
algorithm.

This algorithm works exactly the same way in 3D case.
It is proved in the next section that if the two polytopes do
not collide and the condition (1) does not hold, S; will get
closer to any fixed separating vector by each iteration. In
each time frame, if the two polytopes do not collide, the
separating vector and the two supporting vertices found
are cached. The separating vector is used as the initial
vector Sg in the next time frame. As objects usually do
not move swiftly in virtual environment, so this vector is
likely to be the separating vector in the next time frame
or as an initial vector it can help get a report on collision
more quickly. Similarly, the supporting vertices found in the
previous time frame are used as initial points to search for
the new supporting vertices in the next time frame. Because
of convexity, local search is sufficient to locate the supporting
vertices. Therefore the separating vector searching step runs
in expected constant time due to temporal and geometric
coherences.

Conditions for reporting collision when the two polytopes
collide will be discussed in a later section.

(ii)

Figure 1: Searching for a separating vector (i) the idea (ii) in the case of circles (iii) choosing Siy1.

2.3 Searching for Supporting Vertices

The searching algorithm outlined in [1] is used to find
a supporting vertex p; on P and q; on @, with respect to
S; and —S;, respectively. In the search the current vertex
p’ on P is compared to its neighboring vertices to see if
S;-p’is the largest. If yes, the current vertex is a supporting
vertex; if not, this vertex is replaced by a neighboring vertex
p" with the largest S; - p”. This process is repeated until
a supporting vertex is found. Notice that the supporting
vertex may not be unique but this does not affect our
algorithm. Because of convexity, this search can always
find a supporting vertex eventually. If we assume that
polytopes move slowly between time frames (which is usually
the case in virtual environment), then the initial vertex for
the search is close to the required supporting vertex usually.
So empirically the searching step takes expected constant
time because the search is performed locally on the surface
of the polytopes. This has been verified by experiments. A
supporting vertex q on ¢ can be found similarly.

In implementaton, there is no need to transform each ver-
tex of polytope P or @ from its defining coordinate system to
the world coordinate system and then take the dot product
with S; in order to find a supporting vertex. Instead, a
more efficient way is to transform vector S; to the defining
coordinate system of the polytope by the inverse of the
rotation matrix of the polytope, and the search is performed
in the defining coordinate system. After a supporting vertex
is found, it is transformed to the world coordinate system.
Thus only two coordinate transformations are required for
locating each supporting vertex.

2.4 Preprocessing

In a virtual environment, most collision detection algorithms
use bounding boxes as the first step to eliminate non-
interference polytopes. When bounding boxes of polytopes
overlap for the first time, we can choose So = (qc —
Pc)/||de — Pe|| where pe and qc are the centroidsof P and Q
respectively. A centroid can be approximated by the average
of all vertices of the polytope. We choose this initial Sg
because the separating vector is likely to be close to this
direction. Then an arbitrary vertex can be used as an initial
vertex for searching supporting vertices of P and Q.

For better efficiency, we pre-compute supporting vertices

in a number of pre-defined directions and store them in a
2D table. Then, for any given direction Sg, a supporting
vertex in the table with the direction close to Sg is retrieved
in constant time and is used as the initial vertex to search
for a supporting vertex with respect to Sg. The larger is
the size of this 2D table, the better approximation does
this initial point provide, and the more quickly does this
searching algorithm locate a supporting vertex. A table of
size 8 X 16 is used in our implementation.

3 Proof of Convergence

Lemma 2: If polytopes P and @} do not collide and Si-r; < 0
in the i-th searching step, then for any separating vector w

of P and Q,

Si+1~W>Si~W, 1=0,1,.... (3)

Proof: By Eqn. (2),
Sit1 - WwW=S;-w— 2(1‘1 . Si)(ri . W)
Since r; - w > 0 as W is a separating vector,

Sit1-wW—S;-w= —2(I'i~Si)(I'i~W) > 0. 0O

Hence if the two polytopes do not collide and S; is not a
separating vector, then Sijy1 given by Eqn. (2) is closer to
any separating vector w than S; is, since by Lemma 2 the
angle between Sjy1 and w is smaller than the angle between
S; and w.

Another property of the algorithm is that if the pair p;
and q; appear in two consecutive steps i.e. Tjy1 = rj, then
P and @ do not collide, as indicated by the following lemma.

Lemma 3: If S; - (qi — pi) < 0 and piy1 = Di, di+1 = i,
then Siy1 -Tiy1 > 0, t.e. P and @ do not collide.

Proof. Since

Sit1-rigr = Si-rig1 —2(ri-Si)(ri - rit1)
= S;-r;— 2(1‘1 . Si)(ri . I'i) =-S;-r; >0,

by Lemma 1, P and @ do not collide. O.

new W,

Q

Figure 2: Determine the existence of a separating vector.

4 Collision Condition

4.1 Minkowski Sum

It can be shown [15] that P and @ collide iff O € M
where O is the origin and M = Q@+ (—-P)={q—p |p €
P, q € Q} is the Minkowski sum of P and —@Q. So, as M is

convex, if the origin is outside M there exists w such that
m-w>0 forall meM (4)

and this w is a separating vector. Conversely, w does not
exist if there is a collision. Geometrically, Eqn. (4) implies
that there exists a separating plane £ passing through the
origin such that all the points rq, ..., rk on the unit sphere
lie on one side of the plane E (see Figure 2(i)), where
ri = mi/||mi|| = (@i — pi)/||di — pil|. Therefore, if it is
not possible to find such a plane E, then the two polytopes
collide.

4.2 Existence of a Separating Plane

When a point r; is added, an incremental algorithm is
used to find a plane FE; with normal vector w; such that
o ..., ri all lie on the positive half space of F;. Initially,
w1 18 chosen to be the midpoint of ro and r1. At the z-th
iteration, if r;-wi—_1 > 0, then r; also lies on the positive half
space of F;_1, so we set w; = wi_1; otherwise, r; must be
one of the boundary points on the convex hull (a spherical
polygon) formed by ro, ..., ri on the surface of the sphere

(see Figure 2(ii)). If there exists a plane E; passing through
the origin such that all the above points lie on one side of

Ei, then we can always rotate El into a plane El such that

E; touches r; and all the points rj, 7 =0,1,...,3, are on one
side of El

Let H; denote the plane passing through the origin with
normal vector rij. Then project the ro,...,r; along the
vector r; into points rg,...,r, on the plane H,;. If there
exists a line L on the plane H; that passes through the
origin such that all the points rg,...,r] on H; lie on one

side of the line I, then w; is taken to be the vector on the
plane H; perpendicular to L (see Figure 2(iii)). Conversely,
if such a line L does not exist, then there does not exist a

vector wj such that Eqn. (4) is satisfied; that is, the two
polytopes collide. Note that the existence of the line I can
be determined in O(7) time.

4.3 Termination

In the above searching process, by Lemma 3, if
mi=qi —pi € @ — P repeats itself in two consecutive
steps, P and @ do not collide. However, if m; reoccurs
after more than one steps before Eqn. (1) is satisfied, we
cannot conclude that P and @ do not collide. In this case,
in order to prevent the algorithm from running without stop,
we set Siy1 = Wi which is found in subsection 4.2. Then the
vector mit1 = Qi+1 — Pi+1 thus found with Sit1 = wy has
the following property.

Lemma 4: If mij;1 = mj for some 3, 0 < j < 3, then
Sit1 = Wi 18 a separating vector of P and @, that is, P and
Q@ do not collide.

Proof. Since
Siy1 - Mip1 = wi-m; >0,

by Lemma 1, P and @ do not collide. O

Lemma 4 implies that either the algorithm stops with S;41
being a separating vector or the m;4q1 is a new vertex of M
that has not been visited before. This gaurantees that the
total number of vertex pairs repeated during the search is
at most the number of vertices in M. So the algorithm will
terminate in a finite number of steps.

To summarize, the vector Siyq is either generated from S;
by Eqn. (2) or set to be wi when there is a reoccurrence of
m; = q; — pi. For a sequence of vectors {S;} thus defined,
when S;-r; > 0 for some ¢ for the first time, we can conclude
that S; is a separating vector, and the polytopes P and @ do
not collide. The polytopes P and @ collide if there does not
exist wj such that wi-r; > 0, 5 =0,1,...,¢ for some 2. Note
that when m; reoccurs in two consecutive steps, P and @ do
not collide by Lemma 3. Note that Lemma 3 and Lemma
4 are used because of numerical errors in implementation.
For simplicity, they do not appear in the pseudo code of the
algorithm (see the appendix).

Figure 3: A hierarchical representation of a polygon.

5 Complexity

As pointed out earlier, the dynamic version of our
algorithm makes use of time coherence between successive
frames so to run in expected constant time. Let the number
of vertices in P and @ be n and m respectively. Without
making use of coherence, our implementation uses O(n+m)
time to search for new supporting vertices in P and @, and
O(i) time to detect collision at the i-th iteration. So the
worst time complexity is O((n + m + k) * k), where k is the
total number of iterations performed.

The time complexity for searching a new supporting ver-
tex in P can be reduced to O(log n) with O(n) preprocessing
time, using the hierarchical representation of polytopes [12].
A hierarchical representation of polytope P with vertex
set V(P) is defined as a sequence of polytopes hier(P) =
{P1,..., Pn} such that

(i) P = P and Pj is a simplex;
(11) it1 C Py, for 1 <4< by

(i) V(z+1)CV(P) for 1 <4 < h; and

(iv) the vertices in V(P;) — V(Pl+1) form an independent
s

et in P; for 1 <3¢ < h.

An example of hierarchical representation in 2D case is
shown in Figure 3. Note that this representation P is not
unique. It is proved in [12] that the height of the hierarchical
representation, h, is O(log n). Using this representation, we
can find a supporting vertex of polytope P in direction S by
first finding the supporting vertex vy of polytope Py, which
takes constant time since P is a simplex. Then local search
is used to find the supporting vertex v; of P; in direction S
starting from viyq,fore =h -1, h—2 ... 1.

Lemma 5: For i =1,...,h — 1, let viy1 be a supporting
vertex of P41 with respect to direction S. Then either viq1
18 also a supporting vertex P; with respect to direction S or
a supporting vertex vi of P; with respect to S is a neitghbor
Of Vit1 mn Pz

Proof. Let vi be a supporting vertex of P; with respect to S.
Since Pi+1 C Pi, S-v; > S cVit1. When S-v; =S Vi+1,
clearly, viy1 is also a supporting vertex of P; with respect

to S.

When S-vi > S-viy1, we must have vi € P;4q; for
otherwise v; would be a supporting vertex in P;4q, instead
of viy1. Suppose vi is not a neighbor of viy; in P;.
By property (iv) of the hierarchical representation, all the
neighbors of v;i are vertices of P;41, and these neighbors

do not include vit1. Therefore the open line segment

VivVit1 has nonempty intersection with the polytope P;4i1.

Let a point in this nonempty intersection Vivizi ﬂPi+1 be

va = (1 = A)vi + Avizq for some A with 0 < XA < 1. Then
S.-vy= (1—)\)S~Vi+)\S~Vi+1 >S~Vi+1.

This contradicts that vitq1 is a supporting vertex of P41

with respect to S. Hence v; is a neighbor of vitq1 in P;. O

Since h = O(log n), a supporting vertex of P = P can be
found in O(log n) time, assuming that the degrees of vertices
in P; are bounded by a constant.

Besides, it takes constant time to check whether a pair
of supporting vertices has been visited previously in the
algorithm. The method is to keep track of a 2D array
with each entry being a counter for a pair of vertices.
Initially all the entries are reset to zero. There is also a
variable called timestamp, which is incremented every time
the collision detection algorithm is called. During the search
for a separating vector, if the counter for a pair of supporting
vertices 18 not equal to the timestamp, that counter is set
to the timestamp; if it is equal to the timestamp, the pair
has been visited before. When the maximum limit for the
counter is reached, which is the maximum long integer of
the language used, all the entries are reset to zero.

Hence the worst case running time of the separating vector
searching algorithm can be reduced to O((logn + logm +
k) * k). So far the only upper-bound known to us for k
is O(mn). However, with temporal coherence takes effect
in virtual environment, it is found empirically that k is very
small even for very large n. For an ellipsoid-shaped polytope,
k < 25 when n < 1000. The empirical running time of this
algorithm in a dynamic environment is almost constant.

6 Experiments

Experiments have been carried out to investigate the
number of the searching steps k for polytopes with different
number of vertices n. The simulation uses 500 polytopes of
the same number of vertices moving in a closed environment.

Polytopes of three different shapes are used: ellipsoid,
a thin rod, and flat plate, obtained by randomly sampling
points on the surface of an ellipsoid, a thin rod, and a
flat plate, respectively. They provide a variety of different
shapes for testing. Each object has its translational velocity
equal to 5% of its radius and rotational velocity 10 degrees
per time frames. When there is a collision between two
polytopes, their rotational and translational velocities are

Precentage of collision test

Time/s

60
~
95 g
90 g 5 0T
< 2
85 : s 07
80 § g
13
s s 5 30T
70) E
s ° 3
65 —o— Ellispoid § 65 Ellispoid Z 2 —~— Ellipsoid
7 ——
60 —&—Flatplae| | £ 60% Flat plate : o Rod
—0— Rod E 1071
55 —— Rod 55 g —— Flat plate
0 * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 200 400 600 800 1000
No of searching step k when there is no collision No. of searching step k (Overall) No of vertex in polytope
Figure 4(i) Figure 4(ii) Figure 4(iii)
100 140 10000 X
90 * L
120 9000
80 —O— n=20(CF) 8000 1
70 —A—n=200(CF)| 100 = 0 1=20(CF) 7000 1
60 —o—n=20(SV) o g0 / —X — n=200(CF) » 6000 T 8 p)
50 —+—n=200(SV)) X —+—n=20(SV) ° 5000 + 20(3v)
£ £ —o—n=
40 —o—n=500(SV)-] £ 60 / —X —n=200(SV} =
- X (V) F 4000 - —A— n=500(SV)
30 ——n=500(SV) | &4
o 40 3000 + - —X—n=500(CF)
+ + p— Y 2000 T /
10 20
T x x———————X—————— X 1000 1
0 T R
I > &
2 7 12 17 o 0
Translational velocity in % of object radius 5 10 15 20 2 30 35 40 2 7 12 b 22 27 32
Figure 4(v) Rotational velocity in degree per tim eframe Density (% of volum e occupy by polytopes)

reversed. In the experiment, a precomputed 8 x 16 table for
the supporting vertices is used as explained in section 2.4.

Figure 4(i) measures the value of k£ when collision test is
called between non-colliding objects of 500 vertices. This
collision test is called only when the tightest rectangular
bounding boxes (as found in [1]) of two polytopes overlap.
The results show that more than 95% of non-colliding
objects are identified in first three steps for all three
shapes. Moreover, for the case of ellipsoid more than 99%
of non-colliding objects can be identified in the first four
steps. Figure 4(ii) measures the value of k¥ when collision
test 1s called for both colliding and non-colliding objects of
500 vertices. The results show that on average more than
80% of collision tests can be completed within first three
searching steps. Moreover, for polytopes of different number
of vertices, a similar curve to that in Figure 4(i), Figure 4(ii)
is obtained (not shown in the figure). This indicates that the
algorithm runs in almost expected constant time. We also
noticed that there are reoccurences of supporting vertices
during the search for separating planes in less than 0.1% of
collision tests for the polytopes which do not collide.

In Figure 4(iii), the maximum value of k for each case
recorded is shown. From this figure, the maximum value of
k is around 22 for ellipsoid, increases slightly from 20 to 40
for flat plate and increases from 25 to 55 for rod when n
increases from 10 to 1000. Tt is noticed that the algorithm
performs best for ellipsoid-shaped objects, and becomes less
efficient for objects of plate-shape or rod-shape. The results
also indicate that even in the worst example we construct as
for thin rods and flat plates, the maximum value of £ is small
as compared to n. Besides, it is noted that this worst case
value of k happens very rarely (< 0.01% of collision test)
in the experiments. This explains why our algorithm runs
significantly faster than others on average as shown in the
next experiment, especially in virtual environments where
we can make use of temporal coherence.

We have compared our algorithm with the closest features
tracking algorithm, which is the fastest algorithm so far [1].

Figure 4(v)

Figure 4(vi)

To measure the performance of our algorithm, the lowest
layer of the I_.COLLIDE [1] source code, which detects colli-
sion between two polytopes using the closest feature tracking
algorithm (CF), is replaced by our separating vector algo-
rithm (SV). The simulation is done on SGI/Indy machine
(R4600), with a total of 100 polytopes of the above three
shapes and the same number of vertices in the environment.
Figure 4(iv) shows that, when the translational velocity is
changed from 2% to 20% of object radius per time frame, the
simulation time of SV algorithm increases slightly; however,
the simulation time of CF algorithm increases substantially.
That is because when the translational velocity increases,
CF algorithm needs more time to locate the closest points
between polytopes and travel from one feature to another,
while finding a supporting vertex is faster in SV algorithm.
Moreover, the I_.COLLIDE library needs to call another
linear programming algorithm when there is a recycling
of features. The simulation time for CF algorithm when
n = 500 is around 1000 seconds so it is not included in
Figure 4(iv) and Figure 4(v). As a result, for velocity that
is 20% of object radius per time frame and the number of
vertices of each polytope n = 500, nearly 28 times speedup
by SV algorithm is achieved.

Figure 4(iv) shows that, when the rotational velocity is
increased from 5 degrees to 40 degrees per time frame,
SV algorithm takes only a little longer time, while the CF
algorithm takes substantially longer time. Here the set up
is the same as above.

Lastly, Figure 4(v) shows the comparison when only the
density of the environment changes. Again, SV algorithm is
faster and more efficient than CF algorithm in all cases.

7 Conclusion

We have proposed an efficient exact collision detection
algorithm for polytopes in virtual environments. The
algorithm is based on a simple technique to quickly locate
a separating plane between two polytopes if they do not
collide, or otherwise test some simple conditions to report
collision. Our algorithm is fast and simple to implement.
Taking advantage of geometric and temporal coherences
in a dynamic environment, our algorithm uses caching,
preprocessing, and local search to run in expected constant
time. These results have been verified by experiments.

As the contact points between two objects when they
collide provide useful information for impulse computation,
one of the remaining research problems is to consider
reporting efficiently the contact points between colliding
objects in our algorithm.

Also, we noticed that the number of searching steps
k for some polytopes is far greater than average. So
another problem we are investigating is to characterize those
polytopes which our algorithm has to take many search steps
to process.

References

1. D. J. Cohen, M.C. Lin, D. Manocha, and M. Ponamgi,
I-Collide: An interactive and exact collision detection
system for large-scale environments, Proceeding of Sym-
positum of Interactive 3D Graphics, pp. 189-196, 1995.

2. M. Moore and J. Wilhelms, Collision detection and
response for computer animation, Computer Graphics,
Vol. 22, No. 4, pp. 289-298, 1988.

3. W. Thibault and B. Naylor, Set operations on poly-
hedra using binary space partitioning trees, ACM
Computer Graphics, 4, pp. 153-162, 1987.

4. A. Foisy, V. Hayward, and S. Aubry, The use of aware-
ness in collision prediction, International Conference on
Robotics and Automation, pp. 338-343. IEEE, 1990.

5. A. Smith, Yoshifumi Kitamu, Haruo Takemura, and
Fumio Kishino, A simple and efficient method for ac-
curate collision detection among deformable polyhedral

objects in arbitrary motion, Virtual Reality Annual
International Symposium, pp. 136-145, IEEE, 1995.

6. A. Garcia-Alonso, N. Serrano and J. Flaquer, Solv-
ing the collision detection problem, [FEE Computer
Graphics and Applications, 13(3), pp. 36-43, 1994.

7. Y. Yang and N. Thalmann, An improved algorithm
for collision detection in cloth animation with human
body, First Pacific Conference on Computer Graphics
and Application, pp. 237-251, 1993.

8. M. Lin and J. Canny, Efficient collision detection
for animation, Proceedings of the Third Furographics
Workshop on Animation and Simulation, Cambridge,
1991.

9. W. Bouma and G. Vanecek, Collision detection and
analysis in a physical based simulation, Proceedings of

FEurographics Workshop on Animation and Stmulation,
pp. 191-203, September, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Baraff, Curved surfaces and coherence for non-
penetrating rigid body simulation, Computer Graphics,
Vol. 24, No. 4, pp. 19-28, 1990.

Rich Rabbitz, Fast collision detection of moving convex
polyhedra, Graphics Gem IV, AP Professional, pp. 83-
109, 1994.

D.P. Dobkin and D.G. Kirkpatrick, A linear algorithm
for determining the separation of convex polyhedra,
Journal of Algorithms Vol. 6, pp. 381-392, 1985.

M. C. Lin, Efficient Collision Detection for Animation
and Robotics, PhD thesis, Department of Electrical
Engineering and Computer Science, University of Cal-
ifornia, Berkeley, December 1993.

Philip M. Hubbard, Collision Detection for Interactive
Graphics Applications, ITEEFE Transactions on Visual-
wzation and Computer Graphics, Vol. 1, No. 3, pp.
218-228, 1995.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, A fast
procedure for computing the distance between complex
object in three-dimensional space, IEFE Journal of
Robotics and Automation, 4(2):193-203, 1988.

Elmar Schomer and Christian Thiel, Efficient collision
detection for moving polyhedra, Proceedings of the
Eleventh Annual Symposium on Computational Geom-
etry, pp. 51-60, 1995.

M. Ponamgi, D. Manocha, and M. Lin, Incremental
algorithms for collision detection between solid models,
Proceedings of ACM/Siggraph Symposium on Solid
Modeling, pp. 293-304, 1995.

R. T. Rockafellar, Convexr Analysis. Princeton Univer-
sity Press, 1970.

B. Chazelle and D. Dobkin, Detection is easier than
computation, ACM Symposium on Theory of Comput.,
12, pp. 146-153, 1980.

S. Gottschalk, M. Lin and D. Manocha, OBB-Tree:
A Hierarchical Structure for Rapid Interference Detec-
tion, to appear in Proceedings of SIGGRAPH ’96.

APPENDIX

/*
Detection collision between P and Q with rotation matrix Rp, Rq and
translation Tp, Tq respectively. invRp and invPq are the inverse of the
matrix Rp and Rq, respectively.
Assume that the centers of P and Q are at the origin in the local coordinate

system.
*/
Quick_Collision(P, Q, Rp, Rq, invRp, invRq, Tp, Tq)
{
If (bounding boxes overlap for the first time) {
S = <Tq - Tp>; /* where <x> is the normalized vector of vector x */
use 3 to get vertices p and q from the precomputed table; /* section 2.4 */
}
else {
retrieve S, p, q from cache;
}
k = 0;
do {
k++;
p = SearchSupportVertex(P, p, invRp#*S); /* section 2.3 */
q = SearchSupportVertex(Q, q, invRq*(-S5));

r_k = <(q*¥Rq + Tq) - (p*Rp + Tp)>;

dp = dotproduct(S, r_k);

if (dp >=0) { /* Lemma 1 */
save S, p, q; /* cache the values */
return non-collision;
¥
if (r_k has appeared before) {
S = w; /* Lemma 4 #*/
¥
else
{
if (k = 2)
w=<r_1+ 1r_2>
if ((dotproduct(w, r_k) < 0) and !'FindSeparatePlane(r_k, w))
return collision; /* section 4.2 */
save r_k;
S = S - 2*dp*r_k; /* Eqn. (2) */
¥

} while (TRUE)
}

