CSIS0801 FINAL YEAR PROJECT

PHASE 3 DELIVERABLE

FINAL REPORT
TOPIC: COMPUTER SYSTEM SIMULATOR

WONG JING HIN (KENT)

UID: 3035051060

Final Year Project: Computer System Simulator Final Report

Table of Contents

TNETOAUCEION 1.ttt ettt e e ettt e e e et e e s et e e e s et e e e e eanbreeeeas 2
Project BacCKZrOUIdcoooviiiiiiiiiie ittt e e e e e e e et e e e e e e e e et e e e e aeaarabnans 3
24 Koy (=Tl ALY =1 s Vo Yo (o) Ko Y= /2 U PO U U UU PP UUU PP 5
Design and Implementationoouuiiieiiiiiiiiiieeee e e e e e e et e e e e e e e e e e 7
Program Class Design........cccccciiiiiiiiiiii 7
ConTIGUIATION FILES ..vvvuiiiiiiiiiiiiiiiiit e e e e e e eeeeeeeeeeeeeens 8
Program FLOWcoooiiiiiiec et e e e e 9
Instruction Execution FIOWccccoiiiiiiiiiiii e 10
Operation AlZOrTthIm DeSISN. ... e e e e e e e e ee e e e e e e eeeeeeeeeeeeeens 11
(07T s YR\ 1310 T0) oy 20Ut 13
€1 U BSOS PUPOTOPPRRUPPRNt 15
ProJECt RESULLS ..uuuiiiiiieee ettt ettt ettt e aaaaaaaeas 17
OVETVIEW ...ttt ettt e a e e a e e e ettt e st e e ittt e eab bt e ettt e eab bt e sabbeeebbeeebbeesanneeenas 17
BNty WINAOW...ovveeiiiiiieeecc et ettt e e e e e e e e e e et e e e eeeeeeeaaaan 17
Main WIndow (EXECULION).........ccoviiiiiiiiiiiiiiiiiiiiiiieieeeiteeeeeeeeeeeeeseaeseeesaresarerrarrarearaaaaaa————————— 19
Instruction FetCh. ..o 20
INStruction DECOAEoeeiiiiiiiiiiiiiiiie e e 23
Instruction EXECULION. ...cccoiiiiiiiiiiii e e 24

O F=Ye) o LR\ 131 Xo) RS RRRRRRR 35
FUBUTE WOTKS...eeiiiiiiiiiii et e ettt e e e 38
[0fe) 016l LD 1S3 [0)'s DO P OO OO O PP OP PP UPPPPORPPPPI 40
ADPPENAIX oo ————————————————— 41
€ 1 =T=F: 1 AR 41
SIMULAtOT USEr GUIAE ...eeeiiiiiiiiiiicieee et 42
Page 1 of 42

Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Introduction

This project aims to develop a simulator for a computer system based on a simple instruction
set that simulates the instruction execution process, cache memory and memory hierarchy

for teaching purposes with the following features:

Interconnection of different Operational Units

The data movements and transformations occurring in the processors, cache memory and
main memory will be covered in instruction set simulation. Users will be able to see the

changes of all these operational units in the execution and the interactions among them.

Graphical User Interface (GUI)

The simulator of this project was developed with GUI. Components of the processor (e.g.
registers & program counter), cache memory and main memory are displayed on the screen
in form of graphic. There are 3 benefits of GUI for the simulator, firstly the structure of the
computer system and interconnections among components can been shown clearly; also the
data movements and transformation in different components and instruction execution can
be more effectively illustrated; students will also be able to view the full picture of instruction
set execution process easier than before as the whole relevant architecture is displayed in the

output screen, they can see which components are affected and which are not affected.

Flexible Configuration

Core configurations are independent of the core program source code. When a user runs the
simulator, the simulator automatically reads the external configuration file to set necessary
configuration for simulation, after that it will receive user’s input of the storage path of the
instruction set binary file for the simulation. Users only need to amend the configuration file
and then re-execute the simulator program if they want to do the simulation in different

configurations.

Page 2 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Project Background
Current Situation

Computer Organisation is a core course for undergraduates of Computer Science Major,
which covers the study of operational units of a computer that are involved in Instruction
Execution Cycle (e.g. CPU) and their interconnections. There are several kinds of those
operational units which further contains a number of components in each of them, for

example in a CPU, there are different types of registers as well as ALU inside.

In an instruction execution, there are lots data movements among different components and
transformations within components. Moreover, components are connected with each other
differently, forming a complicated architecture of a computer system. Therefore, lots of
undergraduate students find the flow and relevant concepts difficult to understand just based

on verbal descriptions by lecturer and on lecture note or textbooks.

Existing Teaching Aids
In order to explain the concepts and the data flow among components of computer system,

there are 2 mini simulators available as teaching aids (possibly jointly developed by the

lecturer and tutor) for the Computer Organisation course.

Command Prompt - sim -d prog
Executing PC at ©eeeeeee

The first one is a program written in C++
programming language which simulates
the data flow in Control Unit (CU) and

Arithmetic and Logic Unit (ALU) of CPU. [N E -t el Q- o= 11D

.) ALU (COPY)
This program has to be run in command- [IR PN - PR -

i . ith a bi . . Read instruction at ooeeeeee (eceeffed)
ne interpreter with a binary instruction [N by 4 (00EEEEB4)

set text file as input, the sequence of data
movement and transformation of every
instruction will be displayed as
pseudocode-like descriptions on the

console output.
: A<-PC (@0eeeee4)

The screen capture on the right is the . MAR<-C (00080004)

Read Memory at ©©0©6eee4 (eeeeees3c)

Move via S1: A<-MBR (©©eeee3c)

ALU (COPY)

sample output of this CPU simulating

program:

Page 3 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Another one is a cache memory @ CacheDemo - o X
simulator written in C#. It is a small = Ne-ofSets. s | @ FIF0
No.of Ways: |2 O LRU Log

program simulating mapping and ReadPattem [143275789456345673482319
) (Spit with
replacement algorithm of cache s

memory with Graphical User —

Output Now Reading:9
S0 31 52 S3
4 9 2

e 1 3 7

Number of Cache Misses:10

Interface (GUI). The screen capture
on the right shows a sample run of

this cache memory simulator:

Problems and Proposed Solution

There are several major drawbacks of the above existing teaching aids. Firstly, the two
operational units of computer system architecture are simulated separately, it failed to show
full and real picture of the operation of an instruction set in the computer system. Also, for
the CPU simulating program, all configurations such as memory size, register file size and
operation representing code (e.g. 00000101 as MOV operation) are “hardcoded” in the
program source code, direct amendments on the program code is needed if we want to perform
the simulation in different configurations. In addition, for the first simulating program,
although the data movements and transformations are shown in sequence, it is shown in
form of “sentences” in command line prompt, not only the full picture of the CPU operation
cannot be shown (as only content of affected components are displayed), command line output
format is also unattractive to read. Moreover, the output has low readability due to command-
line form display, there are chunks of statements displayed on the screen for every
instruction execution, which contributes a reducing clearness on the illustration of the flow
and relevant concepts, thus students still find it difficult to learn the computer system

operations even with these teaching aids.

As a “user” using these teaching aids before, I appreciate the efforts of developing such
programs but unfortunately it has to be admitted that these programs are not effective
enough in aiding students to learn computer organization (still they are good references).
Thus, developing a new integrated computer system simulator which can cover more
operational units, more functionalities and with greater flexibility in configurations is

undeniably desirable and meaningful.

Page 4 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Project Methodology

Phased methodology was adopted for this project.

The system architectural design of the simulator will be complicated as it covers not only one
operational units in computer system, which contains sub-components and interrelates
among themselves differently. At the same time, CPU is the core part of instruction set
execution process, the functionalities of the CPU part should be completed before integrating
further operational units to the simulator. Therefore, the development of the simulator
should be carried out in a unit-by-unit approach, and the CPU part and Cache Memory part
is an end-to-finish relationship. Therefore phased development methodology will be best-fit
for this situation. The main advantage of phased development is that it allows developers to
put focus on each feature one by one that scopes are well defined under each phase, hence

the development burden can be eased and quality of each feature of the system can be ensured.

The development cycle of the simulator was categorized into 3 phases. CPU part was
developed in 15t phase and cache memory part was developed in 224 phase, in which the order
was in the other way round of the accessing order of operation units in an instruction set
execution (i.e. accessing order is: cache memory -> CPU, so development order was: CPU ->
cache memory). The deliverable from 15t Phase was an executable program that can simulate
instruction set execution that without the use of cache memory. 27 phase development was
an extension of the deliverable from 1st phase, cache memory and related operations were
added on top of the existing hierarchy of the simulator program of 15t phase deliverable. The
development of the first 2 phases was in command-line output, when the 2nrd phase was
completed, the core functionalities of the simulator was considered as implemented with
correct logic flow. Therefore output format was transformed into GUI form as the final phase

of the project.

2nd Phase:

3rd Phase:

1st Phase:
GUI

CPU & Main Memory Cache Memory

Page 5 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Project Timeline

ID Task Name Start Date End Date Predecessors
1 Requirements Gathering & Analysis 17/9/15 3/10/15
2 Milestone: Project Plan Submission 4/10/15 n/a
3 Preliminary Study & Research 5/10/15 17/10/15 1
4 Phase 1 (CPU) Analysis & Design 19/10/15 29/10/15 3
5 Phase 1 Coding & Testing | 2/11/15 27/11/15 4
6 Break for Preparing Final Examinations 28/11/15 21/12/15 5
7 Phase 1 Coding & Testing Il 22/12/15 10/1/16 6
8 Documentation for Phase 1 1/11/16 24/1/16 3
9 Milestone: First Presentation 12/1/16 n/a
10 Milestone: Interim Report Submission 24/1/16 n/a
11 Phase 2 (Cache Memory) Analysis & Design 25/1/16 6/2/16 7
12 Phase 2 Coding & Testing 11/2/16 19/3/16 9
13 Phase 2 Documentation 30/1/16 17/4/16 7
14 Phase 3 (GUI) Implementation 21/3/16 11/4/16 12
15 Integrated Testing & Debugging 12/4/16 17/4/16 14
16 Phase 3 Documentation 12/4/16 17/4/16 12
17 Milestone: Final Report Submission 17/4/16 n/a
18 Milestone: Final Presentation 20/4/16 n/a
(I=] Crur ticn |515n |Fi|"i5r‘ |PfEdECE55GT5 |5'53 15 |7'-"50 15 |'5Cct 15 |5No" 15 | 20 Now"15 |T-D=c 15 |'-'- zn 16 |=' zn §6 |7' Feb"i6 |'1‘."r '5|1ﬁ-:nr 16 |Liﬂ-:ul 16 |
1 [13 days Thu 17/8/15 Sat 3/10/15
2 |odays Sun 4/10/15 Sun 4/10/15 014:’10
3 [11 days Mon5/10/15 Sat17/10/15 1
2 |5 days Mon 16/10/15 Thu 28/10/15 3
T |20 days Mon2/11/15 Fri27/11/15 4 Y
& [17 days Sat 28/11/15 Men 21/12/15 5
7 |15 days Tue 22/12/15 Men 11116 & |l
2 |62 days Sun 1/11/15 Fri22/1/16 3 1
o |0 days Tue 12/1/16 Tue 12/1/16 » 12/
10 |0 days Sun 24/1/16 Sun 241116 2401
11 |11 days Maon25/1/16 Sat 6/2/16 7
12 28 days Thu1l/2/16 Sat18/3/16 11 '}
1357 days Wed 13/1/16 Thu31/3/16 7 1 1
14 |16 days Mon21/3/16 Mon 11/4/16 12
15 |5 days Tue 12/4/16 Sun 17/4/16 14 & 1
16 |5 days Tue 12/4/16 Sun 17/4/16 14 [}
17 |0 days Sun 17/4/16 Sun 17/4/16 » 1774
18 |0 days Thu21/4/16 Thu 21/4/16 & 2174
Page 6 of 42

Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Design and Implementation

Set

Program Class Design

Simulator Configuration

Trigger-

+ Config()
+ getlnputFile{)

Initiate

Memory (Abstract)

——Get & Put:
+ putinitialinput()
processing in
Memory (Main)
- Address
- Value
contains Cache Memory
_Set
-Tag
- Word
- name
- value
+ Execute{) + Increment()

+ Decrement()

Page 7 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

The program class structure simulates the real structure of different parts in instructions
execution.

The Simulator itself is an object. Running the Simulator will trigger configuration, constants
will be set from the external configuration property file read by the program.

The Simulator can initiate an execution of instruction set, thus there is another class for an
execution. The execution involves processing and storage, thus there are 2 class, CPU &
Memory, expanded from the Execution class.

For Memory class, there are 2 types of memory involved, thus Main Memory & Cache
Memory class object are created, which extends the Memory (Abstract) Object. However as
the Main Memory and Cache Memory behaves significantly differently and does not share
any common procedure, thus the Memory (Abstract) object was not created in the real
implementation.

CPU comprises of different type of components, including registers (e.g. register files &
program counter) in Control Unit (CU) and the Arithmetic & Logic Unit (ALU). Stack Pointer
class is created independent of Register object (but still extends from Component object as
their nature are the same) due to its different structure and usage compared with other
registers in CU.

Configuration Files

There are 2 configuration files, namely “instructionCodeConfig.properties” and
“config.properties”, which are external text files (can be opened using common text editor)
that can be modified by any user.

“config.properties” contains some general configuration for running the simulator, mainly
for cache memory operation, e.g. cache size, cache memory size, number of way associative,
replacement algorithm.

“IinstructionCodeConfig.properties” contains definition of operation code, e.g. ADD, BRANCH,
HALT. Users can change the binary code representing the operation.

. config.properties - Notepad — |

B instructionCodeConfig.properties - Notepad

File Edit Format View Help
#Comment Statement File Edit Format View Help

example.name = example statement #Comment Statement
example = example name example.name = example statement

#Computer system Component i .
#0peration Code Translation

I#Main Memory (RAM) Config (size in KB) #in binar‘y form

memory.size = 16 ADD = 00000000

#Cache Memory Config (size in bytes) SUB = @ooeoeel
NOT = @oeevole

cache.size = 32 AND = 0P@RE011

must be a 2*n number OR = 0EOVR100

cache.block = 4 MOV = @eeeslel

modify when the size of each instruction in the set change LOAD = oeeeelle
STORE = @0800111

cache.way = 2 BRANCH = 08001000

#1, 2 or 4 way associative HALT = 00061001

cache.replacePolicy = FIFO PUSH = o@eoelele
#LRU or FIFO POP = peeeloll
CALL = ©oeol1ee

cache.writePolicy = @ RET = @oeel1lol

0: Write Back; 1l:Write Through

Page 8 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Program Flow

The simulator program flow can be illustrated by the following State-Machine Diagram:

Simulator Entry
Window

Execution (Run
Operation)

User input User Click "Continue" Button
Instruction Set
Text File Finish running operation

Execution (Idle)

Simulator Exit User Close the Simulator Window

After start running the Simulator (Simulator Entry Window State)

The main method in the Simulator will run, new configuration class will be created which
trigger the configuration setting for the simulator and execution.

Simulator Entry Window will be created and ask user to input the file path of the instruction
set to be demonstrated.

Execution (ldle) State

After reading the file path, the simulator will read the external text file and set the content
as a List of Memory object. Then the creation of Execution class will be automatically
triggered. In constructor of the Execution class, there will be creation of processor object and
memory object, the content of these objects will be set according to the general configuration
and the List of Memory object parsed when constructing the new Execution object.

The entry window of the simulator will be disposed and replaced by the Execution window.
The Execution window will stay idle until user perform action (click “Continue” button) to
trigger the start of the instruction set execution.

Execution (Run Operation) State

When the simulator is triggered to start, the Simulator will start execute the next instruction.
The Simulator will go back to Execution (Idle) State when the execution of operation of the
instruction is completed, to wait for user’s action to trigger running next instruction. If the
instruction executed is a HALT instruction, user will no longer be able to click the “Continue”
button as there are no next instruction to run, the Simulator will stay in Execution (Idle)
State.

Page 9 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Simulator Exit State

Instead of start/continue next instruction execution, user can choose to exit the Simulator
program, when the user close the Simulator Execution window in the Execution (Idle) State,

the Execution window will be disposed and the Simulator program will terminate.

Instruction Execution Flow

For each instruction execution in the Simulator,
the algorithm quite resembles a real instruction
execution. Firstly the “Program Counter” object
in the Processor object will be analyzed, to obtain
the respective memory address of the instruction
or data to be read, and the “PC” value will be
incremented by 4, which is very alike to the
“Instruction Fetch” of real instruction execution. |
The textbox on the right shows the pseudocode

of this procedure.

Next will be instruction decoding. The
content stored in “Instruction Register”
object will be extracted and analyzed. The
string will be divided into 4 sub-string, the
1%t sub-string indicate the operation code,
the program will then map the operation
code with the “definition table” set from
configuration, and then continue to
analyze the other 3 sub-string (the way to
analyze is defined differently for different
operation).

The mapping of operation code was
implemented as a case statement,
different procedure will be executed for
different operation code mapped. The
execution will continue with the mapped
procedure (methods).

Prepared by WONG Jing Hin, Kent

Execute_Instruction() {
Address <- PC.value
Instruction <- Memory[Address]
PC.value <- PC.value + 4

Analyze_Instruction(Instruction)

Analyze_Insturction(Insutuction) {
SepOp <- DivideOperationCode(Instruction)
operationCodeStr <- SepOp.substring(1st Part)

case (operationCodeStr) of

begin
“00000000” : add();
“00000001” : sub();
“00000010” : move();
“00001001” : halt();

end

§

Page 10 of 42

Final Year Project: Computer System Simulator Final Report

Operation Algorithm Design

The algorithm of each operation will be illustrated by respective flow diagrams:

Add/Sub/And/Or/Not/Move Operation

Retrieve Source

Register 2 Name Get content of

from 3rd part of Source Register 2
Instruction

Retrieve Source

Register 1 Name Get content of

from 2nd part of Source Register 1
Instruction

Retrieve Destination

Register Name from Perform ALU Action
4th part of to Source Register(s)
Instruction

Update content of
Destination Register
with the output from
ALU

The algorithm of these operations are similar except that for “Not” and “Move” there will be
no lines involving Source Register 2.

Load Operation

Get next Memory PCincrement Retrieve the content v in
Address m from PC Memory Address m

Retrieve content c in Get next Memory
Memory Address v e Address from PCand g
and store in MBR Push to Stack Pointer

Move the content in
MBR to PC

Store Operation

Get next Memory Address m from
PC

Retrieve source Register Name
from 4th part of Instruction

—> —>

PCincrement

Get content of Destination Update the content of Memory Address m with the
Register content obtained from Destination Register

Page 11 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Branch Operation

Get next Memory . Mave content
.—’ Address m from PC PC increment in MBR to PC

Start

BR (Always Branch)
Not BR

v

Check Zero
Flag Content
in ALU

i
Retrieve content in —
—» Memory Address m q—ﬁ?)i;:ggt)_ - *quBZ (Branch If Zern)*é

and stored in MBR
Zero Flag ==0
(i.e. is NOT Set)
» . End
Zero Flag ==
(i-e. is Set)
Zero Flag == BNZ (Branch If Not Zerg)———

(i.e. is NOT Set)

Call Operation (of Function Call)

Get next Memory Address m Retrieve source Register Name
Y S g

from PC

—

PCincrement

from 4th part of Instruction

Get content of Destination Update the content of Memory
. emmed Address m with the content obtained
Register S .
from Destination Register

Return Operation (of Function Call)

Pop from Stack Pointer
Put the Popped out value to PC

Page 12 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Push Operation (of Register File)
Retrieve Register Name n to be pushed Create a new instance of
from 2nd part of Instruction Register Object
Set name of the Register S Add the Register object to the Register File

Pop Operation (of Register File)

Retrieve Register Name n to be popped from 4th part of
Instruction

Search the Register File ArrayList to obtain index i of the

Register object in the List with name n

Remove the Register object at index i of the Register File
ArrayList

Cache Memory

Overview

The Cache Memory part of the Simulator supports 2 replacement policies, namely “First-In-
First-Out” (FIFO) and “Least Recently Used” (LRU), as well as 2 write policies, namely
“Write Back” and “Write Through”, which can be modified in the external configuration file.

Blocks in Cache Memory are divided into different sets. The Simulator program support x-
way assoclative organization of Cache, i.e. containing x cache line for each set. x should be a
number equal to 2=,

Cache Memory consists of Cache Memory blocks which are categorized with a Set Number,
which can be easily obtained by retrieving rightmost n bits of the Memory Address in binary
form for x-way associative Cache given that x is equals to 2=,

There are 4 variables in a Cache object, which is shown below with their respective use:

Variable Use

Tag Unique identification tag for the Cache entry in a Set

Word Data stored in the Cache Block

Timestamp Creation Time (for FIFO) or Last Access Time (for LRU)
Modified Flag Set true if the data stored in the Cache Block has been modified

Page 13 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Final Report

For FIFO, when replacement of Cache Block has to be occurred, the Cache Block with earliest
creation time should be replaced. While for LRU, the Cache Block with earliest last access
time should be replaced. Timestamp will be used to find out the earliest creation time or

earliest last access time.

Flow Diagram of Cache Procedure

Calculate the Set
Number n from the
Memory Address

Get the List of
Cache Block of Set
Number n

List Retrieved == nul

List Retrieved != null

Retrieve Data
from Main
Memory

Search the data
block by tag

Create new List of

Cache Data blacks for
Set Number n

Cache Hit

LRU

Add new Cache Block to the
List with the data block
retrieved from Main Memory

Update Last
Access Time of
Cache Block

FIFO

Write Back

Update content in
Main Memory

(‘ache Miss.

Retrieve Data
from Main
Memory

List Size == Number
of way of Cache?

LRU

Remove the Cache
Block with Earliest
Creation Time

List Size < Number
of way of Cache

Y

Return the Cache
Block

Add new Cache Block to the Otherwise

List with the data block
retrieved from Main Memory

Prepared by WONG Jing Hin, Kent

t

Remove the Cache
Block with Earliest
Last Access Time

Write Back &
Modified Flag = true

Update content in
Main Memory

Page 14 of 42

Final Year Project: Computer System Simulator Final Report

GUI
Simulator Entry Window

The entry window of the Simulator is a small dialogue box, displaying a welcome message
and also a button, for user to specify the file path of the instruction set binary text file. The
button was implemented using JFileChooser of Java AWT library, which provide an interface
to let user find the file using the directory system, so that user no need input the file path to
the Simulator by themselves.

Computer System Simulator - Entry

Welcome to Computer System Simulator!

| Open an Instruction Set File To Simulate... |

Main Window (Demonstrating Execution)

The main window is divided into 5 part, with the use of border-pane. The structure of the
border-pane can be illustrated as follows:

top: Description Pane

center:
Cache Memory Table N
left: Canvas ‘ right:
center: Main Memory Table
Registers Table

Description Pane contains the “message” and the “Continue Button”. “Message” is the
description of the current process in the instruction execution, like data move from MBR to
MAR, or informing users for existence of cache miss & cache hit. “Continue Button” is located
at the rightmost of the Description Pane, user just need to click the button once to trigger the
execution of next instruction. The button will have been disabled when the execution of an
instruction is taken place, and will be “re-opened” to users when the operation ends.

Canvas is the part that containing all necessary components in an instruction set execution
in a simulation. The components, e.g. PC, MAR, MBR are added to the canvas as Label, and
will be highlighted when they are involved. The bus connecting each component are added to
the canvas as PolyLine object, they will also be highlighted when they are involved.

The center pane is further divided into 2 sub-division, displaying the data block in Cache
Memory and content of some important registers and register files.

The right pane displays the content of main memory, i.e. the imported instruction set.
Under this layout design, content of memory and registers are shown all the time throughout

the whole execution simulation.

Page 15 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Use of JavaFX Library

JavaFX instead of Java AWT or Swing Library is chosen for the implementation of the GUI
feature of the simulator for several reasons. Firstly, the JavaFX API is more consistent across
components, which is significant as in the simulator different components will have to apply
similar type of changes, e.g. background colour. Another reason is that it is able to theme
graphical objects using CSS under JavaFX, which makes the changes of styling properties of
different components in the processor easier to code. Also, the Table View of JavaFX provide
more functions like callbacks and the table.refresh() function is especially useful as there are
frequent changes on main memory table, cache memory table and registers table throughout
the instruction set execution. A final reason for using JavaFX is for the purpose of future
development, although currently there are no animated effect added on the execution
simulation, animation effects using JavaFX library are easier to code than other Java GUI
library, thus in view of both current and future development of the Simulator, JavaFX library
1s adopted for implementing the GUI feature.

Threading

There are numbers of data)

. Run 1ststep of
movement and transform in one Instruction Execution
instruction execution, in order to =~ “—mm——

show the changes of every step v

1in an 1nstruction execution on

Create 2 new Thread Mew Thread Creation
the screen, program sleep has to

R —

be introduced. However, the

whole program is paused when a ¥
. o
program sleep command 1is Changes displayed Pragram Sleep
called, the GUI is also frozen on Ul
L ——
and the changes on styling of l
components, e.g. highlighting Run 2nd step of
PC label with yellow, are unable Instruction Executon
to display, therefore usage of
threads are introduced. -)
i . Create a new Thread * Mew Thread Creation
As illustrated by the right flow
. R —
diagram, there are several steps
in each instruction execution, —y —y
after running a step, the Changes displayed Run 3rdstep of
. on GUI Instruction Execution
program will create a new |) \)
thread, and the new thread will
immediately sleep at start. In i
such way, the previous thread’s

changes on components on GUI will still take into effect, and the effect will stay on the screen
until the new thread wake up and continue to run next step and cover the changes in previous
thread (as GUI components are declared as global variable in Execution Class).

Page 16 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Project Results

Overview

There are 2 final output of this project, a GUI version simulator and command-line version
simulator.

GUI version simulator serves as the deliverable that fully meet the major objective of this
project as stated in the Introduction part, and it is regarded as the major product of this
project.

While the command-line version, which is regarded as a “side-product”, can serve for several
purposes. The first one is for logging use, as the output, which displaying the step one-by-one
in sentence form, can be easily copied to a text file. It is still an improvement from one of the
existing teaching aid (the C++ simulator program), as it covers Cache Memory in the
simulation; furthermore for each instruction execution, content of register files and cache
memory will also be shown on top of content of main memory, which is a step forward than
the existing one. In addition, for future development of GUI version simulator, the command-
line version can be used as an oracle to cross-check with the further developed simulator for
testing and debugging.

Both version of the simulator will be a java executable file, thus access to source code can be
restricted from general users (i.e. students).

Entry Window

The right is the Simulator Entry Window containing a welcome message and File Chooser
button. After clicking the File Chooser button, the left File Chooser Dialogue will be popped
up and let user choose the instruction set binary text file from the directory system.

Look In: ||j Documents ‘V| E
D instructionCodeConfig.properties D prog =
T [0 fo_state_flow.pat Welcome to Computer System Simulator!
itci ter_data.sql 3.t
D I c?o_mas er-cata.sq 0 prog3.tx | Open an Instruction Set File To Simulate... ‘
D itcio_master_data_1.sql D style.css

WSE D mysgl-connector-java-5.0.8-bin.jar D test.himl
ase [T} orderController.java

4] [i [»

File Name: |prug.bd |

Files of Type: |AII Files |v‘

Page 17 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Illegal File Type Check

The Simulator will only accept plain text file (file extension of .txt or pure binary file) as legal
instruction set file format, the Simulator will not proceed and prompt a warning message to
ask user to choose other input file if it detects input file format other than the above
mentioned file type.

|£] Computer System Simulator - Entry - 0 pet

Welcome to Computer System Simulator!

Unable to Start the Simulation

& Negal Instruction Set File Format.

OK

Check Instruction Set Size against Configuration

The Simulator will check whether the size of instruction set is within the main memory limit
stated in the external configuration file, if it exceeds the Simulator will not proceed and
prompt a warning message to ask user to modify the configuration file.

& -~y +ar O + ey ey
=] L0 pULEr 3Ysle 3

— O X

—+
(]

Welcome to Computer System Simulator!

wetin Set File To Simulate... |

Unable to Start the Simulation

& Instruction Set size exceeds total Memory size.
Please change the Configuration File.

Page 18 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Main Window (Execution)
Base (ldle) State

A new window for demonstrating the Execution will be displayed if the instruction set input
passed the 2 validation in the Entry window.

1B Computer System Simwulator - Misin Window

Executing PG at 00000000 [oo |

Cache Memory Content Main Memory Content
D-Bus T S— Waus Setn Tag Word Creation Grder & | (Set #) Address Value
c]." ALU — Empty) Empty) Empty 1) 0000000 T
e B |_..—
Register | s |
[RFIN —= Fie RFOUT}

- Stack
| Pointer

Registers Content

Zero Flag

Indicating Changes

The way to indicate changes occurred are slightly different for different part on the Execution
Window, thus each part in the Main Window is “symbolized” by different colour, making
users easier to notice which parts in the whole large Window are involved in the change.

For the left canvas, involved components will be highlighted with yellow background. For
some scenario the content of the register will also be displayed on the component label so as
to illustrate the data movement or transformation more clearly, e.g. for the step when ALU
perform ADD, register A, B and C will display its content such as “00000011”, so that it will
be easier for student to get that C stores the value from addition of content in register A 7
register B. Contents of PC, MAR, MBR, Stack Pointer and IR will also be shown in the
“Registers Content” table in the lower center pane.

For buses involved in the execution step, they will be highlighted in orange and the line
weight will be slightly increased.

For Cache Memory Content table, the affected row will be highlighted in light-blue.
For Registers Content table, the rows involved will be highlighted in orange.

For Main Memory Content table, the row involved will be highlighted in light green.

Page 19 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Instruction Fetch

Final Report

Example Screen Captures to illustrate the changes on the simulator in Instruction
Fetch:

**The leftmost part on top pane stated that the current step is in “Instruction Fetch”
process**

Instruction Fetch:

Move via S1: A<-PC (00000000)

Cache Memory Content Main Memory Content
DB l—l_‘—s‘a‘“‘ | Seti Tag Ward Creation Order & {Set ¥) Address Value
- ALU k 1‘ (Empty) (Empty) {Empty) _| | 00000000 06004
I|—|B | | E {Empty) (Empty) (2) 00000004 0000003
1B (Empty) {Empty) (Empty) {3) 00000008 0600101
| (Empty) (Empty)) 000000 00000040
" 1 {Empty) {1} 0000001 EOOTED
Moo Register |3 Eweni (Empn) m] 2
AFIN File m 13 Empty Empy) (Empnd) 00000014 00000044
]
|4 Emetd Empty (Empty) (3) 00000018 0600103
;4 Empry) {Empry) {Empty)) 0000001E 0000048
“—l.-| PC II | (1) 00000020 00040204
| 2) 00000024 01030103
| {3 00000028 08000
pSlack_ X C 2 | @) 0000002¢ 00000020
inter
Rég' c t () 00000030 QTO4MO0
&) 00000034 DO00004c
]_| Reglster Nama Werd {3) 00000038 09000000
= MAR | FE e o0- coononon
MAR (Empty) 1) 00000040 Q0000007
h MER [Ematy) {2) 00000043 00000005
MBR | " Emen) 3) 00000048 00000002
Stack Pointer (Top) Empty) () 0000008 0000000
Zero Flag
External | _
Memory 3
Instruction Fetch: Move via D: MAR<-C (00000000)
[
Cache Memory Content Main Memory Content
D-Bus A S-Bus Sets Tag Word Creation Order # (Set #) Address Value
'Tl ALU I 1 (Empty) (Empty) [Empty) 1) 00000000 0600FH4
=] B | 1 (Empty] (Empty) [Empty) [2) GO000004 00000032
l = 2 (Emgty) (Empty) Empty) (3} D0ODOO0E DEOOM1
2 (Empty) (Empty) (Empry) (4} 0000000C 00000040
| | Regist 3 (Empty) (Empty) (Empty) [1) BO000010 0600H02
RFIN File RFOUT 3 (Empty) (Empty) [Empty) 2) 00000014 00000044
4 (Empty) (Empty) [Empty) (3 DOODO0TE OBOOM03
’—| 4 (Empty) (Empty) [Empty)) 0000001C 00000048
PC (1) 0000020 00040204
[2) 00000024 0030103
(3) 00000028 0B02f00
Psu_aclk : 2) ovoovo2e 00000020
‘ointer
Registers Content (1) ooaeaez0 .
(2) 00000034 0000004c
Reglster Name e [3) D0G00038 09000000
00 BC 00000000 {4) 0000003¢ 00000000
L p—
MER (Emety) 2) 00000044 00000005
MER IR (Empty) (3) 00000043 00000002
l__l Stack Painter (Top) (Empty) [4) DO00004e 00000000
Zero Flag
[External |
| Memory | :

Prepared by WONG Jing Hin, Kent

Page 20 of 42

Final Year Project: Computer System Simulator Final Report

Instruction Fetch: PC increased by 4 to 00000004 [contiwo |
Cache Memory Content Main Memory Content
[a S s s wew ostononert | (e adares vane
ALU T iEmpty) {Empty] (Ematyl _| |11y cooooooo 0500404
{T‘ 1 (Empty) Empty] (Empty) (2) 00000004 000003
2 (Empty) {Empty) (Empay) 3) 00000008 D001
2 (Empty) Empty) (Empty) {41 0000000E 0000040
Registar E {Empty) [Empty) (Empy} 11 00000010 EDoime
! RFIN I File RFOUT 31 [Empty) [Empty) (Empty) 1@ tooooaa 00000044
4 (Empty) [Empty) (Empty) | {3 00000018 DEO0M0X
I_I 4 (Empty) [Empty) [Empty) | (4) 0O00001C 00000043
" PC I (1) 00000020 0040204
| @) booocaz4 01030103
13 00000028 tegaH
PﬂSia:_ t:r < 2 |4y oonoooze 00000020
i
ngiaters Content (1) 00000030 OTO4EM0
(2) D0D00O34 0O00004c
—1 Reglster Haene et (31 00000038 05000000
pooeoood N
1) 00000040 00000001
R) MER (Empty) @) 00000044 00000005
MBR s L 3) 00000045 00000002
R i | Stack Pointes (Top) (Empty) 5 00004 20000000
Zero Flag
['External |
| Memory | %
Instruction Fetch: Read instruction at Memory Address 00000000
Cache Memory Gontent Main Memory Content
[X:]
D-Bus A | us setf Tag Word Creation Order # (Set) Address Value
[| ALU = 1 (Empt) (Empty) (Empyy) 1) 00000000 06001104
'T' 1 (Empty) (Empty) (Empey) [2) 00000004 0000003¢
| J 2 @Emety) (Emey) (Empty) 3} 00000008 0600101
2 (Empty) (Empty) (Empty) {4} 0OOO000C 00000040
Reg'rsier 3 (Empty) (Empay) (Empty) 1) Q00010 Q0002
RFIN File RFOUT 3 Empt) Empty) (Empn 2} 00000014 00000044
4 (Empy) (Emp1y) (Empry) (3) 00000018 OBOOMDS
1 4 @Empyl Empy) (Empy)) 0000001 00000048
| PC l (1} 00000020 Q0040204
2) 00000024 01020102
(3) 00000028 0802000
Psmc_mlé i 2| | (4 nooooze 00000020
ol T
Registers Content (1) 00000030 freared
Z) 00000034 0000004¢
IFI Register Name Word 3) 00000038 0000000
] o mew T
(1) 00000040 00000001
Nl MBR. (Empty) 2) 00000044 00000005
g MBR | B (Empy) (31 00000048 0000002
Stack Pointer (Top) (Empty) [4) (000004 00000000
Zero Flag

Page 21 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

**It is possible to have Cache Hit in this Step (e.g. when there is Branch operation) **

Instruction Fetch: Cache Miss! Get Data Block from Memory m

Cache Memory Content Main Memory Content
D-Bus [S-Bus S Tag Word Creation Order # (5ot #) Addeess Value
II' . i =i oo oo 0 moooos e, o

’T‘ 1 (Empty) {Emety) {Empty) (21 00000004 0000003

2 {Empty) (Empty) {Empty) [3) DOO00008 DEOOHT

2 [Emgity) {Empty) {Empty) [4) 0000000 00000040

Reqister 3 {Empity) {Emeaty) (Empty) 1) 00000010 060002

=~/ RFIN | °§i., RFOU 3 Emend Emend (Emend) 00000014 00000044

4 {Ematy) {Empty) {Empty) (3 00000018 DE00H0E

|_| 4 {Emgity) {Empty} {Empiy} [#) 0000001 D000004EE

= PC (1) 00000020 040204

(2 00000024 01030103

(3) 00000028 DE0H00

Stack e 2|) oooooaze 00000020

Painter

Registers Content Ay b

(2) 00000034 0000004

h it Hem, L [3) 00000038 000000

l MAR L3 il) B000003 00000000

T S, 1occcco 000001

MER (Empty) 2 00000044 DOO0000S

[MBR_I L FEmpty) (3 00000044 00000002

l_ Saack Pointer (Top] Emphy) 4] D00000sc BOOOCONT

T
Zero Flag

Instruction Fetch: IR <- 0600f04

Cache Memory Content Main Memory Content
D-Bus I a } S-Bus se Tag Word Creation Order & (Set 1) Address Value

——1.¢ = aw Yo | o) | potros | 02 | oooooo0 osooos
II B | 1 [Empty) (Empty) (Empty) (2} D0O00004 D000003c

H Empty) (Empty) (Empty) (3} DO00000R DE0OMDY

2 [Empy) (Empty) (Empty) | (41 0000000 00000040

B [Empay) (Empty) (Empty] 0] DE0OMGE

..J_l F.egw 3 (1} DOOO0OM

=| RFIN | File m 3 (empty) (Empty) (Empty) (2} 00000014 00000044

4 [Empay) (Empiy) (Emipty) (2} 00000018 D003

’_‘ 4 [Empty) (Empiy) (Empty) (4] 0000C0TE 00000055

1 PC] 1) 00000020 00040204

(2) 00000024 01030103

(3) 00000028 08021100

;.‘vt:act £ = | 4) 0000002¢ 00000020

ointer Registers Content (1) 00000030 70400

(2) 00000034 000D04C

_ [fagimarhians s) 00000033 09000000

1 MAR | P bl) 0000003 00000000

[N, o0 s0coscon

IT MR g 2) 00000044 00000005

M [E T 0 0000002

| I | Stack Pointer (Tog) (Empty) | vy 0000004 0000000

|0300ﬂ0]-<——
Zero Flag
[External |

E

Page 22 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Instruction Decode

In this step, the instruction is decoded and displayed as human-readable description at the
top pane. Meanwhile, the leftmost part of the top pane has been changed from “Instruction
Fetch” to “Instruction Decode”.

Example Screen Capture for decoding LOAD instruction:

Instruction Decode: LOAD Memory Addr Stored at 00000004 to R4
Cache Memery Content Main Memory Content
= 8-B
D-Bus A sl Setd Tag Word Creation Order # (Set) Address Value
-_5 ALU L= 10 Qe 0 {1} 00000000 0600104
B 1 (Emary) {Empny) (Empry) (21 DO0000DS 0000003
L J 2 (Empy) (Empry) [Empry) (3 00000008 oabbHIY
2 (Empayl (Empty} Empty) (41 DO00OD0E 00000040
= Qag-smr 3 (Esnpty} [Ematy} Empty] 1) 0o0e0aTD 0600T02
1 RFIN | Fila RFOUT 31 (Empn) [Empty) [Empty) 2 00000014 00000044
4 (Emgty) (Emgty) [Empty) (3 00000018 DE00FED3
’—| 4 (Empty) (Empty) [Empty) (4] DOD0OONC 00000048
PC 1) 00000020 00040204
{2) 00000024 01030103
(3 00000028 0B02100
;‘:_acmk . 4 i cono0ozc 00000020
inter
F[w.steps CDMEHT (1) 00000030 OT0400
(2 DO000034 0000004
1 fuagletar Magus o @) 00000038 09000000
MAR FER G o 0000000
MAR 00000000 (1) 00000040 00000001
'._| MER {Empty) [2) DO0C0044 0000005
- wen R .. pise
— Stack Pointer (Fop) (Empty) 4) 0000004 00000000
Zera Flag
,T_.l

Memory

Example Screen Capture for decoding ADD instruction:
Instruction Decode: ADD R4, R2, R4

Cache Memory Content Main Memory Content
B A S-8us ser Tag Word Creation Order | (Set) Address Value
ALU L 1 [060002 L] (1) DOOOOCDN DBO0MTS
- I_E,'__I bt 0000204 12 I @) DO000004 0000003
2 0 00000005 8 {3} 00000008 600N
2 1 00000044 7 14) D00C000C 00000040
Ragisﬂaf 3] 0000002 n (1] L0000 [
| RFIN l[= File RFOUT) 3 1 000D 9 {2) 00000014 00000044
4 o opoooode 0 {2) 00000018 06001103
’_| rE 00000080 4 {4) DOOO00TE 00000048
PC {1} DODOON20 00080204
2] 00000024 01030103
) DO000ZE 0B02A00
PS}a;ﬁl; £ 3 {) oooonoze 00000020
ointer It
Registers Content 1) DO0G0C20 T4t
@ 00000034 0000004
— Ragiter Hane g | @) pooooozs 09000000
-—| MAR [PC 00000024 {4) 00C0003C 00000000
MAR 0000020 {1) 00000040 00000004
N v MER 00000002 2) 00000044 00000005
MBR [T, .ocovc:c s0000002
3 Stack Painter {Top) {Empty) (4] 0000004e 0000000
R4 00000000
:I Ay 00000001
ER . 5 00000
Zero Flag i =

Page 23 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Instruction Execution

The number of steps in Instruction Exception stage can varies greatly, for some operation
such as LOAD, STORE and BRANCH, there are more number of steps as the processor has
to retrieve content of the next memory address as well in the operation. To reduce number of
frame changing, some steps will be slightly simplified, which would be illustrated in the

example screen captures below.

Final Report

Example Screen Captures for Instruction Execution stage of an instruction that
does not involve accessing next memory, e.g. ADD, SUB, MOV:

Instruction Execute:

Read Register File R4: RFOUT <- 00000000& Move to A

3-Bus

D-Bus]
"_C ~ | xtnessatad |
I ALt & L

| s
R
) PC
il
Stack
~ | Pointer
= MAR
L]|
“l MB
il

Zero Flag

B

Instruction Execute:

Register
4’[_@_’ a’g"e i

Memory .

Read Register File R2: RFOUT <- 00000005& Move to B

S-Bus

ALU

H

Memory |

Prepared by WONG Jing Hin, Kent

Main Memory Content

Cache Memory Content
Ser Tag Werd Creation Order (Set #) Address
T 60MME & {1} OGO
i 3 0NN n” 2} 00000004
2 g oS 8 (3} 00000008
2 1 o004 T) DOO0O0:
3 a 0000002 n {1} D0000010
3= oe00mE 9 (2 0000001
4 a 00000048 U] 3} 0000018
4 1 000040 4) 0000001c
(1) 0000020
(&) 00000024
(3) 00000028
2 |y pocoooz:
Registers Content il
(2] 00000034
Register Name Mped, (3] 00000033
" 0000024) 000003
MAR g0 1} 00000040
MER 00000002 (2) 0000044
A e ioes (3] D00004A
Saack Poanter (Top} (Empay) l\-“ 0000004
Rl 00000001
e 00000005
R3 00000002
Cache Memory Content
Setd Tag Word Croation Ocder (et ¥} Address
) 06002 6 1) 00000000
| 0002H 12 2) 0000000
') 00000005 & [3) 00000008
FE 00000044 T 4] DO00000C
3 a 00000002 1 1) 00000010
ERI oslomE 9 [2) 00000014
4 0 00000048 10 [3) £0C000TE
4 1 00000040 4 4) DO00001C
1) 00000020
12} 00000024
(3 00000028
2 | 4y no00002e
Registers Content —
[2) 00000034
Fagister Kame Word [3) 00000038
PC 0000024 #) D000003c
MR b (1) 0000040
Mok 0000002 21 00000044
= 0040204 [3) 00000048
Stack Poanter (Top) (Emoty) (#) 0000004
a4 0000000
a1 0000001
E—(| i _— |

Lt

00000002

00004

Q000003
060001

00000040
DE00102

00000044
DS00M03

00000048
00040204
1030103
OBOZI00

00000020
OTO400

0O00004c
000000
Q0000000
Q0000001
00000005
Q0000002
Q0000000

Value

™

Main Memory Content

eI
0000003
DEDGITT

00000040
[T

00000044
DEDGIT3

00000042
DODS0I04
01030103
0E021F00

00000070
OTO400

000004
00000000
00000000
0CO0000T
00000005
00000002
00000000

Page 24 of 42

Walue

Final Year Project: Computer System Simulator Final Report

Instruction Execute: ALU Perform ADD, C <- 00000005

Cache Memory Content Main Memory Content
D-Bus = Setd Tag Word Creation Order & {Set #) Address Value
- i 10 ostats 6 1) 00000000 050004
L Iml.(— —1 oodzos. 2 2) 00000004 0000003
2 o 00000005 B [3) 00000008 05001401
2 1 DOM0044. 3 {4) D000000E 000040
| | Register 3. i w0000002 1 {3} 00000010 0500102
RFIN File RFOUT T ot 0s00m3 9 2) 00000014 0000044
40 0000048 10 3 00000018 0600003
4 1 00000040 4 {4) 0000001 0000043
,.| PC (1) 00000020 00040204
{2) 00000024 01030103
(3 00000025 0802100
Psotﬁ;r b 2 | 4y 000000z 00000020
Registers Content {1) toomoes Hidaii
2) 00000034 0000004
BT Rapheter et Mced | @ ooo000zs 09000000
-—l MAR FC ooy {4) 0000003 00000000
MAR: 00000020 [1) 0000040 Q0000001
N | MER 00000002 2) 00000044 00000008
MER e e 3) 00000043 00000002
l__l §2ack Pointer (Top) [Empsy)) DO00004E 00000000
R4 B0C00000
R1 00000001
IFD(—_ R2 00000005
Zero Flag - e
"~ | Memery [~ e
Instruction Execute: Move from C to RFIN via D & Write Register File: R4 <- 00000005 m
Cache Memory Content Main Memory Content
D-Bus A 8:8us St Tag Werd CreatenOnder® | (sers) Address Vatue
] ALU —— (T E | |19 o0on0000 0800
N [B } L 12 |12 00000008 00003C
:2 o 8 143} 00000008 00t
[k 7 {4) 0000000 00000040
F==w] Register P e H 1) 00000010 D600z
= RFIN | File RFOUT) oo 9 12 00000014 00000044
iq o w |3 00000012 DE00MHD
— L a | 4y 0000001 00000048
’—l PC {1) 20000020 L0040204
2 00000024 01030103
| |3y ooooa0za teaamo0
P$1§ck ke 2 |4 ooomoze 00000020
ointer Registers Content 11) 00000030 0704100
(@) 00000034 0000004
Register Name Word {3) 00000032 CER00000
q MAR Pe o] |) 0000003 00000000
“:: i 11} 00000040 00000001
Mi
e Dpoon. 2) 0000044 00000005
MBR R 00040204 B S 2000000
| | + Stack Pomber (Top) {Empay} o :
! () 0000004 00000000
[00000001
IFD*? R2 00000005
Zero Flag m

Prepared by WONG Jing Hin, Kent

Page 25 of 42

Final Year Project: Computer System Simulator Final Report

Example Screen Captures for Instruction Execution stage of an instruction that
involves accessing next memory, e.g. LOAD, STORE:

Instruction Execute: Move From PC to MAR: MAR<- 00000004
Cache Memory Content Main Memory Content
D-Bus A B o ST T Wotd L Srwitin Qv e (Set #) Address s
4-.Z ALU — e osned 1) 60000000 o600
|T| 1 {Empty) (Empty) {Empty} {2} 00000004 D000003C
L I 2 (Empty) (Empty} (Empey) {3 0000008 060011
2 Emey) (Empty) Empty) |t ooononc 00000040
I | Regisw- 3 (Empty) (Empty} {Empty} {1} 00000010 0600MME
RFIN Fila RFOUT| 3 iEmand [Empty) Empty) (2) 00000014 00000044
4 (Empty) Ermpity} (Empty] {3} 00000018 VE00M03
. | 4 (Emen) TEsmpy) Empty) |44 0000001c 00000045
-—| PC {7} 00000020 0040204
§2) 00000024 01030103
| (31 pooocnze 060H1)
PST’T&:; £ 4 | oooonoc 00000020
ointer
Registers Content {0 o ST
| (2) 00000034 0000004c
_ [Roplsier Narss: Word (3) 00000038 09000000
E e
o 3
R (] b FEmp) (21 00000084 00000005
MBR L Ll {31 00000048 00000002
__l Stack Pointer (Top) Empty) 4y ooo0o0ac 00000000
Zero Flag
| Memory | :
Instruction Execute: Read Meomry Content at Addr 00000004
Cache Memory Content Main Memory Content
D-Bus a | Sk Set Tag Word Creation Order # (Set %) Address Value
AL = e e L ol
ITI 1 Empty) [Empty} (Empty) {2 COD00004 0000003C
1 J 3 Emend Emen) (Eman)) 00000008 Ds00HD1
2 {Empty} {Empty) (Empey) {4) DODOOONC [
Nera Register y 3 ety (Empay) (Empty) (1) 00000010 050012
RFIN File m 3 (Empty {Empiy} (Empty) {2 00000014 00000044
4 (Empty) (Empay} [Emoty) 3 D000001E DE00ID2
,—| a {Empty) (Empty} (Empty) (4) DO0000TC DO000045
PC 1) DO000020 0000204
L~ | 2) 00000024 01030103
) 00000028 002100
Psot::t:r & 2 | 4 toooo0ze 00000020
i |
Registers Content s —
| (2] DO000034 0000004C
] Register Hame prtons | @) 00000038 09000000
=1 00000004 4 0000003¢ 00000000
(1) 00000040 00000001
el MR (Empty) 21 60000044 00000005
LS s P o
Stack Pointer (Top) Empty) {4 0000004 DOCO0N00
IR
Zero Flag
[o] (G

Page 26 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Instruction Execute: Read Meomry Content at Addr 00000004 Cache Miss! Get Data Block from Memory m
Cache Memory Content Main Memory Content
! A oo S Mo s Crmtan Otec § (5et) Address o
ALU 1 a 0600104] {1 00000000 [
E_|B | 1 (Eman) {Emipty) (Empty) |2 (odoonoes 0000003
2.0 000003 1 | |3 ooocacos 0600401
2 Emgy) Empry) Empry) 14 0000000 00000040
= Register 3 iEmpty) (Empry) (Empty) 1) 00000010 DEO0HZ
=| RFIN File RFOUT) 3 (Emptl Empy) Empy) 12) 00000014 00000044
4 (Empyy) (Empty} [Emptyl 13) 00000018 DE00ER
’_| 4 {Ematy) {Empty} Emply) {4 0000001c 0000045
-—l PC |— {1) 0000020 00040204
12) 00000024 01030103
3) 00000028 08021100
PS:];:I(L = | ooooooze 0000020
nter Registers Content {1} 0000030 TR0
) 00000024 0000004
| Rogister Hame Word 3) 00000038 03000000
[I o
11) 00000040 Q0000001
| e Empta) [2) 00000044 00000005
g | . et O —
Stack Peinter (Tep) [Empity) @) 0000004 00000000
Zero Flag
External
Memory £
Instruction Execute: Move from MBR to MAR: MAR <- 0000003¢
Gache Memory Content Main Memory Content
D-Bus A = $8us Setd Tag Word Creation Order # (Set 1) Address Value
| : ALU SN 1] DE00TH04 0 {1) 00000000 DEA0H04
B 1 (Empty) [Emgty) (Empty] 12) 00000004 0000003
L I 2 o conoonzc 1 (31 00000008 0600101
2 (Empy) [Empty) (Empty) 4) 0000000 00000040
= Register [3 ({Empty] (Empty) (Empty] {1) 00000010 EO0HI2
= RFIN File RFOUT| 3 (Empy) Empty) (Empny) 12) 00000074 00000044
4 (Empty] [Emgty) (Empty) [00000018 DE00A03
e 4 (Empy) [Empty) (Empty)) 0000007¢ 0000004
—-—| PC {1) 00000020 00040204
{2 00000024 01030103
3] 00000028 0gdatron
F?tmtk b 2| gy ooovooze 00000020
ointer R —
Registers Content m " b
{2) 00000034 Q000004
[Register Name wrers 2) 00000038 09000000
FC LOR00008 4) 0000003 00000000
— e
— 2) 00000044 00000005
[05001104
{3 00000043 00000002
L_I Stack Painter (Top) (Empty) (4] 0000004e 000000
IR
Zero Flag

External
Memory <

Page 27 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Instruction Execute:

Read Meomry Content at Addr 0000003¢c

Final Report

Cache Memory Content Main Memory Content
D-Bus A 1 8-Bus sew e _Word Creation Order & {Set #) Address Value
E& ALU l—l 1 o 060004 o (1) DOBOOO00 0EDOM04
Il—‘|B 1 e Emey) (Emen) 2) 00000004 0000003
| 2 @ 000002 3) 00000008 060001
2 (Empty} {Empty) (Empiy) (4] DOOCO00C 00000040
e Register 3 (Empyl Empy) (Emon) (1) 00000010 0E0H02
RFIN | File RFOUT 3 Empy) Emptd (Empn)) 03000014 00000044
* {Empty} [Empty) (Empty] (3) 0000001E 060003
J—l 3 (Empy} Empty) (Empty] (4] DO000D1E 0000042
1 PC f (1} 00000020 00040204
(2) DOO0OD24 010303
13) 00000028 0202100
P nmtr : = =
o
Registers Content 1.Che0 ekl
2) 00000034 0000004
= L o) 00000038 09000000
PC 2000000 14) 0000003 00000000
— -
2 4 5
[MER] s o
Stack Pointer [Top) Ematy)) DOC0O4C 00000000
[]
Zero Flag
[o] _[Exema]
[Memory | i
Instruction Execute: Cache Miss! Get Data Block from Memory
!
Cache Memory Content Main Memory Content
0-8us A ZPU [sw e wed comenowers | e ssaes vae
4-<_ AU (k=0 1 1} 00000000 0500104
IT‘ 1 Empn) (Empty) (2] 00000004 0000003
2] 1 {3} 00000008 0500801
2 (Emphy) (Empiy) (Empty) 4) 0000000 0000340
Register 3 (Empty) (Empty) (Empty) (1) X0ad010 Deotie
“‘i| RFIN Ii File RFOUT| 3 [Empnl (Empn) (Emoh) 2) 0000004 00000044
4. 0 00000000 2 [3) 00000013 5003
._l—| 4 [Empty) (Empty) [Empty] [4) DOOOOGIC 00000048
PC {1} 00000020 0000204
L | (2) 00000024 01030103
(2) 00000028 teoatin
m L = |e4) oooooozc 00000020
Registers Content 4R o o
| [2) 00000034 DO00004e
== Aghher it Lo | 31 000000z 05000000
ad 0000000¢ |{4) 0000003c 00000000
—_ B
F=| £2) 00000044 00900005
MBR i RO 3) 00000048 00000002
| = Stack Bointer (Top) {Empty)) 000000 00000000
IR
Zero Flag
o] M=
~ [Memory [~ :

Prepared by WONG Jing Hin, Kent

Page 28 of 42

Final Year Project: Computer System Simulator Final Report

Instruction Execute: Move from MBR to RFIN, Write Register File: R4 <- 00000000 m
Cache Memory Gontent Main Memory Content
D-Bus [a] S-Bus St Tag Word Creation Order # (Set #) Address Value

ALU L= 1 0 [0 (1) DOODODD 600604

[g | 1 (Empy) (Empty) (Empty) (2) 00000004 0000003

L I ER | 0000003 1 [3) DOO0000E 500D
2 (Empty) (Empty) (Empty) (4) 0000000 00000040

— Regi T 1 3 (Empty) (Empty) (Empty) (1) BO000010 DS00f02

File RFOUT 3 (Empt) (Empy) (Empyy) [2) 00000014 00000044

4 1] 00000000 2 (3) DODDOD1E DE008R3
ﬁ 4 (Empy) (Empy) (Emp1y) (4) 0000001C 00000048

=] PC (1) 00000020 00040204

(2} 0000024 [QDELES

(3) 00000028 0802600
;.itactk < 2 | (4 0oooo0ze 00000020

omnter Registers Content (1) oooonso oo

[2) DO000034 00D0004C
’—| Sapletac Mo, lord (3) 00000038 09000000
MAR PC D000000E {4) 0000003 0000000

MAR 0000003 (1) 00000040 00000001

MER 00000000 (2) 00000044 00000005

"I_Mﬂll L 0G0004 (3) D000004E 00000002
Stack Pointer (Top) (Empty) @) 0000004 20000000

R
Zero Flag
IE External
Memory <

Example Screen Captures for Instruction Execution stage of a BRANCH instruction:

Instruction Execute: Move next Address to read From PC to MAR: MAR <- 0000002¢
Cache Memory Content Main Memory Content
D-Bus A SrSus sed Tag Word Creation Order # (Set 1) Address Value
— ALU o PR 6 1) 00000000 0600104
I|—|B 1 1 oopaoed 12 (2} 00000004 00000032
! L 00000005 & 3} 00000008 050011
2 1 01030103 13 (4} D000000C 0000040
=t Register - ooo000z . 11 {1} 0000010 0600102
= RFIN I Fila RFOUT) T [T T 12} 00000014 000044
e 00000045 10 (3) 00000018 060013
s 000040 -4 {4} 0000001 00000048
PC {1} 00000020 00040204
() 00000024 01030103
|[3) 00000025 B0
PSt_ack 5 2 | 4y 0000002 00000020
ointer
Rag'me!s Content (1} 00000030 OO0
2 00000034 0000004
oo pam, Woed 3 00030028 09000000
L ki 4} 0000003 00000000
(1) 00000040 00000001
,K‘ MBR 0000002 @
3} 00000048 00000002
_.]—4 Stack Pomnter (Top) {Empty) {4} 000000 00000000
R4 000D00GS
L 00000001
IR e R’ 00000005
Zoro Flag m 00000001

Page 29 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Instruction Execute: PC Increment By 4 to 00000030
Cache Memory Content Main Memory Content
D-Bus A B:bus su Ta Word Creation Order # (Set) Address Value
- i ALU = vo (1) pogooce 06004
,T‘ 1 [2) 00000004 0000003
Fl 0 | (3} 00000008 DE00MIY
: 1 | 14 0000000 00000040
o B Register 3 _0_ 1) 00000010 0600102
&l File RFOUT| I |21 00000014 00000044
+ 0 |3) Dooo0ota 0600103
== 4 1 |14y cooo001c 00000048
--I PC [1) 00000020 00040204
| (@) 00000024 01030103
'3 oo0ooa2E 0802100
Stack < 4] 0000002 00000020
fomx Registers Content |l comson St
| 21 00000034 0000004
Reglster Name Word [3) 00000038 09000000
*Jj N G ... 000000
MAR oec 1) 00000040 00000001
MR 00000007
| 2) 00000044 00000005
| MeR S FE ., ... cocoeea2
Sack P {Top) Empty) 4) 0000004 00000000
R4 00000005
R 00000001
| |FI|-(— Rz 00000005
Zero Fllg R3 00000001
| External |
Memory *
Instruction Execute: Read Memory Content at Addr 0000002¢ m
Cache Memory Content Main Memory Content
D-Bus A L S-8us Sew Tag Word Creation Orcers (Set #) Address Value
- ALU Lt] 10 o S 1) 00000000 DEONHS
| B [F 1 1 00040204 12 2) 00000004 0000003
z 0 Doo0eo0s 8 (3) 00000008 0E00MD1
2 1 0030103 13 {4) 0000000C 00000040
= Register 3 n. ,W " 1) DOD00OTD 060002
i File RFOUT i 1 eoama 14 @) 00000014 00000044
4 o 00000048 10 13) 00000018 0600HD3
,_| 4 |1 fooea 4) 0000001E 00000048
—-| PC (1} 00000020 00040204
2) 00000024 01030103
) 0oaooaze feaatno
St-iﬂ:i(< {4) D000002E 20000020
Pointer Registers Content (1) 00000030 07041100
12y D0DO0034 000004
.J—] | Register Hame s (3) 00000032 09000000
P om0 @) 0000003 00000000
MAR Soodnoze (1) DO00004D 0000000
N gy e
(3) 0000048 00000002
H_I :::k Pairter (Top) {Empty) ; (4) 0000004c DOOH0000
R1 00000001
| lu*—- A2 00000005
mﬁq R3 00000001

Prepared by WONG Jing Hin, Kent

Page 30 of 42

Final Year Project: Computer System Simulator Final Report

Instruction Execute: MBR <- 00000020 [coniguo |
Cache Memory Content Main Memory Content
0-8us A | SO [sw e Wed oot | et ssses vae
[| R o004 2 121 00000004 0000003
2 a 000000% g {3} 0000008 0600
) T T 4 £000000C 00000040
oy Register R 0000002 11 (1} 00000010 o600
= RAFIN I File RFOUT Fidy osomo0 14 (2} 00DDDOTA 00000044
4 o 00000043 0 {3} OD0DO1E 06006103
.__1—| L 00000020 15 (4} 00000TC 00000048
PG {1} 00000020 0040204
(2} 00000024 01030103
13} 00000028 00200
Pai‘ﬂ';r : — - :
Ftaglstars Content {11) 00000030 Loty
| (@) 00000034 000000
.__,_| Register Name: MWocd, {31 00000038 09000000
MAR re 00000030 () 0000003 00000000
MAR oD (1) 00000040 00000001
= MER 00000020 | (2] 00000044 00000005
(3 D000004E 00000002
’_I_J | Stack Paintes (Tog] (Emary) (4] Do00004c 00000000
R 20000005 |
Rt 00000001
[= -
Zero Flag = '

**Scenario 1: BNZ (Branch If Not Zero) operation & Zero Flag is not set **

Instruction Execute: Zero Flag is not set, thus Branch.
>
Cache Memary Content Main Memory Content
D-Bus | A] 3-Bus Serr e o O {Set ¥) Address Value
4| : I.(ALU i LI ooz © {1 0000000 050004
| B | 1 1 00040204 \rl 2) 00000004 0000003
z 0 00000005 8) 0000008 050081
2 1 01030103 13 (4] HO0OCO0C 00000040
== Register ER woeoz 1 (1) 0O000TD e00e02
RFIN File = - 3 1 0B02R00 " 2] 00D000H 00000044
4 0 m W‘ {3 DO000O1E SO0
|_| 4 0000020 15 141 000000 TE 00000045
5 PC 1) 00000020 00040204
{2) 00000024 01030103
3) 00000028 08074100
:‘;_‘" < 21 ooooo0ze 00000020
nw@m caﬂlﬂnt (1) DO000O30 OF0atna
H{2) 00000034 0D00004c
| [Repiehar e b L | copoooss 09000000
il MAR PG st 41 0000003 00000000
% fon) 00000040 00000001
[MG 00003120 2] 00000044 00000005
{31 00000048 COD00002
= Shack Poamér (o) fEmely) 41 0000004 20000000
R4 00000005
Rl 00000001
IFII‘* R2 00000005
Zera Flag B e

Page 31 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

**Scenario 1: BNZ operation & Zero Flag is not set ** (con’t)

Instruction Execute: Move From MBR to PC: PC <- 00000020 [conawo |
Cache Memory Content Main Memory Content
D-Bus A e Eoud S Tap Werd CrestionOndert (Set #) Address value
- c ALU L= 1 0 DEpOfm2 & (1) 00000000 DBO0HDE
I B : 1 1 Lt i S (2} D0000004 0000003
2 L 00000005 8 {3} D0DOOO0E 600D
- R 0030103 13 |) o000 00000040
== | Register i L docoooez M (1) 00000010 060002
= RFIN I File RFOUT ¥ 1 oaozio0 14 (2} 0000014 00000044
4 & m w0 (3} D0D0OOTE 060003
J_l e 00000020 15) D0o00gte 0000004E
I V0000020 {1} 00000020 00040204
@) 00000024 1030103
(3} 0000028 08024100
Ponter - g —y
o It :
Hsgm Cm‘ml (1) 00000030 0704400
(2) 000K 000004
J_| it : Moee (3) 00000038 09000000
MAR pc i) 0000003e 00000000
MR ey (1) 00000040 00000001
[MR, Q0000 (2} 00000044 00000005
I_MJ _ (3} 00000048 00000002
Stack Peinter Top] [Empty} 14} DODCOO4e 00000000
R4 00000005
R1 00000001
IFD(; Rz DOC0005
Zero Flag -] !
External
Memory 2

**Scenario 2: BNZ operation & Zero Flag is set **

Instruction Execute: Zero Flag is set, thus NOT Branch. m
Cache Memory Content b Main Memory Content
D-Bus A | E:Rus setr Tag Word Creation Order o (Set 5) Address value
-C Al L2 7T 0 0602 6 |y oocoseoe 0600104
I B I| 1 1 oposand 12 (2} D00M004 DO00003c
2 o DOO0000S & (3) 00000008 B0
2 1 030103 13) D000000C 00000040
— Register 3 0 00000002 11 (1 00000010 06002
= RFIN File RFOU 31 BROZA00 1 {2) 00000014 00000044
4 L] 00000048 0) 0O0000TE 0EOOH3
| 1 0000z 15) 5000001 00000043
= PC [1) 0000020 00040204
{2y 00000024 01030103
{3 00000028 4003400
PSR‘I; 2 21) 0000002 00000020
oin
Registers Content (1) 00000030 Q7040
@) 00000034 0000004
I gl M Mord 13} 00000038 99000000
= MAR e e) 0000003 0009000
MAR 0000002¢
(1) 00000040 00000001
— MER 00000020 S —— [T
[iibesisail Stack Pointer [Tap) {Empry) iy Bo0a0a. 00000000
a4 £000000a
L] Q0000001
Iﬂ(i 2 00000005
Flag Lt 00000000

Page 32 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Zero Flag

Branch operations check whether zero flag is set to decide whether to branch or not. Zero
Flag will be set when the operation in ALU is equal to zero. In the screen capture below,
which is a subtraction instruction, as the result from ALU operation is O, the zero flag is set
to 1, and the zero flag label is highlighted in yellow (at bottom left corner).

Instruction Execute: ALU Perform Sub, G <- 00000000 Zero Flag Setto 1.
Cache Memory Content Main Memory Content
D-Bus s WB“ sete Tag (Set 1) Address Value
1:‘ ; ALU 0 0500104
s il i 000024 12 0000003
2 o 00000005 B a0t
|2 i moe 13 00000040
Hegmer 3 o Q0000002 n 0E00M02
= RFIN File = RFOUT E] 1 08028100 " 00000044
la o 00000048 10 0600102
‘J | |4 ' 00000020 15 0000048
| PC | 00040204
. 01030103
CE0200
Stack 0020
Pointer - i
: Registers Content s —
DO00004c
| = | Register Name Werd 05000000
-—| MAR | C 00000028 000000
MAR 00000024 00000001
MER DOO0N020 COO0005
MER A 01030103 00300002
‘-l_J Stack Peinter (Tog) Empty] 0000000
1 R4 0000000
IR = a2 0OGO0005
Zero Flag) m 00000001
External
~ | Memory |

When the result is not zero, like the Add operation below, the zero flag will be labelled as
zero, indicate that zero flag is not set.

Instruction Execute: ALU Perform ADD, C <- 00000005
Cache Memory Content Main Memory Content
D-Bus = Emi‘_ Srous [ser Tag Word CrastionOrder® | oo sy adaress Value
| {
- . ALU P o ceomaz & | |11 oooooo0e CE00NDE
| im] 1 1 opHaM . 12 | BO00003C
iz o 00000005 B DEO0HT
3 > 2 1 0000044 DOCOO04T
Register F 3 0 00000002 os00im2
| _RFIN File = RFOUT; 3 1 sz 9 0000044
= I+ 0 0000048 10 teooto
3] {4 1 00300040 4 00000048
J-l FC l 0040204
01030103
Stack
Pointer 7400
Registers Content i
0OC0004C
Register Name. Word prmes
pe el 00000000
MAR 00000620 0OG0000T
MER 0000002 TR
[00040204 A
Stack Pointer (Top) (Ematy) DOOM0000
R4 00000000
[00000001
IR R2 00000005
Zera Flap : RS 00000002
[o] [Extera |

| Memory |~

Page 33 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Halt Operation

Final Report

When the instruction is a HALT operation, the simulator will perform a write back operation
for Cache Memory, i.e. update content on the corresponding main memory if modified flag is
set true. Unlike other operations, the “Continue” button will be still remained “disabled”, i.e.
cannot be clicked, even when the execution of halt operation is completed, as the simulation

of the execution of the imported instruction set has already ended.

Example Screen Capture of HALT operation:

Instruction Execution:

D-Bus

Execution Halted.

'T! - S-Bus

i 6

= RFIN

| - S

ALU

Register

File

,

PC |

Stack

Fainter

Zero Flag

[-]

__| External | _

~ | Memory |

Prepared by WONG Jing Hin, Kent

Cache Memory Content

Setd Tag

Creation Order # |

Registers Content

Register Name

Word

Main Memory Content

Value

Page 34 of 42

Final Year Project: Computer System Simulator Final Report

Cache Memory
Displaying Set Number in Main Memory Table

In real execution, the set number of memory address can be obtained from substring of binary
form of the address, but in the Simulator for the purpose of demonstration, the set number
1s stated before the address in each row entry in the Main Memory table, thus users can
quickly reference to the corresponding set in the Cache Memory Content table given the
memory address to be accessed (which is explicitly stated in the description at the center of
the top pane).

Cache Memory Content Main Memory Content
Set# Tag Word Creation Order # (Set #) Address Value
1 0 060002 6 {1) 00000000 0600ff04
1 1 00040204 12 (2) 00000004 0000003c
2 0 00000005 8 (3) 00000008 0600ff01
2 1 01030103 13 {4) 0000000c 00000040
3 0 00000002 11 (1) 00000010 0600ff02
3 1 0802ff00 14 {2) 00000014 00000044
4 0 00000048 10 {2) 00000018 0600ff03
4 1 00000020 15 {4) 0000001c 00000048

Cache Miss (Without Cache Block Replacement)

This will be occurred when there is still vacancy cache entry line in the set. The description
on the top center will be updated by stating that there is Cache Miss. At the same time the
Cache Memory Content table will show the append of the new cache block. Appened cache
block will be highlighted in light blue.

Instruction Execute: Read Meomry Content at Addr 0000000¢. Cache Miss! Get Data Block from Memory

Cache Memory Content Main Memory Content
Creation Order #

D-Bus [I S0us | setn Tag

) Address Value

[& = ALU

Register - 9
= RFIN |—= " gjo ——={RFoOUT} ST

.»I 1
:—|l PC [

Stack
Fointer

Registers Content

Register Name Werd

Zero Flag
Mo B i
L _| External | _

Memory

Page 35 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Cache Miss (With Cache Block Replacement)

When there is a Cache Miss that need cache block replacement, there will be one more line
appended to the top center description compared with Cache Miss (Without Cache Block
Replacement), the description notifies that which replacement algorithm is used, in the
example of the below screen capture “FIFO” is used, and it is also stated the criteria for
replacement, i.e. the Cache Block with the earliest creation time (i.e. “First-in”) will be
replaced.

Computer System Simulator - Main Window

Cache Miss! Get Data Block from Memory

listus o2 Ealice Replace Cache Block with earliest Creation Time (FIFO).

The Cache Memory Content table will show the changes in the corresponding cache set,
illustrated by the following screen capture:

Cache Memory Content Cache Memory Content
Set# Tag Word Creation Order # Set# Tag Word Creation Order #
1 0 0600ff02 6 1 0 0600ff02 6
1 1 00000001 5 1 1 00000001 5
2 0 0000003c 1 2 0 00000005 8
2 1 00000044 7 2 1 00000044 7
3 0 0600ff01 3 3 0 0600ff01 3
3 (Empty) (Empty) (Empty) 3 (Empty) (Empty) (Empty)
4 0 00000000 4 0 00000000 2
4 1 00000040 4 4 1 00000040 4
. > < ?

The left screen capture is the cache memory content before Cache Miss, the row highlighted
in light-blue is the recently created cache block (recently access cache block for LRU).

The right screen capture shows the cache block replacement. The cache block should be added
to Set 2, as FIFO replacement scheme is used in the screen capture’s simulation, the row
with earliest creation order in Set 2 is replaced.

The above screen capture is an example of 2-way associative cache with 4 sets. The tag of
each set are all set as “0” and “1” for the purpose of showing a replacement of a cache block,
as under this setting the location of the row will stay the same before and after the
replacement.

Page 36 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Cache Hit

Final Report

Cache Hit means that the data block to be retrieved is successfully found in one of the cache
line block in the Cache Memory. In the case of a Cache Hit, the description at the top center
will be updated to state that there is Cache Hit, and the corresponding row in the Cache
Memory Content table will be highlighted in light-blue to indicate the cache block hit.

Cache Hit. Retrieve Cache Content to MBR.

]
- e

S-Bus

—1 ALU

Register
—=1 File
—=

1 on

RFOUT

Cache Memory Content

Set# Tag Word Creation Order #

1 0 0600ff02 6

1 1 00040204 12
2 0 00000005 8

2 1 01030103 13
3 0 00000002 1
3 1 0802ff00 14
4 0 00000048 10
4 1 00000020 15

When the Simulator is configured with replacement algorithm “LRU”, the “Last Access Order
#’ column (i.e. the last column) of the cache block hit will be updated, illustrated as follows:

Cache Memory Content

Cache Memory Content

Set# Tag Word Last Access Order #
1 0 060002 6 pemmm—
1 1 00040204 12 —‘/
2 0 00000005 8
2 1 01030103 13
3 a 00000002 11
3 1 0802ff00 14
4 0 00000048 10
4 1 00000020 15
¢ >

Prepared by WONG Jing Hin, Kent

Set# Tag Word Last Access Order #

L 0 060002 6

1 1 00040204 16
2 0 (0000005 g

2 1 01030103 13
3 0 (0000002 11
3 1 (802ff00 14
4 0 (00000043 10
4 1 00000020 15

Page 37 of 42

Final Year Project: Computer System Simulator Final Report

Future Works

Due to constraints in time and human resources, there are several possible future

development for the simulator.

Pause for Every Step instead of Every Instruction

As mentioned in previous part, some instructions such as LOAD and STORE operation
comprise of a relatively large amount of steps in one instruction execution; and for some steps
there are several components changing together, thus there may have chances that the
simulator already jumps to next step before users realize all the changes. However under the
use of JavaFX, ordinary wait() and notify() does not work due to the difference of threading
philosophy in JavaFX, due to the time constraint there was lack of research on the
substitution of ordinary wait() and notify() in JavaFX, thus the simulator will enter idle state
only when the execution of instruction is completed. Thus making the simulator idle after
each step and continue next step when user trigger the continuation of the execution could

be one of the major future works.

To compensate this limitation in the current implementation, users can modify the sleeping
time between each step in the external configuration file (config.properties) if they find the

pausing time between each step is too long or too short.

Backward Execution

Students may want to replay the previous step of the execution to have better understanding
of the changes occurred, or to see whether he/she misses any of the changes, therefore
backward execution would be an important function to let users to click a button to trigger

the simulator to replay the previous step.

The implementation of this feature can be creation of a new class instance which has
variables to store the main memory data list, cache data list, register file data list, value of
zero flag and value of Program Counter at the beginning of the previous instruction execution.
Making use of a stack data structure, the simulator program will push this object into a stack
for each instruction execution, so when a user triggers a backward execution, the simulator
program can pop out from the stack the previous data and re-assign the content of those

variables in the main class and then continue the program execution.

Page 38 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Logging to External Text File

For command-line execution, any exceptions occurred during program execution can be
logged as the stack trace for object that throws exceptions will be printed on the console
output. However for GUI execution, there is no way to print the error stack trace for
unexpected and uncaught exceptions, the GUI display will just freeze and user cannot realize
immediately when the simulator program terminates its execution due to exceptions.
Therefore there is need for the simulator to generate external log files for every execution of
the simulator program (including execution of both Entry Window and Main Execution
Window), so that any abnormal behavior of the simulator program can be reported by sending
the log file to the party who hold the source code to perform debugging or source code

amendments/enhancements.

Other Further Enhancement

There are other addressing mode, e.g. displacement mode, in instruction execution for some
operations besides absolute addressing mode (i.e. 11111111), thus the simulator program
could be further enhanced to cater those addressing mode that are normally covered in the

Computer Organization course.

In addition, the current implementation can only cater single processor execution, also the
execution steps are presumed to be executed one by one. However in reality, some
instructions may be able to be processed in parallel in order to shorten the processing time,
but the current implementation of the simulator does not take into account for the processing

time of processor in the execution simulation.

Future works can be performed to enhance the functionality of the simulator to cater parallel

processing as well as specify the execution order of instructions in the instruction set.

Page 39 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Conclusion

The structure and interconnection of operational units inside a computer are highly complex,
thus understanding and teaching the data transformation and components interconnections
just based on verbal descriptions and textbooks description is not easy. Thus there is
apparent need for a simulator program to provide a more interactive and lively way to teach

and learn such abstract concepts and ideas.

No single solution is prefect for all scenario. The way to solve a sub-problem may create
constraints on other parts of the problem. This is what was frequently encountered
throughout the development of the project, still with numerous research and refactoring, the
final deliverables successfully meet all the objectives of the project. The Simulator covers
processing units & memory hierarchy, is able to show interconnection of these components,

with interactive graphical user interface, and with reasonable flexibility in configuration.

There are still rooms for enhancement for the final deliverable of this project, but it is
definitely a great step forward from the existing teaching aids with greater coverage,
flexibility and interactive elements with users. It is hoped that the Simulator will be used in
the future and able to help students studying Computer Organisation in the future to
understand the relevant concepts on data flow and transformation on different operational

units in an instruction set execution in a more efficient and interesting way.

Page 40 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator

Final Report

Appendix

Glossary
Abbreviation | Full Form/Description Type
CPU Central Processing Unit Processor
CU Control Unit Component in CPU
ALU Arithmetic and Logic Unit Component in CPU
PC Program Counter Component in CU
IR Instruction Register Component in CU
MAR Memory Address Register Component in CU
MBR Memory Buffer/Data Register Component in CU
SP Stack Pointer Component in CU
RF Register Files Component in CU
RFIN Register File Input Register Component in CU
RFOUT Register File Output Register Component in CU
ADD Addition Instruction Operation
SUB Subtraction Instruction Operation
AND Logic And Instruction Operation
OR Logic Or Instruction Operation
NOT Compliment Instruction Operation
MOV/MOVE | Copy Instruction Operation
BR Branch (Always Branch) Instruction Operation
BZ Branch Zero (Branch if Zero Flag is set) | Instruction Operation
BNZ Branch Not Zero (Branch if Zero Flag is | Instruction Operation

not set)
LD/LOAD Load data from memory to processor) Instruction Operation
ST/STORE Store data from processor to memory Instruction Operation
HALT/HLT | Mark the completion of Instruction Set Instruction Operation
Execution

CALL Function Call Instruction Operation
RET Function Return Instruction Operation
PUSH Push Register File to Register File List Instruction Operation
POP Pop Register File from Register File List | Instruction Operation
FIFO First-In-First-Out Cache Replacement Algorithm
LRU Least Recently Use Cache Replacement Algorithm

Prepared by WONG Jing Hin, Kent

Page 41 of 42

Final Year Project: Computer System Simulator Final Report

Simulator User Guide

The command-line version and GUI version of the Simulator can be downloaded from the
Project Webpage.

How to run the Simulator-cmd.jar file:

1. Open Command Prompt (for Windows) or Terminal (For Mac).

2. Type “java -jar (path of Simulator-cmd.jar file)”, e.g. if the file is saved in
“C:\download”, then type “java -jar C:\download\ Simulator-cmd.jar”’, and then press
enter. Do not type the double quotation (“”).

3. Ifit failed to run, please check whether JRE (Java Runtime Environment) is installed
in the machine. JRE can be downloaded here.

How to run the Simulator-gui.jar file:
1. Just simply click the java executable file to run the GUI version Simulator.
How to change configuration:

1. Install 7-zip or other file archiver.
2. Go to the file directory of the .jar file.
3. Right Click the .jar file and choose “Open Archive”

Mame Date modified Type Size
|=| phase-1-de[’ o T Executable Jar File 23 KB
Open !
1-Zip > Open archive
CRC SHA > Open archive >
Scan with Windows Defender... Extract files...
@ Scan Extract Here
@ Shred Extract to "phase-1-deliverable\”
Test archive
Onen with...

4. Double click to open the .properties file that you want to alter. Recommend to choose
to open with Notepad. Save after amendment.
5. Click “OK” if the following alert message prompt out:

o File 'config.properties’ was modified.

Do you want to update it in the archive?

OK Cancel

6. Close the Archive Window before running the simulator.

Page 42 of 42
Prepared by WONG Jing Hin, Kent

http://i.cs.hku.hk/fyp/2015/fyp15008/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

	Introduction
	Project Background
	Project Methodology
	Design and Implementation
	Program Class Design
	Configuration Files
	Program Flow
	Instruction Execution Flow
	Operation Algorithm Design
	Cache Memory
	GUI

	Project Results
	Overview
	Entry Window
	Main Window (Execution)
	Instruction Fetch
	Instruction Decode
	Instruction Execution
	Cache Memory

	Future Works
	Conclusion
	Appendix
	Glossary
	Simulator User Guide

