
CSIS0801 Final Year Project

Phase 3 Deliverable

Final Report

Topic: Computer System Simulator

Wong Jing Hin (Kent)

UID: 3035051060

Final Year Project: Computer System Simulator Final Report

Page 1 of 42
Prepared by WONG Jing Hin, Kent

Table of Contents
Introduction ... 2

Project Background ... 3

Project Methodology .. 5

Design and Implementation ... 7

Program Class Design .. 7

Configuration Files .. 8

Program Flow ... 9

Instruction Execution Flow ... 10

Operation Algorithm Design.. 11

Cache Memory .. 13

GUI .. 15

Project Results ... 17

Overview ... 17

Entry Window ... 17

Main Window (Execution) .. 19

Instruction Fetch .. 20

Instruction Decode ... 23

Instruction Execution... 24

Cache Memory .. 35

Future Works ... 38

Conclusion .. 40

Appendix .. 41

Glossary .. 41

Simulator User Guide .. 42

Final Year Project: Computer System Simulator Final Report

Page 2 of 42
Prepared by WONG Jing Hin, Kent

Introduction
This project aims to develop a simulator for a computer system based on a simple instruction

set that simulates the instruction execution process, cache memory and memory hierarchy
for teaching purposes with the following features:

Interconnection of different Operational Units

The data movements and transformations occurring in the processors, cache memory and
main memory will be covered in instruction set simulation. Users will be able to see the

changes of all these operational units in the execution and the interactions among them.

Graphical User Interface (GUI)

The simulator of this project was developed with GUI. Components of the processor (e.g.
registers & program counter), cache memory and main memory are displayed on the screen

in form of graphic. There are 3 benefits of GUI for the simulator, firstly the structure of the

computer system and interconnections among components can been shown clearly; also the
data movements and transformation in different components and instruction execution can

be more effectively illustrated; students will also be able to view the full picture of instruction
set execution process easier than before as the whole relevant architecture is displayed in the

output screen, they can see which components are affected and which are not affected.

Flexible Configuration

Core configurations are independent of the core program source code. When a user runs the
simulator, the simulator automatically reads the external configuration file to set necessary

configuration for simulation, after that it will receive user’s input of the storage path of the
instruction set binary file for the simulation. Users only need to amend the configuration file

and then re-execute the simulator program if they want to do the simulation in different

configurations.

Final Year Project: Computer System Simulator Final Report

Page 3 of 42
Prepared by WONG Jing Hin, Kent

Project Background

Current Situation
Computer Organisation is a core course for undergraduates of Computer Science Major,

which covers the study of operational units of a computer that are involved in Instruction

Execution Cycle (e.g. CPU) and their interconnections. There are several kinds of those
operational units which further contains a number of components in each of them, for

example in a CPU, there are different types of registers as well as ALU inside.

In an instruction execution, there are lots data movements among different components and
transformations within components. Moreover, components are connected with each other

differently, forming a complicated architecture of a computer system. Therefore, lots of
undergraduate students find the flow and relevant concepts difficult to understand just based

on verbal descriptions by lecturer and on lecture note or textbooks.

Existing Teaching Aids
In order to explain the concepts and the data flow among components of computer system,

there are 2 mini simulators available as teaching aids (possibly jointly developed by the

lecturer and tutor) for the Computer Organisation course.

The first one is a program written in C++

programming language which simulates

the data flow in Control Unit (CU) and
Arithmetic and Logic Unit (ALU) of CPU.

This program has to be run in command-
line interpreter with a binary instruction

set text file as input, the sequence of data

movement and transformation of every
instruction will be displayed as

pseudocode-like descriptions on the
console output.

The screen capture on the right is the

sample output of this CPU simulating
program:

Final Year Project: Computer System Simulator Final Report

Page 4 of 42
Prepared by WONG Jing Hin, Kent

Another one is a cache memory

simulator written in C#. It is a small
program simulating mapping and

replacement algorithm of cache
memory with Graphical User

Interface (GUI). The screen capture

on the right shows a sample run of
this cache memory simulator:

Problems and Proposed Solution
There are several major drawbacks of the above existing teaching aids. Firstly, the two
operational units of computer system architecture are simulated separately, it failed to show

full and real picture of the operation of an instruction set in the computer system. Also, for

the CPU simulating program, all configurations such as memory size, register file size and
operation representing code (e.g. 00000101 as MOV operation) are “hardcoded” in the

program source code, direct amendments on the program code is needed if we want to perform
the simulation in different configurations. In addition, for the first simulating program,

although the data movements and transformations are shown in sequence, it is shown in

form of “sentences” in command line prompt, not only the full picture of the CPU operation
cannot be shown (as only content of affected components are displayed), command line output

format is also unattractive to read. Moreover, the output has low readability due to command-
line form display, there are chunks of statements displayed on the screen for every

instruction execution, which contributes a reducing clearness on the illustration of the flow

and relevant concepts, thus students still find it difficult to learn the computer system
operations even with these teaching aids.

As a “user” using these teaching aids before, I appreciate the efforts of developing such

programs but unfortunately it has to be admitted that these programs are not effective
enough in aiding students to learn computer organization (still they are good references).

Thus, developing a new integrated computer system simulator which can cover more
operational units, more functionalities and with greater flexibility in configurations is

undeniably desirable and meaningful.

Final Year Project: Computer System Simulator Final Report

Page 5 of 42
Prepared by WONG Jing Hin, Kent

Project Methodology

Phased methodology was adopted for this project.

The system architectural design of the simulator will be complicated as it covers not only one
operational units in computer system, which contains sub-components and interrelates

among themselves differently. At the same time, CPU is the core part of instruction set

execution process, the functionalities of the CPU part should be completed before integrating
further operational units to the simulator. Therefore, the development of the simulator

should be carried out in a unit-by-unit approach, and the CPU part and Cache Memory part
is an end-to-finish relationship. Therefore phased development methodology will be best-fit

for this situation. The main advantage of phased development is that it allows developers to

put focus on each feature one by one that scopes are well defined under each phase, hence
the development burden can be eased and quality of each feature of the system can be ensured.

The development cycle of the simulator was categorized into 3 phases. CPU part was

developed in 1st phase and cache memory part was developed in 2nd phase, in which the order
was in the other way round of the accessing order of operation units in an instruction set

execution (i.e. accessing order is: cache memory -> CPU, so development order was: CPU ->
cache memory). The deliverable from 1st Phase was an executable program that can simulate

instruction set execution that without the use of cache memory. 2nd phase development was

an extension of the deliverable from 1st phase, cache memory and related operations were
added on top of the existing hierarchy of the simulator program of 1st phase deliverable. The

development of the first 2 phases was in command-line output, when the 2nd phase was
completed, the core functionalities of the simulator was considered as implemented with

correct logic flow. Therefore output format was transformed into GUI form as the final phase

of the project.

1st Phase:
CPU & Main Memory

2nd Phase:
Cache Memory

3rd Phase:
GUI

Final Year Project: Computer System Simulator Final Report

Page 6 of 42
Prepared by WONG Jing Hin, Kent

Project Timeline
ID Task Name Start Date End Date Predecessors
1 Requirements Gathering & Analysis 17/9/15 3/10/15
2 Milestone: Project Plan Submission 4/10/15 n/a
3 Preliminary Study & Research 5/10/15 17/10/15 1
4 Phase 1 (CPU) Analysis & Design 19/10/15 29/10/15 3
5 Phase 1 Coding & Testing I 2/11/15 27/11/15 4
6 Break for Preparing Final Examinations 28/11/15 21/12/15 5
7 Phase 1 Coding & Testing II 22/12/15 10/1/16 6
8 Documentation for Phase 1 1/11/16 24/1/16 3
9 Milestone: First Presentation 12/1/16 n/a
10 Milestone: Interim Report Submission 24/1/16 n/a
11 Phase 2 (Cache Memory) Analysis & Design 25/1/16 6/2/16 7
12 Phase 2 Coding & Testing 11/2/16 19/3/16 9
13 Phase 2 Documentation 30/1/16 17/4/16 7
14 Phase 3 (GUI) Implementation 21/3/16 11/4/16 12
15 Integrated Testing & Debugging 12/4/16 17/4/16 14
16 Phase 3 Documentation 12/4/16 17/4/16 12
17 Milestone: Final Report Submission 17/4/16 n/a
18 Milestone: Final Presentation 20/4/16 n/a

Final Year Project: Computer System Simulator Final Report

Page 7 of 42
Prepared by WONG Jing Hin, Kent

Design and Implementation
Program Class Design

Final Year Project: Computer System Simulator Final Report

Page 8 of 42
Prepared by WONG Jing Hin, Kent

The program class structure simulates the real structure of different parts in instructions
execution.

The Simulator itself is an object. Running the Simulator will trigger configuration, constants
will be set from the external configuration property file read by the program.

The Simulator can initiate an execution of instruction set, thus there is another class for an
execution. The execution involves processing and storage, thus there are 2 class, CPU &
Memory, expanded from the Execution class.

For Memory class, there are 2 types of memory involved, thus Main Memory & Cache
Memory class object are created, which extends the Memory (Abstract) Object. However as
the Main Memory and Cache Memory behaves significantly differently and does not share
any common procedure, thus the Memory (Abstract) object was not created in the real
implementation.

CPU comprises of different type of components, including registers (e.g. register files &
program counter) in Control Unit (CU) and the Arithmetic & Logic Unit (ALU). Stack Pointer
class is created independent of Register object (but still extends from Component object as
their nature are the same) due to its different structure and usage compared with other
registers in CU.

Configuration Files
There are 2 configuration files, namely “instructionCodeConfig.properties” and
“config.properties”, which are external text files (can be opened using common text editor)
that can be modified by any user.

 “config.properties” contains some general configuration for running the simulator, mainly
for cache memory operation, e.g. cache size, cache memory size, number of way associative,
replacement algorithm.

“instructionCodeConfig.properties” contains definition of operation code, e.g. ADD, BRANCH,
HALT. Users can change the binary code representing the operation.

Final Year Project: Computer System Simulator Final Report

Page 9 of 42
Prepared by WONG Jing Hin, Kent

Program Flow
The simulator program flow can be illustrated by the following State-Machine Diagram:

After start running the Simulator (Simulator Entry Window State)

The main method in the Simulator will run, new configuration class will be created which
trigger the configuration setting for the simulator and execution.

Simulator Entry Window will be created and ask user to input the file path of the instruction
set to be demonstrated.

Execution (Idle) State

After reading the file path, the simulator will read the external text file and set the content
as a List of Memory object. Then the creation of Execution class will be automatically
triggered. In constructor of the Execution class, there will be creation of processor object and
memory object, the content of these objects will be set according to the general configuration
and the List of Memory object parsed when constructing the new Execution object.

The entry window of the simulator will be disposed and replaced by the Execution window.
The Execution window will stay idle until user perform action (click “Continue” button) to
trigger the start of the instruction set execution.

Execution (Run Operation) State

When the simulator is triggered to start, the Simulator will start execute the next instruction.
The Simulator will go back to Execution (Idle) State when the execution of operation of the
instruction is completed, to wait for user’s action to trigger running next instruction. If the
instruction executed is a HALT instruction, user will no longer be able to click the “Continue”
button as there are no next instruction to run, the Simulator will stay in Execution (Idle)
State.

Final Year Project: Computer System Simulator Final Report

Page 10 of 42
Prepared by WONG Jing Hin, Kent

Simulator Exit State

Instead of start/continue next instruction execution, user can choose to exit the Simulator
program, when the user close the Simulator Execution window in the Execution (Idle) State,
the Execution window will be disposed and the Simulator program will terminate.

Instruction Execution Flow
For each instruction execution in the Simulator,
the algorithm quite resembles a real instruction
execution. Firstly the “Program Counter” object
in the Processor object will be analyzed, to obtain
the respective memory address of the instruction
or data to be read, and the “PC” value will be
incremented by 4, which is very alike to the
“Instruction Fetch” of real instruction execution.
The textbox on the right shows the pseudocode
of this procedure.

Next will be instruction decoding. The
content stored in “Instruction Register”
object will be extracted and analyzed. The
string will be divided into 4 sub-string, the
1st sub-string indicate the operation code,
the program will then map the operation
code with the “definition table” set from
configuration, and then continue to
analyze the other 3 sub-string (the way to
analyze is defined differently for different
operation).

The mapping of operation code was
implemented as a case statement,
different procedure will be executed for
different operation code mapped. The
execution will continue with the mapped
procedure (methods).

Execute_Instruction() {

 Address <- PC.value

Instruction <- Memory[Address]

PC.value <- PC.value + 4

Analyze_Instruction(Instruction)

}

Analyze_Insturction(Insutuction) {

SepOp <- DivideOperationCode(Instruction)

operationCodeStr <- SepOp.substring(1st Part)

case (operationCodeStr) of

begin

 “00000000” : add();

 “00000001” : sub();

 “00000010” : move();

 ……

 “00001001” : halt();

end

}

Final Year Project: Computer System Simulator Final Report

Page 11 of 42
Prepared by WONG Jing Hin, Kent

Operation Algorithm Design
The algorithm of each operation will be illustrated by respective flow diagrams:

Add/Sub/And/Or/Not/Move Operation

The algorithm of these operations are similar except that for “Not” and “Move” there will be
no lines involving Source Register 2.

Load Operation

Store Operation

Retrieve Source
Register 1 Name
from 2nd part of

Instruction

Get content of
Source Register 1

Retrieve Source
Register 2 Name
from 3rd part of

Instruction

Get content of
Source Register 2

Retrieve Destination
Register Name from

4th part of
Instruction

Perform ALU Action
to Source Register(s)

Update content of
Destination Register
with the output from

ALU

Get next Memory
Address m from PC PC increment Retrieve the content v in

Memory Address m

Retrieve content c in
Memory Address v
and store in MBR

Get next Memory
Address from PC and
Push to Stack Pointer

Move the content in
MBR to PC

Get next Memory Address m from
PC PC increment Retrieve source Register Name

from 4th part of Instruction

Get content of Destination
Register

Update the content of Memory Address m with the
content obtained from Destination Register

Final Year Project: Computer System Simulator Final Report

Page 12 of 42
Prepared by WONG Jing Hin, Kent

Branch Operation

Call Operation (of Function Call)

Return Operation (of Function Call)

Get next Memory Address m
from PC PC increment Retrieve source Register Name

from 4th part of Instruction

Get content of Destination
Register

Update the content of Memory
Address m with the content obtained

from Destination Register

Pop from Stack Pointer

Put the Popped out value to PC

Final Year Project: Computer System Simulator Final Report

Page 13 of 42
Prepared by WONG Jing Hin, Kent

Push Operation (of Register File)

Pop Operation (of Register File)

Cache Memory
Overview

The Cache Memory part of the Simulator supports 2 replacement policies, namely “First-In-
First-Out” (FIFO) and “Least Recently Used” (LRU), as well as 2 write policies, namely
“Write Back” and “Write Through”, which can be modified in the external configuration file.

Blocks in Cache Memory are divided into different sets. The Simulator program support x-
way associative organization of Cache, i.e. containing x cache line for each set. x should be a
number equal to 2n.

Cache Memory consists of Cache Memory blocks which are categorized with a Set Number,
which can be easily obtained by retrieving rightmost n bits of the Memory Address in binary
form for x-way associative Cache given that x is equals to 2n.

There are 4 variables in a Cache object, which is shown below with their respective use:

Variable Use
Tag Unique identification tag for the Cache entry in a Set
Word Data stored in the Cache Block
Timestamp Creation Time (for FIFO) or Last Access Time (for LRU)
Modified Flag Set true if the data stored in the Cache Block has been modified

Retrieve Register Name n to be pushed
from 2nd part of Instruction

Create a new instance of
Register Object

Set name of the Register
object as n

Add the Register object to the Register File
ArrayList

Retrieve Register Name n to be popped from 4th part of
Instruction

Search the Register File ArrayList to obtain index i of the
Register object in the List with name n

Remove the Register object at index i of the Register File
ArrayList

Final Year Project: Computer System Simulator Final Report

Page 14 of 42
Prepared by WONG Jing Hin, Kent

For FIFO, when replacement of Cache Block has to be occurred, the Cache Block with earliest
creation time should be replaced. While for LRU, the Cache Block with earliest last access
time should be replaced. Timestamp will be used to find out the earliest creation time or
earliest last access time.

Flow Diagram of Cache Procedure

Final Year Project: Computer System Simulator Final Report

Page 15 of 42
Prepared by WONG Jing Hin, Kent

GUI
Simulator Entry Window

The entry window of the Simulator is a small dialogue box, displaying a welcome message
and also a button, for user to specify the file path of the instruction set binary text file. The
button was implemented using JFileChooser of Java AWT library, which provide an interface
to let user find the file using the directory system, so that user no need input the file path to
the Simulator by themselves.

Main Window (Demonstrating Execution)

The main window is divided into 5 part, with the use of border-pane. The structure of the
border-pane can be illustrated as follows:

top: Description Pane

left: Canvas

center:
Cache Memory Table right:

Main Memory Table center:
Registers Table

Description Pane contains the “message” and the “Continue Button”. “Message” is the
description of the current process in the instruction execution, like data move from MBR to
MAR, or informing users for existence of cache miss & cache hit. “Continue Button” is located
at the rightmost of the Description Pane, user just need to click the button once to trigger the
execution of next instruction. The button will have been disabled when the execution of an
instruction is taken place, and will be “re-opened” to users when the operation ends.

Canvas is the part that containing all necessary components in an instruction set execution
in a simulation. The components, e.g. PC, MAR, MBR are added to the canvas as Label, and
will be highlighted when they are involved. The bus connecting each component are added to
the canvas as PolyLine object, they will also be highlighted when they are involved.

The center pane is further divided into 2 sub-division, displaying the data block in Cache
Memory and content of some important registers and register files.

The right pane displays the content of main memory, i.e. the imported instruction set.

Under this layout design, content of memory and registers are shown all the time throughout
the whole execution simulation.

Final Year Project: Computer System Simulator Final Report

Page 16 of 42
Prepared by WONG Jing Hin, Kent

Use of JavaFX Library

JavaFX instead of Java AWT or Swing Library is chosen for the implementation of the GUI
feature of the simulator for several reasons. Firstly, the JavaFX API is more consistent across
components, which is significant as in the simulator different components will have to apply
similar type of changes, e.g. background colour. Another reason is that it is able to theme
graphical objects using CSS under JavaFX, which makes the changes of styling properties of
different components in the processor easier to code. Also, the Table View of JavaFX provide
more functions like callbacks and the table.refresh() function is especially useful as there are
frequent changes on main memory table, cache memory table and registers table throughout
the instruction set execution. A final reason for using JavaFX is for the purpose of future
development, although currently there are no animated effect added on the execution
simulation, animation effects using JavaFX library are easier to code than other Java GUI
library, thus in view of both current and future development of the Simulator, JavaFX library
is adopted for implementing the GUI feature.

Threading

There are numbers of data
movement and transform in one
instruction execution, in order to
show the changes of every step
in an instruction execution on
the screen, program sleep has to
be introduced. However, the
whole program is paused when a
program sleep command is
called, the GUI is also frozen
and the changes on styling of
components, e.g. highlighting
PC label with yellow, are unable
to display, therefore usage of
threads are introduced.

As illustrated by the right flow
diagram, there are several steps
in each instruction execution,
after running a step, the
program will create a new
thread, and the new thread will
immediately sleep at start. In
such way, the previous thread’s
changes on components on GUI will still take into effect, and the effect will stay on the screen
until the new thread wake up and continue to run next step and cover the changes in previous
thread (as GUI components are declared as global variable in Execution Class).

Final Year Project: Computer System Simulator Final Report

Page 17 of 42
Prepared by WONG Jing Hin, Kent

Project Results
Overview
There are 2 final output of this project, a GUI version simulator and command-line version
simulator.

GUI version simulator serves as the deliverable that fully meet the major objective of this
project as stated in the Introduction part, and it is regarded as the major product of this
project.

While the command-line version, which is regarded as a “side-product”, can serve for several
purposes. The first one is for logging use, as the output, which displaying the step one-by-one
in sentence form, can be easily copied to a text file. It is still an improvement from one of the
existing teaching aid (the C++ simulator program), as it covers Cache Memory in the
simulation; furthermore for each instruction execution, content of register files and cache
memory will also be shown on top of content of main memory, which is a step forward than
the existing one. In addition, for future development of GUI version simulator, the command-
line version can be used as an oracle to cross-check with the further developed simulator for
testing and debugging.

Both version of the simulator will be a java executable file, thus access to source code can be
restricted from general users (i.e. students).

Entry Window
The right is the Simulator Entry Window containing a welcome message and File Chooser
button. After clicking the File Chooser button, the left File Chooser Dialogue will be popped
up and let user choose the instruction set binary text file from the directory system.

Final Year Project: Computer System Simulator Final Report

Page 18 of 42
Prepared by WONG Jing Hin, Kent

Illegal File Type Check

The Simulator will only accept plain text file (file extension of .txt or pure binary file) as legal
instruction set file format, the Simulator will not proceed and prompt a warning message to
ask user to choose other input file if it detects input file format other than the above
mentioned file type.

Check Instruction Set Size against Configuration

The Simulator will check whether the size of instruction set is within the main memory limit
stated in the external configuration file, if it exceeds the Simulator will not proceed and
prompt a warning message to ask user to modify the configuration file.

Final Year Project: Computer System Simulator Final Report

Page 19 of 42
Prepared by WONG Jing Hin, Kent

Main Window (Execution)
Base (Idle) State

A new window for demonstrating the Execution will be displayed if the instruction set input
passed the 2 validation in the Entry window.

Indicating Changes

The way to indicate changes occurred are slightly different for different part on the Execution
Window, thus each part in the Main Window is “symbolized” by different colour, making
users easier to notice which parts in the whole large Window are involved in the change.

For the left canvas, involved components will be highlighted with yellow background. For
some scenario the content of the register will also be displayed on the component label so as
to illustrate the data movement or transformation more clearly, e.g. for the step when ALU
perform ADD, register A, B and C will display its content such as “00000011”, so that it will
be easier for student to get that C stores the value from addition of content in register A 7
register B. Contents of PC, MAR, MBR, Stack Pointer and IR will also be shown in the
“Registers Content” table in the lower center pane.

For buses involved in the execution step, they will be highlighted in orange and the line
weight will be slightly increased.

For Cache Memory Content table, the affected row will be highlighted in light-blue.

For Registers Content table, the rows involved will be highlighted in orange.

For Main Memory Content table, the row involved will be highlighted in light green.

Final Year Project: Computer System Simulator Final Report

Page 20 of 42
Prepared by WONG Jing Hin, Kent

Instruction Fetch
Example Screen Captures to illustrate the changes on the simulator in Instruction
Fetch:

**The leftmost part on top pane stated that the current step is in “Instruction Fetch”
process**

Final Year Project: Computer System Simulator Final Report

Page 21 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Page 22 of 42
Prepared by WONG Jing Hin, Kent

**It is possible to have Cache Hit in this Step (e.g. when there is Branch operation) **

Final Year Project: Computer System Simulator Final Report

Page 23 of 42
Prepared by WONG Jing Hin, Kent

Instruction Decode
In this step, the instruction is decoded and displayed as human-readable description at the
top pane. Meanwhile, the leftmost part of the top pane has been changed from “Instruction
Fetch” to “Instruction Decode”.

Example Screen Capture for decoding LOAD instruction:

Example Screen Capture for decoding ADD instruction:

Final Year Project: Computer System Simulator Final Report

Page 24 of 42
Prepared by WONG Jing Hin, Kent

Instruction Execution
The number of steps in Instruction Exception stage can varies greatly, for some operation
such as LOAD, STORE and BRANCH, there are more number of steps as the processor has
to retrieve content of the next memory address as well in the operation. To reduce number of
frame changing, some steps will be slightly simplified, which would be illustrated in the
example screen captures below.

Example Screen Captures for Instruction Execution stage of an instruction that
does not involve accessing next memory, e.g. ADD, SUB, MOV:

Final Year Project: Computer System Simulator Final Report

Page 25 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Page 26 of 42
Prepared by WONG Jing Hin, Kent

Example Screen Captures for Instruction Execution stage of an instruction that
involves accessing next memory, e.g. LOAD, STORE:

Final Year Project: Computer System Simulator Final Report

Page 27 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Page 28 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Page 29 of 42
Prepared by WONG Jing Hin, Kent

Example Screen Captures for Instruction Execution stage of a BRANCH instruction:

Final Year Project: Computer System Simulator Final Report

Page 30 of 42
Prepared by WONG Jing Hin, Kent

Final Year Project: Computer System Simulator Final Report

Page 31 of 42
Prepared by WONG Jing Hin, Kent

**Scenario 1: BNZ (Branch If Not Zero) operation & Zero Flag is not set **

Final Year Project: Computer System Simulator Final Report

Page 32 of 42
Prepared by WONG Jing Hin, Kent

**Scenario 1: BNZ operation & Zero Flag is not set ** (con’t)

**Scenario 2: BNZ operation & Zero Flag is set **

Final Year Project: Computer System Simulator Final Report

Page 33 of 42
Prepared by WONG Jing Hin, Kent

Zero Flag

Branch operations check whether zero flag is set to decide whether to branch or not. Zero
Flag will be set when the operation in ALU is equal to zero. In the screen capture below,
which is a subtraction instruction, as the result from ALU operation is 0, the zero flag is set
to 1, and the zero flag label is highlighted in yellow (at bottom left corner).

When the result is not zero, like the Add operation below, the zero flag will be labelled as
zero, indicate that zero flag is not set.

Final Year Project: Computer System Simulator Final Report

Page 34 of 42
Prepared by WONG Jing Hin, Kent

Halt Operation

When the instruction is a HALT operation, the simulator will perform a write back operation
for Cache Memory, i.e. update content on the corresponding main memory if modified flag is
set true. Unlike other operations, the “Continue” button will be still remained “disabled”, i.e.
cannot be clicked, even when the execution of halt operation is completed, as the simulation
of the execution of the imported instruction set has already ended.

Example Screen Capture of HALT operation:

Final Year Project: Computer System Simulator Final Report

Page 35 of 42
Prepared by WONG Jing Hin, Kent

Cache Memory
Displaying Set Number in Main Memory Table

In real execution, the set number of memory address can be obtained from substring of binary
form of the address, but in the Simulator for the purpose of demonstration, the set number
is stated before the address in each row entry in the Main Memory table, thus users can
quickly reference to the corresponding set in the Cache Memory Content table given the
memory address to be accessed (which is explicitly stated in the description at the center of
the top pane).

Cache Miss (Without Cache Block Replacement)

This will be occurred when there is still vacancy cache entry line in the set. The description
on the top center will be updated by stating that there is Cache Miss. At the same time the
Cache Memory Content table will show the append of the new cache block. Appened cache
block will be highlighted in light blue.

Final Year Project: Computer System Simulator Final Report

Page 36 of 42
Prepared by WONG Jing Hin, Kent

Cache Miss (With Cache Block Replacement)

When there is a Cache Miss that need cache block replacement, there will be one more line
appended to the top center description compared with Cache Miss (Without Cache Block
Replacement), the description notifies that which replacement algorithm is used, in the
example of the below screen capture “FIFO” is used, and it is also stated the criteria for
replacement, i.e. the Cache Block with the earliest creation time (i.e. “First-in”) will be
replaced.

The Cache Memory Content table will show the changes in the corresponding cache set,
illustrated by the following screen capture:

The left screen capture is the cache memory content before Cache Miss, the row highlighted
in light-blue is the recently created cache block (recently access cache block for LRU).

The right screen capture shows the cache block replacement. The cache block should be added
to Set 2, as FIFO replacement scheme is used in the screen capture’s simulation, the row
with earliest creation order in Set 2 is replaced.

The above screen capture is an example of 2-way associative cache with 4 sets. The tag of
each set are all set as “0” and “1” for the purpose of showing a replacement of a cache block,
as under this setting the location of the row will stay the same before and after the
replacement.

Final Year Project: Computer System Simulator Final Report

Page 37 of 42
Prepared by WONG Jing Hin, Kent

Cache Hit

Cache Hit means that the data block to be retrieved is successfully found in one of the cache
line block in the Cache Memory. In the case of a Cache Hit, the description at the top center
will be updated to state that there is Cache Hit, and the corresponding row in the Cache
Memory Content table will be highlighted in light-blue to indicate the cache block hit.

When the Simulator is configured with replacement algorithm “LRU”, the “Last Access Order
#” column (i.e. the last column) of the cache block hit will be updated, illustrated as follows:

Final Year Project: Computer System Simulator Final Report

Page 38 of 42
Prepared by WONG Jing Hin, Kent

Future Works
Due to constraints in time and human resources, there are several possible future

development for the simulator.

Pause for Every Step instead of Every Instruction

As mentioned in previous part, some instructions such as LOAD and STORE operation

comprise of a relatively large amount of steps in one instruction execution; and for some steps
there are several components changing together, thus there may have chances that the

simulator already jumps to next step before users realize all the changes. However under the

use of JavaFX, ordinary wait() and notify() does not work due to the difference of threading
philosophy in JavaFX, due to the time constraint there was lack of research on the

substitution of ordinary wait() and notify() in JavaFX, thus the simulator will enter idle state
only when the execution of instruction is completed. Thus making the simulator idle after

each step and continue next step when user trigger the continuation of the execution could

be one of the major future works.

To compensate this limitation in the current implementation, users can modify the sleeping
time between each step in the external configuration file (config.properties) if they find the

pausing time between each step is too long or too short.

Backward Execution

Students may want to replay the previous step of the execution to have better understanding

of the changes occurred, or to see whether he/she misses any of the changes, therefore

backward execution would be an important function to let users to click a button to trigger
the simulator to replay the previous step.

The implementation of this feature can be creation of a new class instance which has

variables to store the main memory data list, cache data list, register file data list, value of
zero flag and value of Program Counter at the beginning of the previous instruction execution.

Making use of a stack data structure, the simulator program will push this object into a stack
for each instruction execution, so when a user triggers a backward execution, the simulator

program can pop out from the stack the previous data and re-assign the content of those

variables in the main class and then continue the program execution.

Final Year Project: Computer System Simulator Final Report

Page 39 of 42
Prepared by WONG Jing Hin, Kent

Logging to External Text File

For command-line execution, any exceptions occurred during program execution can be
logged as the stack trace for object that throws exceptions will be printed on the console

output. However for GUI execution, there is no way to print the error stack trace for

unexpected and uncaught exceptions, the GUI display will just freeze and user cannot realize
immediately when the simulator program terminates its execution due to exceptions.

Therefore there is need for the simulator to generate external log files for every execution of
the simulator program (including execution of both Entry Window and Main Execution

Window), so that any abnormal behavior of the simulator program can be reported by sending

the log file to the party who hold the source code to perform debugging or source code
amendments/enhancements.

Other Further Enhancement

There are other addressing mode, e.g. displacement mode, in instruction execution for some
operations besides absolute addressing mode (i.e. 11111111), thus the simulator program

could be further enhanced to cater those addressing mode that are normally covered in the

Computer Organization course.

In addition, the current implementation can only cater single processor execution, also the
execution steps are presumed to be executed one by one. However in reality, some

instructions may be able to be processed in parallel in order to shorten the processing time,
but the current implementation of the simulator does not take into account for the processing

time of processor in the execution simulation.

Future works can be performed to enhance the functionality of the simulator to cater parallel
processing as well as specify the execution order of instructions in the instruction set.

Final Year Project: Computer System Simulator Final Report

Page 40 of 42
Prepared by WONG Jing Hin, Kent

Conclusion
The structure and interconnection of operational units inside a computer are highly complex,

thus understanding and teaching the data transformation and components interconnections
just based on verbal descriptions and textbooks description is not easy. Thus there is

apparent need for a simulator program to provide a more interactive and lively way to teach
and learn such abstract concepts and ideas.

No single solution is prefect for all scenario. The way to solve a sub-problem may create

constraints on other parts of the problem. This is what was frequently encountered
throughout the development of the project, still with numerous research and refactoring, the

final deliverables successfully meet all the objectives of the project. The Simulator covers

processing units & memory hierarchy, is able to show interconnection of these components,
with interactive graphical user interface, and with reasonable flexibility in configuration.

There are still rooms for enhancement for the final deliverable of this project, but it is

definitely a great step forward from the existing teaching aids with greater coverage,
flexibility and interactive elements with users. It is hoped that the Simulator will be used in

the future and able to help students studying Computer Organisation in the future to
understand the relevant concepts on data flow and transformation on different operational

units in an instruction set execution in a more efficient and interesting way.

Final Year Project: Computer System Simulator Final Report

Page 41 of 42
Prepared by WONG Jing Hin, Kent

Appendix
Glossary
Abbreviation Full Form/Description Type
CPU Central Processing Unit Processor
CU Control Unit Component in CPU
ALU Arithmetic and Logic Unit Component in CPU
PC Program Counter Component in CU
IR Instruction Register Component in CU
MAR Memory Address Register Component in CU
MBR Memory Buffer/Data Register Component in CU
SP Stack Pointer Component in CU
RF Register Files Component in CU
RFIN Register File Input Register Component in CU
RFOUT Register File Output Register Component in CU
ADD Addition Instruction Operation
SUB Subtraction Instruction Operation
AND Logic And Instruction Operation
OR Logic Or Instruction Operation
NOT Compliment Instruction Operation
MOV/MOVE Copy Instruction Operation
BR Branch (Always Branch) Instruction Operation
BZ Branch Zero (Branch if Zero Flag is set) Instruction Operation
BNZ Branch Not Zero (Branch if Zero Flag is

not set)
Instruction Operation

LD/LOAD Load data from memory to processor) Instruction Operation
ST/STORE Store data from processor to memory Instruction Operation
HALT/HLT Mark the completion of Instruction Set

Execution
Instruction Operation

CALL Function Call Instruction Operation
RET Function Return Instruction Operation
PUSH Push Register File to Register File List Instruction Operation
POP Pop Register File from Register File List Instruction Operation
FIFO First-In-First-Out Cache Replacement Algorithm
LRU Least Recently Use Cache Replacement Algorithm

Final Year Project: Computer System Simulator Final Report

Page 42 of 42
Prepared by WONG Jing Hin, Kent

Simulator User Guide
The command-line version and GUI version of the Simulator can be downloaded from the
Project Webpage.

How to run the Simulator-cmd.jar file:

1. Open Command Prompt (for Windows) or Terminal (For Mac).
2. Type “java -jar (path of Simulator-cmd.jar file)”, e.g. if the file is saved in

“C:\download”, then type “java -jar C:\download\ Simulator-cmd.jar”, and then press
enter. Do not type the double quotation (“ ”).

3. If it failed to run, please check whether JRE (Java Runtime Environment) is installed
in the machine. JRE can be downloaded here.

How to run the Simulator-gui.jar file:

1. Just simply click the java executable file to run the GUI version Simulator.

How to change configuration:

1. Install 7-zip or other file archiver.
2. Go to the file directory of the .jar file.
3. Right Click the .jar file and choose “Open Archive”

4. Double click to open the .properties file that you want to alter. Recommend to choose

to open with Notepad. Save after amendment.
5. Click “OK” if the following alert message prompt out:

6. Close the Archive Window before running the simulator.

http://i.cs.hku.hk/fyp/2015/fyp15008/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

	Introduction
	Project Background
	Project Methodology
	Design and Implementation
	Program Class Design
	Configuration Files
	Program Flow
	Instruction Execution Flow
	Operation Algorithm Design
	Cache Memory
	GUI

	Project Results
	Overview
	Entry Window
	Main Window (Execution)
	Instruction Fetch
	Instruction Decode
	Instruction Execution
	Cache Memory

	Future Works
	Conclusion
	Appendix
	Glossary
	Simulator User Guide

