
CSIS0801 FInal Year ProjeCt

PhaSe 2 DelIverable

InterIm rePort

toPIC: ComPuter SYStem SImulator

Wong jIng hIn

uID: 3035051060

FYP Phase 2 Deliverable: Interim Report

Page 1 of 15

Project Background

Current Situation

Computer Organisation is a core course for undergraduates of Computer Science
Major, which covers the study of operational units of a computer that are involved in
Instruction Execution Cycle (e.g. CPU) and their interconnections. There are several
kinds of those operational units which further contains a number of components in
each of them, for example in a CPU, there are different types of registers as well as
ALU inside.

In an instruction execution, there are lots data movements among different
components and transformations within components. Moreover, components are
connected with each other differently, forming a complicated architecture of a
computer system. Therefore, lots of undergraduate students find the flow and
relevant concepts difficult to understand just based on verbal descriptions by lecturer
and on lecture note or textbooks.

Existing Teaching Aids

In order to explain the concepts and the data flow among components of computer
system, there are 2 mini simulators available as teaching aids (possibly jointly
developed by the lecturer and tutor) for the Computer Organisation course.

The first one is a program written in
C++ programming language which
simulates the data flow in Control
Unit (CU) and Arithmetic and Logic
Unit (ALU) of CPU. This program has
to be run in command-line interpreter
with a binary instruction set text file
as input, the sequence of data
movement and transformation of every
instruction will be displayed as
pseudocode-like descriptions on the
console output.

The screen capture on the right is the
sample output of this CPU simulating
program:

FYP Phase 2 Deliverable: Interim Report

Page 2 of 15

Another one is a cache memory
simulator written in C#. It is a
small program simulating
mapping and replacement
algorithm of cache memory
with Graphical User Interface
(GUI). The screen capture on
the right shows a sample run of
this cache memory simulator:

Problems and Proposed Solution

There are several major drawbacks of the above existing teaching aids. Firstly, the
two operational units of computer system architecture are simulated separately, it
failed to show full and real picture of the operation of an instruction set in the
computer system. Also, for the CPU simulating program, all configurations such as
memory size, register file size and operation representing code (e.g. 00000101 as MOV
operation) are “hardcoded” in the program source code, direct amendments on the
program code is needed if we want to perform the simulation in different
configurations. In addition, for the first simulating program, although the data
movements and transformations are shown in sequence, it is shown in form of
“sentences” in command line prompt, not only the full picture of the CPU operation
cannot be shown (as only content of affected components are displayed), command
line output format is also unattractive to read. Moreover, the output has low
readability due to command-line form display, there are chunks of statements
displayed on the screen for every instruction execution, which contributes a reducing
clearness on the illustration of the flow and relevant concepts, thus students still find
it difficult to learn the computer system operations even with these teaching aids.

As a “user” using these teaching aids before, I appreciate the efforts of developing
such programs but unfortunately it has to be admitted that these programs are not
effective enough in aiding students to learn computer organization (still they are good
references). Thus, developing a new integrated computer system simulator which can
cover more operational units, more functionalities and with greater flexibility in
configurations is undeniably desirable and meaningful.

FYP Phase 2 Deliverable: Interim Report

Page 3 of 15

Project Objective

The primary objective of the project is to develop a simulator for a computer system
based on a simple instruction set that simulates the instruction execution process,
cache memory and memory hierarchy for teaching purposes, with the following
features:

Interconnection of different Operational Units

The data movements and transformations occurring in the processors, cache memory
and memory hierarchy (main memory & storage) will be covered in instruction set
simulation of the simulator. Users will be able to see the changes of all these
operational units in the execution and the interactions among them.

Graphical User Interface (GUI)

One major drawback of the existing teaching aids programs are its command-line
type display, thus the proposed simulator of this project will be developed with GUI.
Components of the processor (e.g. registers, program counter and stack pointer),
cache memory and memory hierarchy will be displayed on the screen in form of
graphic. There are 3 benefits of GUI for the simulator, firstly the structure of the
computer system and interconnections among components can been shown clearly;
also the data movements and transformation in different components and instruction
execution can be more effectively illustrated; students will also be able to view the
full picture of instruction set execution process easier than before as the whole
relevant architecture is displayed in the output screen, they can see which
components are affected and which are not affected.

Flexible Configuration

Configuration will be independent of the core program source code. When a user runs
the simulator, the simulator will automatically read the external configuration file to
set necessary configuration for simulation, after that it will receive user’s input of the
storage path of the instruction set binary file for the simulation. Users only need to
amend the configuration file and then re-execute the simulator program if they want
to do the simulation in different configurations.

Further Enhancement

There are other addressing mode in instruction execution besides absolute addressing
mode e.g. displacement mode, thus the simulator will be further enhanced to cater
those addressing mode that are normally covered in the Computer Organization
course.

FYP Phase 2 Deliverable: Interim Report

Page 4 of 15

Project Methodology

Phased methodology will be adopted for this project.

The system architectural design of the simulator will be complicated as it covers not
only one operational units in computer system, which contains sub-components and
interrelates among themselves differently. At the same time, CPU is the core part of
instruction set execution process, the functionalities of the CPU part should be
completed before integrating further operational units to the simulator. Therefore,
the development of the simulator should be carried out in a unit-by-unit approach,
and so phased development methodology will be best-fit for this situation. The main
advantage of phased development is that it allows developers to put focus on each
feature one by one that scopes are well defined under each phase, hence the
development burden can be eased and quality of each feature of the system can be
ensured.

The development cycle of the simulator will be categorized into 4 phases. The first
two phases will be the design and development of operational units, the order of
design and development will be in the other way round of the accessing order of
operation units in instruction set execution (e.g. if accessing order is: cache memory
-> CPU, then development order will be: CPU -> cache memory), the latter phase will
be extension of the deliverable from previous phase development. The development
of the first 2 phases will be in command-line output, when the 2nd phase is completed,
the core functionalities of the simulator will be considered as implemented with
correct logic flow. Therefore for the 3rd stage, output format will be transformed into
GUI form. The final phase (4th phase) will be further enhancements for the simulator
as mentioned in the previous part.

FYP Phase 2 Deliverable: Interim Report

Page 5 of 15

Progress Report

Schedule

The completed or commenced tasks of the project until the 3rd week of January with
the corresponding time period is shown in the following table:

ID Task Name Start Date End Date Predecessors
1 Requirements Gathering & Analysis 17/9/15 3/10/15
2 Milestone: Project Plan Submission 4/10/15 n/a
3 Preliminary Study & Research 5/10/15 17/10/15 1
4 Phase 1 (CPU) Analysis & Design 19/10/15 29/10/15 3
5 Phase 1 Coding & Testing I 1/11/15 27/11/15 4
6 Break for Preparing Final Examinations 28/11/15 21/12/15 5
7 Phase 1 Coding & Testing II 22/12/15 10/1/15 6
8 Documentation for Phase 1 1/11/15 (on-going) 3
9 Phase 2 (Cache Memory) Analysis & Design 11/1/16 29/1/15

(expected) 7

10 Milestone: First Presentation 12/1/16 n/a
The deliverables for Phase 1 can be downloaded from the Project Website.

The table below shows the expected schedule for the 2nd semester work:

ID Task Name Expected Start Date Expected Duration Predecessors
11 Milestone: Interim Report Submission 24/1/16 n/a
12 Phase 2 Coding & Testing 30/1/16 3 weeks 9
13 Phase 2 Documentation 30/1/16 Till 15/4/16 7
14 Phase 3 (GUI) Implementation 15/2/16 4 weeks 12
15 Phase 4 (Enhancement) Analysis & Design 14/3/16 1 weeks 14
s16 Phase 4 Coding & Testing 21/3/16 3 weeks 15
17 Integrated Testing 28/3/16 3 weeks 14
18 Documentation for Phase 3&4 15/2/16 Till 15/4/16 12
19 Milestone: Final Report Submission 17/4/16 n/a

http://i.cs.hku.hk/fyp/2015/fyp15008/

FYP Phase 2 Deliverable: Interim Report

Page 6 of 15

1st Semester Accomplishment

Program Class Design

The program class structure simulates the real structure of different parts in instructions
execution.

The Simulator itself is an object. Running the Simulator will trigger configuration, constants
will be set from the external configuration property file read by the program.

The Simulator can initiate an execution of instruction set, thus there is another class for an
execution. The execution involve processing and storage, thus there are 2 class, CPU &
Memory, expanded from the Execution class.

For Memory class, there are 2 types of memory involved, thus Main Memory & Cache
Memory class object are created, which extends the Memory Object.

CPU comprises of different type of components, including registers (e.g. register files &
program counter) in Control Unit (CU) and the Arithmetic & Logic Unit (ALU). Stack Pointer
class is created independent of Register object (but still extends from Component object as
their nature are the same) due to its different structure and usage compared with other
registers in CU.

FYP Phase 2 Deliverable: Interim Report

Page 7 of 15

Algorithm Design

After start running the Simulator:

The main method in the Simulator will run, new
configuration class will be created which trigger the
configuration setting for the simulator and execution. The
right is the screen capture of the property file for operation
code definition. It is an external text file, which can be
modified by any user.

Then the simulator will ask user to input the file path of the
instruction set to be demonstrated. Below is the sample
command-line console output of this process of the
simulator:

Execution

After reading the file path, the simulator will read the external text file and set the content
as a List of Memory object. Then the creation of Execution class will be automatically
triggered. In constructor of the Execution class, there will be creation of processor object and
memory object, the content of these objects will be set according to the general configuration
and the List of Memory object parsed when constructing the new Execution object.

Next the execution of instruction set starts. The execution will be simulated by performing
unconditional looping, until a HALT instruction is detected and exit the loop by “break”
command. For each loop, the algorithm quite resembles a real instruction execution. Firstly
the “Program Counter” object in the Processor object will be analyzed, to obtain the respective
memory address of the instruction or data to be read, and the “PC” value will be incremented
by 4, which is very alike to the “Instruction Fetch” of real instruction execution.

FYP Phase 2 Deliverable: Interim Report

Page 8 of 15

Next will be instruction decoding. The content stored in “Instruction Register” object will be
extracted and analyzed. The string will be divided into 4 sub-string, the 1st sub-string indicate
the operation code, the program will then map the operation code with the “definition table”
set from configuration, and then continue to analyze the other 3 sub-string (the way to
analyze is defined differently for
different operation). The right
figure is an example output for
analyzing a LOAD instruction.

The mapping of operation code was implemented as a case statement, different procedure
will be executed for different operation code mapped.

The execution will continue with the mapped procedure (methods). Below is a sample output
in command-line form for a branch operation (Branch Not Zero type):

Every output statement will be transformed into graphical illustration in Phase 3 (GUI
Implementation).

Figure 1: Command-line Output
of "Instruction Fetch"

FYP Phase 2 Deliverable: Interim Report

Page 9 of 15

For GUI form output, content of memory and register
files will be shown all the time throughout the whole
execution simulation. At the current stage the output
is still in form of command-line, thus currently at the
end of each instruction execution, the content of
memory and register files will be displayed to
resemble such feature.

At the last line of the command-line output on
the right figure, it asks user to “Press Enter to
Continue”. After pressing enter, the simulator
will continue to execute the next instruction, if
there is no more next instruction, i.e. the current
instruction is HALT, the simulation will come to
an end, and showing the final content of the
Memory. For GUI display, there will be a button
to serve this purpose.

Pseudocode Showcase

1. Execution of Instruction Set

repeat

begin

 Address <- PC.value

Instruction <- Memory[Address]

PC.value <- PC.value + 4

Analyze_Instruction(Instruction)

end

until (Instruction.OperationCode = HALT)

FYP Phase 2 Deliverable: Interim Report

Page 10 of 15

2. Analyze_Insturction

3. Add/Sub/And/Or

(For “Not” & “Move” Operation, same pseudocode as above except there will be no lines
involving Source Register 2)

4. ALU Operation (Add/Sub/And/Or/Not/Move)

SepOp <- DivideOperationCode(Instruction)

operationCodeStr <- SepOp.substring(1st Part)

case (operationCodeStr) of

begin

 “00000000” : add();

 “00000001” : sub();

 “00000010” : move();

 ……

 “00001001” : halt();

end

SourceRegister1Name <- SepOp.substring(2nd Part)

Source1Value <- GetValueOfRegisterOfName(SourceRegister1Name)

SourceRegister2Name <- SepOp.substring(3rd Part

Source2Value <- GetValueOfRegisterOfName(SourceRegister2Name)

DestinationRegisterName <- SepOp.substring(4th Part)

DestValue <- ALU.add/sub/and/or (source1Value, source2Value)

UpdateRegisterFile(DestinationRegisterName, DestValue)

Operation (Value1, Value2)

begin

ReturnVal <- Value1 + Value2/ Value1 - Value2/ Value1 && Value2/ etc.

If (returnVal == 0)

then ZeroFlag <- 1

else ZeroFlag <- 0

return ReturnVal

end

FYP Phase 2 Deliverable: Interim Report

Page 11 of 15

5. Load

6. Store

7. Branch (BR/BZ/BNZ)

LoadRegisterName <- SepOp.substring(4th Part)

NextMemoryAddress <- PC.value

NextMemoryContent <- Memory[NextMemoryAddress]

PC.value <- PC.value + 4

LoadValue <- Memory[NextMemoryContent]

UpdateRegisterFile(LoadRegisterName, LoadValue)

NextMemoryAddress <- PC.value

NextMemoryContent <- Memory[NextMemoryAddress]

PC.value <- Memory[NextMemoryContent]

[Branch Zero (BZ)]

if (ALU.ZeroFlag != 0)

then PC.value <- PC.value + 4

[/BZ]

[Branch Not Zero (BNZ)]

if (ALU.ZeroFlag == 0)

then PC.value <- PC.value + 4

[/BNZ]

LoadRegisterName <- SepOp.substring(4th Part)

NextMemoryAddress <- PC.value

NextMemoryContent <- Memory[NextMemoryAddress]

PC.value <- PC.value + 4

LoadValue <- Memory[NextMemoryContent]

UpdateRegisterFile(LoadRegisterName, LoadValue)

StoreRegisterName <- SepOp.substring(2nd Part)

NextMemoryAddress <- PC.value

NextMemoryContent <- Memory[NextMemoryAddress]

StoreValue <- GetValueOfRegisterOfName(StoreRegisterName)

PC.value <- PC.value + 4

Memory[NextMemoryContent] <- StoreValue

FYP Phase 2 Deliverable: Interim Report

Page 12 of 15

8. Call (Function Call)

9. Return (of Function Call)

10. Push (of Function Call)

11. Pop (of Function Call)

12. AddNewRegisterFile

13. RemoveRegisterFile

StackPointer.Increment (PC.value + 4)

NextMemoryAddress <- PC.value

NextMemoryContent <- Memory[NextMemoryAddress]

PC.value <- Memory[NextMemoryContent]

NextAddress <- StackPointer.Decrement()

PC.value <- NextAddress

PushRegisterName <- SepOp.substring(2nd Part)

AddNewRegisterFile(PushRegisterName)

PopRegisterName <- SepOp.substring(4th Part)

RemoveRegisterFile(PushRegisterName)

NewRegister = new Register()

NewRegsiter.name <- PushRegisterName

RegisterFileList.add(NewRegister)

RemoveIndex <- GetIndexOfRegisterFileInRegisterFileList(PopRegisterName)

RegisterFileList.remove(RemoveIndex)

FYP Phase 2 Deliverable: Interim Report

Page 13 of 15

UI Design

The user-interface design for Phase 3: GUI Implementation has been done, which
are displayed below:

1. Initial (Index) Window

2. Base

FYP Phase 2 Deliverable: Interim Report

Page 14 of 15

3. Running an Execution

4. Indicating Data Transformation & Transfer

(e.g. Data Movement from MBR to Register A)

FYP Phase 2 Deliverable: Interim Report

Page 15 of 15

5. Indicating Cache Miss
(e.g. “0000003c” stored in MAR, processor has to read content in memory address 0000003c from
External Memory)

6. Indicating Cache Hit

(e.g. “00000014” stored in MAR, processor has to read content in memory address 00000014 from
External Memory)

End of Interim Report

