
Project Plan: Build Your Efficient Programming
Language Quickly

Lin Han, 3035027851

Xiang Ji, 2012588999

Shixiong Zhao, 3035028659

October 4, 2015

1

Contents

1 Introduction 3
1.1 Case Study of ZipPy . 3
1.2 Tools Development for the Framework 3

2 Objectives 4
2.1 Efficiency . 4
2.2 Extensibility . 4

3 Methodology 4
3.1 Case Study on ZipPy . 4

3.1.1 Choose one part of ZipPy(Python) grammar 5
3.1.2 Rewrite grammar in object algebra pattern 5
3.1.3 Make test programs featured specific grammar 5
3.1.4 Benchmarks . 5

3.2 Tools Development for the Framework 5
3.2.1 Pretty Printer . 6
3.2.2 Emacs/Vim Plugin . 6

4 Schedule and Milestones 6
4.1 Case Study on ZipPy . 6
4.2 Tools Development for the Framework 8

2

Abstract

This project plan is for the Computer Science final year project
Build your efficient programming language quickly, 2015-2016, HKU.
This plan aims to give an overview for the project, which includes two
parts. The first part is a case study which intends to demonstrate that,
based on an efficient VM and an advanced design pattern called object
algebra, it’s possible to build efficient programming language quickly,
and it’s viable to extend this framework to a larger scale. The second
part will be the development of tools which support the creation of new
programming languages under our language prototyping framework.
Details about methodology, project plan and milestones of projects
are included.

1 Introduction

This project aims to use Oracles new research Graal Java Virtual Machine
and the Truffle framework to build efficient programming language imple-
mentations quickly. Truffle provides a way to build efficient interpreters that
run in the Graal JVM. Programming language group of HKU is developing
a framework on top of Graal and Truffle that makes the development of such
interpreters quicker by providing various ready-to-use language components.
The idea is that, in order to build a new programming language, a program-
mer just needs to pick the desired features for the language, assemble them
together, add some additional custom features and quickly get a prototype
implementation.

The project is divided into two parts. The first is a case study, and the
second is tools development for the framework.

1.1 Case Study of ZipPy

Zhao Shixiong and Han Lin will be responsible for the case study of ZipPy.
ZipPy is a fast and lightweight Python3 implementation built using the Truf-
fle framework. ZipPy leverages the underlying Java JIT compiler and com-
piles Python programs to highly optimized machine code at runtime. And
object algebra is used as design pattern to rewrite grammar of ZipPy to
have a better extensibility in the future. With the project going on, we will
rewrite ZipPy using object algebra and test it on the top of Graal and Truf-
fle. At the end, this project will show that its possible to have a large-scale
programming language like python running on the top of our framework.

1.2 Tools Development for the Framework

JI Xiang will be responsible for developing various tools for the language
prototyping framework. Those tools will include:

3

• A pretty printer which helps users in the process of prototyping and
debugging.

• Emacs & Vim plugins which provide supports such as syntax highlight-
ing for the new languages designed by users

• Potential future tools, such as logger and debugging supports.

2 Objectives

Efficiency and extensibility are two concerns of the developing framework.

2.1 Efficiency

The project aims to provide a framework that is used to build efficient pro-
gramming language. With the high-efficiency Graal virtual machine and
Truffle framework, the interpreter on top of it will perform very much close
to compiler, which ensures this framework could be used into practice.

2.2 Extensibility

This project aims to provide various ready-to-use language components in
the future within the framework. For ZipPy, using object algebra, both
grammar and features could be rewritten, making it reusable for more fea-
tures or even custom features. At the finish of this project, using the case of
ZipPy, we want to show that this framework is compatible to build efficient
programming language on top of it.

The tools will offer essential supports for users who wish to utilize this
framework to prototype new programming languages. They will make the
development process feasible.

3 Methodology

3.1 Case Study on ZipPy

For the purpose of this project, we have made iteration milestones for var-
ious parts of the project. In the given methodology, we have attempted to
elaborate upon the following iteration: choose one part of ZipPy (Python)
grammar rewrite this part in object algebra pattern make test programs
featured specific grammar run benchmarks. All tests of ZipPyOA are on
top of Graal VM and Truffle framework

4

3.1.1 Choose one part of ZipPy(Python) grammar

Following the principle that giving the best modularity to the final frame-
work, the choices of grammar made during iterations are mainly modularized
grammar pieces. Since Python is such a big language, the iteration will be-
gin with basic arithmetic operation, including variables, operators. And for
the rest grammar, we divide them into control flow, functions, modules,
object-oriented programming. In addition, required data structures for each
iteration will be implemented iteratively.

3.1.2 Rewrite grammar in object algebra pattern

Object Algebras can be used to achieve FOSD, and to implement languages
in a modular and type-safe way. Object Algebras are a design pattern, which
provide a generalization of abstract factories and contain a set of parameter-
ized factory methods. The factory methods can be used instead of concrete
constructors to build ASTs. This indirect way of building ASTs enables ex-
tensions in multiple dimensions. This rewrite ensures the extensibility and
modularity of ZipPyOA in theory. A tool called Antlr will be used as the
parser generator to easily parse the grammar.

3.1.3 Make test programs featured specific grammar

Test programs are Python programs. During each iteration, with new gram-
mar added to ZipPyOA, we would use some test program to test whether
the newly added grammar works well on top of Graal VM and Truffle.

3.1.4 Benchmarks

To test that the interpreter fulfill the efficient requirement, we will mark
two time stamp variable start and end using time.time() function. At the
end of each iteration, we will run benchmarks respectively using Python and
ZipPyOA on top of Graal VM and Truffle. If the time is close, we may
believe that the efficiency requirement is met.

Using this iteration methodology, this case study will build up an effi-
cient interpreters for mostly python features on top of Graal VM and Truffle
framework.

3.2 Tools Development for the Framework

The development of framework tools encompasses a variety of software. The
pretty printer and related tools will be developed in Java in cohesion with the
framework’s existing code; it’ll also build upon existing Java libraries. The
Emacs/Vim plugins will be written in Emacs Lisp/Vimscript respectively
and will be relatively more independent.

5

3.2.1 Pretty Printer

The mechanism for pretty printing will be based on Java Annotation: Ac-
cording to the algebraic interface annotations specified for each new lan-
guage that’s developed, an annotation processor will automatically generate
a unique pretty printer for this target language, which knows how to print
various language components respectively in an appropriate way.

Currently, there’s already a first version of the annotation processor
present in the framework. However, it currently has two drawbacks upon
which we’ll improve:

1. It’s still largely primitive and only works for the simplest type of lan-
guage. When the target language gets a bit more complicated, it pro-
duces some error and can’t generate the printer. We’ll fix the bugs and
ensure it can work with all types of languages

2. The printing format is still crude, which means it’s not really a "pretty"
printer: The outputted strings are mostly an amalgamation of text
and are not really pleasant on the eyes. We’ll seek to either utilize
currently existing Java pretty printing libraries or translate a pretty
printing framework from Haskell to use for this purpose.

The expected result would be an annotation processor that has both
functionality and aesthetic quality.

3.2.2 Emacs/Vim Plugin

In order to write codes efficiently in the newly created language, it’s better
for the developers to have something like an IDE(Integrated Development
Environment). However, developing an IDE from scratch is no doubt a
huge task. An alternative would be to write plugins in Emacs/Vim (two
widely used extensible text editors) which will generate appropriate syntax
highlighting and corresponding editing facilities respectively for the target
languages being developed by the users, according to their algebraic interface
annotations.

The plugin development for Emacs will be done in Emacs Lisp, while
the plugin for Vim will be written in Vimscript.

4 Schedule and Milestones

(The following schedule is tentative and subject to potential change)

4.1 Case Study on ZipPy

6

ID Task Duration Start End Comments
0 Scoping 2 weeks 01.09.15 15.09.15
1 Determine scope 2 days 01.09.15 03.09.15
2 Define preliminary 5 days 03.09.15 08.09.15
3 Secure core resources 1 week 08.09.15 15.09.15
4 Scoping Complete 0 day 15.09.15 15.09.15 Milestone 1
5 Configurations 2 weeks 15.09.15 30.09.15
6 Go through Object Algebra 3 days 15.09.15 18.09.15
7 Using Truffle to build programming

language (Mumbler)
1 week 18.09.15 25.09.15

8 Import ZipPyOA project and run ex-
isting benchmark

4 days 25.09.15 30.09.15

9 Finish basic configurations 0 day 30.09.15 30.09.15 Milestone 2
10 Detailed project plan and website 4 days 30.09.15 04.10.15 Milestone 3
11 Go through python grammar 7 days 04.10.15 11.10.15 Milestone 4
12 First iteration for ZipPyOA (Arith-

metic part)
2 weeks 11.10.15 25.10.15

13 Bug fixed for first iteration 3 days 25.10.15 28.10.15 Milestone 5
14 Second iteration for ZipPyOA (Con-

trol flow part)
2 weeks 28.10.15 11.11.15

15 Bug fixed for second iteration 1 week 11.11.15 18.11.15 Milestone 6
16 Third iteration for Zip-

PyOA(Functions and modules)
2 week 18.11.15 02.12.15

17 Bug fixed for third iteration 5 days 02.12.15 07.12.15 Milestone 7
18 Forth iteration for ZipPyOA(Object-

oriented programming)
2 weeks 07.12.15 21.12.15

19 Bug fixed for forth iteration 1 week 21.12.15 28.12.15 Milestone 8
20 Collect and sort data produced during

the previous project
1 week 28.12.15 04.01.16

21 Prepare for presentation 1 week 04.01.16 11.01.16
22 First presentation 5 days 11.01.16 15.01.16 Milestone 9
23 Write and run test cases for prelimi-

nary implementation
5 days 15.01.16 20.01.16

24 Prepare implemented project and in-
terim project report

4 days 20.01.16 24.01.16 Milestone 10

25 Go through project and better test
cases into a wider range

1
month

24.01.16 24.02.16 Milestone 11

26 Test and debug the interpreter on top
of Graal VM and Truffle using general
Python applications and extend previ-
ous implementation

1
month

24.02.16 24.03.16 Milestone 12

7

27 Conclude the implementation and
data, prepare for final report and pre-
sentation

3 weeks 24.03.16 17.04.16 Milestone 13

28 Final presentation 5 days 18.04.16 22.04.16 Milestone 14
29 Project exhibition 1 day 03.05.16 03.05.16 Milestone 15

4.2 Tools Development for the Framework

ID Task Duration Start End Comments
0 Scoping 2 weeks 01.09.15 15.09.15
1 Determine scope 2 days 01.09.15 03.09.15
2 Define preliminary 5 days 03.09.15 08.09.15
3 Secure core resources 1 week 08.09.15 15.09.15
4 Scoping Complete 0 day 15.09.15 15.09.15 Milestone 1
5 Configurations 2 weeks 15.09.15 30.09.15
6 Test existing pretty printer tool 1 week 15.09.15 09.22.15
7 Find suitable Java pretty printing li-

brary
1 week 09.23.15 30.09.15

8 Finish basic configurations 0 day 30.09.15 30.09.15 Milestone 2
9 Detailed project plan and website 4 days 30.09.15 04.10.15 Milestone 3
10 First iteration for pretty printer

(Mumbler language)
1 week 04.10.15 10.10.15 Milestone 4

11 Bug fixes for first iteration 4 days 11.10.15 14.10.15 Milestone 5
12 Second iteration for pretty printer

(general cases)
2 weeks 15.10.15 28.10.15

13 Bug fixes for second iteration 1 week 29.10.15 04.11.15 Milestone 6
14 Third iteration (Integrate the printer

generator with pretty printing li-
braries)

2 weeks 05.11.15 18.11.15

15 Bug fixes for third iteration 1 week 19.11.15 25.11.15 Milestone 7
16 Plugin development for Emacs 1

month
26.11.15 25.12.15

17 Bug fixes for Emacs plugin develop-
ment

3 days 26.12.15 28.12.16 Milestone 8

18 Collect and sort data produced during
the previous work, fix bugs

1 week 29.12.15 05.01.16

19 Prepare for presentation 1 week 06.01.16 11.01.16
20 First presentation 5 days 11.01.16 15.01.16 Milestone 9
21 Prepare interim project report 1 week 16.01.16 23.01.16 Milestone 10

8

22 Plugin development for Vim 1
month

24.01.16 23.02.16

23 Bug fixes for Vim plugin development 5 days 24.02.16 28.02.16 Milestone 11
24 Fix bugs, improve other tools, or help

ZipPy implementation if necessary
1
month

01.03.16 30.03.16

25 Review the project, prepare for final
presentation

2 weeks 01.04.16 17.04.16

26 Final presentation 5 days 18.04.16 22.04.16 Milestone 12
27 Project exhibition 1 day 03.05.16 03.05.16 Milestone 13

9

	Introduction
	Case Study of ZipPy
	Tools Development for the Framework

	Objectives
	Efficiency
	Extensibility

	Methodology
	Case Study on ZipPy
	Choose one part of ZipPy(Python) grammar
	Rewrite grammar in object algebra pattern
	Make test programs featured specific grammar
	Benchmarks

	Tools Development for the Framework
	Pretty Printer
	Emacs/Vim Plugin

	Schedule and Milestones
	Case Study on ZipPy
	Tools Development for the Framework

