
Final Year Project 2015/16

Smartphone Based Vehicle Recorder

Appy Driving
Final Report

Student: Chung Man Ip, Clement

Supervisor: Dr H.Y. Chung, Ronald

Date: Apr 17, 2016

Smartphone Based Vehicle Recorder – Appy Driving

	 2

Table of Contents
Project Background	..	4	

Introduction	...	4	

Conventional vehicle recorder	..	5	

Current Market Analysis	..	6	

Project Objective	..	7	

Features	...	7	

Core Functions	...	8	

Project Methodology	...	9	

Implementation	...	9	

Project Management	...	10	

Project Schedule and Milestone	...	11	

Implementation Detail	..	12	

Phase I – Core Framework	..	12	

Phase II - Camera	...	16	

Initializing AVCaptureSession	...	16	

Finishing Set Up Session	...	17	

Brightness Control	...	18	

Camera Quality Control	..	19	

Capture Session Delegate	...	20	

Video Library Associated	...	20	

Phase III – Realtime Traffic Snapshots	...	22	

Data Fetching	...	22	

Phase IV – Navigation	..	25	

MapViewController – UIViewController import MapKit	...	25	

Phase V – Social Connectivity	...	28	

Smartphone Based Vehicle Recorder – Appy Driving

	 3

AddDriveViewController – UIViewController	..	28	

Design Pattern	..	30	

Source Control	..	30	

Product Testing	...	31	

Camera Module	...	31	

Navigation Module	..	32	

Drive Tracking Module	...	33	

Settings Module	...	34	

Traffic Snapshot Module	...	34	

Future Development	...	35	

Conclusion	...	36	

Smartphone Based Vehicle Recorder – Appy Driving

	 4

Project Background

Introduction

Vehicle Recorders, also known as Dash Cams, are becoming more and more

popular in the Auto Accessories Industry. Currently, there is already a wide variety of

devices existing on the market, however, most, if not all, of them has really similar

characteristics such as having a camera which supports looped recording, with an

external storage card as its primary storage. Although the installation cost for

a vehicle recorder is not cheap, there are great reasons for investing in this gadget.

For instance, the video footage captured can be used as video evidence in cases of

claiming accident insurance, or even proof of innocence in legal inquiries.

This provides a solid proof other than words from the driver, victim, or other

witnesses, and is also a good explanation for the fact that vehicle recorders are

ubiquitous in Russia, which has recorded the highest number of car accidents and

fatalities in 20091.

With the unstoppable advancement in the Smartphone Industry, both the hardware

and software capabilities of them improve rapidly in recent years. Some developers

have started to implement camera-related apps to bring the vehicle recorder features

into smartphones. They made use of the built-in camera and internal storage of the

phone to virtualize a vehicle recorder in the driver’s smartphone, making the

installation of vehicle cameras much easier and cheaper. However, a simple camera

application does not fully utilize the true power of smartphones, especially in regards

with the aspect of social networks.

In this information era, smartphones are actually a portable hotspot for data sharing

through the Internet. Push notifications and social networks have established various

channels to send and receive information via the Internet. On the other hand,

hardware capabilities offer a better user experience as well as value-added functions

compared with a conventional vehicle recorder. For instance, with the data gathered
																																																								
1 http://www.forbes.com/2009/05/19/dangerous-countries-roads-lifestyle-travel-dangerous-
roads_slide_11.html

Smartphone Based Vehicle Recorder – Appy Driving

	 5

by an accelerometer and Global Positioning System (GPS), mobile applications

could provide extra useful information such as car speed and current position.

The aim for this project is to design and develop a Smartphone Vehicle Recorder,

with add-on features that are designed for general drivers.

Conventional vehicle recorder

Vehicle recorders were introduced to police cars in Texas in the 1980s, at that time,

the primary function was to capture everything ahead of the vehicle. With the fading

out of VHS cassettes, the size of the vehicle recorder has become much smaller so

that installation became much easier as well. In the 2000’s, vehicle recorders

entered the domestic auto market, getting more and more common among general

drivers. Drivers who look for extra protection would invest in this gadget in order to

guarantee that there is a video footage of what happened when there are unfortunate

cases of traffic accident.

Variations among different manufacturers of entry-level vehicle recorders are just

mainly between camera quality and size of the recorder2; with some suggesting a

better night view camera but with relatively larger body, while the others offer a

stealth-looking recorder with a smaller size so that it will not block the view of the

drivers. As regular recorders, those with a camera capturing movements ahead and

storing footages in their internal storages, has become saturated in the market,

manufacturers start to implement more value-adding functions to their products. In

an effort to differentiate themselves, products with multiple cameras capturing front

and back views, and products equipped with GPS or G-Sensor to support

geotagging and motion detection start to appear on the market.

It is troublesome to configure the camera settings by just observing the LED light

indicator, or to fine-tune the camera to the desired angle without a preview display,

																																																								
2 http://dashboardcamerareviews.com/dash-cam-comparison-table/dash-cam-comparison-
affordable/

Smartphone Based Vehicle Recorder – Appy Driving

	 6

hence, manufacturers have started to product products which come with a small LCD

panel. This design allows the drivers to check whether the camera is really working

during road trips, thus having a peace of mind that every moment is being captured.

Current Market Analysis

Of over one and a half million applications available on the App Store, applications

related to vehicle recording can be categorized into two main streams- one being an

individual application that offers a Dash Cam function, while the other is developed to

work cooperatively with a physical vehicle camera. However, only a few of the

applications could leverage the true power of smartphones, such as network

accessibility and multi-tasking capability, to bring added values for the users.

According to a recent research shown above3, most drivers in the United States are

looking for smartphone applications that offer a map function, while less popular

functions are music-playing and place-finding. This research indicates that drivers do

want to utilize their smartphones to assist themselves with their driving, hence

providing additional information to them.

																																																								
3 http://www.statista.com/statistics/428070/types-of-apps-downloaded-by-car-drivers-us/

83%

38% 35% 28%
16%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Map apps Apps to listen to
music

Apps to find a
restaurant

Apps to find a gas
station

Apps to find a
hotel

Types of apps downloaded by car drivers in US
2015/Apr

Smartphone Based Vehicle Recorder – Appy Driving

	 7

To conclude, there is clearly a gap between existing products currently on the market

and user expectations. Undoubtedly, standalone applications are sufficient to fulfill

the need of a particular function, but the needs may vary based on different locations

and time factors. In order to bridge the gap between the existing market and user

expectations, it would be advantageous to have an application that can satisfy

various drivers’ needs regardless of where and when they are, and utilize the full

capabilities of smartphones to enhance the user experience.

Project Objective

“Appy Driving” – the name of the application of this project, aims to offer an all-in-one

platform that includes multiple functions to satisfy the general drivers’ needs. Various

functions will be delivered as modules that run on top of the core framework. This

idea of modular design is similar to relationship between applications and operating

system in modern computers. Likewise, there will be multiple applications running on

the smartphone platform; hence the name “Appy” literally means functions with

modular design like applications installed on smartphones.

Features

1. User Customization

Users can organize their own application layout according to their preferences. Each

module can be independently shown or hidden, and display in whatever order within

the core framework. Instead of utilizing a view stack provided by Navigation

Controller, that allows user go back and forth within the view hierarchy. Appy adopts

a brand new resign pattern which enables multiple view controllers on one view

container, a scroll view container, to navigate among different modules. If some of

the modules will not be used for a long period of time, users can simply move them

into disabled modules in Settings, this does not affect the use of other modules.

Smartphone Based Vehicle Recorder – Appy Driving

	 8

2. Optimal Video Quality

For an accident video footage captured in just a couple of seconds, drivers would

want to capture every single pixel as clear as possible, in order to retain a strong

proof as an evidence. However, the higher video quality the more space consumed,

and the other applications’ service would be affected if the video files use up all the

storage space. Appy will automatically adjust the best video quality according to the

hardware capabilities of the users’ phone. Users are able to control the time interval

of loop recording, so that can achieve a balance between storage usage and video

quality.

3. Tracking and Social Connectivity

As driving holidays are getting popular these days, capture the moment of travelling

across countries is another interesting usage of Appy. Driving is not alone anymore

with social features implemented. Users can share their video footages and routes

with friends or even other drivers, discuss on the experiences encountered on roads

and highways. This sharing platform gathers comments from drivers, thus ultimately

contributes to the resources base of this application. For instance, users can suggest

travel routes to others, if the other drivers find it useful, they can up vote the content

as well as the contributor.

Core Functions
The table below briefly describes each module and its functions:

Modules Functions

Core Framework • Multi-modules Available

• User Customization

Vehicle Camera • Looped Recording

• Read-only Flags

• Adjustable Quality and Brightness

Navigation • Way-finding

Traffic News • Instant Traffic Snapshot

Social
(future)

• Drives Tracking

• Share Videos/Routes

Smartphone Based Vehicle Recorder – Appy Driving

	 9

Project Methodology

Implementation
The whole project consists of a front-end mobile application as well as a back-end

server. For the front-end mobile application, it would include basic vehicle camera

functions and value-added functions with modular design in order to enhance the

overall user experience. In the smartphone industry, iOS and Android are the two

most common operating systems, with the number of applications available in the

App Store on par with the Play Store. This project will be built on the iOS platform

targeting iOS 8.0 first, due to lesser variations regarding both hardware and software

aspects, so that the quality and user experience controls would be easier to manage.

The development of the application for Android platform would be discussed in the

future development.

For the back-end server, it would be responsible for the content management service

of the application, and also as a database for the primary storage of information.

Regarding the development platform, Ruby on Rails would be a desirable candidate

in terms of its scalability and flexibility, as it offers advantages both in the database

management and migration. There will be two environments, development and

production respectively, for the deployment of the back-end server. Both

environments will be almost the same with regards to the design, structure and

functions. However, the development environment will be mainly for internal testing

only, while the production environment will be solely for public usage. This practice

can stabilize the deployment since the external database is being isolated with the

internal one, hence the public users’ data will be safe even if there is a critical failure

encountered in the testing stages.

Smartphone Based Vehicle Recorder – Appy Driving

	 10

Project Management
Since the application is based on a modular design, the whole project will adopt the

Phased Methodology in order to design and implement the system. The development

cycle will be categorized into five phases, with the earlier phases focusing on the

core framework and basic functions such as working as a vehicle recorder while the

latter phases would be value-adding add-ons built on top of the core framework.

Each module can be tested independently and thus guarantee the quality of the

deliverables.

Phase I •  Core
Framework

Phase II •  Vehicle
Camera

Phase III •  Traffic News

Phase IV •  Navigation

Phase V • Social

Smartphone Based Vehicle Recorder – Appy Driving

	 11

Project Schedule and Milestone

Tasks Pre-

decessor

Expected

Start Date

Expected

End Date

Duration

(days)

Milestone

A: Meeting with supervisor

Preliminary requirements

gathering

- Sep 14

2015

Sep 24

2015

10

B: Finalize scope of project A Sep 24

2015

Oct 4

2015

11 Project Plan

Project Webpage

C: Phase I Coding and

Testing

A Oct 4

2015

Oct 31

2015

28

D: Phase II Coding and

Testing

C Nov 1

2015

Nov 30

2015

30

E: Examination Break - Dec 1

2015

Dec 23

2015

23

F: Phase III Coding and

Testing

D Dec 23

2015

Jan 18

2016

27

G: Interim Testing and

Evaluation

D, F Jan 18

2016

Jan 24

2016

7 Interim Report

Product Prototype

H: Phase IV Coding and

Testing

F Jan 18

2016

Feb 25

2016

39

I: Final Testing and

Evaluation

H, I Apr 1

2016

Apr 17

2016

17 Final Report

Finalized Product

J: Project Exhibition and

Presentation Preparation

Documentation

J Apr 18

2016

May 3

2016

16 Project Exhibition

Materials

K: Phase V Coding and

Testing

H Feb 25

2016

Mar 31

2016

36

Smartphone Based Vehicle Recorder – Appy Driving

	 12

Implementation Detail

Phase I – Core Framework

In this phase, the objective is to implement a back-end server as well as design and

create the core framework of application itself. For the former part, a server that

running Ruby on Rails was set up via the department of Computer Science, HKU.

The system and database schema was initialized and ready for phase V

development in the near future. On the other hand, UI design was done and

implemented as a core framework of the application.

Instead of using traditional Navigation Controller model with several segues pointing

to other Model-View-Controller (MVC) instances, Appy adopts separate MVC

structure in order to enhance the user experience and maintenance. With isolated

MVC instances, users are able to navigate different functions by simple swipes.

Moreover, it is more maintainable in terms of testing and maintenance as a result of

separate MVC with minimal amount of dependencies. Each MVC instance contains a

storyboard instance as view, .swift file as view controller and other data formats such

as Core Data in iOS as model.

Module

Model

ControllerView

Smartphone Based Vehicle Recorder – Appy Driving

	 13

For each MVC instance, each consists of three main domains, Model, View and

Controller. Model Objects represent the data source of module, this could be a media

file, routes, or even a MVC instance, but not limited to the above. In some complex

case of model object, relational database would be implemented by Core Data

framework. Model should not have connections with View, in order to ensure a

strong encapsulation.

View Objects purely represents the instances that is visible to user. For instance, the

image view that contains the image, image itself is regarded as Model but the view

that contains it will be regarded as View. A major purpose of view objects is to

display data from Model Objects properly, and enable editing by providing input text

fields or buttons. In iOS development, view objects are usually reusable and

reconfigurable as they are independent from the content actually. This approach

could reserve resources and reduce the time of re-generating loads of view objects.

When the user scrolls down the

table view, actually there is not

any new cells instantiated.

Instead, scrolling down the table

would make the upper cell

become invisible to user, then

the system will do recycle job by

collecting back the upper cell

objects, renew the content to be

displayed, add to bottom of

table view when it lastly

becomes visible to user.

Smartphone Based Vehicle Recorder – Appy Driving

	 14

Last but not least, Controller Objects acts as a bridge between Model Objects and

View Objects. A controller determine which and how data to be displayed on screen

by using what view containers, for example, an instance of UITableViewController

determine the number of sections and number of rows to be displayed, also it will

control which attributes of data to be shown in a single cell. Another major role of

Controller is that to listen user inputs on view objects, within the same example as

above, if users select a cell it will notify the controller that a certain cell was selected,

then the controller instance will provide feedback by fetching model objects or some

logic computations, and ultimately display the results on view objects. Controller

itself is not limited to its own MVC structure, it could also direct the user to another

MVC structure by sending segues or adding to view hierarchy.

As the figure shows, there are arrows representing segues between MVC instances.

Smartphone Based Vehicle Recorder – Appy Driving

	 15

Separate MVC structure on top of core framework delivers a more organized way of

modules; users can choose which to stay and which to hide according to

preferences, as well as performance/battery consideration. In Settings page, Appy

implemented a swipe to select gesture to have a greater extent in terms of user

experience. The demonstrations are as follows:

Smartphone Based Vehicle Recorder – Appy Driving

	 16

Phase II - Camera

Stepping into second phase of deployment, the main function in this phase is to

implement the camera recording function. In order to make use of built-in camera

devices of Apple devices, there are two classes available in Swift 2.0 to enable the

vision: UIImagePickerController and AVCaptureSession. UIImagePickerController

manages user interfaces for taking images and movies, and for choosing

the media from user library (i.e. Camera Roll in Apple devices). Comparatively,

AVCaptureSession is just an interface to coordinate the flow of data from AV input

sources to outputs, without the media picking function and built-in camera function

like HDR and flash control. General users may be more familiar with former interface

as it is the same as iOS built-in camera app, but Appy camera is implemented

according to the AVCaptureSession as it suggests a much more powerful camera

interface than UIImagePickerController.

Initializing AVCaptureSession
In AVCaptureSession, input devices available to the class are front and rear camera,

microphones, etc. In order to perform a real-time image taking or video shooting,

after creating an instance of AVCaptureSession the application requires handling

various input devices and adding them into the current session. After that, configure

appropriate output format and preset to manage the quality as well as output format.

The quality of video will be adjusted automatically according to the preferred space

set by the user, to achieve this several video preset are used as follows:

sessionPreset Properties

AVCaptureSessionPreset3840x2160 Suitable for extremely definition video output

AVCaptureSessionPresetHigh Suitable for high definition video output

AVCaptureSessionPresetMedium Suitable for sharing over WiFi

AVCaptureSessionPresetLow Suitable for sharing over legacy cellular

network

AVCaptureSessionPresetPhoto Suitable for high resolution photo output

Smartphone Based Vehicle Recorder – Appy Driving

	 17

Finishing Set Up Session
After setting up all the inputs, outpus and session presets, it is time to begin the

AVCaptureSession to start the flow of data. It is absolutely a good feature if the user

can see what the camera sees, so it is also required to set up a preview layer on top

of the view hierarchy after setting up the AVCaptureSession.

Screenshots of camera preview layer

Users can directly know what the camera input is and make further adjustment

according to the result. Moreover, having a preview layer can also suggest the

camera is working properly without any error while recording. Since users cannot put

much focus on the application during driving, the preview layer acts as a monitor that

shows what would be included in the video footage.

Smartphone Based Vehicle Recorder – Appy Driving

	 18

Brightness Control
More importantly, there is a huge contrast of brightness in daytime and night. What if

the users do not want to solely rely on the automatic settings of built-in camera?

Appy introduces a pan gesture recognizer on top of preview layer to act as a

brightness slider. So simply swipe upward or downward the brightness of camera

can then be adjusted, simplify the actions that may require few more steps. In order

to achieve this, firstly it has to add a UIPanGestureRecognizer object to listen the

vertical gesture on layer, and then multiply a certain scale factor to adjust the

brightness value.

Screenshots of different brightness values

To change brightness control back to automatic mode, just double tap on the screen

and the brightness value will be automatically updated. Adding gesture recognizers

to listen what user inputs would offer a better interactive between the application and

users, also suggest a user-friendly control manner in terms of user experience.

Smartphone Based Vehicle Recorder – Appy Driving

	 19

Camera Quality Control

Appy default sets the session preset to high, though users can toggle between

various presets mentioned before. As the trend of iPhone storage capacity getting

larger to enormous nowadays, this setting may not affect every user. However,

imagine that someone using his/her legacy iPhone 4s or 5 to be a vehicle recorder,

lowering the quality setting would definitely ease the resources pressure as well as

storage consumption.

In iOS 9, Apple announced the latest 4K camera featured in latest model of iPhones,

Appy also suggest 4K recording if the device support such high resolution. Users can

capture every spectacular moment during driving when setting the ultra high quality,

even though the battery and storage consumption will ramp up a lot compared to

normal 1920x1080 full HD recording.

Screenshots of switching quality on iPhone 5

Smartphone Based Vehicle Recorder – Appy Driving

	 20

Capture Session Delegate

Apple iOS uses delegate method to send notifications of certain actions have been

done or is going to be done. AVCaptureSession also has its own delegate class to

do listening jobs on capturing events. For instance, the implementation of loop

recordings require the delegate method to tell whether a video has been successfully

written to persistent storage or not, and when to start next recording, etc.

Since writing files, especially video files has large file size, it is regarded as risky

operations due to I/O performance. Listening to delegate methods can minimize the

risk of data lost or system crash as a result of waiting completion of previous I/O

operation.

Video Library Associated

In the AVCaptureSession implemented in Appy, the footages are directly write to

persistent storage under the application sandbox rather than saving them to Camera

Roll, i.e. the default media manager built-in by iOS. Having this approach because

Appy may further process the footages to route tracked, or social platform to share

with others. In this case, it is necessary to build a video library on scratches for

reviewing the footages.

The video library consists of three MVC structure and an entity in Core Data. They

are a UITableViewController as the video library, a UIViewController as the detail

view of video and a UITableViewCell as the cell to represent a video.

Video Library – UITableViewController
In this table view controller, the data source and delegate are integrated to one

single file for easy maintenance. The data source is fetched from Core Data using

the AppDelegate, and return an array of file names as identifier. Originally this was

done by returning the file list of directory, this is a less complex manner to manage a

list of video that stores under same directory. However, the old approach will miss

the functions of having relationship among other entities and the multi-attributed

Smartphone Based Vehicle Recorder – Appy Driving

	 21

content of certain video. Therefore, in the latter part of implementation, the approach

was migrated to Core Data and mount up relationship with drives tracked.

Video Library Cell – UITableViewCell
The standard table cells only

support text display and a small

thumbnail, but this is not big

enough to see the detail of video.

Thus, the table used a custom cell

rather than system defaults, this is

due to the support of larger

thumbnail and more than two text

labels available for each cell,

 and hence, there is another

UITableViewCell class manages it.

Each cell has added three edit

actions to perform actions like flag,

show detail and delete, if a video is

being flagged then the delete

function is hidden to protect user

accidentally delete it.

Smartphone Based Vehicle Recorder – Appy Driving

	 22

Video Detail View Controller - UIViewController
When the users press “More”, it will perform segue to the video detail view controller.

This controller is the last piece of puzzles of entire video library implementation, it

shows the video in a full screen manner and allows user to rename the video as they

wish.

Phase III – Realtime Traffic Snapshots

In this phase, the main functionality is to provide the real time traffic situation in Hong

Kong. At the beginning, this idea was related to RSS feeding from Traffic Department

of Hong Kong, and then parse the content to a UISplitViewController. This approach

would enable user to input their own RSS feed to retrieve different source of traffic

news. However, RSS feed

only support text-only news

generally, populate a table with

text-only would not be a user-

friendly way to do so. Based on

such concerns, the idea was

switched to obtain real-time

snapshot provided by Traffic

Department of Hong Kong.

Data Fetching

There are real-time snapshots from 183 camera located in various region in Hong

Kong, they are available to public in the official website of Traffic Department, as well

as Data-One government database. The data fetching process consists of three

steps:

1. XML Parsing
To start with, Appy needs to identify the latest URL of image and camera location.

Such information could be accessed from an XML configuration file on Data-One

Smartphone Based Vehicle Recorder – Appy Driving

	 23

database, http://data.one.gov.hk/code/td/imagelist.xml, which includes all the camera

identifier and camera location.



Sample of Camera Infromation

This action requires the NSXMLParser class and its delegate class to fetch XML file

into useful array of information.

After the parse completed, the information will be stored as an array of dictionaries.

2. Table View Populating
Here comes to step 2, after fetching the XML

configuration file now it has a dictionary of data

specifies the camera identifier and location, thus

populating a table view is feasible using such

information.

The table view is multi-sections according to the

number of region from data source, and each

section will display the camera location within

that particular region.

Smartphone Based Vehicle Recorder – Appy Driving

	 24

Delegate methods listen to the tap action on cell, if the

cell is being tapped the image fetching process would

undergo. Moreover, the row height property of cell would

increase in order to fit the image fetched.

UISearchController enables the indexed searching within

the table, the search bar is hidden under the navigation

controller. When user want to search a specific camera,

type the query and the table view will automatically

update the matched results.

3. Image Fetching

The cell that pressed would pass the identifier of that camera to image fetching

method, this method take camera identifier as an argument and return a UIImage to

caller. Noted that the internet connections may not be stable using cellular network,

this method will be ran using Grand Central Dispatch (G.C.D.) context-switching

approach to do multi-tasking.

The main queue is responsible for view reaction and to ensure the application is

being responsive all the time. According to Apple User Experience Guideline, time-

consuming task shall not use the main queue otherwise the application

responsiveness would dramatically decrease.

Fetching image would be regarded as User-Initiated action as it is also vital for

ensuring a good user experience. After fetching the UIImage, the UI update method

will be call back on the main queue and therefore the image would be shown on

screen.

Smartphone Based Vehicle Recorder – Appy Driving

	 25

Phase IV – Navigation

In this Navigation Phase, the deliverable is a way-finding kit for driver. Several

applications offering similar functions are already exist in App Store, for instance,

Google Map, AutoNavi, or even the built-in Apple Map. All of them provide very good

navigation and detail of map, but Appy also offer some new functions to drivers

seeking for the best path.

The implementation of this part uses the MapKit framework provided by Apple, the

reason of not choosing third-party map framework is that the inconsistency between

user interface and bridging methods. Similarly, there are two MVC structure were

used to populate a map view and a searching table.

MapViewController – UIViewController import MapKit

This is a basic view controller that contains

a MapView on top of it, and confront to the

MKMapViewDelegate protocol to listen for map

view notifications.

The map view also listens to a gesuture recognizer

LongPressGestureRecognizer to enable user to add

its own waypoint without searching for an exact

place.

Smartphone Based Vehicle Recorder – Appy Driving

	 26

On top of that, it also confront to a self-defined protocol HandleMapSearch. This will

active when user select a location from the populated search result table view.

When there is a waypoint selected, regardless from long pressing the map or select

from search result table, it will create an annotation on map view and display the

corresponding information regarding the location selected. The most important part

of this phase, is to calculate the best route for drivers, so there is a small button with

a vehicle icon. Trivially, pressing that car button will process the route calculation

method, when there is a possible result it will then automatically draw on the map,

and set the GPS tracking stick to the user current location with heading support.

But it could be understand that sometimes driver may accidentally run into the wrong

way, and all of the settings have to be redo once again. But using Appy navigation

module this would not be a problem at all. Appy will automatically draw a new route

for users if they drive too far from the highlighted route, drivers so that can remain

Smartphone Based Vehicle Recorder – Appy Driving

	 27

focus on their driving without worrying to set up a new location direction from current

user location. On top of that, it also confront to a self-defined protocol

HandleMapSearch. This will active when user selects a location from the populated

search result table view.

With the latest iOS 9, the map can also reflect traffic situation on map.

Smartphone Based Vehicle Recorder – Appy Driving

	 28

Phase V – Social Connectivity

This is the last phase of the entire project, however, unfortunately this part is yet to

be finished in near future. Social connectivity is a hot trend in the internet world,

everyone can interact with other users via internet on social platform, this social

connectivity also enhance loads of media sharing among the huge internet world.

The idea was that Appy allows user to share their route and footage via the backend

server and some online video sharing platform, then users can comment and share

their drive like a blog.

Therefore, in this stage the implementation has to make route tracking possible

beforehand. The term Tracking was introduced with the rise popularity of health

products recently, like Apple Watch allows user to track their daily health issue.

Imagine that having a wearable for land vehicle, it tracks the drive and compute the

average speed and speed analysis to user, providing more information other than

just a point to point route.

The tracking development consists of four separate classes, and of course an entity

stored in Core Data. There are three MVC structures, a new tracking page, a library

represents a list of tracking and a detailed view of route respectively. Lastly, there is

one class to perform speed analysis and render a speed graph on map.

AddDriveViewController – UIViewController
This class is used to start tracking from current user location, keep tracking activities

until the users press stop tracking. The location information is retrieved from Core

Location framework, a CLLocationManager instance to provide real-time location.

Moreover, the location is filtered by horizontal accuracy in order to obtain the most

accurate information under an acceptable tolerance error.

Smartphone Based Vehicle Recorder – Appy Driving

	 29

When there is a new location data processed, the tracking page will calculate the

distance travelled and log the timestamp of each location data, once all the data

recorded to Core Data database, the analysis part will take part of each location data

to see the speed distribution of that drive.

For the speed analysis, it will uses three

color to represent the speed categories, with

green is the fastest, yellow the middle and

red the slowest. By having an analysis of

different routes, users can find out which

path is more likely to have traffic jam while

the others don’t.

Smartphone Based Vehicle Recorder – Appy Driving

	 30

Design Pattern
One of the drawback of separated MVC structures is that some core services may

be instantiated twice or more in order to fulfil different needs from MVC structure. For

instance, the Core Location service instance CLLoactionManager helps to retrieve

the user current location from GPS and A-GPS. In Appy, both the tracking part and

navigation part requires the use of location data, that would possibly mess up by

creating two location manager instances, and report to different controller

independently. As a result, there is drop of performance and waste of system

resources if objects are duplicated, and also it is difficult for developers to trace back

errors, resulting in a time-consuming maintenance required.

Avoid such situation from happening, the development of Appy adopted a popular

design pattern, Singleton, as the solution to duplicate instances. Singleton pattern

restricts the number of instance of a class to one object only, which is a global

variable among whole project. It usually uses lazy declaration to create the shared

instance only when it is needed, other classes or instances are not allowed to

instantiate object from that class.

Based on this design pattern, the class itself needs to instantiate itself as a global

class variable, and makes its initiator become private function so that other classes

cannot instantiate instances from it. Moreover, the class requires to set up public

APIs for that single shared instance to be called. The CLLocationManager and

NSFileManager classes in Appy are implemented in Singleton pattern, as the read

and write operations to sandbox and current location data are usually required

among all the MVC structures.

Source Control
Source control, or version control, is a system that records changes to a set of files.

In this case, the entire project is under monitoring by version control system by using

Git protocol. Having source control in the project definitely eases the burden of

maintenance, especially when attempting to add new features to existing classes. If

one of the newly added function critically crashed the entire project, rather than doing

Smartphone Based Vehicle Recorder – Appy Driving

	 31

undo for thousands time, a source control enabled project can revert to stable

version swiftly. Detailed historical information on files can act as an automatic

backup of project with versioning supported, also making branching far away from

troublesome.

Product Testing
Within the final testing and evaluation period, there were several tests performed to

test the functionality of Appy modules.

Test 1 was executed on 15th April 2016 on iPhone 5 iOS 9.3.1 (13E238)

Camera Module

Smartphone Based Vehicle Recorder – Appy Driving

	 32

Navigation Module

Smartphone Based Vehicle Recorder – Appy Driving

	 33

Drive Tracking Module

Smartphone Based Vehicle Recorder – Appy Driving

	 34

Test 2 was executed on 17th April 2016 on iPhone 5 iOS 9.3.1(13E238)

Settings Module

Traffic Snapshot Module

Smartphone Based Vehicle Recorder – Appy Driving

	 35

Future Development

In the future, Appy development would focus on the remaining part of Phase V that

utilize the social capability of a smartphone. The remaining part can be divided into

two parts, first part is the back-end API that allows user update their route via a .gpx

file and JSON, while the second part is the front-end user interface and

implementation.

For the former part, since handling loads of media data would incur a large demand

to system resources, the back-end server itself is not able to handle huge media files

at this stage. Instead, processing the locations detail and a URL of video uploaded to

other platform would be an easier approach to do so. Locations data can be pass by

JSON, plist or .gpx file while the video URL can be represented by String. Storing

these light-weighted data is more practical regarding the maintenance and stability.

On the other hand, the front-end application needs to add few more MVC structure to

enable social connectivity feature. Data could be parse by JSON and store within the

Core Data Entities, while media file stay in the internal directory of the application

sandbox. In the future, Appy aims to connect with other social platform such as

Facebook and twitter by connecting public API from service supplier.

After finishing all five stages, the software development cycle moves to a testing and

evaluation period, mainly focusing on fine tuning and bugs fix. The back-end server

can upgrade to become a remote logger which gathers user anonymously error

reporting. Moreover, as iOS SDK and Swift language updates rapidly the application

also needs to be stay updated to catch the latest features.

Smartphone Based Vehicle Recorder – Appy Driving

	 36

Conclusion

Drivers would think vehicle recorder is only a device that capture the moments of car

accidents, but apart from obtaining an evidence footage there are more features can

be added on top of a plain vehicle recorder. This thought leads to the theory behind

Appy, a multi-functional vehicle recorder application on iOS platform.

Designing application for drivers is unlikely to be same as an ordinary phone

application, a handy user experience is the number one priority since no one would

want the drives being distracted during driving. To enable various functionality

working simultaneously within one application, Appy adopts a structural Model-View-

Controller design pattern to break down a complex system into small, simple

subsystem. As a result, a customizable user interface can be achieved by gathering

many subsystems into one, with the objective to fulfill more users needs.

