Navik H < Navigation

200 m
TEMIFE Island House L.
from FEMFE Island House L... v E & Nam Wan Road

to H#¥4T Sui Cheung Street v

Sam Mun Tsai
New Village

FIiEEE Nam Wa

BEEF: Hiu

200 m
33828 Nam Wan Road
1.1km 24 km/h

Programming an
intelligent watch

Navik - Cycling navigation, with smartwatch compatibility

Final Report

CSISo8o1 Final Year Project, Department of Computer Science, The University of Hong Kong

0 Table of Contents

0 Table of Contents
1 Introduction
1.1 Abstract
1.2 Team
2 Overview
2.1 Project Background
2.2 Existing Solutions Analysis

2.2.1 Google Maps with Navigation

2.2.2 Garmin Bike Computer with Navigation

2.2.3 HammerHead
2.3 Objectives
2.3.1 Route Planning
2.3.2 Route Analysis
2.3.3 Turn-by-turn Navigation
2.3.4 Smartwatch Capability
2.4 Requirements
3 Methodology
3.1 Software Development Process
3.2 Platform
3.3 Project Dependencies
3.4 System Architecture
3.4.1 Model View Presenter (MVP)

3.4.2 Strategy Pattern

Programming an intelligent watch | Final Report

54

10

11

12

12

12

12

12

13

14

14

15

15

16

16

17

3.4.3 Observer Pattern
3.4.4 Dependency Injection
4 Design

4.1 Contract Module

4.2 Core Module
4.2.1 Location Module
4.2.2 Geocode Module
4.2.3 Elevation Module
4.2.4 Map Module
4.2.5 Directions Module
4.2.6 Navigation Module
4.2.7 Wear Module

4.3 Injection Module

4.4 Preference Module

4.5 User Interface Module
4.5.1 Application and Activity Module
4.5.2 Fragment Controller Module
4.5.3 Fragment Module
4.5.4 Presenter Module
4.5.5 Decorator Module
4.5.6 Widget Module

4.6 Wear Companion Module
4.6.1 Core Module
4.6.2 Background Module

5 Implementation and User Interface

Programming an intelligent watch | Final Report

54

18

19

20

20

21

21

22

22

23

24

26

26

27

28

29

29

30

31

32

33

33

34

34

34

35

5.1 Core User Interface 35
5.2 Route Planning 36
5.3 Route Analysis 37
5.4 Turn-by-turn Navigation 38
5.5 Wear Companion Application 39
6 Testing 40
6.1 Methodology 40
6.2 Testing Environment 40
6.3 Test Cases 41
6.3.1 Route Planning 41
6.3.1.1 End to End Route Planning 41

6.3.1.2 End to End Route Planning from Current Location 41

6.3.1.3 End to End Route Planning to Current Location 42

6.3.1.4 Route Plannning with One Waypoint 42

6.3.1.5 Route Planning with Multiple Waypoints 43

6.3.1.6 Circular Route Planning with One Waypoint 43

6.3.1.7 Circular Route Planning with Multiple Waypoints 44

6.3.1.8 Import External Route via GPX file 44

6.3.2 Route Analysis 45
6.3.2.1 Perform Route Analysis 45

6.3.3 Turn-by-turn Navigation 46
6.3.3.1 Perform Navigation Simulation 46

6.3.3.2 Perform Real Navigation 46

6.3.4 Wear Companion Application 47

6.3.4.1 Perform Navigation Simulation with Wear Companion Application 47

Programming an intelligent watch | Final Report

6.3.4.2 Perform Real Navigation with Wear Companion Application

7 Schedule
7.1 Milestones
7.2 Timetable
8 Conclusion
8.1 Future Improvements
8.1.1 Search for Locations from Name
8.1.2 Better Waypoint Management
8.1.3 Save and Load Planned Route
8.1.4 iPhone and Apple Watch Port
8.1.5 Publish to Google Play Store
8.1.6 Online Community
8.2 Reflections

9 References

Programming an intelligent watch | Final Report

54

48
49
49
50
51
51
51
51
51
52
52
52
53

54

Page 6 of 54

1 Introduction

1.1 Abstract

Navik is a cycling navigation solution, with route planning, route analysis and
turn-by-turn navigation ability.

Navik aims at providing offline, low cost and cycling specific alternative to existing
solutions.

Just a glance at your wrist. Enjoy an uninterrupted cycling experience with the extended
display and notification on your fashionable smartwatch.

As a cycling enthusiast, I proudly introduce Navik to you.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 7 of 54

1.2 Team

Student: Lam Ka Fun Gavin
Supervisor: Prof Lau Francis

Project site: https://i.cs.hku.hk/fyp/2015/fyp15024

Contact e-mail: me@gavin.hk

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

https://i.cs.hku.hk/fyp/2015/fyp15024/
mailto:me@gavin.hk

Page 8 of 54

2 Overview

2.1 Project Background

There are various navigation solutions available on the market. However, for cycling?
Limited.

If you look towards the ordinary navigation solutions, it does not suit very well. It is
likely that you would end up finding yourself riding on a highway or into a cross harbour tunnel.
Moreover, such solutions cannot satisfy your unique requirements for cycling. In addition,
what if you have no data connection when you are riding in the middle of nowhere?

If you look towards bike specific navigation solutions, make sure you have a deep pocket. A
bike computer with navigation functionality would probably costs more than your bike.
Besides, why bother purchasing a specific navigation device when we are living in the
‘smartphone era’?

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

15 [FMed

Jackson St

Chinatown San Francisco &

%
[
%

ento St

sifomiast— — :
-——california (11 Parallel 37

\\ _\

9 min _
11mi 8:28AMETA

Google Maps is a cross platform online application with comprehensive maps throughout
the globe. Voice-guided navigation is available for driving, public transit and walking. Live
traffic condition, street view and point of interests information are also available.

Advantages

Free of charge

Compatible with smartwatches

Route construction with intermediate destinations
Provide maps and turn-by-turn navigation display

Disadvantages

Cannot load custom routes

No offline navigation support and limited offline map data

Not support round trip navigation, which is important for cycling
No cycling specific navigation and related functionalities available

Programming an intelligent watch | Final Report

Page 10 of 54

2.2.2 Garmin Bike Computer with Navigation

Garmin produces bike computers of different levels and prices. Model with navigation
functionality ranges from USD$249.99 to USD$599.99. User can connect the device for data
transmission with computers via cable or the companion smartphone app via Bluetooth.

Advantages

e Feature rich bike computer
O Compatible with wireless bike sensors (not included), such as speed sensor,
cadence sensor, heart rate monitor and power meter
e Provide cycling specific route construction with round trip and intermediate
destinations support
Support external routes import, such as GPX files
Provide maps and turn-by-turn display
Provide route analysis, such as distance and elevation data
Offline map data by OpenStreetMap

Disadvantages

e Expensive for casual and amateur riders
Require manual update for system and map data
Closed and proprietary system, thus the device is very specific and cannot have other
use

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 11 of 54

HAMMERHEAD

Find your way and discover new ones

2.2.3 HammerHead

HammerHead is an innovative navigation device mounted on your bike. The device will
notify users with light signals when you need a turn.

Users have to connect the device with their own navigation app running on your smartphone.
They offer the physical device for USD$104.99 (with mount) and the companion smartphone
app for free.

Advantages

e Provide cycling specific navigation with intermediate destinations
e Support external routes import, such as GPX files
e Cross platform route sharing via iMessage, Email, Twitter, Facebook and Whatsapp

Disadvantages

e Expensive for the physical device with limited usability
Easy to miss the turning light signals
There are limited information provided on the display of the device
O For example, map and route display would be useful
e Riders typically mounts cyclometer on their bike, having an extra device mounted
would not be an elegant solution
O Messy mounts, extra weights and air resistant are not preferred
Using online map and navigation service
Not support round trip navigation, which is important for cycling

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 12 of 54

2.3 Objectives

2.3.1 Route Planning
Allow user to plan a route by providing starting point, destination and waypoints.

Equip with cycling specific auxiliary route planning features as well.

2.3.2 Route Analysis

Allow user to have an insight into the planned route.

2.3.3 Turn-by-turn Navigation

Give turn-by-turn navigation on planned route.

2.3.4 Smartwatch Capability

Allow user to look at general instruction and get notified during navigation with
smartwatch connected.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 13 of 54

2.4 Requirements

An Android application running on smartphone of latest Android version

Provide offline map display

Construct route with round trip and intermediate destination
Provide external routes import via GPX files

Provide route analysis, such as distance and elevation data
Provide turn-by-turn navigation

Provide real-time information, such as speed and distance remaining

An Android Wear companion application

e Turn-by-turn navigation with intuitive visual instruction and vibration
notification
e Provide real-time information, such as speed and distance remaining

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 14 of 54

3 Methodology

Requirements Analysis & Design

B
_"“-:H N
i C{}
i \'\ -, Implimentation
2
Initial Deployment
Planning
Evaluation Testing

3.1 Software Development Process

Incremental model will be applied.

The whole project is divided into several incremental builds. Working implements will be
delivered after each milestones. Each release adds functions to the previous release.

Thus enabling faster delivery of working release and more flexible design. Risks are
easier to managed as risky components are addressed individually.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 15 of 54

3.2 Platform

Java 1.7 on Android OS

Build for Android 6.0 Marshmallow

Backward compatible from Android 4.0 Ice Cream Sandwich to Android 5.1
Lollipop

3.3 Project Dependencies

Gradle 1.5 for dependency management

Guava, Apache Commons Lang3 and Lombok for enriching Java functionality
Dagger for dependency injection

ButterKnife for view and resources injection

JDeffered for promise pattern

Android support library, Android Appcompat library and Android design
library, Android Cardview for ensuring backward compatibility

Google Play Services Wearable for communication with Android Wear devices
Skobbler SDK 2.5.1 powered by OpenStreetMap for the map rendering, map data,
route construction and navigation

Google Elevation API for elevation information query

MPAndroidChart for chart rendering

NoNonsense-FilePicker for file selection

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 16 of 54

3.4 System Architecture

3.4.1 Model View Presenter (MVP)

user events updates view

Presenter

updates model state-change events

Model View Presenter is an architectural pattern for clear separation between
presentation and business logic. It eases maintenance and make the code more manageable.

Model represents pure domain model which serves as the data layer and business layer.
View contains the UI components and related event handling logic.

Presenter handles the communication between models and views.

For this project, models are the data models and business logics. Views are the Android
views, fragments and activities.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 17 of 54

3.4.2 Strategy Pattern

Context s == interface ==
strategy | Strateg y IStrategy
Behaviolnterfa il
+zome_method(): void EEN VG e Rl v
A A
I
__________ I e ch el el el S e £
I I I
I I I
ConcreteStrategyA ConcreteStrateqyd ConcreteStrateqgyC
+Behavion nterface void +Behavion nterface void +Behavion nterface void

Strategy pattern splits the behaviour from the interface. It isolates the algorithms in
separate classes in order to have the ability to select different algorithms at runtime. The
caller only have knowledge to the strategy interface instead of how the concrete strategy
works.

This project heavily makes use of this pattern to ensure forward compatibility and ease
maintenance. It separates the caller concern from the underlying SDK and libraries
implementation.

For example, elevation module makes use of the strategy pattern to abstract the concrete
implementation of elevation data service making use of Google Elevation API. If I decide to
switch to other services or algorithm for getting elevation data, I can just add another concrete
strategy implementation.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

3.4.3 Observer Pattern

Page 18 of 54

cd: Ohserver Implementation - UML Class Diagram)

1

Ohservable

for all oinobservers {
o.update)

Observer

+attachiobserver Obssrveryvoid
+detach({observer. Observer | void
+notify(ivoid 0 ===

I

+updat e void

ConcreteObservable

ComncreteObservable A

-state: State

-observerState: State

+getState() State

+update):void

+setState(state: State) void

ConcreteObservableB

-obhserverState: State

+updat el void

void update() {

}

observerstate = observable getState()

Observer pattern allows the change in state in an object to be reflected in another
object without tightly coupling them. It decouples objects interacting with each other and

reduce the dependencies.

In the project, observer pattern are applied in user interface event handling and results

notification of asynchronous works. For example, location module relies on this pattern
to broadcast the live location change to the subscribers. Thus allowing other location aware
modules to react according to the location change.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis

Programming an intelligent watch | Final Report

Page 19 of 54

3.4.4 Dependency Injection

Builder 1. creates—- Client

2. injects dependencies

Service

Dependency injection allows dependencies of objects to be injected and managed in a clear
manner. It facilitates inversion of control and decoupled architecture. It also makes it
easy to create reusable and interchangeable modules.

Dependency injection is done with Dagger in this project. Dependencies of fragments and
presenters on other modules are injected according to the dependency graphs defined.

For example, the location module would be injected into the location selection fragment
at runtime. Thus the fragment would be decoupled from the creation logic of the location
module and increase interchangeability.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 20 of 54

4 Design

The project is designed in modular and multilayered approach. The project composed of
separate components that are designed with specific work. It allows greater
interchangeability, maintainability and readability.

4.1 Contract Module

Contract module defines container for constants shared throughout the whole project. It
facilitates future modifications and improve readability.

UiContract Class Container for Ul related constants. Including request and result code,
fragment tags, etc..

WearContract Class Container for constants for communication between mobile
application and wear companion application.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 21 of 54

4.2 Core Module

Core module contains the business layer of the project. It is further subdivided into multiple
modules of distinct responsibility.

4.2.1 Location Module

NKSK debol exl_oc at onProvider

Location module contains data model for representing a location and location provider
strategy for live location update events.

NKLocation Class Data model for representing a location with
coordinates.
NKLocationProvider Abstract Abstract class that defines the live location update
Class strategy.
NKSkobblerLocationProvider Class Concrete strategy for live location update

events implemented with Skobbler SDK.
LocationUpdateEvent Class Represents a location update event.

AccuracyUpdateEvent Class Represents a location accuracy update event.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 22 of 54

4.2.2 Geocode Module

. <cMNEReversegencoders> Jq—ijauul erReversegeocoder J

Geocode module contains reverse geocode strategy and planned to include geocode strategy
in future works.

NKReverseGeocoder Interface Interface that defines the reverse geocoding
strategy.
NKSkobblerReverseGeocoder Class Concrete strategy for reverse geocoding

implemented with Skobbler SDK.

4.2.3 Elevation Module

Iz\.rat wnProvider ra— NKG..MqI eFlevationProvider

Elevation module contains elevation resolving strategy.

NKElevationProvider Abstract Abstract class that defines the elevation resolving
Class strategy.
NKGoogleElevationProvider Class Concrete strategy for elevation resolving

implemented with Google Elevation API.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

4.2.4 Map Module

Page 23 of 54

subser
r*larl‘*lark erclick Event

| owaPressEuent
Maplowe

NK‘skaUulzrl‘qarFmalmzvﬁ

r‘]aFLaaA{an Flz’: eEvent J

Map module contains map rendering and interaction strategy.

NKMapFragment

NKSkobblerMapFragment

MapLoadCompleteEvent
MapLongPressEvent

MapMarkerClickEvent

Abstract
Class

Class

Class
Class

Class

Abstract class that defines the map rendering and
interaction strategy.

Defining functionalities such as subscribe to map
events, move to current location, display markers,
etc..

Concrete strategy for map rendering and
interaction implemented with Skobbler SDK.

Represents a map load complete event.
Represents a map long press event.

Represents a map marker click event.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 24 of 54

4.2.5 Directions Module

adeasts

lﬂmwliwm ' <<NKbirec tovsProviderss RocitingWProqressEvent MJ

deasts

StartingPeint changeEuent

WaypointschangeEvent

NKDirections

NKSkobblerhirec tions

Directions module contains data model representing directions and directions finding
strategy.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

NKDirections

NKSkobblerDirections

NKDirectionsProvider

NKSkobblerDirectionsProvider

NKlInteractiveDirectionsProvider

StartingPointChangeEvent
DestinationChangeEvent
WaypointsChangeEvent
RoutingInProgressEvent

DirectionsAvailableEvent

Abstract
Class

Class

Interface

Class

Class

Class
Class
Class
Class

Class

25 of 54

Data model for representing directions with
starting point, destination, waypoints, all
intermediate locations and other information.

Subclass of NKDirections with additional
information specific to implementation using
Skobbler SDK.

Interface that defines directions finding
strategy.

Concrete strategy for directions finding
implemented with Skobbler SDK.

Builder pattern for directions finding with
information provided part by part. For
example, provide the starting point first,
provide the destination later and change the
starting point afterwards.

Directions finding would be delegated to
the directions provider injected at
runtime.

Represents a starting point change event.
Represents a destination change event.
Represents a waypoints change event.
Represents a routing in progress event.

Represents a directions available event.

Programming an intelligent watch | Final Report

Page 26 of 54

4.2.6 Navigation Module

Nmau‘ﬂatiavl"laqu(

creates

NA\A'qa.!‘ iovEwnd edEvent

Navigation module contains turn-by-turn navigation strategy.

NKNavigationState Class Data model representing a navigation state.
Composes of data such as next street name,
distance to next advice and current speed.

NKNavigationManager Abstract Abstract class that defines the turn-by-turn
Class navigation strategy.
NKSkobblerNavigationManager Class Concrete strategy for turn-by-turn
navigation implemented with Skobbler SDK.
NavigationStartedEvent Class Represents a navigation started event.
NavigationStateUpdateEvent Class Represents a navigation state update event.
NavigationEndedEvent Class Represents a navigation ended event.

4.2.7 Wear Module

Wear module is responsible for communication with wear companion application.

NKWearManager Class Class that is responsible for connecting to
and communicate with wear companion
application.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

4.3 Injection Module

<<Abst m::!‘Ad‘i\lﬂ‘q'amFMﬁc»

Page 27 of 54

L <<Ap rlic.d‘ oncom Fanem’c:-:-

Activtpiodle

Alﬂrlicai"ﬂw“laéulz

{{ngﬂmrmvﬂ'» i}

<<PerAchivity>>

Injection module defines the dependency graphs for dependency injection at runtime. It is
done with Dagger dependency injection library.

Component interfaces are the representation of a component in the dependency graph.
Module classes are the representation of a module that contributes to the dependency graph.

ApplicationComponent Interface

ApplicationModule Class

AbstractActivityComponent Interface

ActivityModule

HomeComponent

HomeModule

PerActivity

Class

Interface

Class

Annotation

Component representation of the application
object in the dependency graph.

Module representation of the application object
in the dependency graph.

Abstract component representation of the activity
objects in the dependency graph.

Abstract module representation of the activity
objects in the dependency graph.

Component representation of the home activity
object in the dependency graph.

Module representation of the home activity
object in the dependency graph.

Annotation for marking dependency that differs
per activity.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 28 of 54

4.4 Preference Module

MawmPreferances

————
—

LM ractPreferences

Preference module is responsible to deal with shared preferences, which is the key value
storage mechanism provided by Android platform. It allows retrieval and update of simple
persistent data.

AbstractPreferences Abstract Abstract class that provide retrieval and update mechanism

Class of simple data type for subclasses.
MainPreferences Class Provide retrieval and update service of named key value
data.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 29 of 54

4.5 User Interface Module

4.5.1 Application and Activity Module

ccAbstractNavik dct Evil't-jl:r} |rc Homeact M’f‘-il

NKApplication

Application and activities are important parts of an Android application that deals with
lifecycle events and interactions with user.

For this project, they plays an critical role in the dependency injection pattern also.

NKApplication Class Entry point of the mobile application. Build the
dependency graph for the whole project.

AbstractNavikActivity Interface Interface that defines the common behaviour of activity
classes.

HomeActivity Class Entry activity of the mobile application that reacts to
Android activity lifecycle events and build the
dependency graph for fragments and presenters.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 30 of 54

4.5.2 Fragment Controller Module

Fraalml’.vﬂ‘ {

e

L HomeActivity

HomeFraamentLontroller —mq-!; Fragment 2 '
FragqmentController h T

F raalmzvﬂ 2

i

A fragment controller manages its member fragment.

It manages transaction of fragments, provides request and result mechanism for
transaction of fragment and manages shared UI components.

FragmentController Abstract Abstract class that provide basic feature for
Class subclasses.
HomeFragmentController Class Manages fragments associated with home activity.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

4.5.3 Fragment Module

AlstracYUF mﬁmm{.} ________

Page 31 of 54

Navura.’c imquimzvﬂ‘ i

r"
-

e Eﬂcd onSelectiovF raqment '

-
-
-

-

. ol .
{ Abstract HomeUiF rmlm;:E ——————————— ~' Roet eAqusiﬁFmpimzﬁc
v -

““x,_\ EM&[ﬁFIaﬂF(Man’c —’

]\ Roet d’lamz(‘r‘marnmf jl

Fragment module contains of UI fragments that represent a page in the mobile application.
Fragments follow their lifecycle events and deals with user interaction.

AbstractUiFragment Abstract Abstract class that define basic behaviour that is
Class common to all UI fragments.
AbstractHomeUiFragment Abstract Abstract class that define basic behaviour that is
Class common to all UI fragments associated to home
activity.
RoutePlannerFragment Class UI fragment for route planning component.
RouteDisplayFragment Class UI fragment for route display component.
RouteAnalysisFragment Class UI fragment for route analysis component.
LocationSelectionFragment Class UI fragment for location selection component.
NavigationFragment Class UI fragment for navigation component.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 32 of 54

4.5.4 Presenter Module

EMEAmIqGHFrﬁm’c er J

] AbstrartPresenter b ____ Mzﬁi&r Ia-tPrmn': er

LocationSelectorPresent exr

A presenter handles the communication between models and views.

It subscribes to state change in models and update the corresponding views. In reverse, it
updates associated models when user events are received.

AbstractPresenter Abstract Abstract class that provide basic feature and unified
Class interface for subclasses.
RoutePlannerPresenter Class Presenter for displaying route planner page.
RouteDisplayPresenter Class Presenter for displaying planned route on map in
route planning page.
RouteAnalysisPresenter Class Presenter for displaying route information in route

analysis page.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 33 of 54

4.5.5 Decorator Module

becorator ‘ NEDirectionshec ovator

L

A decorator adds presentation logic to the original data model class. It reduces coupling
between components.

Decorator Abstract Abstract class that provide basic feature and unified
Class interface for subclasses.
NKDirectionsDecorator Class Decorator for adding presentation logic to directions
objects.

4.5.6 Widget Module

Widgets are reusable custom view components. It encourages code reuse and
presentation logic separation.

LocationSelector Class Custom view component applied in starting point
selection and destination selection in route
planning page.

NKElevationChart Class Custom view component for displaying elevation

data as a line chart.

TwoStatedFloatingActionButton Class Custom view for floating action button with
different display in enabled and disabled state.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 34 of 54

4.6 Wear Companion Module

Wear companion module is the logic of the wear companion application.

The companion application starts when turn-by-turn navigation is in progress. It display the
navigation advice and notify user about important events.

4.6.1 Core Module

Core module in the wear companion application deals with lifecycle events, communicates
with mobile application and manages user interface.

MainActivity Class Entry point activity for wear companion application.
Deals with lifecycle events and communication
with mobile application during navigation.

NavigationStatePresenter Class Presenter for displaying current navigation state.

NavigationStateDecorator Class Decorator for adding presentation logic to navigation
state objects.

TurnLevel Class Enum for representing turn level of a directions object.

4.6.2 Background Module

Background module is responsible for background communication with mobile application.

WearMessageListenerService Class Service that subscribes to messages from mobile
application to start the activity.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

5 Implementation and User Interface

5.1 Core User Interface

Navik

from Current location

Select Destination

Tai Po.
0ld Market
Tai Po
Tai Wo o

am Tai Po
han Market

Sheung
Wun Yit

(o)

Navik

from Current location

A Current location

Select on map
Tai Po -
Old Market
Tai Po
Tai Wo. o

am Tai Po.
han Market

Sheung
Wun Yiu

o

Page 35 of 54

& Select Starting Point

#4025 Tai Po Tai Wo Road

ity o
2

-2

4,
\\ %
NS

Vg

\ *&@,%
e
/7‘,,6"

° Powered by Souss (OSM

The core user interface consists of one single activity, UI fragments for each page and UI
widgets for reusable custom views. Ul communications are mainly achieved by observer

pattern.

The UI fragments are managed by a fragment controller. The fragment controller controls
UI flow by swapping Ul fragments in and out, provide request and result data flow
mechanism and manage shared UI components.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis

Programming an intelligent watch | Final Report

Page 36 of 54

5.2 Route Planning

Navik Navik § Navik

from TTMFE Island House L... v from TCMFE Island House L... v from Current location

to H#¥47 Sui Cheung Street v

to ;T AR Ting Kok Road v to Current location

Tau Wai

Sha Lo Tung
Cheung Uk

Sam:Mun Tsai
New Village

Pak Shek
Kok

Nz
@ N, 4
& Powered byShan1 OSM

Users are allowed to do end-to-end route planning by selecting a starting point and
destination. Planned route would be displayed in the map after route calculation. User are
allowed to import external route from a GPX file as well.

Waypoints could also be added to change the route. Circular route allows user to plan a
route that goes back to the starting point. It is particularly useful for cycling navigation.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 37 of 54

5.3 Route Analysis

Navik - < Route Analysis

from TTM{FE Island House L... w Elevation

to Hi#¥#T Sui Cheung Street v

M Elevation in Meters

Distance
6.6 km

Estimated Time
26 min

hek
RRsAved by Soumst OSM

Route analysis page provides basic information about the planned route. Thus the user can
have knowledge of the route in advance before starting a navigation.

It provides user an elevation chart, distance and estimated travel time of the route.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 38 of 54

5.4 Turn-by-turn Navigation

< Navigation

900 m
&% Nam Wan Road

< Navigation

l< 80m

EE R Nam Wan Road
1:? 7:5%2& Pan Chung Road

#i8i# Tat Wan RD || FI&H Na

BEERE Hi

BEE RS Hiu Wan |

Turn-by-turn navigation allows user to navigate through the planned route. Real time
navigation advices and information would be shown. Re-routing would be done if the
user is not traveling on the planned route.

The next turn and distance to next turn is particularly useful for the navigation. Current
speed and distance to destination are also provided.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

E
|

900 m

F3ER% Nam Wan Road
1.8 km 24 km/h

5.5 Wear Companion Application

[
i

200 m

EER& Nam Wan Road
1.1km 24 km/h

]

FxER& Nam Wan Road
1.0 km 24 km/h

Page 39 of 54

Wear companion application starts when turn-by-turn navigation is in progress. It display the
navigation advice and notify user about important events.

The background of the screen changes as the user approaches the next turn. It allows
user to know how far away is the next turn easily without reading the text. Furthermore,
critical navigation state changes would be notified via vibration notification. It would
help the user determine when to turn without looking at the screen.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 40 of 54

6 Testing

6.1 Methodology

Requirements Document Validate output

Software under test
(Black Box)

Black-box testing techniques are applied. Testing is done without referring to any knowledge
to the internal structure or source code. The testing focuses on the functionalities of the
application.

Test cases are constructed with regards to the functional requirements defined as well as
the designed use cases. Steps of the test cases and expected results are clearly specified.
The actual results are recorded after the test case is carried out.

6.2 Testing Environment

Smartphone: Xiaomi Redmi 1S
Smartphone OS: Android 5.1.1 Lollipop (Cyanogenmod 12.1)
Smartwatch: LG G Watch W100

Smartwatch OS: Android 6.0.1 Marshmallow

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 41 of 54

6.3 Test Cases

6.3.1 Route Planning
6.3.1.1 End to End Route Planning
Steps:

1. Select starting point on the map via the location selector
2. Select destination on the map via the location selector

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

6.3.1.2 End to End Route Planning from Current Location
Steps:

1. Select current location as starting point via the location selector
2. Select destination on the map via the location selector

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 42 of 54

6.3.1.3 End to End Route Planning to Current Location
Steps:

1. Select starting point on the map via the location selector
2. Select current location as destination via the location selector

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

6.3.1.4 Route Plannning with One Waypoint
Steps:

1. Select starting point on the map via the location selector
2. Select destination on the map via the location selector
3. Add a waypoint by long click on the map

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

6.3.1.5 Route Planning with Multiple Waypoints

Steps:
1. Select starting point on the map via the location selector
2. Select destination on the map via the location selector
3. Add the first waypoint by long click on the map
4. Add the second waypoint by long click on the map
5. Add the third waypoint by long click on the map

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

6.3.1.6 Circular Route Planning with One Waypoint
Steps:

1. Select starting point on the map via the location selector
2. Add a waypoint by long click on the map
3. Select destination as the starting point via the location selector

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

Page 43 of 54

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

6.3.1.7 Circular Route Planning with Multiple Waypoints

Steps:

1. Select starting point on the map via the location selector

2. Add the first waypoint by long click on the map

3. Add the second waypoint by long click on the map

4. Add the third waypoint by long click on the map

5. Select destination as the starting point via the location selector
Expected Results:

e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

6.3.1.8 Import External Route via GPX file
Steps:

1. Select the import external route menu item
2. Choose a valid GPX file to import

Expected Results:
e Route planned and displayed on the map
Actual Results:

e Route planned and displayed on the map

Page 44 of 54

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 45 of 54

6.3.2 Route Analysis
6.3.2.1 Perform Route Analysis
Steps:

1. Select starting point on the map via the location selector
2. Select destination on the map via the location selector
3. Click the route analysis floating action button to enter route analysis page

Expected Results:
e Route analysis complete and information are displayed on the page
Actual Results:

e Route analysis complete and information are displayed on the page

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 46 of 54

6.3.3 Turn-by-turn Navigation

6.3.3.1 Perform Navigation Simulation

Steps:
1. Select starting point on the map via the location selector
2. Select destination on the map via the location selector
3. Turn simulation mode on
4. Click the start navigation floating action button to enter navigation page

Expected Results:
e Route navigation simulation starts and complete till the destination is arrived
Actual Results:

e Route navigation simulation starts and complete till the destination is arrived

6.3.3.2 Perform Real Navigation

Steps:
1. Select starting point on the map via the location selector
2. Select destination on the map via the location selector
3. Turn simulation mode off
4. Click the start navigation floating action button to enter navigation page

Expected Results:
e Route navigation starts and complete till the destination is arrived
Actual Results:

e Route navigation starts and complete till the destination is arrived

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 47 of 54

6.3.4 Wear Companion Application

6.3.4.1 Perform Navigation Simulation with Wear Companion Application

Steps:
1. Connect to the smartwatch with the wear companion application installed
2. Select starting point on the map via the location selector
3. Select destination on the map via the location selector
4. Turn simulation mode on
5. Click the start navigation floating action button to enter navigation page

Expected Results:

e Route navigation simulation starts and complete till the destination is arrived
e Wear companion application starts and displays navigation advices on the screen
e Wear companion application notifies critical advice state changes via vibration

Actual Results:

e Route navigation simulation starts and complete till the destination is arrived
e Wear companion application starts and displays navigation advices on the screen
e Wear companion application notifies critical advice state changes via vibration

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 48 of 54

6.3.4.2 Perform Real Navigation with Wear Companion Application

Steps:
1. Connect to the smartwatch with the wear companion application installed
2. Select starting point on the map via the location selector
3. Select destination on the map via the location selector
4. Turn simulation mode off
5. Click the start navigation floating action button to enter navigation page
Expected Results:

e Route navigation starts and complete till the destination is arrived
e Wear companion application starts and displays navigation advices on the screen
e Wear companion application notifies critical advice state changes via vibration

Actual Results:

e Route navigation simulation starts and complete till the destination is arrived
e Wear companion application starts and displays navigation advices on the screen
e Wear companion application notifies critical advice state changes via vibration

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 49 of 54

7 Schedule

7.1 Milestones

Milestone Incremental Accomplishments

Milestone 1 Smartphone application
e Complete user interface
e Able to load and display the offline OpenStreetMap data

WHES) S Smartphone application

e Able to import external routes via GPX files
Android Wear companion application

e Complete user interface

W EIEE0GRE Smartphone application
e Able to construct routes from destinations
e Able to perform route analysis

WRIES G Smartphone application

e Complete turn-by-turn navigation
Android Wear companion application

e Turn-by-turn navigation display

WEIESEGE Smartphone application

e Provide real-time information
Android Wear companion application

e Provide real-time information

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 50 of 54

7.2 Timetable

Date Accomplishments

4 October 2015 Complete inception phase
e Detailed project plan
e Project web page

8 November 2015 Complete milestone 1
6 December 2015 Complete milestone 2
11-15 January 2016 First presentation

17 January 2016 Complete milestone 3

24 January 2016 Complete elaboration phase
e Preliminary implementation

13 March 2016 Complete milestone 4
10 April 2016 Complete milestone 5

17 April 2016 Complete construction phase
e TFinalized tested implementation
e Final report

18-22 April 2016 Final presentation

3 May 2016 Project exhibition

6 June 2016 Project competition

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 51 of 54

8 Conclusion

8.1 Future Improvements

8.1.1 Search for Locations from Name

|1 mart

1 Martin Place Sydney, New South Wales, Australia

0

1 Martin Street St Leonards, New South Wales, Australia

©

1 Martin Place Mortdale, New South Wales, Australia

§ 1 Martin Street Haberfield, New South Wales, Australia

=]

<

1 Martins Avenue Bondi, New South Wales, Australia

powered by Google
User can now select a location for route planning only on the map. It may not be desirable for
some use cases. The user may want to find a location by providing its name.

Alocation searching page should be added. Hence user can simply enter the location name
and select from the search results.

8.1.2 Better Waypoint Management

Waypoint are added by long click on the map in current implementation. It may not be intuitive
for some users. Moreover, rearrangement of waypoints is not possible.

To enhance user experience and functionality, a waypoint management page should be
added in the future. Thus allowing user to add, remove and rearrange waypoints in the
designated page.

8.1.3 Save and Load Planned Route

For now, users have to construct the route from scratch every time. It is a natural progression to
allow users to save and load planned route.

User should be allowed to rename, remove, load as well as categorize and export the
planned route.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

520154

Current implementation only runs on Android devices. iPhone accounts for nearly half of the
present market share. It is a reasonable plan to enlarge the user base to iOS.

Additionally, no doubt that Apple watch is more popular and fashionable than Android
smartwatches. An iPhone and Apple Watch port would be a brilliant thought.

It would be great to publish the application and reach users in the whole world. A freemium
revenue model would suit the application very well. User would be charged for certain
value-added or advanced functionalities.

It would be a great idea to build an online community for sharing planned route. Users
are allowed to freely search, upload, download as well as rate the planned routes.

Programming an intelligent watch | Final Report

Page 53 of 54

8.2 Reflections

Working on this final year project is a memorable experience. I would like to express my
gratitude towards my supervisor Prof Lau Francis. He is a nice person as well as offers me
a vast flexibility and freedom for the project.

There are certainly both advantages and disfavors for a one man development team. It is
quite boring and frustrating sometimes working by oneself. However, I can determine the whole
design and implementation of the project. It is a also great chance to practice my skills and
have advantageous experiments on various design patterns and libraries.

This application is my sixth or seventh Android application as I remember. I can really feel
my improvements throughout these years. Software development should be an enjoyable
process. We try, stumble, learn and conquer.

Life should be a journey of sublimation and self-overcoming. Embrace yourself.

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

Page 54 of 54

9 References

o

10.

Garmin Edge 510 -

https://buy.garmin.com/en-US/US /business/vitality-members/edge-510/prod112885.h
tml

Hammerhead - http://hammerhead.io

Incremental model -
http://istgbexamcertification.com/what-is-incremental-model-advantages-disadvantage

s-and-when-to-use-it

Dagger - https://google.github.io/dagger

Which design patterns are used on Android? -
http://stackoverflow.com/a/6770903/2621216

Model-View-Presenter Architecture in Android Applications -
http://macoscope.com/blog/model-view-presenter-architecture-in-android-applications
Strategy Pattern - http://www.oodesign.com/strategy-pattern.html

Observer Pattern - http://www.oodesign.com/observer-pattern.html

Inversion of Control Containers and the Dependency Injection pattern -

http://www.martinfowler.com/articles/injection.html
What is Black Box Testing? -

http://www.webopedia.com/TERM/B/Black Box Testing.html

Lam Ka Fun Gavin | Supervisor: Prof Lau Francis | Programming an intelligent watch | Final Report

https://buy.garmin.com/en-US/US/business/vitality-members/edge-510/prod112885.html
https://buy.garmin.com/en-US/US/business/vitality-members/edge-510/prod112885.html
http://hammerhead.io/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
https://google.github.io/dagger/
http://stackoverflow.com/a/6770903/2621216
http://macoscope.com/blog/model-view-presenter-architecture-in-android-applications
http://www.oodesign.com/strategy-pattern.html
http://www.oodesign.com/observer-pattern.html
http://www.martinfowler.com/articles/injection.html
http://www.webopedia.com/TERM/B/Black_Box_Testing.html

