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ABSTRACT 

Most anomaly detection systems found in literature are based on data mining 

methods, and thus are limited to predefined features. The limitations of the existing 

systems will significantly reduce the performance of the systems if the features are 

not selected properly. Recently, as the computation power increases, deep learning 

becomes a popular area of research. In this project, we used deep learning as the 

model for anomaly detection, and Keras as the library to implement. The models 

were first trained with internal network data to classify network packets according 

to the application layer protocol. The models were then modified and trained to 

identify anomalies and the performance was evaluated. We obtained training data 

from Department of Computer Science for packet classification task, and we used 

publicly available data for the anomaly detection task. The promising result of the 

anomaly detection shows the potential to integrate deep learning into network 

intrusion detection system. 
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ABBREVIATIONS 

ANN: artificial neural network 

CNN: convolutional neural network 

ELU: exponential linear unit 

GiB: giga binary byte, 230 bytes 

IDS: intrusion detection system 

KB: kilobyte in decimal, 1,000 bytes 

LReLU: leaky rectified linear unit 

LSUV: Layer Sequential Unit Variance 

MLP: multiple layer perceptron 

PCAP: packet capture (file) 

ReLU: rectified linear unit 

TCP: transmission control protocol 
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I. INTRODUCTION 

The Internet is expanding and its scale is increasing as more and more devices are connected to 

the Internet. In November 2016, Google indexed 46 billion webpages, and the annual global 

Internet traffic was expected to reach 1 zettabyte (1021 bytes) by the end of 2016. With the 

popularization of the Internet, its usage has become necessary in various areas. However, 

alongside the advantages of Internet use is the increasing potential of cyber attack. According 

to Symantec, there were 54 zero-day (unseen) vulnerabilities discovered each week in 2015, 

which is twice as many as those in 2014 [1]. Therefore, without appropriate security measures, 

it is likely that the systems will be compromised, causing great losses to individuals and 

companies. Intruders may gain unauthorized privileges, or simply overload the server and make 

it unavailable. Both of these may incur great loss for the system owners. 

In order to protect the computers from being hacked, intrusion detection systems (IDS) can be 

installed. Some common open source IDS are Snort [2] and Suricata [3]. With IDS installed, 

whenever a system encounters unauthorized access, it can respond by refusing such access 

request. Moreover, it can generate alerts for human to inspect if there is any system defect. 

In our project, we focus on improving the accuracy of intrusion detection methods with a deep 

learning model as the backend. The entire model was built using Keras, and thus we can take 

advantage of its high modularity to achieve fast prototyping. A simple code snippet written with 

Keras library that builds a deep learning model with 3 hidden layers is shown in Figure 1. We 

first studied optimization techniques with MNIST hand-written digit dataset [4] and CIFAR tiny 

image dataset [5]. We then focused on determining and building the most effective model. After 
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the model was built, we trained and tested it with some network data and evaluated its 

performance according to its accuracy. We then analyzed the model and examine the 

misclassified data to determine the modifications to be made. Finally, we provided suggestions 

to modifications. 

1. model = Sequential() 

2. model.add(Dense(300, input_shape=(500,))) #hidden layer 

3. model.add(Dropout(0.2)) 

4. model.add(Activation('relu')) 

5. model.add(Dense(300)) #hidden layer 

6. model.add(Dropout(0.2)) 

7. model.add(Activation('relu')) 

8. model.add(Dense(300)) #hidden layer 

9. model.add(Dropout(0.2)) 

10. model.add(Activation('relu')) 

11. model.add(Dense(10)) #output layer 

12. model.add(Activation('softmax')) 

13.   

14. sgd = SGD(lr=0.01) 

15.   

16. model.summary() 

17.   

18. model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) 

19.   

20. history = model.fit(X_train, Y_train, 

21.                     batch_size=32, nb_epoch=100, 

22.                     verbose=2, validation_data=(X_test, Y_test)) 

23.   

24. score = model.evaluate(X_test, Y_test, verbose=2) 

 
 

 

FIGURE 1. Fast prototyping of Keras. 
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The rest of this report is organized as follows. Section II describes the background of intrusion 

detection system and deep learning. Section III presents the related works to our project. We 

discuss the methodology in Section IV. The current deep learning optimization research is 

summarized in Section V, and our experiment results with network data are reported in Section 

VI. Finally, Section VII concludes this report. 
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II. BACKGROUND 

A. INTRUSION DETECTION 

Intrusion detection systems can be classified into three categories: signature detection systems, 

anomaly detection systems, and hybrid systems [6, 7]. A signature detection system maintains 

a misuse database which contains the patterns of abnormal traffic. When a packet arrives, the 

system will compare it with the misuse database to determine whether such packet is normal. 

The advantage is that signature detection systems generate a low false positive rate when the 

misuse database is reliable. This is due to the fact that intrusions detected are supposed to have 

a high similarity with the abnormal packets.  For an anomaly detection system, it uses the pattern 

generated from normal traffic as the baseline. Any pattern that deviates from the normal traffic 

is considered anomalous. The advantage is that it can detect unseen (zero-day) attacks. Hybrid 

systems combine both techniques used in signature detection systems and anomaly detection 

systems. 

B. DEEP LEARNING 

Traditional machine learning methods, such as support vector machines and decision trees, are 

able to find patterns from a set of data. Deep learning is also able to do this. However, what 

differentiates deep learning from machine learning is the number of learning methods used. In 

machine learning, typically a single method is used; whereas in deep learning, we can use 

multiple methods, with each method being based on the result of previous one. The deep 

structure comes from the multiple steps between the input and the output [8]. 
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One advantage of deep learning the high capacity of the model. In traditional machine learning 

where only one method is used, it is less desirable to apply it to solve complicated problems 

such as image recognition and natural language processing. Even if it fits the training data well 

through more training iterations (epochs), the model is likely to perform poorly on unseen data. 

By contrast, the problem can be resolved by setting different classification methods for each 

step when deep learning is used. With a higher capacity of the model, problems of various types 

can be solved. We can also expect the model is not overfit so that the model trained can truly 

reflect its performance on unseen data. 

In reality when intrusion detection system is implemented, the IDS needs to accommodate to a 

wide range of network flow patterns. Moreover, when the size of the deep learning model 

increases, the model is able to capture more features and raise the precision of the detection 

system. Based on these reasons, we chose deep learning framework to perform anomaly 

detection tasks.  
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III. RELATED STUDIES 

Data mining techniques and machine learning algorithms can be applied to intrusion detection 

systems, and these techniques have been extensively studied in the past decade. Clustering and 

classification are some techniques used in intrusion detection systems (IDS). Münz, Li & Carle 

proposed an anomaly detection system using k-means algorithm which combines both 

classification and outlier detection [9]. In [10, 11], the authors combined the k-means clustering 

with naïve Bayes classification. In [12], the authors further utilized the result from k-means 

clustering as new features for naïve Bayes classifier. In [13], naïve Bayes classifier is combined 

with decision tree algorithms. 

The abovementioned methods operate on network features only, namely, the connection records. 

To take payload data from packets into consideration, we need some other techniques. PAYL is 

a histogram-based classification method that takes payload data as input. It builds a histogram 

from the input, with frequency of each byte pattern being a bin (see Figure 2), and compares the 

histogram built from the data with baseline [14].  

Deep learning techniques can also be implemented to detect anomalies. Niyaz [15] implemented 

two-stage process of self-taught learning for network anomaly detection. In the first stage, a 

FIGURE 2. Example of byte distribution for a 200-byte 

packet. 
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sparse autoencoder was used for unsupervised feature learning. After the features were learned, 

they were passed to a softmax classifier in the second stage for anomaly detection. This model 

can only operate on network features only instead of the entire payload. The performance is 

evaluated with KDD dataset [16], and precision for 5-class classification based on predefined 

labels in KDD is 85.44%. Another deep learning application on network data is studied by Wang 

[17]. He studied the structures of artificial neural network and stacked autoencoder, and then 

built a system that could classify TCP packets according to their application layer protocols. 

The weight coefficients of the first hidden layer can be viewed as the importance of the byte 

features. Most of the protocols can reach 99% precision in the experiment. He suggested that 

misclassified packets may be anomalous; however, the relationship between those misclassified 

packets and anomalies was not thoroughly. In our project, we first implemented a similar deep 

learning model and studied the misclassified packets. We then extended such model to detect 

anomaly packets. 
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IV. METHODOLOGY 

Given a network packet, our first goal is to determine what application layer protocol is used.  

In Section II.B, we have discussed processing network packets with deep learning models. As 

packets arriving at a host may be scattered, the order and the temporal information will not be 

useful. Therefore, we can use a deep learning feedforward network as it only captures the 

features of each single packet. We used a simple one as an initial implementation, and modify 

the network to achieve better results. 

To implement a deep learning network, it requires some training data to learn from and testing 

data to evaluate its performance. We retrieved internal-generated Internet packets from 

Department of Computer Science, University of Hong Kong for the packet classification task. 

We also used the CTU-13 dataset [18], which consists of the botnet packet capture, as the 

training and testing data for the anomaly detection. Details of the dataset will be discussed in 

Section VI.C. 

The next step is to adjust the data so that they are suitable for deep learning. We first joined the 

payload of the packets if they belong to the same session. Since the model requires fixed size of 

input, we had to truncate payloads that were too large and padded the payloads that were too 

small. We set the size of the payloads to 500 bytes since previous research showed that most 

important bytes are located in the first few bytes (see Figure 3) [17]. We did not merely use the 

first 100 bytes because it contains too limited information, and we did not use the entire 1 KB 

for the reason that it causes too much time in training process. The detailed data processing steps 

can be found in Section VI.A. 
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In order to modify the feedforward network, we had to first determine the factors that affect the 

performance of the system, such as the number of layers of the system and the learning 

algorithms used. After the neural network was built, we studied the relationship between the 

byte features and their importance in protocol identification. We would verify the result of the 

byte features by examining the packets of the neural network. 

Our ultimate goal is to identify packet outliers. Based on the system we had built, we used 

similar techniques to build the model and then improve its performance. The difference is that 

in the training set, we added some anomalous data, including attack traffic in the Internet. For 

the output, it should be able to distinguish anomaly packets from normal flow. 

We chose Keras for implementing deep learning models because its high modularity allows the 

program development and prototyping in a relative simple manner. In addition, as we focus on 

evaluating the existing deep learning structures and the effects of parameters, we can exploit the 

advantages of modularity and avoid extensive changes in source code during training phase. 

Another concern in development is the compatibility and extensibility with other packages. In 

python, which Keras is written in, there are other machine learning packages that can be utilized. 

Therefore, Keras is particularly suitable for our project. 

FIGURE 3. The most important 100 locations of the data. 
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At the time we started the implementation of the deep learning model, the version of Keras was 

1.1.0. Although Keras has recently released an update to 2.0.0, we still use our original version 

so the efficiency can be compared. 
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V. DEEP LEARNING OPTIMIZATION 

For a deep learning neural network to classify data samples correctly, the model is required to 

have enough capacity and the training data have to represent general situations. In this section, 

we will discuss some methods to build a model that achieves a better performance. Since there 

is not much research related to deep learning optimization with network data, we used the 

datasets that are widely studied in the literature for experiment. 

 

A. DATASET FOR OPTIMIZING DEEP LEARNING NEURAL NETWORK 

MNIST hand-written digit database [4] is one of the widely used labeled data for machine 

learning. Each grayscale written digit is normalized in size and centered in a 28x28 image. The 

dataset contains 60,000 training samples and 10,000 test samples for performance evaluation. 

Another dataset that is popular in deep learning is CIFAR-100 colored tiny image dataset. Each 

image has a coarse label and a fine label, which belongs to one of the 20 superclasses and one 

of the 100 classes (see Table 1). In our experiment, we used fine labels only. The size of each 

image is 32x32. 
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FIGURE 4. The MNIST dataset 

 

 

FIGURE 5. The CIFAR-100 dataset 
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Superclass (Coarse) Classes (Fine) 

aquatic mammals beaver, dolphin, otter, seal, whale 

fish aquarium fish, flatfish, ray, shark, trout 

flowers orchids, poppies, roses, sunflowers, tulips 

food containers bottles, bowls, cans, cups, plates 

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers 

household electrical devices 
clock, computer keyboard, lamp, telephone, 

television 

household furniture bed, chair, couch, table, wardrobe 

insects bee, beetle, butterfly, caterpillar, cockroach 

large carnivores bear, leopard, lion, tiger, wolf 

large man-made outdoor things bridge, castle, house, road, skyscraper 

large natural outdoor scenes cloud, forest, mountain, plain, sea 

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo 

medium-sized mammals fox, porcupine, possum, raccoon, skunk 

non-insect invertebrates crab, lobster, snail, spider, worm 

people baby, boy, girl, man, woman 

reptiles crocodile, dinosaur, lizard, snake, turtle 

small mammals hamster, mouse, rabbit, shrew, squirrel 

trees maple, oak, palm, pine, willow 

vehicles 1 bicycle, bus, motorcycle, pickup truck, train 

vehicles 2 lawn-mower, rocket, streetcar, tank, tractor 

TABLE 1. CIFAR-100 labels 
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B. EXPERIMENTS WITH MLP AND CNN 

We first built a multiple layer perceptron (MLP) and convolutional neural network (CNN) 

according to the configuration in Table 2 to test against the MNIST dataset. In this project, all 

the models were trained on the fyp server (single core Intel i7 CPU, 2GiB memory). Both 

models were trained with stochastic gradient descent (learning rate = 0.01). The batch size was 

set to 100 and model was trained for 20 epochs, so there were 12k parameter updates for each 

model during training. The result is reported in Table 3. 

MLP CNN 

Input 28x28 images 

400 units 30 filters 3x3 

Activation (ReLU) 

Dropout (0.2) 

400 units 30 filters 3x3 

Activation (ReLU) 

Dropout (0.2) 

400 units Maxpooling (2x2) 

120 units 

Activation (ReLU) 

Dropout (0.2) 

10-way softmax 

TABLE 2. Experiment configuration for MNIST 
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 MLP CNN 

No. of parameters 638,810 528,160 

Test Accuracy 0.9667 0.9769 

Test Loss 

(see Appendix C) 
0.1051 0.0783 

Train Accuracy 0.9601 0.9719 

Train Loss 0.1369 0.0913 

Training time 260s 3000s 

TABLE 3. Experiment result for MNIST 

From Table 3, we can see that convolutional neural network can perform better than a multiple 

layer perceptron even with fewer number of parameters. The training time for CNN can be 

improved if we use a GPU and train the model with parallelization. 

We also performed a similar experiment on CIFAR-100 dataset. We set different batch size for 

MLP and CNN: 128 and 32, respectively. After 100 epochs of training, there will be 39k 

parameter updates for MLP and 156k parameter updates for CNN. As the numbers of parameter 

updates are different, we also report the performance of CNN after 25 epochs of training (39k 

parameter updates, similar to that of MLP). The training was done with stochastic gradient 

descent with learning rate 0.025, decay 10-6 and Nesterov momentum 0.9. The configuration is 

shown in Table 4 and the result is reported in Table 5. 

From the result, we can see that as the task becomes more difficult, the difference in parameters 

and performance for MLP and CNN are greater. One property for CNN is that it captures the 

relationship of the neighboring area. Thus, in the image classification task, CNN prevails over 

MLP in detecting edges and contours, making the entire classification more accurate. However, 
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there is a lot of improvement left in the level of accuracy. In the next subsection, some state-of-

the-art research in deep learning optimization will be discussed. 

MLP CNN 

Input 32x32 images 

3000 units 32 filters 3x3 

Activation (ReLU) Activation (ReLU) 

Dropout (0.2) 32 filters 3x3 

3000 units Activation (ReLU) 

Activation (ReLU) Maxpooling (2x2) 

Dropout (0.2) Dropout (0.25) 

2000 units 64 filters 3x3 

Activation (ReLU) Activation (ReLU) 

Dropout (0.2) 64 filters 3x3 

2000 units Activation (ReLU) 

Activation (ReLU) Maxpooling (2x2) 

Dropout (0.2) Dropout (0.25) 

1000 units 512 units 

Activation (ReLU) Activation (ReLU) 

Dropout (0.2) Dropout (0.5) 

100-way softmax 

TABLE 4. Experiment configuration for CIFAR-100 
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 MLP 
CNN  

(25 epochs) 

CNN  

(100 epochs) 

No. of parameters 30,327,100 1,297,028 

Test Accuracy 0.2535 0.4002 0.4270 

Test Loss 4.1776 2.3355 2.2208 

Train Accuracy 0.5805 0.3235 0.3705 

Train Loss 1.5860 2.6801 2.4434 

Training time 20000s 6750s 27,000s 

TABLE 5. Experiment result for CIFAR-100 

 

C. OPTIMIZATION RESEARCH 

The best result in CIFAR-100 uses exponential linear units (ELU) [19] in the activation layers. 

With non-zero mean activation layers, each layer will produce a bias and propagate to the next 

layer, which makes the gradient descent less efficient for optimization. ELU is claimed to reduce 

such bias shift effect. The exponential linear unit is: (α > 0) 

𝑓(𝑥) =  {
𝑥

𝛼(exp(𝑥) − 1) 
, 𝑥 > 0
, 𝑥 ≤ 0

,  𝑓′(𝑥) =  {
1

𝑓(𝑥) + 𝛼
 
, 𝑥 > 0
, 𝑥 ≤ 0

 

Figure 6 from [19] shows the relationship of ELU, leaky ReLU, ReLU and shifted ReLU. The 

experiment done by Clevert, et al. achieved 75.72% accuracy in CIFAR-100 dataset, and Table 

6 shows the model used in their experiment. 
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FIGURE 6. Activation functions 

 

 

Input 32x32 images 

384 filters 3x3 

ELU (α=1) 

Maxpooling 2x2 

384 filters 1x1 

384 filters 2x2 

640 filters 2x2 

640 filters 2x2 

ELU (α=1) 

Dropout(0.1) 

Maxpooling 2x2 

640 filters 1x1 

768 filters 2x2 

768 filters 2x2 

768 filters 2x2 

ELU (α=1) 

Dropout(0.2) 

Maxpooling 2x2 

768 filters 1x1 

(continue on the next 

column) 
 

896 filters 2x2 

896 filters 2x2 

ELU (α=1) 

Dropout(0.3) 

Maxpooling 2x2 

896 filters 3x3 

1024 filters 2x2 

ELU (α=1) 

Dropout(0.4) 

Maxpooling 2x2 

1024 filters 1x1 

1152 filters 2x2 

ELU (α=1) 

Dropout(0.5) 

Maxpooling 2x2 

1152 filters 1x1 

ELU (α=1) 

100-way Softmax 
 

TABLE 6. Configuration in the original experiment of ELU 
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Another research in the deep learning optimization focuses on the weight initialization. 

Initializing the model with Gaussian noise 𝒩(0, 0.012) became popular after CNN showed its 

success in 2012 [20]. Glorot & Benigo [21] proposed a formula to estimate the standard 

deviation, under the assumption that the relationships between each layer is non-linear. Mishkin 

& Matas generalized the previous method and named it Layer Sequential Unit Variance (LSUV) 

[20]. The overall performance on CIFAR-100 is 72.34% accuracy rate. 

There are more optimization methods that have been developed recently. Adaptive piecewise 

linear activation unit [22] is able to learn the activation functions. Fractional max-pooling [23] 

ameliorates the effect on reducing the size during forward propagation. The pooling is not 

restricted to the fraction of 1/k where k is an integer, and a pooling fraction between 1/2 and 1 

has demonstrated an improved performance. Another method related to pooling is the all 

convolutional net [24]. The pooling layers are replaced by convolutional layers with an 

appropriate stride (also called subsampling). 

 

D. EXPERIMENTS WITH ADVANCED TECHNIQUES 

In this subsection, we experimented with ELU and LSUV discussed previously. As the model 

used in [19] is too large and is beyond the computation power supported by the server, we used 

a model with a reduction in size. The model configuration is shown in Table 7. 

The training was done with stochastic gradient descent with decay 10-6 and Nesterov momentum 

0.9. Batch size was set to 100. The learning rate schedule we applied was: 0.005 [1-200 epochs], 

0.0025 [201-400 epochs], 0.0005 [401-500 epochs].  
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Input 32x32 images 

80 filters 3x3 

80 filters 1x1 

ELU (α=1) 

Maxpooling 2x2 

140 filters 3x3 

140 filters 2x2 

ELU (α=1) 

Dropout(0.1) 

Maxpooling 2x2 

180 filters 2x2 

180 filters 1x1 

ELU (α=1) 

Dropout(0.2) 

Maxpooling 2x2 

200 filters 2x2 

200 filters 1x1 

ELU (α=1) 

Dropout(0.3) 

Maxpooling 2x2 

512 units 

ELU (α=1) 

Dropout(0.5) 

100-way Softmax 
TABLE 7. Configuration in our experiment with ELU and LSUV 

The training for each epoch took 740 seconds. After 500 epochs of training, the test accuracy 

reached 70.15% and the training accuracy was 79.15%. 

We then used the same model and replaced the ELUs with different activation units. The settings 

for training were the same, except the schedule for learning rate being: 0.01 [1-100 epochs], 

0.001 [101-200 epochs], 0.0001 [201-300 epochs]. The results are compared in Table 8. 
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CNN ELU ReLU LeakyReLU 

Test Accuracy 0.6837 0.6523 0.6773 

Test Loss 1.1104 1.2186 1.1202 

Train Accuracy 0.7076 0.6649 0.6953 

Train Loss 0.9757 1.1291 1.1301 

TABLE 8. Comparing different activation functions 

Rectified linear unit (ReLU) has an activation of 0 when the input is negative; therefore, the 

mean activation is always non-negative. Both ELU and LeakyReLU have negative activations. 

Theoretically, ELU performs better than LeakyReLU because the mean of activations is closer 

to 0. The experiment results are consistent with [19]. 
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VI. WORKING WITH PACKET CAPTURE DATA 

After studying the optimization of deep learning, we now move on to experimenting with 

network packet capture data. We started with classifying packets according to their application 

protocols to examine whether the deep learning model has the capability to extract the 

underlying information from the packet payload. After the capability was confirmed, we moved 

on to the next phase, anomaly detection. In this section, we begin each phase with the detailed 

information about dataset we used, and then the experiment results are reported and discussed. 

 

A. DATASET FOR CLASSIFICATION 

In order to provide data for the deep learning model, a host was set up to capture network packets 

that passed through the HKUCS network. The packets were captured in PCAP (packet capture) 

format, and because of the restrictions of the capturing system, the file size of each capture file 

is 2 GiB. We sampled 2-hour traffic for the experiment, with a total of 60 PCAP files and 120 

GiB of data. 

After the data were collected, we chose 10 application protocols that were frequently present in 

the capture files. The protocols chosen would be the targets of the classification task. We then 

retrieved packets that belonged to one of the chosen protocols by the port numbers from the raw 

capture files, and saved the packets into different files according to protocols. As the protocols 

chosen are widely used and their port numbers are either well-known or registered, we assume 

that no other packet used the same ports. 
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The next step was to join the payloads of the packets if they belonged to the same session. We 

joined the payloads of the packets belonging to the same session because each piece of 

application data may be encapsulated and transmitted in multiple packets. Consider the example 

where we visited the website http://www.hku.hk/ (27.126.235.42). The packets captured were 

shown in Figure 7. Packet 4 is an HTTP GET request and the server replied with HTTP OK and 

some application data shown in packets 5-7. However, if we look at the payload in packet 6 (see 

Figure 8), it contains only a part of binary data and it is not realistic to classify this packet solely 

based on a part of binary data. 

  

FIGURE 7. Packet capture example 

http://www.hku.hk/
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FIGURE 8. Sample payload of packets 

As mentioned in the methodology (Section IV), we used the first 500 bytes of the payload 

because it was shown that the information is sufficient. The samples with payload size lower 

than 500 bytes were padded with ASCII 0 (NULL), and the samples with 0 payload were 

discarded. To prevent the data from biasing towards a certain protocol, we set a limit to each 

protocol. The maximum number of streams to be used for each protocol was set to be 600. The 

resulting stream data will be normalized such that the value of each byte ranged from [0, 255] 

to [0, 1]. Normalization would be helpful when determining the learning rate, which typically 

has a magnitude of 10-2. Finally, the dataset was split 5:1 for training and testing. The number 

of streams in each protocol is reported in Table 9. 
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Protocol Train Test 

DNS 220 44 

FTP 311 62 

HTTP 500 100 

IMAP 500 100 

MYSQL 420 84 

NFS 183 36 

POP3 189 37 

SMTP 500 100 

SSH 500 100 

TLS 500 100 

TABLE 9. Number of samples in each protocol 

 

B. APPLICATION PROTOCOL CLASSIFICATION 

We first created a multiple layer perceptron using the configuration in Table 10 to for the 

classification test. Similar to Section V, all the models were trained on the fyp server (single 

core Intel i7 CPU, 2GiB memory). The learning rate was set to 0.01 for the first 100 epochs, 

and 0.005 for epochs 101-200. The batch size was 32, and different activations were used, 

including ReLU, ELU (α=1) and LeakyReLU (α=0.3). After training for 200 epochs, the results 

are reported in Table 11. 
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MLP 

500-byte input 

500 units 

Activation 

Dropout (0.1) 

500 units 

Activation 

Dropout (0.2) 

500 units 

Activation 

Dropout (0.2) 

500 units 

Activation 

Dropout (0.3) 

500 units 

Activation 

Dropout (0.3) 

10-way softmax 

TABLE 10. MLP configuration for classification 

MLP ReLU ELU LeakyReLU 

Test Accuracy 0.8663 0.8073 0.8427 

Test Loss 

(see Appendix C) 
0.9537 1.5132 1.0826 

Train Accuracy 0.9851 0.9774 0.9833 

Train Loss 0.0346 0.0066 0.0392 

TABLE 11. Results of classification with MLP  
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MLP ReLU ELU LeakyReLU 

 Precision Recall Precision Recall Precision Recall 

DNS 1.0000 0.9565 0.9773 0.9348 1.0000 0.9565 

FTP 0.9516 0.8676 0.7639 0.8088 0.9032 0.7467 

HTTP 0.8500 0.7727 0.7100 0.7802 0.8300 0.7545 

IMAP 0.8500 0.8673 0.7400 0.7708 0.8100 0.7788 

MYSQL 0.9405 0.9518 0.9405 0.9518 0.9405 0.8977 

NFS 0.8889 1.0000 0.8889 1.0000 0.9167 0.9706 

POP3 0.8378 0.9118 0.8919 0.7333 0.8649 0.8000 

SMTP 0.8300 0.8924 0.7700 0.7778 0.8000 0.8989 

SSH 0.9000 0.8654 0.8700 0.7699 0.8700 0.8878 

TLS 0.7300 0.7684 0.6500 0.7222 0.6800 0.8608 

TABLE 12. Precision and recall of classification with MLP 

Apart from reporting the accuracy of the model as a whole, we also used the precision and 

recall to compare the results (see Table 12): 

Consider a protocol X and a data sample S. Define true positive (TP), true negative (TN), 

false positive (FP), false negative (FN) as the following table (Table 13): 

Prediction \ Ground Truth S belongs to protocol X S does not belong to protocol X 

S is classified as protocol X True Positive (TP) False Positive (FP) 

S is classified as another protocol False Negative (FN) True Negative (TN) 

TABLE 13. True positive, false positive, false negative, and true negative 
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 Among all the samples classified as a particular protocol X, precision measures how 

many samples are truly X.  

Precision =
TP

TP + FP
 

 Among all the samples that belongs to a particular protocol X, recall measures how 

many samples that are classified as X. 

Recall =
TP

TP + FN
 

In addition to the performance of the deep learning neural network, Figure 9 plots the sum of 

absolute values of the weights that is associated with each input byte and first hidden layer. It 

can be found out that the first few bytes contribute the most to this classification task, and the 

result is consistent with [17]. Also, the model that uses ELU stresses relatively more importance 

on the first few bytes compared with different activations used. 

 
  

(a) ReLU (b) ELU (c) LeakyReLU 

FIGURE 9. Weight associated with each byte in classification 
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We also constructed a 1D convolutional neural network to see its capability to capture the 

information of a packet payload. Typically, an image classification task (as in Section V) may 

use a 2D convolutional neural network to reduce the amount of parameters involved while 

maintaining the same performance. The convolution operation can be done in one dimension 

only. Figure 10 shows an example of 1D convolutional neural network. Output[1] is generated 

by applying convolution to Input[1] and Input[2] with kernel. In our experiment, Input[x] is the 

normalized ASCII value (between 0 and 1, inclusive) of byte x in the payload. Notice that in 

other implementation of 1D convolutional neural network, Input[x] can be a tensor of any shape. 

Therefore, 1D convolutional neural network can be applied to data with a higher dimension, but 

the convolution operation is done on one of the dimensions only. 

 

FIGURE 10. 1D convolutional neural network 

We used two different activations: ReLU and ELU (α=1). The configuration is shown in Table 

14 and the training was done with stochastic gradient descent with learning rate = 0.1. After 50 

epochs of training, the result is reported in Table 15. 

  

1 2 

1 
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CNN 

500-byte input 

200 filters 2x1 

Activation (ReLU/ELU) 

1D Maxpooling (pool length = 2) 

Dropout (0.1) 

300 filters 2x1 

Activation (ReLU/ELU) 

1D Maxpooling (pool length = 2) 

Dropout (0.2) 

400 filters 2x1 

Activation (ReLU/ELU) 

1D Maxpooling (pool length = 2) 

Dropout (0.2) 

10-way softmax 

TABLE 14. CNN configuration for classification 

 

CNN ReLU ELU 

Test Accuracy 0.8886 0.8165 

Test Loss 0.6538 1.3266 

Train Accuracy 0.9864 0.9822 

Train Loss 0.0341 0.0502 

TABLE 15. Results of classification with CNN 
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We can see that CNN had a lightly better performance when compared with MLP; however, the 

training time for CNN in our experiment was 100 times more than that of MLP. Nevertheless, 

the results for both MLP and CNN demonstrates the ability to capture the underlying 

information of the payload and determine the protocol of each data sample accordingly. In the 

following subsections, we will apply the same models to detect anomalies. 

There is one issue that remains unsolved. During the packet capturing, each PCAP file can store 

2GiB of data only. If a file reaches its limit, the packets will then be captured to another file. On 

average, each capture file contains the packets captured within 2 minutes. In our preprocessing 

step, when we were joining the payload, the data were joined if the packets belong to the same 

TCP stream and packets, and the packets exist in the same capture file. As a consequence, if a 

TCP stream consists of packets stored in different files, there will be more than one samples 

created, and some of them may contain binary data (same as packets 6 in Figure 7 and Figure 

8), or data that is irrelevant to distinguish the protocol used in the packet. Such data samples are 

noise and exist in both training and testing data. 

There are some possible ways to remove noisy data. One way is to examine each of the merged 

payload and see if it is complete, and discard the samples that have only a part of the entire 

payload. This approach requires lots of human effort. Another way is to merge the raw data file 

before joining the payload. The merging process can be done by tools such as tcpdump or tshark 

(command line tool of wireshark). However, after the raw data files are merged, there will be 

one large file. Extracting payload according to TCP streams from such a large file will be 

extremely costly. A more viable approach is to capture the packet only if it is of our interest, but 

it requires our direct access to control the host that captured packets. In our project, the task of 
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packet classification is to validate the capability of the deep learning neural network when it 

works on payload data. As it can be seen from Table 15 that the model worked with reasonable 

accuracy, we moved on to detecting network anomalies. 

 

C. DATASET FOR ANOMALY DETECTION 

To train and evaluate the anomaly detection model, we prepared another dataset that is suitable 

for this purpose. The CTU-13 dataset [18], prepared by Czech Technical University, contains 

packet capture files generated by different types of botnets. There are 13 different simulated 

scenarios, and we chose the scenarios that are not duplicated and contains sufficient amount of 

data. We joined the payload of the packets using the same approach described in Section VI.A. 

The selected scenarios, together with their detailed information, are presented in Table 16. The 

original dataset also contains normal and background traffic, but these packets are not made 

public due to privacy issues. Therefore, we combined the packets processed in VI.A to form a 

set of normal data. We first created a dataset (D01) that contains normal flow and anomalous 

flow with only two different bots. The information of D01 is shown in Table 17. 

ID Scenario (in CTU-13) Bot Number of streams 

#1 1 Neris 1718 

#2 3 Rbot 283 

#3 5 Virut 409 

#4 6 Menti 215 

#5 8 Murlo 1987 

#6 12 NSIS.ay 343 

TABLE 16. CTU-13 Dataset 
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Type Train Test Description 

Normal 3822 764 All the streams in VI.A 

Anomalous 1668 333 #1 and #2 in Table 16 

TABLE 17. Anomaly detection dataset D01 

We created two more datasets (D02, D03) that contain more scenarios from Table 16. In D03, 

the number of packets from each scenario is adjusted so that the training will not bias towards 

any particular scenario. The information of two datasets are shown in Table 18 and Table 19. 

Type Train Test Description 

Normal 3822 764 All the streams in VI.A 

Anomalous 2188 437 #1, #2, #3 and #4 in Table 16 

TABLE 18. Anomaly detection dataset D02 

 

Type Train Test Description 

Normal 3822 764 All the streams in VI.A 

Anomalous 2125 425 

#1: 650 samples 

#2: 283 samples 

#3: 409 samples 

#4: 215 samples 

#5: 650 samples 

#6: 343 samples 
TABLE 19. Anomaly detection dataset D03 

 

D. ANOMALY DETECTION 

We set up a multiple layer perceptron (MLP) and 1D convolutional neural network (CNN) to 

test on the dataset D01. The MLP and CNN had the same configurations the one we used when 
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we were classifying packets, except that in the output layer, the 10-way softmax was changed 

to 2-way softmax since the output label would be either “normal” or “anomalous.” The modified 

changes were shown in Table 20 and Table 21.  

MLP 

500-byte input 

500 units 

Activation 

Dropout (0.1) 

500 units 

Activation 

Dropout (0.2) 

500 units 

Activation 

Dropout (0.2) 

500 units 

Activation 

Dropout (0.3) 

500 units 

Activation 

Dropout (0.3) 

2-way softmax 

TABLE 20. MLP configuration for classification 
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CNN 

500-byte input 

200 filters 2x1 

Activation (ReLU/ELU) 

1D Maxpooling (pool length = 2) 

Dropout (0.1) 

300 filters 2x1 

Activation (ReLU/ELU) 

1D Maxpooling (pool length = 2) 

Dropout (0.2) 

400 filters 2x1 

Activation (ReLU/ELU) 

1D Maxpooling (pool length = 2) 

Dropout (0.2) 

2-way softmax 

TABLE 21. CNN configuration for classification 

We measured the overall test accuracy (total number of samples classified correctly / total 

number of samples misclassified), and the precision and recall for the anomaly group. The 

definition of TP, TN, FP, FN under this situation is shown in Table 22: 

Prediction \ Ground Truth S is anomalous S is normal 

S is classified as anomaly True Positive (TP) False Positive (FP) 

S is classified normal False Negative (FN) True Negative (TN) 

TABLE 22. True positive, false positive, false negative, and true negative when used in anomaly detection 

The performance of MLP is reported in Table 23 and Table 24, and the performance of CNN is 

reported in Table 25 and Table 26.  
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MLP ReLU ELU LeakyReLU 

Test Accuracy 0.9727 0.9462 0.9672 

Test Loss 0.1185 0.3053 0.1892 

Train Accuracy 0.9996 0.9960 0.9991 

Train Loss 0.0010 0.0131 0.0017 

TABLE 23. Results of detection D01 with MLP 

 

MLP ReLU ELU LeakyReLU 

 Precision Recall Precision Recall Precision Recall 

Anomaly 0.9489 0.9604 0.9770 0.8702 0.9770 0.9279 

TABLE 24. Precision and recall of detection D01 with MLP 

 

CNN ReLU ELU 

Test Accuracy 0.9681 0.9599 

Test Loss 0.1068 0.2025 

Train Accuracy 0.9969 0.9918 

Train Loss 0.0119 0.0223 

TABLE 25. Results of detection D01 with CNN 

 

CNN ReLU ELU 

 Precision Recall Precision Recall 

Anomaly 0.9730 0.9257 0.9790 0.8981 

TABLE 26. Precision and recall of detection D01 with CNN 
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From Table 23 and Table 25, we can see that if we use the same configurations as the ones in 

protocol classification, the performance of MLP is better than CNN. However, in the last 10 

training epochs of CNN and MLP (using ReLU as activations), the test accuracy fell in [0.9681, 

0.9781] and [0.9699, 0.9754], respectively, and the accuracy was neither strictly increasing nor 

strictly decreasing. Note that this situation does not apply to classification task, where the test 

accuracy of CNN [0.8585, 0.8689] is better than MLP [0.8807, 0.8978] in the last 10 epochs. 

We conclude that the two models have similar performance. 

Similarly, we plot the sum of absolute values of the weights that is associated with each input 

byte and first hidden layer. The first few bytes still contribute the most to this classification task, 

and the model with ELU stresses relatively more importance on the first few bytes. In the model 

where ReLU is used, the importance of the first few bytes is not highly valued (notice the scale 

of y-axis). The reason behind can be further investigated. 

   

(a) ReLU (b) ELU (c) LeakyReLU 

FIGURE 11. Weight associated with each byte in detection 

As Table 23 and Table 25 suggests that MLP and CNN have the same level of performance, we 

adopt MLP to train models for dataset D02 and D03 because the training is more efficient with 

regard to time. The results are reported in Table 27 to Table 30. 
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MLP ReLU ELU LeakyReLU 

Test Accuracy 0.9742 0.9467 0.9600 

Test Loss 0.1251 0.3240 0.1925 

Train Accuracy 0.9995 0.9963 0.9992 

Train Loss 0.0009 0.0107 0.0018 

TABLE 27. Results of detection D02 with MLP 

 

MLP ReLU ELU LeakyReLU 

 Precision Recall Precision Recall Precision Recall 

Anomaly 0.9748 0.9551 0.9633 0.8976 0.9565 0.9351 

TABLE 28. Precision and recall of detection D02 with MLP 

 

MLP ReLU ELU LeakyReLU 

Test Accuracy 0.9411 0.9697 0.9605 

Test Loss 0.3773 0.1614 0.2369 

Train Accuracy 0.9973 0.9995 0.9993 

Train Loss 0.0103 0.0008 0.0021 

TABLE 29. Results of detection D03 with MLP 

 

MLP ReLU ELU LeakyReLU 

 Precision Recall Precision Recall Precision Recall 

Anomaly 0.9489 0.9604 0.9770 0.8702 0.9770 0.9279 

TABLE 30. Precision and recall for detection D03 with MLP 
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After adding the traffic generated by more different types of botnets, we can see from the results 

that the level of accuracy using MLP remains the same. The results suggest that deep learning 

models can well distinguish botnet traffic from normal traffic and detect anomalies. 
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VII. CONCLUSION 

As people nowadays heavily rely on the Internet, it is important to develop an intrusion detection 

system that helps prevent existing as well as zero-day network attacks. With the increase of 

computer power, it is feasible to construct a deep learning model to detect anomalies based on 

payload data of packets. In our project, we have constructed a deep learning neural network that 

can identify the application layer protocols used in TCP streams based on the payload. The same 

model was used to detect network anomalies generated by botnets. 

We have shown the performance of various activation functions when applied to network data. 

Some issues arising from this project can be further pursued. Firstly, it is possible to include 

more information other than payload as the input of deep learning neural network. Secondly, 

the model can be adjusted to tradeoff between positives against false negatives. Thirdly, more 

types of anomalies can be included. Finally, some activation functions can be devised to work 

on network packets. 
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APPENDICES 

A. CODE FOR SORTING PACKETS 

Using tcpdump, we can extract the packet that matches the port number from PCAP files. 

1. tcpdump -n -r <capture_file_name> -w <output_file_name> 'tcp port <port_number>' 

  

 

The following code reads a PCAP file (consists of many packets and streams) and saves the 

packets to the same file if the packets belong to the same TCP stream: 

Parameter: Command line argument 1 – the PCAP file to be separated into TCP streams 

1. #!/bin/bash 

2. maxlen=$(tshark -r "${1}" -Y usb -z conv,tcp| wc -l) #total number of streams 

3. let "maxlen=${maxlen}-6" #-6 for headers 

4. mkdir "${1}_stream" 

5. for stream in $(seq 1 ${maxlen}) 

6. do 

7.     tshark -r ${1} -w ${1}_stream/stream-${stream}.pcap -Y "tcp.stream==$stream

" -F pcap 

8. done 
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B. CODE FOR PREPROCESSING STREAMS 

The following code label the joins the payload of the stream, assign labels (user should input 

the parameters), and checks the size of each stream. 

1. def preprocess_stream(folder_name, ofname, label, minlen=1, limit=-1, size=500, norma

lize=False): 

2.     onlyfiles = [f for f in listdir(folder_name) if isfile(join(folder_name, f))] 

3.     counter = 0 

4.     with open(ofname+"_meta", "a") as output_meta: 

5.         for in_file in onlyfiles: 

6.             with open(ofname, "a") as output_file: 

7.                 entirepayload = list() 

8.                 for ts, pkt in dpkt.pcap.Reader(open(folder_name+"/"+in_file,'r')): 

9.   

10.                     eth = dpkt.ethernet.Ethernet(pkt) 

11.                     ip = eth.data 

12.                     tcp = ip.data 

13.                     app = tcp.data 

14.                 

15.                     payload_str = str(app) 

16.                     if normalize: 

17.                         payload_ascii = [ord(x)/255.0 for x in payload_str] 

18.                     else: 

19.                         payload_ascii = [ord(x) for x in payload_str] 

20.                     entirepayload.extend(payload_ascii) 

21.                     if(len(entirepayload) > size): 

22.                         break 
 

(continue on the next page) 
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23.                 if(len(entirepayload) < minlen): 

24.                     continue 

25.                 elif(len(entirepayload) < size): 

26.                     entirepayload += [0] * (size - len(entirepayload)) 

27.                 entirepayload = entirepayload[:size] 

28.                 output_file.write(str(entirepayload)[1:-1]) 

29.                 output_file.write(" ; ") 

30.                 output_file.write(str(label)) 

31.                 output_file.write("\n") 

32.             counter+=1 

33.             output_meta.write(in_file) 

34.             output_meta.write("\n") 

35.             if(counter == limit): 

36.                 break 

37.     print("streams output: " + str(counter)) 
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C. TRAIN AND TEST LOSS – CATEGORICAL CROSS ENTROPY 

In the experiment results, categorical (multinomial) cross entropy was used as the loss function. 

Suppose there are 𝑚 classes and 𝑛 samples, let 𝑝𝑖𝑗 denote the probability that sample 𝑖 belongs 

to class 𝑗 (note that ∑ 𝑝𝑖𝑗𝑗 = 1 in our experiment since softmax layer is used to predict output), 

and 𝑦ij = {
1
0

 sample 𝑖 belongs to class 𝑗
otherwise

. 

Categorical cross entropy is calculated by: 

ℒ = −
1

𝑛
∑ ∑(𝑦𝑖𝑗 log(𝑝𝑖𝑗))

𝑚

𝑗=1

𝑛

𝑖=𝑖

 

Consider the following trinary classification example (Prob[x] is the normalized probability that 

the sample belongs to class x using softmax function): 

Sample no. Label Prediction Prob[1] Prob[2] Prob[3] 

1 1 1 0.95 0.01 0.04 

2 1 2 0.05 0.55 0.40 

Loss: ℒ = −
1

2
(log2 0.95 + log2 0.05) = 2.2 

 

Consider another example where each sample can belong to more than one class. Assume the 

prediction threshold is 0.5. 

Sample no. Label Prediction Prob[1] Prob[2] Prob[3] 

1 1 1 0.9 0.2 0.4 

2 1, 2 2, 3 0.1 0.7 0.55 

Loss: ℒ = −
1

2
(log2 0.9 + (log2 0.1 + log2 0.7)) = 1.99 
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