

NETWORK ANOMALY DETECTION

FYP16021 Final Report

by Tien-Hsuan WU
Supervised by Dr. S. M. YIU

April 2017

FYP16021 Network Anomaly Detection Final Report

1

ABSTRACT

Most anomaly detection systems found in literature are based on data mining

methods, and thus are limited to predefined features. The limitations of the existing

systems will significantly reduce the performance of the systems if the features are

not selected properly. Recently, as the computation power increases, deep learning

becomes a popular area of research. In this project, we used deep learning as the

model for anomaly detection, and Keras as the library to implement. The models

were first trained with internal network data to classify network packets according

to the application layer protocol. The models were then modified and trained to

identify anomalies and the performance was evaluated. We obtained training data

from Department of Computer Science for packet classification task, and we used

publicly available data for the anomaly detection task. The promising result of the

anomaly detection shows the potential to integrate deep learning into network

intrusion detection system.

FYP16021 Network Anomaly Detection Final Report

2

ACKNOWLEDGEMENT

I would like to thank my supervisor, Dr. S. M. Yiu, for his unfailing support of my

project and teaching me research skills with his patience and immense knowledge.

I would like to express my gratitude to the second examiner, Dr. H. F. Ting, for his

effort in reviewing the report.

I wish to acknowledge the help in data collection provided by technical staff of the

Department.

Special thanks are given to peers who have offered me valuable suggestions to my

project.

FYP16021 Network Anomaly Detection Final Report

3

TABLE OF CONTENTS

Abstract ... 1

Acknowledgement .. 2

List of Figures ... 5

List of Tables .. 6

Abbreviations .. 8

I. Introduction ... 9

II. Background ... 12

A. Intrusion Detection.. 12

B. Deep Learning ... 12

III. Related Studies ... 14

IV. Methodology ... 16

V. Deep Learning Optimization .. 19

A. Dataset for Optimizing Deep Learning Neural Network 19

B. Experiments with MLP and CNN ... 22

C. Optimization Research .. 25

D. Experiments with Advanced Techniques.. 27

VI. Working with Packet Capture Data .. 30

A. Dataset for Classification .. 30

B. Application Protocol Classification .. 33

FYP16021 Network Anomaly Detection Final Report

4

C. Dataset for Anomaly Detection .. 40

D. Anomaly Detection ... 41

VII. Conclusion .. 48

Appendices .. 49

A. Code for Sorting Packets .. 49

B. Code for Preprocessing Streams ... 50

C. Train and Test Loss – Categorical Cross Entropy .. 52

References ... 53

FYP16021 Network Anomaly Detection Final Report

5

LIST OF FIGURES

Figure 1. Fast prototyping of Keras. ... 10

Figure 2. Example of byte distribution for a 200-byte packet. 14

Figure 3. The most important 100 locations of the data. .. 17

Figure 4. The MNIST dataset ... 20

Figure 5. The CIFAR-100 dataset ... 20

Figure 6. Activation functions .. 26

Figure 7. Packet capture example ... 31

Figure 8. Sample payload of packets .. 32

Figure 9. Weight associated with each byte in classification 36

Figure 10. 1D convolutional neural network .. 37

Figure 11. Weight associated with each byte in detection .. 45

file:///C:/Users/acer/Dropbox/HKU/URFP/3Final/FinalReport.docx%23_Toc480046158
file:///C:/Users/acer/Dropbox/HKU/URFP/3Final/FinalReport.docx%23_Toc480046159
file:///C:/Users/acer/Dropbox/HKU/URFP/3Final/FinalReport.docx%23_Toc480046160
file:///C:/Users/acer/Dropbox/HKU/URFP/3Final/FinalReport.docx%23_Toc480046163

FYP16021 Network Anomaly Detection Final Report

6

LIST OF TABLES

Table 1. CIFAR-100 labels ... 21

Table 2. Experiment configuration for MNIST .. 22

Table 3. Experiment result for MNIST ... 23

Table 4. Experiment configuration for CIFAR-100 ... 24

Table 5. Experiment result for CIFAR-100 .. 25

Table 6. Configuration in the original experiment of ELU 26

Table 7. Configuration in our experiment with ELU and LSUV 28

Table 8. Comparing different activation functions ... 29

Table 9. Number of samples in each protocol .. 33

Table 10. MLP configuration for classification .. 34

Table 11. Results of classification with MLP ... 34

Table 12. Precision and recall of classification with MLP 35

Table 13. True positive, false positive, false negative, and true negative 35

Table 14. CNN configuration for classification .. 38

Table 15. Results of classification with CNN ... 38

Table 16. CTU-13 Dataset .. 40

Table 17. Anomaly detection dataset D01 .. 41

Table 18. Anomaly detection dataset D02 .. 41

Table 19. Anomaly detection dataset D03 .. 41

FYP16021 Network Anomaly Detection Final Report

7

Table 20. MLP configuration for classification .. 42

Table 21. CNN configuration for classification .. 43

Table 22. True positive, false positive, false negative, and true negative when used in

anomaly detection ... 43

Table 23. Results of detection D01 with MLP ... 44

Table 24. Precision and recall of detection D01 with MLP 44

Table 25. Results of detection D01 with CNN ... 44

Table 26. Precision and recall of detection D01 with CNN 44

Table 27. Results of detection D02 with MLP ... 46

Table 28. Precision and recall of detection D02 with MLP 46

Table 29. Results of detection D03 with MLP ... 46

Table 30. Precision and recall for detection D03 with MLP 46

FYP16021 Network Anomaly Detection Final Report

8

ABBREVIATIONS

ANN: artificial neural network

CNN: convolutional neural network

ELU: exponential linear unit

GiB: giga binary byte, 230 bytes

IDS: intrusion detection system

KB: kilobyte in decimal, 1,000 bytes

LReLU: leaky rectified linear unit

LSUV: Layer Sequential Unit Variance

MLP: multiple layer perceptron

PCAP: packet capture (file)

ReLU: rectified linear unit

TCP: transmission control protocol

FYP16021 Network Anomaly Detection Final Report

9

I. INTRODUCTION

The Internet is expanding and its scale is increasing as more and more devices are connected to

the Internet. In November 2016, Google indexed 46 billion webpages, and the annual global

Internet traffic was expected to reach 1 zettabyte (1021 bytes) by the end of 2016. With the

popularization of the Internet, its usage has become necessary in various areas. However,

alongside the advantages of Internet use is the increasing potential of cyber attack. According

to Symantec, there were 54 zero-day (unseen) vulnerabilities discovered each week in 2015,

which is twice as many as those in 2014 [1]. Therefore, without appropriate security measures,

it is likely that the systems will be compromised, causing great losses to individuals and

companies. Intruders may gain unauthorized privileges, or simply overload the server and make

it unavailable. Both of these may incur great loss for the system owners.

In order to protect the computers from being hacked, intrusion detection systems (IDS) can be

installed. Some common open source IDS are Snort [2] and Suricata [3]. With IDS installed,

whenever a system encounters unauthorized access, it can respond by refusing such access

request. Moreover, it can generate alerts for human to inspect if there is any system defect.

In our project, we focus on improving the accuracy of intrusion detection methods with a deep

learning model as the backend. The entire model was built using Keras, and thus we can take

advantage of its high modularity to achieve fast prototyping. A simple code snippet written with

Keras library that builds a deep learning model with 3 hidden layers is shown in Figure 1. We

first studied optimization techniques with MNIST hand-written digit dataset [4] and CIFAR tiny

image dataset [5]. We then focused on determining and building the most effective model. After

FYP16021 Network Anomaly Detection Final Report

10

the model was built, we trained and tested it with some network data and evaluated its

performance according to its accuracy. We then analyzed the model and examine the

misclassified data to determine the modifications to be made. Finally, we provided suggestions

to modifications.

1. model = Sequential()

2. model.add(Dense(300, input_shape=(500,))) #hidden layer

3. model.add(Dropout(0.2))

4. model.add(Activation('relu'))

5. model.add(Dense(300)) #hidden layer

6. model.add(Dropout(0.2))

7. model.add(Activation('relu'))

8. model.add(Dense(300)) #hidden layer

9. model.add(Dropout(0.2))

10. model.add(Activation('relu'))

11. model.add(Dense(10)) #output layer

12. model.add(Activation('softmax'))

13.

14. sgd = SGD(lr=0.01)

15.

16. model.summary()

17.

18. model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

19.

20. history = model.fit(X_train, Y_train,

21. batch_size=32, nb_epoch=100,

22. verbose=2, validation_data=(X_test, Y_test))

23.

24. score = model.evaluate(X_test, Y_test, verbose=2)

FIGURE 1. Fast prototyping of Keras.

FYP16021 Network Anomaly Detection Final Report

11

The rest of this report is organized as follows. Section II describes the background of intrusion

detection system and deep learning. Section III presents the related works to our project. We

discuss the methodology in Section IV. The current deep learning optimization research is

summarized in Section V, and our experiment results with network data are reported in Section

VI. Finally, Section VII concludes this report.

FYP16021 Network Anomaly Detection Final Report

12

II. BACKGROUND

A. INTRUSION DETECTION

Intrusion detection systems can be classified into three categories: signature detection systems,

anomaly detection systems, and hybrid systems [6, 7]. A signature detection system maintains

a misuse database which contains the patterns of abnormal traffic. When a packet arrives, the

system will compare it with the misuse database to determine whether such packet is normal.

The advantage is that signature detection systems generate a low false positive rate when the

misuse database is reliable. This is due to the fact that intrusions detected are supposed to have

a high similarity with the abnormal packets. For an anomaly detection system, it uses the pattern

generated from normal traffic as the baseline. Any pattern that deviates from the normal traffic

is considered anomalous. The advantage is that it can detect unseen (zero-day) attacks. Hybrid

systems combine both techniques used in signature detection systems and anomaly detection

systems.

B. DEEP LEARNING

Traditional machine learning methods, such as support vector machines and decision trees, are

able to find patterns from a set of data. Deep learning is also able to do this. However, what

differentiates deep learning from machine learning is the number of learning methods used. In

machine learning, typically a single method is used; whereas in deep learning, we can use

multiple methods, with each method being based on the result of previous one. The deep

structure comes from the multiple steps between the input and the output [8].

FYP16021 Network Anomaly Detection Final Report

13

One advantage of deep learning the high capacity of the model. In traditional machine learning

where only one method is used, it is less desirable to apply it to solve complicated problems

such as image recognition and natural language processing. Even if it fits the training data well

through more training iterations (epochs), the model is likely to perform poorly on unseen data.

By contrast, the problem can be resolved by setting different classification methods for each

step when deep learning is used. With a higher capacity of the model, problems of various types

can be solved. We can also expect the model is not overfit so that the model trained can truly

reflect its performance on unseen data.

In reality when intrusion detection system is implemented, the IDS needs to accommodate to a

wide range of network flow patterns. Moreover, when the size of the deep learning model

increases, the model is able to capture more features and raise the precision of the detection

system. Based on these reasons, we chose deep learning framework to perform anomaly

detection tasks.

FYP16021 Network Anomaly Detection Final Report

14

III. RELATED STUDIES

Data mining techniques and machine learning algorithms can be applied to intrusion detection

systems, and these techniques have been extensively studied in the past decade. Clustering and

classification are some techniques used in intrusion detection systems (IDS). Münz, Li & Carle

proposed an anomaly detection system using k-means algorithm which combines both

classification and outlier detection [9]. In [10, 11], the authors combined the k-means clustering

with naïve Bayes classification. In [12], the authors further utilized the result from k-means

clustering as new features for naïve Bayes classifier. In [13], naïve Bayes classifier is combined

with decision tree algorithms.

The abovementioned methods operate on network features only, namely, the connection records.

To take payload data from packets into consideration, we need some other techniques. PAYL is

a histogram-based classification method that takes payload data as input. It builds a histogram

from the input, with frequency of each byte pattern being a bin (see Figure 2), and compares the

histogram built from the data with baseline [14].

Deep learning techniques can also be implemented to detect anomalies. Niyaz [15] implemented

two-stage process of self-taught learning for network anomaly detection. In the first stage, a

FIGURE 2. Example of byte distribution for a 200-byte

packet.

FYP16021 Network Anomaly Detection Final Report

15

sparse autoencoder was used for unsupervised feature learning. After the features were learned,

they were passed to a softmax classifier in the second stage for anomaly detection. This model

can only operate on network features only instead of the entire payload. The performance is

evaluated with KDD dataset [16], and precision for 5-class classification based on predefined

labels in KDD is 85.44%. Another deep learning application on network data is studied by Wang

[17]. He studied the structures of artificial neural network and stacked autoencoder, and then

built a system that could classify TCP packets according to their application layer protocols.

The weight coefficients of the first hidden layer can be viewed as the importance of the byte

features. Most of the protocols can reach 99% precision in the experiment. He suggested that

misclassified packets may be anomalous; however, the relationship between those misclassified

packets and anomalies was not thoroughly. In our project, we first implemented a similar deep

learning model and studied the misclassified packets. We then extended such model to detect

anomaly packets.

FYP16021 Network Anomaly Detection Final Report

16

IV. METHODOLOGY

Given a network packet, our first goal is to determine what application layer protocol is used.

In Section II.B, we have discussed processing network packets with deep learning models. As

packets arriving at a host may be scattered, the order and the temporal information will not be

useful. Therefore, we can use a deep learning feedforward network as it only captures the

features of each single packet. We used a simple one as an initial implementation, and modify

the network to achieve better results.

To implement a deep learning network, it requires some training data to learn from and testing

data to evaluate its performance. We retrieved internal-generated Internet packets from

Department of Computer Science, University of Hong Kong for the packet classification task.

We also used the CTU-13 dataset [18], which consists of the botnet packet capture, as the

training and testing data for the anomaly detection. Details of the dataset will be discussed in

Section VI.C.

The next step is to adjust the data so that they are suitable for deep learning. We first joined the

payload of the packets if they belong to the same session. Since the model requires fixed size of

input, we had to truncate payloads that were too large and padded the payloads that were too

small. We set the size of the payloads to 500 bytes since previous research showed that most

important bytes are located in the first few bytes (see Figure 3) [17]. We did not merely use the

first 100 bytes because it contains too limited information, and we did not use the entire 1 KB

for the reason that it causes too much time in training process. The detailed data processing steps

can be found in Section VI.A.

FYP16021 Network Anomaly Detection Final Report

17

In order to modify the feedforward network, we had to first determine the factors that affect the

performance of the system, such as the number of layers of the system and the learning

algorithms used. After the neural network was built, we studied the relationship between the

byte features and their importance in protocol identification. We would verify the result of the

byte features by examining the packets of the neural network.

Our ultimate goal is to identify packet outliers. Based on the system we had built, we used

similar techniques to build the model and then improve its performance. The difference is that

in the training set, we added some anomalous data, including attack traffic in the Internet. For

the output, it should be able to distinguish anomaly packets from normal flow.

We chose Keras for implementing deep learning models because its high modularity allows the

program development and prototyping in a relative simple manner. In addition, as we focus on

evaluating the existing deep learning structures and the effects of parameters, we can exploit the

advantages of modularity and avoid extensive changes in source code during training phase.

Another concern in development is the compatibility and extensibility with other packages. In

python, which Keras is written in, there are other machine learning packages that can be utilized.

Therefore, Keras is particularly suitable for our project.

FIGURE 3. The most important 100 locations of the data.

FYP16021 Network Anomaly Detection Final Report

18

At the time we started the implementation of the deep learning model, the version of Keras was

1.1.0. Although Keras has recently released an update to 2.0.0, we still use our original version

so the efficiency can be compared.

FYP16021 Network Anomaly Detection Final Report

19

V. DEEP LEARNING OPTIMIZATION

For a deep learning neural network to classify data samples correctly, the model is required to

have enough capacity and the training data have to represent general situations. In this section,

we will discuss some methods to build a model that achieves a better performance. Since there

is not much research related to deep learning optimization with network data, we used the

datasets that are widely studied in the literature for experiment.

A. DATASET FOR OPTIMIZING DEEP LEARNING NEURAL NETWORK

MNIST hand-written digit database [4] is one of the widely used labeled data for machine

learning. Each grayscale written digit is normalized in size and centered in a 28x28 image. The

dataset contains 60,000 training samples and 10,000 test samples for performance evaluation.

Another dataset that is popular in deep learning is CIFAR-100 colored tiny image dataset. Each

image has a coarse label and a fine label, which belongs to one of the 20 superclasses and one

of the 100 classes (see Table 1). In our experiment, we used fine labels only. The size of each

image is 32x32.

FYP16021 Network Anomaly Detection Final Report

20

FIGURE 4. The MNIST dataset

FIGURE 5. The CIFAR-100 dataset

FYP16021 Network Anomaly Detection Final Report

21

Superclass (Coarse) Classes (Fine)

aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips

food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers

household electrical devices
clock, computer keyboard, lamp, telephone,

television

household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf

large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk

non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman

reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel

trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train

vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

TABLE 1. CIFAR-100 labels

FYP16021 Network Anomaly Detection Final Report

22

B. EXPERIMENTS WITH MLP AND CNN

We first built a multiple layer perceptron (MLP) and convolutional neural network (CNN)

according to the configuration in Table 2 to test against the MNIST dataset. In this project, all

the models were trained on the fyp server (single core Intel i7 CPU, 2GiB memory). Both

models were trained with stochastic gradient descent (learning rate = 0.01). The batch size was

set to 100 and model was trained for 20 epochs, so there were 12k parameter updates for each

model during training. The result is reported in Table 3.

MLP CNN

Input 28x28 images

400 units 30 filters 3x3

Activation (ReLU)

Dropout (0.2)

400 units 30 filters 3x3

Activation (ReLU)

Dropout (0.2)

400 units Maxpooling (2x2)

120 units

Activation (ReLU)

Dropout (0.2)

10-way softmax

TABLE 2. Experiment configuration for MNIST

FYP16021 Network Anomaly Detection Final Report

23

 MLP CNN

No. of parameters 638,810 528,160

Test Accuracy 0.9667 0.9769

Test Loss

(see Appendix C)
0.1051 0.0783

Train Accuracy 0.9601 0.9719

Train Loss 0.1369 0.0913

Training time 260s 3000s

TABLE 3. Experiment result for MNIST

From Table 3, we can see that convolutional neural network can perform better than a multiple

layer perceptron even with fewer number of parameters. The training time for CNN can be

improved if we use a GPU and train the model with parallelization.

We also performed a similar experiment on CIFAR-100 dataset. We set different batch size for

MLP and CNN: 128 and 32, respectively. After 100 epochs of training, there will be 39k

parameter updates for MLP and 156k parameter updates for CNN. As the numbers of parameter

updates are different, we also report the performance of CNN after 25 epochs of training (39k

parameter updates, similar to that of MLP). The training was done with stochastic gradient

descent with learning rate 0.025, decay 10-6 and Nesterov momentum 0.9. The configuration is

shown in Table 4 and the result is reported in Table 5.

From the result, we can see that as the task becomes more difficult, the difference in parameters

and performance for MLP and CNN are greater. One property for CNN is that it captures the

relationship of the neighboring area. Thus, in the image classification task, CNN prevails over

MLP in detecting edges and contours, making the entire classification more accurate. However,

FYP16021 Network Anomaly Detection Final Report

24

there is a lot of improvement left in the level of accuracy. In the next subsection, some state-of-

the-art research in deep learning optimization will be discussed.

MLP CNN

Input 32x32 images

3000 units 32 filters 3x3

Activation (ReLU) Activation (ReLU)

Dropout (0.2) 32 filters 3x3

3000 units Activation (ReLU)

Activation (ReLU) Maxpooling (2x2)

Dropout (0.2) Dropout (0.25)

2000 units 64 filters 3x3

Activation (ReLU) Activation (ReLU)

Dropout (0.2) 64 filters 3x3

2000 units Activation (ReLU)

Activation (ReLU) Maxpooling (2x2)

Dropout (0.2) Dropout (0.25)

1000 units 512 units

Activation (ReLU) Activation (ReLU)

Dropout (0.2) Dropout (0.5)

100-way softmax

TABLE 4. Experiment configuration for CIFAR-100

FYP16021 Network Anomaly Detection Final Report

25

 MLP
CNN

(25 epochs)

CNN

(100 epochs)

No. of parameters 30,327,100 1,297,028

Test Accuracy 0.2535 0.4002 0.4270

Test Loss 4.1776 2.3355 2.2208

Train Accuracy 0.5805 0.3235 0.3705

Train Loss 1.5860 2.6801 2.4434

Training time 20000s 6750s 27,000s

TABLE 5. Experiment result for CIFAR-100

C. OPTIMIZATION RESEARCH

The best result in CIFAR-100 uses exponential linear units (ELU) [19] in the activation layers.

With non-zero mean activation layers, each layer will produce a bias and propagate to the next

layer, which makes the gradient descent less efficient for optimization. ELU is claimed to reduce

such bias shift effect. The exponential linear unit is: (α > 0)

𝑓(𝑥) = {
𝑥

𝛼(exp(𝑥) − 1)
, 𝑥 > 0
, 𝑥 ≤ 0

, 𝑓′(𝑥) = {
1

𝑓(𝑥) + 𝛼

, 𝑥 > 0
, 𝑥 ≤ 0

Figure 6 from [19] shows the relationship of ELU, leaky ReLU, ReLU and shifted ReLU. The

experiment done by Clevert, et al. achieved 75.72% accuracy in CIFAR-100 dataset, and Table

6 shows the model used in their experiment.

FYP16021 Network Anomaly Detection Final Report

26

FIGURE 6. Activation functions

Input 32x32 images

384 filters 3x3

ELU (α=1)

Maxpooling 2x2

384 filters 1x1

384 filters 2x2

640 filters 2x2

640 filters 2x2

ELU (α=1)

Dropout(0.1)

Maxpooling 2x2

640 filters 1x1

768 filters 2x2

768 filters 2x2

768 filters 2x2

ELU (α=1)

Dropout(0.2)

Maxpooling 2x2

768 filters 1x1

(continue on the next

column)

896 filters 2x2

896 filters 2x2

ELU (α=1)

Dropout(0.3)

Maxpooling 2x2

896 filters 3x3

1024 filters 2x2

ELU (α=1)

Dropout(0.4)

Maxpooling 2x2

1024 filters 1x1

1152 filters 2x2

ELU (α=1)

Dropout(0.5)

Maxpooling 2x2

1152 filters 1x1

ELU (α=1)

100-way Softmax

TABLE 6. Configuration in the original experiment of ELU

FYP16021 Network Anomaly Detection Final Report

27

Another research in the deep learning optimization focuses on the weight initialization.

Initializing the model with Gaussian noise 𝒩(0, 0.012) became popular after CNN showed its

success in 2012 [20]. Glorot & Benigo [21] proposed a formula to estimate the standard

deviation, under the assumption that the relationships between each layer is non-linear. Mishkin

& Matas generalized the previous method and named it Layer Sequential Unit Variance (LSUV)

[20]. The overall performance on CIFAR-100 is 72.34% accuracy rate.

There are more optimization methods that have been developed recently. Adaptive piecewise

linear activation unit [22] is able to learn the activation functions. Fractional max-pooling [23]

ameliorates the effect on reducing the size during forward propagation. The pooling is not

restricted to the fraction of 1/k where k is an integer, and a pooling fraction between 1/2 and 1

has demonstrated an improved performance. Another method related to pooling is the all

convolutional net [24]. The pooling layers are replaced by convolutional layers with an

appropriate stride (also called subsampling).

D. EXPERIMENTS WITH ADVANCED TECHNIQUES

In this subsection, we experimented with ELU and LSUV discussed previously. As the model

used in [19] is too large and is beyond the computation power supported by the server, we used

a model with a reduction in size. The model configuration is shown in Table 7.

The training was done with stochastic gradient descent with decay 10-6 and Nesterov momentum

0.9. Batch size was set to 100. The learning rate schedule we applied was: 0.005 [1-200 epochs],

0.0025 [201-400 epochs], 0.0005 [401-500 epochs].

FYP16021 Network Anomaly Detection Final Report

28

Input 32x32 images

80 filters 3x3

80 filters 1x1

ELU (α=1)

Maxpooling 2x2

140 filters 3x3

140 filters 2x2

ELU (α=1)

Dropout(0.1)

Maxpooling 2x2

180 filters 2x2

180 filters 1x1

ELU (α=1)

Dropout(0.2)

Maxpooling 2x2

200 filters 2x2

200 filters 1x1

ELU (α=1)

Dropout(0.3)

Maxpooling 2x2

512 units

ELU (α=1)

Dropout(0.5)

100-way Softmax
TABLE 7. Configuration in our experiment with ELU and LSUV

The training for each epoch took 740 seconds. After 500 epochs of training, the test accuracy

reached 70.15% and the training accuracy was 79.15%.

We then used the same model and replaced the ELUs with different activation units. The settings

for training were the same, except the schedule for learning rate being: 0.01 [1-100 epochs],

0.001 [101-200 epochs], 0.0001 [201-300 epochs]. The results are compared in Table 8.

FYP16021 Network Anomaly Detection Final Report

29

CNN ELU ReLU LeakyReLU

Test Accuracy 0.6837 0.6523 0.6773

Test Loss 1.1104 1.2186 1.1202

Train Accuracy 0.7076 0.6649 0.6953

Train Loss 0.9757 1.1291 1.1301

TABLE 8. Comparing different activation functions

Rectified linear unit (ReLU) has an activation of 0 when the input is negative; therefore, the

mean activation is always non-negative. Both ELU and LeakyReLU have negative activations.

Theoretically, ELU performs better than LeakyReLU because the mean of activations is closer

to 0. The experiment results are consistent with [19].

FYP16021 Network Anomaly Detection Final Report

30

VI. WORKING WITH PACKET CAPTURE DATA

After studying the optimization of deep learning, we now move on to experimenting with

network packet capture data. We started with classifying packets according to their application

protocols to examine whether the deep learning model has the capability to extract the

underlying information from the packet payload. After the capability was confirmed, we moved

on to the next phase, anomaly detection. In this section, we begin each phase with the detailed

information about dataset we used, and then the experiment results are reported and discussed.

A. DATASET FOR CLASSIFICATION

In order to provide data for the deep learning model, a host was set up to capture network packets

that passed through the HKUCS network. The packets were captured in PCAP (packet capture)

format, and because of the restrictions of the capturing system, the file size of each capture file

is 2 GiB. We sampled 2-hour traffic for the experiment, with a total of 60 PCAP files and 120

GiB of data.

After the data were collected, we chose 10 application protocols that were frequently present in

the capture files. The protocols chosen would be the targets of the classification task. We then

retrieved packets that belonged to one of the chosen protocols by the port numbers from the raw

capture files, and saved the packets into different files according to protocols. As the protocols

chosen are widely used and their port numbers are either well-known or registered, we assume

that no other packet used the same ports.

FYP16021 Network Anomaly Detection Final Report

31

The next step was to join the payloads of the packets if they belonged to the same session. We

joined the payloads of the packets belonging to the same session because each piece of

application data may be encapsulated and transmitted in multiple packets. Consider the example

where we visited the website http://www.hku.hk/ (27.126.235.42). The packets captured were

shown in Figure 7. Packet 4 is an HTTP GET request and the server replied with HTTP OK and

some application data shown in packets 5-7. However, if we look at the payload in packet 6 (see

Figure 8), it contains only a part of binary data and it is not realistic to classify this packet solely

based on a part of binary data.

FIGURE 7. Packet capture example

http://www.hku.hk/

FYP16021 Network Anomaly Detection Final Report

32

FIGURE 8. Sample payload of packets

As mentioned in the methodology (Section IV), we used the first 500 bytes of the payload

because it was shown that the information is sufficient. The samples with payload size lower

than 500 bytes were padded with ASCII 0 (NULL), and the samples with 0 payload were

discarded. To prevent the data from biasing towards a certain protocol, we set a limit to each

protocol. The maximum number of streams to be used for each protocol was set to be 600. The

resulting stream data will be normalized such that the value of each byte ranged from [0, 255]

to [0, 1]. Normalization would be helpful when determining the learning rate, which typically

has a magnitude of 10-2. Finally, the dataset was split 5:1 for training and testing. The number

of streams in each protocol is reported in Table 9.

FYP16021 Network Anomaly Detection Final Report

33

Protocol Train Test

DNS 220 44

FTP 311 62

HTTP 500 100

IMAP 500 100

MYSQL 420 84

NFS 183 36

POP3 189 37

SMTP 500 100

SSH 500 100

TLS 500 100

TABLE 9. Number of samples in each protocol

B. APPLICATION PROTOCOL CLASSIFICATION

We first created a multiple layer perceptron using the configuration in Table 10 to for the

classification test. Similar to Section V, all the models were trained on the fyp server (single

core Intel i7 CPU, 2GiB memory). The learning rate was set to 0.01 for the first 100 epochs,

and 0.005 for epochs 101-200. The batch size was 32, and different activations were used,

including ReLU, ELU (α=1) and LeakyReLU (α=0.3). After training for 200 epochs, the results

are reported in Table 11.

FYP16021 Network Anomaly Detection Final Report

34

MLP

500-byte input

500 units

Activation

Dropout (0.1)

500 units

Activation

Dropout (0.2)

500 units

Activation

Dropout (0.2)

500 units

Activation

Dropout (0.3)

500 units

Activation

Dropout (0.3)

10-way softmax

TABLE 10. MLP configuration for classification

MLP ReLU ELU LeakyReLU

Test Accuracy 0.8663 0.8073 0.8427

Test Loss

(see Appendix C)
0.9537 1.5132 1.0826

Train Accuracy 0.9851 0.9774 0.9833

Train Loss 0.0346 0.0066 0.0392

TABLE 11. Results of classification with MLP

FYP16021 Network Anomaly Detection Final Report

35

MLP ReLU ELU LeakyReLU

 Precision Recall Precision Recall Precision Recall

DNS 1.0000 0.9565 0.9773 0.9348 1.0000 0.9565

FTP 0.9516 0.8676 0.7639 0.8088 0.9032 0.7467

HTTP 0.8500 0.7727 0.7100 0.7802 0.8300 0.7545

IMAP 0.8500 0.8673 0.7400 0.7708 0.8100 0.7788

MYSQL 0.9405 0.9518 0.9405 0.9518 0.9405 0.8977

NFS 0.8889 1.0000 0.8889 1.0000 0.9167 0.9706

POP3 0.8378 0.9118 0.8919 0.7333 0.8649 0.8000

SMTP 0.8300 0.8924 0.7700 0.7778 0.8000 0.8989

SSH 0.9000 0.8654 0.8700 0.7699 0.8700 0.8878

TLS 0.7300 0.7684 0.6500 0.7222 0.6800 0.8608

TABLE 12. Precision and recall of classification with MLP

Apart from reporting the accuracy of the model as a whole, we also used the precision and

recall to compare the results (see Table 12):

Consider a protocol X and a data sample S. Define true positive (TP), true negative (TN),

false positive (FP), false negative (FN) as the following table (Table 13):

Prediction \ Ground Truth S belongs to protocol X S does not belong to protocol X

S is classified as protocol X True Positive (TP) False Positive (FP)

S is classified as another protocol False Negative (FN) True Negative (TN)

TABLE 13. True positive, false positive, false negative, and true negative

FYP16021 Network Anomaly Detection Final Report

36

 Among all the samples classified as a particular protocol X, precision measures how

many samples are truly X.

Precision =
TP

TP + FP

 Among all the samples that belongs to a particular protocol X, recall measures how

many samples that are classified as X.

Recall =
TP

TP + FN

In addition to the performance of the deep learning neural network, Figure 9 plots the sum of

absolute values of the weights that is associated with each input byte and first hidden layer. It

can be found out that the first few bytes contribute the most to this classification task, and the

result is consistent with [17]. Also, the model that uses ELU stresses relatively more importance

on the first few bytes compared with different activations used.

(a) ReLU (b) ELU (c) LeakyReLU

FIGURE 9. Weight associated with each byte in classification

FYP16021 Network Anomaly Detection Final Report

37

We also constructed a 1D convolutional neural network to see its capability to capture the

information of a packet payload. Typically, an image classification task (as in Section V) may

use a 2D convolutional neural network to reduce the amount of parameters involved while

maintaining the same performance. The convolution operation can be done in one dimension

only. Figure 10 shows an example of 1D convolutional neural network. Output[1] is generated

by applying convolution to Input[1] and Input[2] with kernel. In our experiment, Input[x] is the

normalized ASCII value (between 0 and 1, inclusive) of byte x in the payload. Notice that in

other implementation of 1D convolutional neural network, Input[x] can be a tensor of any shape.

Therefore, 1D convolutional neural network can be applied to data with a higher dimension, but

the convolution operation is done on one of the dimensions only.

FIGURE 10. 1D convolutional neural network

We used two different activations: ReLU and ELU (α=1). The configuration is shown in Table

14 and the training was done with stochastic gradient descent with learning rate = 0.1. After 50

epochs of training, the result is reported in Table 15.

1 2

1

FYP16021 Network Anomaly Detection Final Report

38

CNN

500-byte input

200 filters 2x1

Activation (ReLU/ELU)

1D Maxpooling (pool length = 2)

Dropout (0.1)

300 filters 2x1

Activation (ReLU/ELU)

1D Maxpooling (pool length = 2)

Dropout (0.2)

400 filters 2x1

Activation (ReLU/ELU)

1D Maxpooling (pool length = 2)

Dropout (0.2)

10-way softmax

TABLE 14. CNN configuration for classification

CNN ReLU ELU

Test Accuracy 0.8886 0.8165

Test Loss 0.6538 1.3266

Train Accuracy 0.9864 0.9822

Train Loss 0.0341 0.0502

TABLE 15. Results of classification with CNN

FYP16021 Network Anomaly Detection Final Report

39

We can see that CNN had a lightly better performance when compared with MLP; however, the

training time for CNN in our experiment was 100 times more than that of MLP. Nevertheless,

the results for both MLP and CNN demonstrates the ability to capture the underlying

information of the payload and determine the protocol of each data sample accordingly. In the

following subsections, we will apply the same models to detect anomalies.

There is one issue that remains unsolved. During the packet capturing, each PCAP file can store

2GiB of data only. If a file reaches its limit, the packets will then be captured to another file. On

average, each capture file contains the packets captured within 2 minutes. In our preprocessing

step, when we were joining the payload, the data were joined if the packets belong to the same

TCP stream and packets, and the packets exist in the same capture file. As a consequence, if a

TCP stream consists of packets stored in different files, there will be more than one samples

created, and some of them may contain binary data (same as packets 6 in Figure 7 and Figure

8), or data that is irrelevant to distinguish the protocol used in the packet. Such data samples are

noise and exist in both training and testing data.

There are some possible ways to remove noisy data. One way is to examine each of the merged

payload and see if it is complete, and discard the samples that have only a part of the entire

payload. This approach requires lots of human effort. Another way is to merge the raw data file

before joining the payload. The merging process can be done by tools such as tcpdump or tshark

(command line tool of wireshark). However, after the raw data files are merged, there will be

one large file. Extracting payload according to TCP streams from such a large file will be

extremely costly. A more viable approach is to capture the packet only if it is of our interest, but

it requires our direct access to control the host that captured packets. In our project, the task of

FYP16021 Network Anomaly Detection Final Report

40

packet classification is to validate the capability of the deep learning neural network when it

works on payload data. As it can be seen from Table 15 that the model worked with reasonable

accuracy, we moved on to detecting network anomalies.

C. DATASET FOR ANOMALY DETECTION

To train and evaluate the anomaly detection model, we prepared another dataset that is suitable

for this purpose. The CTU-13 dataset [18], prepared by Czech Technical University, contains

packet capture files generated by different types of botnets. There are 13 different simulated

scenarios, and we chose the scenarios that are not duplicated and contains sufficient amount of

data. We joined the payload of the packets using the same approach described in Section VI.A.

The selected scenarios, together with their detailed information, are presented in Table 16. The

original dataset also contains normal and background traffic, but these packets are not made

public due to privacy issues. Therefore, we combined the packets processed in VI.A to form a

set of normal data. We first created a dataset (D01) that contains normal flow and anomalous

flow with only two different bots. The information of D01 is shown in Table 17.

ID Scenario (in CTU-13) Bot Number of streams

#1 1 Neris 1718

#2 3 Rbot 283

#3 5 Virut 409

#4 6 Menti 215

#5 8 Murlo 1987

#6 12 NSIS.ay 343

TABLE 16. CTU-13 Dataset

FYP16021 Network Anomaly Detection Final Report

41

Type Train Test Description

Normal 3822 764 All the streams in VI.A

Anomalous 1668 333 #1 and #2 in Table 16

TABLE 17. Anomaly detection dataset D01

We created two more datasets (D02, D03) that contain more scenarios from Table 16. In D03,

the number of packets from each scenario is adjusted so that the training will not bias towards

any particular scenario. The information of two datasets are shown in Table 18 and Table 19.

Type Train Test Description

Normal 3822 764 All the streams in VI.A

Anomalous 2188 437 #1, #2, #3 and #4 in Table 16

TABLE 18. Anomaly detection dataset D02

Type Train Test Description

Normal 3822 764 All the streams in VI.A

Anomalous 2125 425

#1: 650 samples

#2: 283 samples

#3: 409 samples

#4: 215 samples

#5: 650 samples

#6: 343 samples
TABLE 19. Anomaly detection dataset D03

D. ANOMALY DETECTION

We set up a multiple layer perceptron (MLP) and 1D convolutional neural network (CNN) to

test on the dataset D01. The MLP and CNN had the same configurations the one we used when

FYP16021 Network Anomaly Detection Final Report

42

we were classifying packets, except that in the output layer, the 10-way softmax was changed

to 2-way softmax since the output label would be either “normal” or “anomalous.” The modified

changes were shown in Table 20 and Table 21.

MLP

500-byte input

500 units

Activation

Dropout (0.1)

500 units

Activation

Dropout (0.2)

500 units

Activation

Dropout (0.2)

500 units

Activation

Dropout (0.3)

500 units

Activation

Dropout (0.3)

2-way softmax

TABLE 20. MLP configuration for classification

FYP16021 Network Anomaly Detection Final Report

43

CNN

500-byte input

200 filters 2x1

Activation (ReLU/ELU)

1D Maxpooling (pool length = 2)

Dropout (0.1)

300 filters 2x1

Activation (ReLU/ELU)

1D Maxpooling (pool length = 2)

Dropout (0.2)

400 filters 2x1

Activation (ReLU/ELU)

1D Maxpooling (pool length = 2)

Dropout (0.2)

2-way softmax

TABLE 21. CNN configuration for classification

We measured the overall test accuracy (total number of samples classified correctly / total

number of samples misclassified), and the precision and recall for the anomaly group. The

definition of TP, TN, FP, FN under this situation is shown in Table 22:

Prediction \ Ground Truth S is anomalous S is normal

S is classified as anomaly True Positive (TP) False Positive (FP)

S is classified normal False Negative (FN) True Negative (TN)

TABLE 22. True positive, false positive, false negative, and true negative when used in anomaly detection

The performance of MLP is reported in Table 23 and Table 24, and the performance of CNN is

reported in Table 25 and Table 26.

FYP16021 Network Anomaly Detection Final Report

44

MLP ReLU ELU LeakyReLU

Test Accuracy 0.9727 0.9462 0.9672

Test Loss 0.1185 0.3053 0.1892

Train Accuracy 0.9996 0.9960 0.9991

Train Loss 0.0010 0.0131 0.0017

TABLE 23. Results of detection D01 with MLP

MLP ReLU ELU LeakyReLU

 Precision Recall Precision Recall Precision Recall

Anomaly 0.9489 0.9604 0.9770 0.8702 0.9770 0.9279

TABLE 24. Precision and recall of detection D01 with MLP

CNN ReLU ELU

Test Accuracy 0.9681 0.9599

Test Loss 0.1068 0.2025

Train Accuracy 0.9969 0.9918

Train Loss 0.0119 0.0223

TABLE 25. Results of detection D01 with CNN

CNN ReLU ELU

 Precision Recall Precision Recall

Anomaly 0.9730 0.9257 0.9790 0.8981

TABLE 26. Precision and recall of detection D01 with CNN

FYP16021 Network Anomaly Detection Final Report

45

From Table 23 and Table 25, we can see that if we use the same configurations as the ones in

protocol classification, the performance of MLP is better than CNN. However, in the last 10

training epochs of CNN and MLP (using ReLU as activations), the test accuracy fell in [0.9681,

0.9781] and [0.9699, 0.9754], respectively, and the accuracy was neither strictly increasing nor

strictly decreasing. Note that this situation does not apply to classification task, where the test

accuracy of CNN [0.8585, 0.8689] is better than MLP [0.8807, 0.8978] in the last 10 epochs.

We conclude that the two models have similar performance.

Similarly, we plot the sum of absolute values of the weights that is associated with each input

byte and first hidden layer. The first few bytes still contribute the most to this classification task,

and the model with ELU stresses relatively more importance on the first few bytes. In the model

where ReLU is used, the importance of the first few bytes is not highly valued (notice the scale

of y-axis). The reason behind can be further investigated.

(a) ReLU (b) ELU (c) LeakyReLU

FIGURE 11. Weight associated with each byte in detection

As Table 23 and Table 25 suggests that MLP and CNN have the same level of performance, we

adopt MLP to train models for dataset D02 and D03 because the training is more efficient with

regard to time. The results are reported in Table 27 to Table 30.

FYP16021 Network Anomaly Detection Final Report

46

MLP ReLU ELU LeakyReLU

Test Accuracy 0.9742 0.9467 0.9600

Test Loss 0.1251 0.3240 0.1925

Train Accuracy 0.9995 0.9963 0.9992

Train Loss 0.0009 0.0107 0.0018

TABLE 27. Results of detection D02 with MLP

MLP ReLU ELU LeakyReLU

 Precision Recall Precision Recall Precision Recall

Anomaly 0.9748 0.9551 0.9633 0.8976 0.9565 0.9351

TABLE 28. Precision and recall of detection D02 with MLP

MLP ReLU ELU LeakyReLU

Test Accuracy 0.9411 0.9697 0.9605

Test Loss 0.3773 0.1614 0.2369

Train Accuracy 0.9973 0.9995 0.9993

Train Loss 0.0103 0.0008 0.0021

TABLE 29. Results of detection D03 with MLP

MLP ReLU ELU LeakyReLU

 Precision Recall Precision Recall Precision Recall

Anomaly 0.9489 0.9604 0.9770 0.8702 0.9770 0.9279

TABLE 30. Precision and recall for detection D03 with MLP

FYP16021 Network Anomaly Detection Final Report

47

After adding the traffic generated by more different types of botnets, we can see from the results

that the level of accuracy using MLP remains the same. The results suggest that deep learning

models can well distinguish botnet traffic from normal traffic and detect anomalies.

FYP16021 Network Anomaly Detection Final Report

48

VII. CONCLUSION

As people nowadays heavily rely on the Internet, it is important to develop an intrusion detection

system that helps prevent existing as well as zero-day network attacks. With the increase of

computer power, it is feasible to construct a deep learning model to detect anomalies based on

payload data of packets. In our project, we have constructed a deep learning neural network that

can identify the application layer protocols used in TCP streams based on the payload. The same

model was used to detect network anomalies generated by botnets.

We have shown the performance of various activation functions when applied to network data.

Some issues arising from this project can be further pursued. Firstly, it is possible to include

more information other than payload as the input of deep learning neural network. Secondly,

the model can be adjusted to tradeoff between positives against false negatives. Thirdly, more

types of anomalies can be included. Finally, some activation functions can be devised to work

on network packets.

FYP16021 Network Anomaly Detection Final Report

49

APPENDICES

A. CODE FOR SORTING PACKETS

Using tcpdump, we can extract the packet that matches the port number from PCAP files.

1. tcpdump -n -r <capture_file_name> -w <output_file_name> 'tcp port <port_number>'

The following code reads a PCAP file (consists of many packets and streams) and saves the

packets to the same file if the packets belong to the same TCP stream:

Parameter: Command line argument 1 – the PCAP file to be separated into TCP streams

1. #!/bin/bash

2. maxlen=$(tshark -r "${1}" -Y usb -z conv,tcp| wc -l) #total number of streams

3. let "maxlen=${maxlen}-6" #-6 for headers

4. mkdir "${1}_stream"

5. for stream in $(seq 1 ${maxlen})

6. do

7. tshark -r ${1} -w ${1}_stream/stream-${stream}.pcap -Y "tcp.stream==$stream

" -F pcap

8. done

FYP16021 Network Anomaly Detection Final Report

50

B. CODE FOR PREPROCESSING STREAMS

The following code label the joins the payload of the stream, assign labels (user should input

the parameters), and checks the size of each stream.

1. def preprocess_stream(folder_name, ofname, label, minlen=1, limit=-1, size=500, norma

lize=False):

2. onlyfiles = [f for f in listdir(folder_name) if isfile(join(folder_name, f))]

3. counter = 0

4. with open(ofname+"_meta", "a") as output_meta:

5. for in_file in onlyfiles:

6. with open(ofname, "a") as output_file:

7. entirepayload = list()

8. for ts, pkt in dpkt.pcap.Reader(open(folder_name+"/"+in_file,'r')):

9.

10. eth = dpkt.ethernet.Ethernet(pkt)

11. ip = eth.data

12. tcp = ip.data

13. app = tcp.data

14.

15. payload_str = str(app)

16. if normalize:

17. payload_ascii = [ord(x)/255.0 for x in payload_str]

18. else:

19. payload_ascii = [ord(x) for x in payload_str]

20. entirepayload.extend(payload_ascii)

21. if(len(entirepayload) > size):

22. break

(continue on the next page)

FYP16021 Network Anomaly Detection Final Report

51

23. if(len(entirepayload) < minlen):

24. continue

25. elif(len(entirepayload) < size):

26. entirepayload += [0] * (size - len(entirepayload))

27. entirepayload = entirepayload[:size]

28. output_file.write(str(entirepayload)[1:-1])

29. output_file.write(" ; ")

30. output_file.write(str(label))

31. output_file.write("\n")

32. counter+=1

33. output_meta.write(in_file)

34. output_meta.write("\n")

35. if(counter == limit):

36. break

37. print("streams output: " + str(counter))

FYP16021 Network Anomaly Detection Final Report

52

C. TRAIN AND TEST LOSS – CATEGORICAL CROSS ENTROPY

In the experiment results, categorical (multinomial) cross entropy was used as the loss function.

Suppose there are 𝑚 classes and 𝑛 samples, let 𝑝𝑖𝑗 denote the probability that sample 𝑖 belongs

to class 𝑗 (note that ∑ 𝑝𝑖𝑗𝑗 = 1 in our experiment since softmax layer is used to predict output),

and 𝑦ij = {
1
0

 sample 𝑖 belongs to class 𝑗
otherwise

.

Categorical cross entropy is calculated by:

ℒ = −
1

𝑛
∑ ∑(𝑦𝑖𝑗 log(𝑝𝑖𝑗))

𝑚

𝑗=1

𝑛

𝑖=𝑖

Consider the following trinary classification example (Prob[x] is the normalized probability that

the sample belongs to class x using softmax function):

Sample no. Label Prediction Prob[1] Prob[2] Prob[3]

1 1 1 0.95 0.01 0.04

2 1 2 0.05 0.55 0.40

Loss: ℒ = −
1

2
(log2 0.95 + log2 0.05) = 2.2

Consider another example where each sample can belong to more than one class. Assume the

prediction threshold is 0.5.

Sample no. Label Prediction Prob[1] Prob[2] Prob[3]

1 1 1 0.9 0.2 0.4

2 1, 2 2, 3 0.1 0.7 0.55

Loss: ℒ = −
1

2
(log2 0.9 + (log2 0.1 + log2 0.7)) = 1.99

FYP16021 Network Anomaly Detection Final Report

53

REFERENCES

1. Symantec. Internet Security Threat Report 2016 2016. Available from:

https://www.symantec.com/security-center/threat-report.

2. Cisco. Snort 2016. Available from: https://www.snort.org/.

3. Open Information Security Foundation. Suricata 2016. Available from: https://suricata-

ids.org/.

4. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE. 1998;86:2278-324.

5. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. 2009.

6. Patcha A, Park J-M. An overview of anomaly detection techniques: Existing solutions

and latest technological trends. Computer networks. 2007;51:3448-70.

7. Agrawal S, Agrawal J. Survey on Anomaly Detection using Data Mining Techniques.

Procedia Computer Science. 2015;60:708-13.

8. Goodfellow I, Bengio Y, Courville A. Deep Learning. 2016.

9. Münz G, Li S, Carle G. Traffic anomaly detection using k-means clustering. GI/ITG

Workshop MMBnet; 2007.

10. Chitrakar R, Huang C. Anomaly based Intrusion Detection using Hybrid Learning

Approach of combining k-Medoids Clustering and Naïve Bayes Classification. 2012 8th

International Conference on Wireless Communications, Networking and Mobile Computing

(WiCOM); 2012.

11. Muda Z, Yassin W, Sulaiman M, Udzir NI. A K-Means and Naive Bayes learning

approach for better intrusion detection. Information Technology Journal. 2011;10:648-55.

12. Varuna S, Natesan P. An integration of k-means clustering and naïve bayes classifier

for Intrusion Detection. 2015 3rd International Conference on Signal Processing,

Communication and Networking (ICSCN); 2015.

13. Farid DM, Harbi N, Rahman MZ. Combining naive bayes and decision tree for

adaptive intrusion detection. arXiv preprint arXiv:10054496. 2010.

14. Wang K, Stolfo SJ. Anomalous payload-based network intrusion detection.

International Workshop on Recent Advances in Intrusion Detection; 2004.

15. Niyaz Q, Sun W, Javaid AY, Alam M. A Deep Learning Approach for Network

Intrusion Detection System. 9th EAI International Conference on Bio-inspired Information

and Communications Technologies; 2015.

https://www.symantec.com/security-center/threat-report
https://www.snort.org/
https://suricata-ids.org/
https://suricata-ids.org/

FYP16021 Network Anomaly Detection Final Report

54

16. Hettich S, Bay SD. The UCI KDD Archive. Irvine, CA: University of California,

Department of Information and Computer Science1999.

17. Wang Z. The Applications of Deep Learning on Traffic Identification. Black Hat;

2015.

18. Garcia S, Grill M, Stiborek J, Zunino A. An empirical comparison of botnet detection

methods. computers & security. 2014;45:100-23.

19. Clevert D-A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by

exponential linear units (elus). arXiv preprint arXiv:151107289. 2015.

20. Mishkin D, Matas J. All you need is a good init. arXiv preprint arXiv:151106422.

2015.

21. Glorot X, Bengio Y, Understanding the difficulty of training deep feedforward neural

networks. 2010: Publisher.

22. Agostinelli F, Hoffman M, Sadowski P, Baldi P. Learning activation functions to

improve deep neural networks. arXiv preprint arXiv:14126830. 2014.

23. Graham B. Fractional max-pooling. arXiv preprint arXiv:14126071. 2014.

24. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M. Striving for simplicity: The all

convolutional net. arXiv preprint arXiv:14126806. 2014.

