
Final Report: Simulation of Simple Computer System for Teaching

Page 1 of 43

The University of Hong Kong

COMP4801 Final Year Project

Final Report

Simulation of Simple Computer System for Teaching

Wong Yin Lok
3035094933

13 April 2017

Final Report: Simulation of Simple Computer System for Teaching

Page 2 of 43

Abstract
This Final Year Project – Simulation of Simple Computer System for Teaching is about the
development of a simulator for the purpose of enhancing teaching and learning experience
in the Computer Science course COMP2120 Computer Organization. This project has
completed with the delivery of two simulation components in one simulator program, one
for CPU simulation and the other for cache memory simulation. Comparing to the simulators
that have been developed for this course, the deliverable from this project offers an equally
comprehensive yet more intuitive to use simulator program with added features. Users will
be able to define their custom instructions and see the simulation result via the dynamic
display, together with the cache memory simulation that presents to them cache operations
in practice. In the process of using this simulator, users will consolidate their relevant
knowledge to a practical level and at their own pace.

Acknowledgement
This project is supervised by Dr. K. P. Chan from the Department of Computer Science at the
University of Hong Kong.

Final Report: Simulation of Simple Computer System for Teaching

Page 3 of 43

Table of Content
Background …………….…………………………………………………………………………………………………… 5
Objective …….. 6
Previous Work .………. 6
Scope and Deliverables ……………………………………………………………………………………………….. 8
 Instruction Definition ………………………………………………………………………………………………. 8
 Graphical Simulation ……………………………………………………………………………………………….. 12
 Cache Simulation …………………………………………………………………………………………………….. 15
 Miscellaneous .…… 17
Methodology …....…… 17
 CPU Simulation …… 17
 Cache Memory Simulation ………………………………………………………………………………………. 25
Experiments and Results …………………………………………………………………………………………….. 27
Testing and Evaluations …..………………………………………………………………………………………….. 30
 Error Prevention in Instruction Definition ………………………………………………………………… 30
 Error Prevention in Simulation Display and Cache Memory Simulation …………………… 31
 Miscellaneous …… 35
Conclusion and Future Works …………………………………………………………………………………….. 37
References ……….. 38
Appendix 1 ……….. 39
Appendix 2 ……….. 43

List of Figures
Figure 1 ………………..………………………………………………………………………………………….………… 5
Figure 2 ………….…………………………………………………………………………………………………….……. 5
Figure 3 ……….……….. 6
Figure 4 ……………..………………………………………………………………………………………………….…… 7
Figure 5 ……………..………………………………………………………………………………………………….…… 8
Figure 6 ……………..………………………………………………………………………………………………….…… 9
Figure 7 ……………..………………………………………………………………………………………………….…… 9
Figure 8.1 …………..………………………………………………………………………………………………….…… 10
Figure 8.2 …………..………………………………………………………………………………………………….…… 10
Figure 8.3 …………..………………………………………………………………………………………………….…… 10
Figure 9 .…………..………………………………………………………………………………………………….…….. 12
Figure 10 .…………..………………………………………………………………………………………………….…… 13
Figure 11 .…………..………………………………………………………………………………………………….…… 13
Figure 12.1 ………..………………………………………………………………………………………………….…… 15
Figure 12.2 ………..………………………………………………………………………………………………….…… 16
Figure 13 .…………..………………………………………………………………………………………………….…… 18
Figure 14 .…………..………………………………………………………………………………………………….…… 20
Figure 15 .…………..………………………………………………………………………………………………….…… 21
Figure 16 .…………..………………………………………………………………………………………………….…… 24
Figure 17 .…………..………………………………………………………………………………………………….…… 25
Figure 18 .…………..………………………………………………………………………………………………….…… 26
Figure 19 .…………..………………………………………………………………………………………………….…… 28
Figure 20 .…………..………………………………………………………………………………………………….…… 29

Final Report: Simulation of Simple Computer System for Teaching

Page 4 of 43

Figure 21 .…………..………………………………………………………………………………………………….…… 29
Figure 22 .…………..………………………………………………………………………………………………….…… 32
Figure 23 .…………..………………………………………………………………………………………………….…… 32
Figure 24 .…………..………………………………………………………………………………………………….…… 32
Figure 25 .…………..………………………………………………………………………………………………….…… 32
Figure 26 .…………..………………………………………………………………………………………………….…… 33
Figure 27 .…………..………………………………………………………………………………………………….…… 33
Figure 28 .…………..………………………………………………………………………………………………….…… 33
Figure 29 .…………..………………………………………………………………………………………………….…… 34
Figure 30 .…………..………………………………………………………………………………………………….…… 34
Figure 31 .…………..………………………………………………………………………………………………….…… 34
Figure 32 .…………..………………………………………………………………………………………………….…… 36
Figure 33 .…………..………………………………………………………………………………………………….…… 36

List of Tables
Table 1 ………..………..…………………………………………………………………………………………………… 11
Table 2 ………. 15
Table 3 ………. 21
Table 4 ………. 30

Final Report: Simulation of Simple Computer System for Teaching

Page 5 of 43

Background
Computer organization and architecture is the basic knowledge to be learnt, if not mastered,
in Computer Science and related studies. The study of computer organization explores the
fundamental functions performed by any computer system – to move data around and
perform simple arithmetic operations. These two simple functions, however, are not very
intuitive to be programmed. As the operations are carried out by the CPU, which identifies
only bits of 1 and 0, all the instructions to be programmed have to be translated to segments
of numbers - known as the assembly code - to indicate specific operations and data location
according to a scheme referred to as the instruction set. Figure 1 shows an example
programme of CPU execution.

The instruction set is a set of
mnemonic instructions, including
common ones like ADD, SUB and
MOV that is performed by the CPU.
The disassembled, pseudo code is
written in a form like “ADD R4,R1,R4”
while the actual assembly code
perceived by the CPU is like series of
hexadecimal numbers correspond-
ing to different operations and
registers or memory addresses.

Simply understanding the disassembled code but not being able to translate them into
hexadecimal assembly codes is not enough. Students do need to understand the translation.

This means students have to write code in
series of digits and try to keep track of the
actual data movements and operations based
on these abstract lines of hexadecimal
operation codes. Not only is the code written in
hexadecimal numbers difficult to follow, the
thorough understanding of actual CPU
operations is not reflected in the code.

Figure 2 shows an example CPU architecture
used in the Computer Science course Computer
Organization. In actual CPU operations, each
operation code in the instruction set, e.g. ADD
and SUB, is implemented by a series of
interactions between the CPU components.
For example, in an ADD operation, internal
register data are read from the RF ports and
moved via the system buses, then followed by
some other actions involving other CPU

components, as shown in figure 3. These details are not shown or practiced when students
write codes, since the programme codes will only be lines of instruction code like “00040104”

Figure 1. example programme of CPU execution

Figure 2. CPU architecture used in COMP2120

Final Report: Simulation of Simple Computer System for Teaching

Page 6 of 43

representing “ADD R4,R1,R4” without disclosing the actions of the CPU components required
for that single line of code.

In addition, memory cache
replacement can be a
confusing process in which
different slots of the memory
cache are swapped out and
replaced by new memory
content. Memory caching is
the process of reading
comparably slow memory
into fast-access CPU cache.
While the number of slots
and the size of the memory
cache are fixed, the
replacements come in

different orders, targeting different slots every time depending on the replacement scheme.
This is, as what we see with CPU operations, difficult to follow without proper visualization.
To help students better picture the above details, the idea of a graphical simulator was born.

Objective
The grand objective of this project is to improve teaching and learning in the course Computer
Organization regarding the working mechanism of CPU and cache memory. More specifically,
in the CPU simulation, it is to help students visualize and understand the detailed operations
inside the CPU for different instructions; in cache memory simulation, it is to help students
understand the logic of different memory replacement scheme by visualizing the update of
memory content.

Previous Work
This project is not new. Last year, another student took up this project as his Final Year Project.
But the Java simulator built in that project turned out to be more of a step by step “video
player” of execution statements loaded from some configuration files. The CPU simulation
would read in a file containing the programme executions and display the execution results
of every line of code one after another in a description panel controlled by the user, and the
memory panel would display the update of memory in respective memory slots. Figure 4
shows a screenshot of the simulator from the project last year.

1 sim.cc. Hong Kong: HKU COMP2120

Figure 3. sample “ADD” definition translated from the implementation
in C of the simulator1 currently used in COMP2120

Final Report: Simulation of Simple Computer System for Teaching

Page 7 of 43

Figure 4. screenshot of the simulator from previous project, captured from the corresponding final report2

While the memory simulation might be dynamic and representable enough, the CPU
simulation was lacking in strengthening students’ understanding of the underlying CPU
actions that are performed behind each instruction.

The graphical display of the simulator would highlight the CPU component involved according
to the sequence of program executions. However, the relationship between individual CPU
actions and the corresponding instruction was not clearly demonstrated. In addition,
visualization alone has only minimal effect to the understanding of behind-the-scene CPU
operations, but thorough understanding could hardly be achieved just by watching tens of
seconds of animation.

The key is to introduce the element of practical implementation, so as to install knowledge
via solid practice and hands-on experience. This current project, therefore, basically started
all over again from scratch in order to introduce the new element of custom instruction
definition, which will be mentioned in later parts of this report and largely deviated from the
approach adopted in the previous project. For cache memory simulation, despite the fact that
it was probably catered fairly in the project last year, its development in this current project
depended heavily on the CPU simulation where the source codes of the two simulations
interconnect. Thus, in the end, no code from the previous project was taken as reference or
recycled throughout the course of this project.

There is, however, another simulator3 of an older origin, written in C and has been used as
the tool in the course for several years, from that this project has taken reference from. This
simulator, despite being comprehensive in functionalities, shares the same downsides as the
other simulator.

2 Wong, Jing Hing(Kent). FINAL REPORT TOPIC: COMPUTER SYSTEM SIMULATOR. Hong Kong: 2015
3 sim.cc. Hong Kong: HKU COMP2120

Final Report: Simulation of Simple Computer System for Teaching

Page 8 of 43

As shown in figure 5, the simulator is a command-line-
based program that runs on the terminal interface with
text output. It is rigid and inflexible in that all instructions
used in the programme are predefined in the simulator
logic and what users do are only supplying an external
configuration file and then reading the text output from
the console window.

The simulator from the final year project last year
attempted to improve on this simulator by providing more
vivid graphical content, yet the core of the problem
remains that students do not easily gain a thorough
understanding to the underlying hardware-level
operations by simply reading from the simulation output.

This current project tackles specifically on this problem by
introducing new features, while taking reference from the
implementation logics of the standard operations defined
in this simulator currently used in the course.

Scope and Deliverables
The final deliverable is a Java program including two simulation components, namely the CPU
simulation and the cache memory simulation. Java was chosen because of the hopeful
reusability of previous codes and the platform independent nature of the compiled program
which can then be distributed to students as an educational tool. While simulation of any of
these two system components can involve a wide range of relevant concepts and complex
implementation details, the scope of this project is carefully controlled in order to streamline
the deliverable and make it focused on its educational purpose.

Instruction Definition
To begin with, the CPU simulation contains two major parts implemented in two separate
display panel.

The first part is mnemonic instruction definition, and its completed interface is shown in
figure 6. As stated in previous sections, the objective of the CPU simulation is to allow users
to learn and better understand the actual operations happening inside the CPU, via practical
hands-on experience rather than merely watching the graphical display run. In this part of the
simulation, users will be able to define the implementations of custom instructions.

Figure 5. screenshot of running the
simulation from the simulator
currently used in COMP2120

Final Report: Simulation of Simple Computer System for Teaching

Page 9 of 43

As seen from figure 6,
the input of the
mnemonic names is
on the left of the
panel where users will
add and type in the
name of the
mnemonic instruct-
ions that they want to
define, with the
hexadecimal operat-
ion code for that
instruction. For the
sake of maintaining
the program logic and
reducing its complex-
ity and thus the
possibility of errors,
the number of
instructions that can
be defined is capped
at a maximum of 16,

which should be more than enough for writing general programmes.

At the start of the simulator program, the left of the panel will be initialized with one single
entry of empty textfields and buttons, shown in figure 7.

Figure 7. dissection of an empty instruction entry

Section labelled number 1 in figure 7 is the graphical index of the instruction entry. The button
labelled numbered 2 is the removal button that is not enabled for the first entry but on all
others for removal of the particular instruction. This suggests that the simulator works with
at least one instruction definition and cannot function with no instruction input. Textfields
numbered 3 and 4 are respectively the entry for the mnemonic symbol of the instruction and
the hexadecimal operation code. The length of the mnemonic symbol is capped at six
characters while that of the opcode is capped at two numeric characters due to the fact that
the opcode is signified by two bits in an eight-bit instruction word in hexadecimal assembly
code. After the input of the mnemonic symbol is captured, the opcode textfield and the
button on the right labelled 5 will be enabled to allow the expansion of the right panel for
configuring hardware-level actions that the instruction will perform. This is to ensure that
every instruction will get its mnemonic symbol and opcode defined properly.

Figure 6. interface for mnemonic mapping of the CPU simulation

1
2 3 4 5

Final Report: Simulation of Simple Computer System for Teaching

Page 10 of 43

On the right of the CPU simulation panel as shown in figure 6, corresponding CPU actions that
implement the desired function of the custom instruction can be added and selected in the
drop-down boxes. One rectangular entry represents an action to be performed in an
execution timeframe of the CPU. There are three types of layout for the action entries, as
shown in figure 8.1, 8.2 and 8.3.

Figure 8.1. timeframe layout for system bus-related actions

Figure 8.2. timeframe layout for ALU operations

Figure 8.3. timeframe layout for all other actions

Sections labelled number 1 to 3 in figure 8.1 are commonly seen in all three types of layout.
The drop-down box numbered 1 determines the addressing mode of that particular CPU
action, which will be discussed later. The button numbered 2 adds an additional CPU action
to the current timeframe for the purpose of parallelizing the operations, which will also be
discussed later in this section. The drop-down box numbered 3 determines the CPU action to
be performed, the list of CPU actions - a total of twenty-two different actions - supported by
this simulator is shown as table 1 and will be discussed further in this section. The two drop-
down boxes in section number 4 in figure 8.1 is specific to entries when the CPU action
selected in drop-down box number 3 is related to data movement via the system buses, i.e.
“move_via_s1”, “move_via_s2” and “move_via_d”, where the first drop-down box on the left
specifies the data source while the right box specifies the destination of the data movement.

Figure 8.2 shows the layout when the CPU action involves operations by the ALU unit, e.g.
“alu_add” and “alu_not”. The section labelled number 5 determines whether the result of the
ALU operation should update the zero-flag on which the “branch” action depends. If Set-Flag
is true, when the result of the ALU operation is not zero, zero-flag is set to 0, otherwise set to
1; if Set-Flag is false, the result of the ALU operation will not update the zero-flag.

Figure 8.3 shows the layout when the CPU action involves operations other than the two types
mentioned above. There will be no supplementary information needed for these other
actions. Note that these differences in the information needed for different CPU actions are
important, not only to properly implement the desired behaviour of the action in the
simulation, but also in the import and export functionalities provided by the simulator, which
will be covered later in this section.

1 2 3 4

5

Final Report: Simulation of Simple Computer System for Teaching

Page 11 of 43

 Besides the add button mentioned above, i.e. button numbered
2 in figure 8.1, as seen from figure 6, there is another add button
alongside other buttons near the bottom of the right of the
simulation panel. This difference in functionality of this additional
add button with all the other add buttons within the timeframe
entries is worth noting as well as the significance of the index
numbers in the timeframes. For example as seen from figure 8.2
and 8.3, the two entries, as part of the definition for the custom
instruction “ADD” as shown in figure 6, share the same graphical
index number. These are designed for parallelization. As different
CPU operations involve the use of different resources, there are
times when the operations are independent to each other in
terms of both time and resources that they can be parallelized
instead of having to proceed in a serial manner. In this case, when
“alu_copy” is being performed, “inc_pc” can be performed
simultaneously without causing any abnormality of the
programme logic or resource conflict. Hence, after the user have
selected “alu_copy” in timeframe 2, the user can then click the
add button within the entry to initialize another parallel action
within the same timeframe. If the user hopes to initialize a new
timeframe in a sequential manner, e.g. from index 1 proceeding
to index 2, the user can then click the add button at the bottom.

The “-” button removes only the last timeframe with all its action
entries, for the sake of implementation simplicity - as the
maintenance of the proper ordering of the arraylist of the entries
with some sharing the same graphical index is counter-intuitive

enough, not to mention the need to cater for removal of items in the middle of the list. That
means if the last timeframe, for example, three action entries all with the same graphical
index, the three entries will all be removed when the removal button is clicked.

The “Save” button, together with the “+” and “-” button at the bottom, will only be enabled
when there is an instruction expanded for action configuration, i.e. when the button
numbered 5 in figure 7 of the corresponding instruction shows “<”, indicating that it is
currently being edited. The “Save” button is used to save the custom definition for the use of
CPU simulation. The meaning of “saving the definition” will be explained in the Methodology
section.

Similar to the limit in instructions, there is a limit of thirty action entries that can be added for
each instruction, regardless of the index number, parallel or sequential. This number should
be more than enough for definition of standard instructions.

After an instruction is configured and saved, after are some other actions the user can
perform before going into the actual simulation. For example, by clicking the rectangular “+”
button at the bottom left, the user can then add another instruction entry for a maximum
total of sixteen instructions.

Elementary Actions

move_via_s1

move_via_s2

move_via_d

inc_pc

read_rf_port1

read_rf_port2

write_rf

alu_add

alu_sub

alu_and

alu_or

alu_not

alu_copy

read_instruction

read_memory

write_memory

branch

dec_dp

inc_sp

mar_to_temp

temp_to_mar

halt
Table 1. list of hardware-
level actions supported by
this simulator

Final Report: Simulation of Simple Computer System for Teaching

Page 12 of 43

The textfields under “Addressing Mode identifying bits” specifies the hexadecimal bits that
represent the use of different addressing mode. This simulator supports by default two
addressing modes, with “f” representing the use of direct addressing and “e” representing
the use of displacement addressing. These bits correspond to selection from the drop-down
box numbered 1 shown in figure 8.1.

If the user chooses “*” from the drop-down box, that particular action will be executed
regardless of which addressing mode the current instruction is in, as specified in the
programme input, which will be covered in the next subsection Graphical Simulation. If the
user chooses “f” or “e”, that particular action will only be executed when the addressing mode
specified is in the corresponding direct or displacement addressing.

There are at last the import and export buttons. This simulator provides no internal storage
mechanism but instead provides the import and export function in consideration of possible
distribution and submission of the definition text files in the course being easier than each of
the students having their own saved state of the simulator.

After the definition is saved, the user can click the export button to export a definition text
file containing the definition of all saved instructions. A section of a sample text file is shown
in figure 9, while a complete definition file containing 12 standard instructions can be viewed
in appendix 1.

The exported definition will be in .txt format. And the definitions
saved in the text file can be loaded to the simulator by clicking the
import button and selecting the text file.

Figure 9 provides a clue to the format of the definition file. For each
instruction definition, the syntax of the file begins with a line
containing the instruction mnemonic symbol and the two-bits
opcode, separated by space. Following the first line, the actions in
the instruction are specified by lines starting with the timeframe
index, followed by the addressing mode identifying bit, the hard-
ware-level action string, then the optional information depending
on the action, all separated by space. At the end of the instruction,
a line of three dashes and another empty line is used to signal the
end of the definition and the start of another definition can then
begin.

The definition text file can be exported or composed manually. But upon manually
construction, the syntax of the content should follow the-above-mentioned. Otherwise, the
import may fail. Further description about handling mal-formatted import is covered in
section Testing and Evaluation.

Graphical Simulation
The second part of the CPU simulation is animated graphical display. This graphical display is
essentially a video player that shows data movements and operations in the CPU. Figure 10
shows the completed interface of the graphical display.

Figure 9. extract of
sample definition text file

Final Report: Simulation of Simple Computer System for Teaching

Page 13 of 43

The simulator
provides a large text
field for users to type
in their programme in
hexadecimal assemb-
ly codes. The operat-
ion codes are mapped
to their correspond-
ing mnemonic
instructions in the
previous stage. This
programme input
serves as the basis for
the graphical display
to run.

An example assembly
programme in hexa-
decimal codes is
shown in figure 11.
Note that there are
certain syntax that the

programme has to follow in order for the simulator to correctly load and decode the code
lines.

Every line of code should begin a
with a 5 bits address. The entire
programme is essentially assigning
different data into different
memory address slots. Following
the 5 bits has to be a colon and a
space. Then comes the content to
be assigned to the address. The
data content can take two
different formats, one being a one-
word instruction/data, the other
being a two-word instruction/data.
The former takes in an 8 bits data
string while the latter takes in a 8
bits data string, followed by a
space separator, followed by
another 8 bits data string. These
syntax rule has to be strictly
followed, otherwise, an error

message will pop up and the simulation will not begin. Details on handling mal-formed input
will be discussed in the section Testing and Evaluation.

Figure 10. interface for graphic display tab of the CPU simulation

Figure 11. sample programme input

Final Report: Simulation of Simple Computer System for Teaching

Page 14 of 43

When the “Simulate” button is clicked, there will be colored points, alongside the data
content in small text, representing data signals, moving on the CPU image to indicate data
movement. Relevant CPU hardware components on the path, e.g. PC and MAR, will have
content update which will be shown in the respective description fields at the top right beside
the display.

There is a “DEC” button at the top right near the hardware description fields, which serves
the purpose of changing the numeric base of the display content. As data in the simulation is
represented in hexadecimal numbers, which is not intuitive to read, the simulator offers
another decimal base of representation. The bases of numeric representation can be changed
back and forth between decimal and hexadecimal anytime upon the user’s discretion. Note
that the change to decimal base is only to provide the user with an optional, and more
convenient visual representation, and is independent of the data content concerned. With
this said, all description fields - except PC, MAR and SP, which are always containing address
data in hexadecimal representation, and the ZERO-FLAG which can only be in 1 or 0 - will have
their bases changed when the button is clicked, even when address data in hexadecimal get
into the temporary C register.

When the “Simulate” button is clicked, the simulation begins by reading the content in
address “00000” as specified in the programme input. The “Simulate” button then shows
“Pause”, and when clicked, will pause the simulation to allow the user to read and digest the
information on the graphical display or the descriptions fields on the right. After clicking
“Pause” and the simulation paused, the button shows “Simulate” again and can resume the
simulation when clicked again.

The double-arrow button beside the “Simulate” button controls the speed of the simulation
animation. There are three different speeds for the simulation that the user can switch from
one to another using the speed button during the simulation. This design is to allow users to
quickly go through the simulated actions which have been seen repeatedly under many
occasions that users are already familiar with. The speed will be reset automatically to the
default pace upon entering a new line of instruction to ensure that no instruction simulation
is skipped unintentionally.

The “Reset” button stops the simulation if it is running and reset all the description fields and
internal variables used in the simulation.

The two textfields at the bottom right are descriptions to the current simulation status,
providing textual hints for users to follow the simulation. The description field on top displays
one or more of the twenty-two elementary CPU actions listed in table 1 that are currently
running, and the bottom field shows the eight-bits instruction word that is being executed
together with the address containing that word.

As students are required to programme with custom instruction sets in the course, this part
of the simulation allows them to test their very own implementations and enhance
understanding of the principle. However, it is not possible for the simulation to support
definitions of any unseen operation, because after all, the functions of all the custom
instructions are limited to the combination of the hardware-level actions are listed in table 1.

Final Report: Simulation of Simple Computer System for Teaching

Page 15 of 43

For example, for operations that require the use of ALU unit
to perform simple arithmetic like addition and subtraction,
the ALU operations will have to be pre-defined by the
simulation system. Therefore, this simulator will only
guarantee that the definitions of twelve standard
instructions can be achieved, as listed in table 2, with
possibility of defining other novel instructions. The sample
definition of the standard instructions is attached in
appendix 1.

Note that the “HLT” instruction is not a genuine instruction
in a sense that it does not require the step of instruction
fetch, its functionality of halting the running simulation is
simply by the power of the single “halt” action in the
definition. This “halt” action is designed only for the
purpose of the simulator. As in real-life CPU execution, the

cycle is essentially an infinite loop that does not stop at any point. In contrary to that, the
simulation here better has a finite stop to signal the user of a completion. Therefore, this “halt”
action and thus “HLT” instruction are added.

Cache Simulation

The other major component of the final deliverable is cache
memory simulation. With limited size in the cache, there are
different schemes to determine how to access and replace
the cache content. The simulation will allow the user to
choose from two most commonly-used schemes covered in
COMP2120, namely FIFO(First-In-First-Out) and LRU(Least-
Recently-Used). For write policy, both write through and
write back will be supported. As cache configuration, 2-way
associative mapping is used with a total of four cache sets.
These choices allow simple and easy graphical
representation on one hand, and on the other, are some of
the most commonly used options in real-life cache memory.

Figure 12.1 shows the completed interface of the cache
simulation window on Windows, while figure 12.2 shows
that on macOS. The major difference between the two
interface lies in the difference of the color scheme. Different
colors are used to signify different cache sets, however,
during development, it is found that there are problems
updating the memory content on Windows if the colors used

have an alpha value less than 100, as in the implementation on macOS and Linux. Therefore
the colors used for Windows environment are changed.

This cache simulation window will show in a separate window beside the panel of CPU
simulation when the “Cache Simulation” button on the left in figure 10 is clicked. Note that
the “Cache Simulation” button will be disabled when the simulation has begun, meaning that

Guaranteed Instructions

ADD

SUB

AND

OR

NOT

MOV

LD

ST

BR/BZ/BNZ

PUSH

POP

HLT
Table 2. Guaranteed instruction
definitions by this simulator

Figure 12.1 interface for cache
memory simulation on Windows

Final Report: Simulation of Simple Computer System for Teaching

Page 16 of 43

the cache simulation has to be initialized before then. The same applies to cache replacement
algorithm and write policy, which have to be chosen by clicking the corresponding buttons
before the simulation begins and cannot be altered during the process.

Despite the fact that cache memory in
real-life is always limited in size, but the
small size of a few KB commonly in the
context of real-life CPU execution is not
trivial at all to be on a visual display.
Therefore, the size of the simulated
cache are limited to eight cache lines
divided in four sets, which is also one
analogy used in the course COMP2120.
The cache content are displayed in a
tabbed panel with four different tabs
each graphically representing a cache
set. Upon accessing the cache line in a
cache set, the tab of will automatically
be redirected to the corresponding
cache set in action.

The cache hit rate textfield at the lower
right of the cache tabbed panel
dynamically updates the cache hit rate.

Under the text label “Access Memory”
are several textfields labelled “HEX”
and “BIN” the shows the memory

address in concern and provide a clear indicator to how the cache replacement or memory
write happen.

The “HEX” field contains two bits of hexadecimal address. Although as seen from figure 11
earlier, that the required address is of 5 bits length in hexadecimal representation, summing
up to an addressing space of 1,048,576 bytes, this “enormously” sized addressing space is not
possible to be displayed clearly on this simulator. Therefore there is a limitation to the
addressing space of this simulator, which is 128 bytes, translating to a maximum of two bits
hexadecimal address or seven bits binary address.

The “HEX” and “BIN” textfields are specifically designed to display the address information.
The “BIN” textfields are divided into three parts. The leftmost one contains two bits specifying
the block ID of the address concerned. The middle field contains two bits specifying the set
number and the rightmost the remaining three bits offset in block.

When a memory block is first mapped to a cache line, i.e. when there is a cache miss, the
textfields under “Access Memory” will automatically be filled with the corresponding data.
The user can then trace back the block ID, set number of offset of the memory concerned
with reference to the binary address conversion.

Figure 12.2 interface for cache memory simulation on
macOS/Linux

Final Report: Simulation of Simple Computer System for Teaching

Page 17 of 43

A point to note here is that the memory content on the right are represented in word-based
slots, meaning that each slot contains a four-byte word and thus the memory address are all
multiples of four. An implication to this point is that during programme input, the user cannot
specify address that is not a multiple of four.

Since the offset is three binary bits, for each cache line representation, there are eight two-
bit slots containing hexadecimal data which are segments from the word stored in the
corresponding memory.

Lastly, there is a long rectangular textfield at the bottom of the cache simulation panel. This
shows the description of cache miss or hit, and the block ID and set number involved.

The cache simulation is set into motion automatically when the “Simulate” button in figure
10 is clicked, given that the cache simulation window is prompted by clicking on the “Cache
Simulation” button beforehand. When the simulation starts, the programme input entered
by the user will first be loaded to the memory, updating the memory content of the cache
simulation panel. As the simulation proceeds, the memory content will get updated
dynamically when there is memory or write, as well as the cache set when there is cache
access or replacement.

Miscellaneous
This project is an educational project and the grand objective is to enhance teaching and
learning experience. Hence, the sole delivery of the target simulator program may not be a
very complete solution. To facilitate the use and understanding of this simulator delivered,
sample definitions of twelve standard instructions will also be delivered, as attached in
appendix 1. There will also be a user manual documenting everything that the user needs to
know in order to operate the simulator.

Methodology
CPU operations and memory caching in real life involves interactions of a lot of hardware and
software components. To simulate the process, different models are constructed to have
different states and data content simulating their real-life counterparts.

To better classify the different virtual objects created, different packages are defined to
categorize different objects according to the purpose they serve. The two largest packages
defined are the packages for the CPU simulation and the cache memory simulation, within
which smaller packages are further created to better classify the different objects. The
concept of package in Java programming can be simply viewed as directories containing the
class files for better management and security measures.

CPU Simulation
Figure 13 shows the structure of the classes developed for the instruction definition part of
the CPU simulation. In this simplified diagram, different classes are modelling various
components to be used in the simulation. There two main types of classes, one that is purely

Final Report: Simulation of Simple Computer System for Teaching

Page 18 of 43

functional without any UI property, denoted by white boxes with dotted border and the other
with UI properties denoted in yellow boxes. Functional classes stores the states and
properties of objects that are used throughout the simulation, while UI classes are responsible
for the visible UI components and are only used in some specific parts, without the connection
other components.

Figure 13. class structure of the CPU simulation

To provide a brief overview of how the different classes are defined and will interact, the
Simulator class serves as the starting point. When the simulator program runs, the main
function in the Simulator class will be invoked and a singleton Simulator object will be
initialized. The Simulator object contains two different display panel corresponding to the two
parts in the CPU simulation. Note that this “Simulator” class is the same class that dominates
in the part of Cache Simulation which will be covered later, but for the sake of a better focus,
the classes for cache simulation is not shown in figure 13 and will be discussed in the next
subsection.

In the display panel of instruction definition, instruction objects will be created per instruction
entry on the display, i.e. “DisplayComp_Instruction”. In other words, as graphical objects
responsible for the user interface possess different behaviour from the functional objects that
actually model the corresponding components, the rule of thumb for design of the class
relationship is that, whenever necessary, for each functional objects that will be used
throughout the simulation, e.g. “Instruction” modelling the actual mnemonic instruction
defined, a corresponding graphical controller object will cater for its display properties, e.g.
“DisplayComp_Instruction”.

The display panel of instruction definition is essentially a collection of the
“DisplayComp_Instruction” objects, with the buttons and textfields that form the entire
interface for the first part of the CPU simulation. Besides these objects, there is the other
“DisplayComp_RightPanel” that serves as the division on the right as shown in figure 6,
containing the array of “DisplayComp_Timeframe” that correlate with the “Timeframe”
objects for modelling the sequence of execution timeframes of the instruction.

Final Report: Simulation of Simple Computer System for Teaching

Page 19 of 43

The remaining classes in figure 13, similarly, correspond to the second display panel of
simulation display in the CPU simulation. There will be the “DisplayPanel_Simulation” which
is the parent panel containing all the visualization materials and the programme I/O interface.
More specifically, “DisplayComp_DispPanel” corresponds to the graphical display as seen on
the left of figure 10. An image of the CPU architecture serves as the background, with data
signal objects moving on top to simulate the operations inside the CPU. On the other hand,
“DisplayComp_UIPanel” contains all the textual display of the content update of the CPU
components and the programme input text area.

As the mentioned above, while the objects designated for graphical interface are basically
independent across the different parts of the CPU simulation, as covered by highlight in
yellow in figure 13, the functional objects, on the other hand, are connected to their
respective interface classes and the class which utilizes their properties and behaviour, i.e.
“Simulator”, for sharing necessary data content, and are denoted by grey dotted border.

In order to differentiate the graphical and functional objects more easily and enhance the
readability of the source code, the classes follow certain naming conventions. For classes
designated for graphical interface, their names start with the word “Display”. Depending on
the scale of the objects to the entire simulation, the names are then followed by “Panel” for
a more significant display role, or “Component” for a lesser scope. And ending with the words
describing the functionalities. Functional objects, on the other hand, are not named by
“Display” or “Panel”, but rather by the direct naming of their functionalities or the objects
being modelled.

One exception is the Simulator class, which possesses dual properties as a both graphical and
functional object. The Simulator contains the main function at which the program is started
and variables referencing to the functional objects defined; but it is also responsible for the
display of the main simulator window. For the sake of simplicity, the direct naming of
“Simulator” is used for this CPU simulation as well as for the cache memory simulation.

Another point to note is the “Programme” class belonging to the Simulation package, which
is more of a redundant interface-like class now, rather than an object class. As the original
design at the very beginning was to have an object class modelling the assembly programme
which would be used throughout the simulation for referencing the programme input. But at
later stage of the development it turned out that the programme input could well be captured
and accessed by storing in a global array variable under the “Simulator” class. This enhances
the overall coherence of the program and reduces the unnecessary inter-class references.
However, since the methods of the “Programme” class have been constructed and
extensively used by the time this update was realized, the class together with its methods
remain to avoid massive changes to the entire program. Instead removing the entire class,
the only change was to update the reference to the captured programme input to a global
array under the “Simulator” class and abandon the use of the array under the “Programme”
class.

The above has provided a brief overview of the implementation principles adopted in CPU
Simulation. To understand better how the classes work together, an example worth
discussing is saving the custom instruction definitions.

Final Report: Simulation of Simple Computer System for Teaching

Page 20 of 43

As mentioned in previous sections, custom definitions can be saved by clicking the “Save”
button in figure 10. The saving function updates the instances of the “Instruction” class
belonging to the “Simulator”, from the input captured in the respective
“DispComp_Instruction”.

Since “DispComp_Instruction” possesses UI properties such as buttons and textfields that are
only applicable when it is initialized as visible components on the instruction definition panel,
it is not used as a functional class that spans throughout the entire simulation. Instead,
instances of “Instruction” are created as variables under the “Simulator” class that can then
be accessed whenever needed during the simulation. The “Save” captures useful, functional
properties such as mnemonic symbol and opcode from the UI class to the functional instance.

The implementation principles of instruction definition has been generally discussed until this
point. However, its development centered mainly around UI layout and interactions, which
did not really touch down to the core logic of the simulation and will not be covered in any
further detail in this report. Instead, the mechanism of running and displaying the simulation
will be discussed as follows.

The execution logic of the simulation is written in the “DisplayComp_DispPanel” class. It is
placed under the UI class due to the fact the animated simulation is achieved by repeatedly
updating the visible UI, and drawing the graphics at slightly different locations at each update.
Since the execution itself has no obvious functional counterpart, the logic is simply placed
under the corresponding UI class to keep the interaction direct and simple.

The method to refresh the visible UI in Java is repaint(). To achieve the proper simulation
animation, the question lies on how and when: how to control the locations of the graphics
on the CPU background image at each frame, and when to call the repaint() method. Figure
14 shows a simple flow chart of the simulation logic.

To address to problem of how and
when, the timer class from the
Java.swing library is used. Basically,
the timer object continuously
executes the code provided to it for
every given period of time specified by
the caller. When the “Simulate”
button in figure 10 is clicked and the
simulation begins, the timer is started.
The code supplied to the timer object
is an if-loop wrapping a function called
animateEngine(). The if-loop checks
for a global variable in the “Simulator”
class called “playing”, which is set to
true when the simulation begins and

false when the simulation halts or pauses. This if-loop in the timer object is executed every
20ms when the simulation begins - the default “speed” of the animation. By varying this
period in which the timer repeats its execution, the speed of the simulation can be varied.

Figure 14. flowchart of simulation logic

Final Report: Simulation of Simple Computer System for Teaching

Page 21 of 43

 The timer object indeed controls the “when” problem, for
solution to the “how”, understanding to the
implementation logic of animateEngine() is needed.

Figure 15 shows the sample definition of the “ADD”
instruction. To animate the instruction from the first
timeframe to the last, visual representation of each and
every of the timeframe has to be first determined.

Therefore, before figuring out how to implement the
higher level animateEngine(), the problem is pushed
deeper down to how to model every CPU action. Recall the
elementary actions listed in table 1 which are the building
blocks of all instructions supported by this simulator, with

reference from the sim simulator4, the graphical effects and actual functional consequences
of simulating each of the actions were determined and are presented in here table 3. For
better reference of the graphical effects, the CPU architecture image used in the simulator is
attached in appendix 2.

Action Simulation Effect

move_via_s1 update value of the data point object from the variable storing the
value of the data source, graphically move the data point from the
data source to the destination along the S1-Bus, update value of the
destination with the value from the data point object

move_via_s2 same as the above, but graphically along S2-Bus

move_via_d same as the above, but graphically along D-Bus

inc_pc move data point object graphically from PC to IncPC, then from IncPC
to PC, increment the variable storing the value of PC by four when
graphically reached PC in the end

read_rf_port1 update value of the data point object from the variable storing the
value of the required register, move data point object graphically
from Register File to RFOUT1, update variable storing the value of
RFOUT1 from the value of the data point object when graphically
reached RFOUT1

read_rf_port2 same as the above, but with RFOUT2

write_rf update value of the data point object from the variable storing the
value of RFIN, move data point object graphically from RFIN to
Register File, update the value of the concerned register from the
value of the data point object when graphically reached Register File

alu_add update values of the data point objects from the variables storing the
values of the temporary registers A and B, move the data points from
A and B simultaneously to ALU, when graphically reached ALU,
perform addition on the values of the data point objects, update the
value of the first data point object and discard the other, move the

4 sim.cc. Hong Kong: HKU COMP2120

Figure 15. sample definition
of “ADD” instruction

Final Report: Simulation of Simple Computer System for Teaching

Page 22 of 43

data point graphically to C, update the variable storing the value of C
when graphically reached C

alu_sub same as the above, but subtraction is performed

alu_and same as the above, but bitwise-and is performed

alu_or same as the above, but bitwise-or is performed

alu_not same as the above, but with only temporary register A in action and
bitwise-not is performed

alu_copy same as the above, but with no ALU operation performed
functionally, mere update of variables and moving data point
graphically

read_instruction update value of the data point object from the variable storing the
value of MAR, graphically move the data point object from MAR to
External Memory, perform a memory read based on the value of the
variable of MAR, update the value of the data point object from the
content fetched from the simulated memory or cache, move the data
point object graphically from External Memory to IR, update the
variable storing the value of IR from the value of the data point object,
graphically move the data point object to Register File

read_memory update value of the data point object from the variable storing the
value of MAR, graphically move the data point object from MAR to
External Memory, perform a memory read based on the value of the
variable of MAR, update the value of the data point object from the
content fetched from the simulated memory or cache, move the data
point object graphically from External Memory to MBR, update the
variable storing the value of MBR from the value of the data point
object

write_memory update values of the data point objects from the variables storing the
values of MAR and MBR, graphically move the data point objects from
MAR to External Memory and from MBR to External Memory,
perform memory write based on both the values of the variable of
MAR and that of MBR, update the variable storing the memory
content depending on the cache policy

branch check for branching condition, if branch, update the value of the data
point object from the variable storing the value of MBR, move the
data point object graphically from MBR to A along S1-Bus, update the
variable storing the value of A from the value of the data point, move
the data point graphically from A to ALU and to C, update the value of
C from the value of the data point, move the data point graphically
from C to PC along D-Bus, update the variable of PC from the value of
the data point when reached PC, skip all remaining actions in the
instruction and start the next instruction cycle

dec_dp update value of the data point object from the variable of SP, move
the data point graphically from SP to +-SP, decrement the value of the
data point object by four, move the data point graphically from +-SP
to SP, update the value of SP when reached graphically

inc_sp same as the above, but increment by four instead

Final Report: Simulation of Simple Computer System for Teaching

Page 23 of 43

mar_to_temp update the value of the data point object from the variable storing the
value of MAR, move the data point graphically from MAR to TEMP,
update the value of TEMP when reached graphically

temp_to_mar update the value of the data point object from the variable storing the
value of TEMP, move the data point graphically from TEMP to MAR,
update the value of MAR when reached graphically

halt basically no graphical representation on the simulation, except
stopping the moving data points and updating the description fields
to signal a halt

Table 3. summary of the simulation effect of every hardware-level action

Breaking down the simulation to the action level is a step closer to realizing the
implementation logic, however, there are still certain level of abstraction in the simulation
effects described in table 3. For example, in the system bus related actions, what is the actual
meaning of “move the data point from the data source to the destination”?

Taking a look at the CPU image in appendix 2, one can realize that it takes some diligence to
display the animation of move via s1 from PC to A, as stated in the first action in figure 15. It
requires moving the data point graphically from PC to the right, until touching the line of the
S1-Bus, then moving upwards to the y coordinate at the line representing the circuit
connecting to A, then moving to the left to enter A.

Recall the fact that animation is achieved by repeatedly calling repaint() after deciding what
and where to paint in animateEngine() as shown in the flowchart in figure 14, this means the
operations inside animateEngine() should not be too complex to avoid any lag in frame
update, and should only update the graphics a little, e.g. a change of 2 or 3 pixels from the
previous position, in order to realize a continuous visual effect. This suggests that the effects
of the CPU actions, as listed in table 3, have to be further broken down, to a level of moving
the graphics by several pixels.

A simplified diagram showing the implementation logic of animateEngine() is in figure 16.

Final Report: Simulation of Simple Computer System for Teaching

Page 24 of 43

animateEngine() is a
method to update the
coordinates of the data
points for the repaint()
method to draw the
graphics later. It
essentially is two or
more levels of nested if-
else statement.

When the simulation
begins, the content at
address “00000” is
captured with the
information of the
instruction concerned,
including the opcode,
the operands and the
sequence of CPU actions.
A thread is then started
to run the timer.
Separation from the
main execution thread is
crucial as the loop of the
timer to repaint the
simulation display will
hang the other UI

components if being executed in the same thread. The timer will go through the actions
defined in the instruction according to the index number, and repeatedly calling
animateEngine() during the process. In animateEngine(), the current CPU action of the
instruction that is being simulated will be checked against all the possible twenty-two
alternatives to decide what to be performed. If there is a match - take the case of
move_via_s1 in the definition of figure 15, the if-block of “move_via_s1” will then be entered.
To goal is to reduce the execution to the lowest level of update by several pixels, therefore,
inside the if-block of “move_via_s1”, the current status of the data point will be further
checked against another set of if-else statements, called the subActions, which are conditions
specific to that particular action. In the case of “move_via_s1”, the initial subAction will be
set to “leaveSrc” that in the if-block, the data point will gradually move away from the source
to the right by having its x coordinate increased by 2 pixel every time animateEngine() is called.

Challenges on animating the simulation with this approach is on one hand the complex
construction of the nested if-else statements with tens of possibilities, on the other, it is the
handling of parallel executions. As for every iteration in the timer(), updates to the graphics
may be needed for multiple data points representation parallel CPU actions within a single
timeframe instead of just handling a single point of execution, multiple instances of data may
have to checked and updated according to the definition of the instruction, which adds to the
complexity of the animation logic.

Figure 16. simplified flowchart of animateEngine()

Final Report: Simulation of Simple Computer System for Teaching

Page 25 of 43

The solution multiple parallel execution is the extensive use of arraylist. Upon entering a new
timeframe of simulation, a set of arraylists are initialized respectively for the current actions
of the data points, the sub actions of the data points, the coordinates of the data points etc.
Whenever there is an action entry in that timeframe, as captured from instruction definition,
a corresponding item will be added to the respective arraylist. Then in the execution of the
animateEngine(), every if-else for multiple times against all the entries in the arraylists. A
single data point representing serial execution is only a special case in which there is only one
item in all the arraylists.

Cache Memory Simulation
The design of classes in the cache memory simulation follows the same paradigm used in CPU
simulation, a simple class diagram is shown as figure 17.

Note that the class diagram for this part is
much simpler than that of CPU Simulation.
This is due to the fact that the simulation
logic of decoding and running the
programme input is already catered in the
part of CPU Simulation, and Cache Memory
Simulation requires almost no user input,
but rather a simple one-way display from
the program to the user, resulting in a
smaller development scale.

The classes utilized in Cache Memory
Simulation interact with the same
“Simulator” class seen in CPU Simulation,
which serves as a global reference point for
all simulation related data. Due to this

approach, the design realized in figure 17 is different from the conceptual design mentioned
in the previous report.

With this class structure, the number of classes are kept at a minimum by combining the
functional and UI classes into single classes. The “CacheSimulator” class is responsible for the
cache simulation window and the general layout. The “DisplayComp_CachePanel” is the
individual panels for the cache sets in the tabbed panel see in figure 12.1 and figure 12.2. The
“DisplayComp_CacheLine” controls the textfields of the cache line data within each set. No
functional class is constructed separately for the cache lines because the cache lines
themselves do not really contain a lot of specific properties, instead most of the properties
such as the ID or data content, can be either accessed in other places or directly retrieved
from the textfields. The same applies to the memory content, which are modelled as an array
under the “Simulator” class and can be used to construct the UI representation as seen on
the right of figure 12.1 and 12.2, without the need to explicitly construct another memory
class.

Figure 17. class structure of the cache memory
simulation

Final Report: Simulation of Simple Computer System for Teaching

Page 26 of 43

The main focus of this subsection is on understanding the implementation logic of the cache
replacement and memory write policy, while the details on UI development, similar to the
previous section, will not be covered.

There are three places at which cache operations can be triggered. They are the hardware-
level action “read_instruction”, “read_memoy” and “write_memory”, which involves
accessing the simulated memory. When “read_instruction” or “read_memory” is executed
and the data point has graphically reached the External Memory section on the CPU image,
the actual read memory protocol of this simulator will take place.

The central idea of simulating cache replacement is to maintain a list of access order for each
cache set to serve as the reference from choosing which cache line to be replaced next. The
cache line to be replaced will be indicated by a counter. An example counter is circled in red
in figure 18.

In the case when FIFO is chosen, the list acts like a
queue. Whenever there is a cache line access, the line
is pushed into the tail of the list, if not already in the
cache. The cache line at the head of the list will always
receive the counter “1”, indicating that it is the next
to be replaced. Upon replacement, the cache line at
the head of the list is removed and the counter “1”
migrates to the new head of the list. For the case of
LRU, the mechanism is basically the same, that the
head of the list will always receive the counter “1” and
be replaced next. The difference lies on updating list
upon access or replacement. In LRU, the list no longer
serves as a simple queue. When a cache line is
accessed in a cache set, the corresponding cache line
will be moved to the tail of the list, and the cache line
at the head of the list will have its counter updated to
“1”.

Note that the implementation stated above is actually

kind of redundant or unnecessarily complicated for the current configuration where there are
only two cache lines in a cache set. The point that is worth mentioning here is that this
approach, same as most of the other approaches used in the development of this simulator,
does not bind to a specific condition, but are scalable to adapting other configurations for
possibilities of future development or upgrade. Most limits specified in this project, e.g. the
number of cache lines and cache set, the addressing space, the bit count effectively used to
identify the memory location etc. are declared as variables at initialization of the object class
or at compile time that the implementations of the methods are mostly independent of the
values stored in this variables. With this said, there exists the possibility to easily change the
current implementation from 2-way associative to n-way associative.

Figure 18. highlight of cache line counter

Final Report: Simulation of Simple Computer System for Teaching

Page 27 of 43

For writing to memory, which is triggered when the action “write_memory” is executed, it is
basically straight forward to understand and implement. The part that requires attention here
is the time to update the simulated memory maintained in the “Simulator” class.

When the write policy is write through, update to the memory array is immediate when the
write memory call finishes, and then the UI will update accordingly. But when the policy is
write back, the update to the memory only happens when the cache line concerned are
replaced from the cache set. Since for every write action, there is first an attempt to access
the cache to see if the memory is in the cache or not, the same approach as in reading memory.
Therefore, write back is catered by adding a check in the memory access method, to see if
the cache line that is being replaced has been altered or not, if yes, the memory array will be
updated.

One last minor implementation detail worth noting here is the update of the cache hit rate.
The working principle is simple. There are two variables, one store the access count to
memory, the other stores the number of cache hit. Whenever the memory access method is
called, the access count is incremented by one, while if there is a cache hit, the count of cache
hit is incremented by one. And the hit rate is taking the division of cache hit count by the
access count.

A general comment to this entire section of methodology is that some of the names of the
classes and methods shown in the figures or mentioned, e.g. “DispComp_Instruction”, are not
exactly as they appear in the Java code of the Simulator program, while the action strings
listed in table 3 are all exact. These names are written this way in the report for the purpose
of providing simple yet meaningful names in a clearer fashion, as some of the names used in
the actual development have been declared since the beginning of the project and better
refinements to the logical or structural design to the program have been made that these
names in the code are not really precise in meaning but due to the extensive use, are kept
untouched. Relationship between the names specified here and the actual classes or methods
used in the code should be obvious to those who have read this section and the code.

Experiments and Results
Technical specifications of the delivered simulator program and its functionalities have been
described in the previous section of Scope and Deliverables. This section shall focus on the
results and experience that users will get from using the simulator.

Comparing to the existing command-line simulator and that from the final year project last
year, this simulator has achieved significant breakthrough in terms of the degree of
practicability and flexibility of using this simulator. Users will have a very high degree of
freedom to experiment with the simulator and gain practical knowledge about the lower-
level CPU operations.

To demonstrate the possibility of this simulator, the following shows the sample definition of
the “DOUBLE” instruction, an instruction that is probably not very useful and not seen in any
existing instruction set.

Final Report: Simulation of Simple Computer System for Teaching

Page 28 of 43

The “TRIPLE” instruction takes the values from the registers
specified in operand 1 and operand 2, and triples the value
when both registers specified point to the same register.

The functionality of this instruction is achievable by
repeated “alu_add” in the definition, when the two registers
supplied to the instruction point to the same register file,
the value retrieve will then be added to itself twice, resulting
in a tripled value. With standard addition instruction
commonly seen in different instruction sets, the result will
be a double when the two registers specified point to the
same register file. It is because of the flexibility that more
than one “alu_add” can be added in the definition that this
instruction can render a triple value.

Another possible experiment achievable with this simulator
is on addressing modes. Currently the simulator supports

two addressing mode, with the identifying bit “f” signaling direct addressing and “e” signaling
displacement addressing. There is, nonetheless, room for unsupported addressing modes,
due to the fact that the implementation for addressing modes are entirely up to the user’s
discretion, i.e. the way they arrange the actions in an instruction and configure the identifying
bit will determine the addressing mode used. As seen from the sample definition of the “LD”
and “ST” instruction in appendix 2, the decision of which addressing mode to execute depends
entirely on the action definitions. Therefore, with proper configuration, this simulator can
support any two addressing mode at the same time, and not necessarily direct and
displacement addressing.

Apart from experimenting with the simulator and building custom instructions, this tool
greatly enhances the experience and facilitates learning by providing users with clear and
comprehensive responses. Not only does the simulator provides description textfields for
both CPU and Cache Memory Simulation that the user can take reference from, they can
pause the simulation at any moment to carefully study the descriptions or the simulation
graphics before going on.

To get some extra output from running the simulator, it is advised that users should run the
Java executable from a command line tool to capture the log generated by the simulator.
Figure 20 shows some sample log message of running a simulation.

Figure 19. experimental “DOUBLE”
instruction definition

Final Report: Simulation of Simple Computer System for Teaching

Page 29 of 43

The simulator log messages
that are helpful to understand
the current status of the
simulation, but may be too
tedious to be displayed on the
description fields on the
simulator windows, such as the
messages about the saved
instructions as seen in figure 20.

There are three types of log
message that the user may run
into. The SYSTEM message that
shows information about
normal simulation status, for
example current condition of
the simulation or updates of
values. The second type is
WARNING message, which

alerts users of undesired actions performed that may not have immediate consequence to
the simulation but will lead to unpredictable results. An example of WARNING message is
shown in figure 21.

Figure 21. example WARNING message

As this simulator has a finite addressing space, and for a lot of the memory slots, they will
probably be empty, thus, there is a high chance that the user, without careful planning and
implementation, will access memory address with no data content defined or beyond the
addressing space limited. As in real-life situation, the memory contents other than those
dedicated for the program are more or less random and uncontrollable to the current running
program, accessing them may not lead to fatal error, especially for earlier machines with less
error prevention measures. This WARNING approach follows the exact idea of not preventing
the access of undefined memory content - probably accessed after mal-formed “push”, “pop”
or “inc_pc” actions in the definitions, but returns random content and displays the WARNING
message. However, despite that no immediate fatal error is discovered at the point of
WARNING, this will most probably lead to undesired result, as seen from the last line in figure
21.

The last type of log message the user can get is the ERROR message, which indicates errors
and exceptions in simulation runtime. ERROR messages suggest fatal errors and will
immediately stop the simulation timer, causing the simulator to stop.

Figure 20. log generated from simulation

Final Report: Simulation of Simple Computer System for Teaching

Page 30 of 43

Testing and Evaluations
Given the high flexibility of the simulator program, the possibility of users performing
unexpected operations leading to errors is, unfortunately too, high. The ERROR message
discussed in the previous section is a good example of catching the error and preventing the
simulator to fail.

In order to minimize the chance of unexpected failure, precautions have been made.

Error Prevention in Instruction Definition

Precautions are programmed with proper UI design whenever possible to restrict the
possibility of error input from the first place. For example, the textfields for mnemonic symbol
are capped at a maximum of six characters and the opcode field at two characters to ensure
that the string can be properly handled and used in other parts of the simulation.

In other times, codes are written to validate certain situations. For instance, when the user
saves the custom definition, a validate method will run to verify if the definition abides by
some principal rules. Firstly, the mnemonic symbol and the hexadecimal opcode must be
unique and cannot be duplicates from any of those already saved. Then, there will be a check
for resource conflicts.

Since parallelization is a feature supported by this simulator, and during the execution of the
CPU actions, different resources will be occupied, for example, if an “alu_add” is being
executed, then any other ALU operations cannot be added in parallel within the same
timeframe. The idea for checking is to specify certain resources involved in the particular
action being used and locked, and post an error message if any parallel action utilizing the
locked resources is found within the same timeframe. The list of resources exclusively used
by each action that cannot be shared in parallel is shown in table 4.

CPU Action Resource Locked

move_via_s1 data source, data destination, S1-Bus

move_via_s2 data source, data destination, S2-Bus

move_via_d data source, data destination, D-Bus

inc_pc PC, IncPC

read_rf_port1 RFOUT1

read_rf_port2 RFOUT2

write_rf RFIN, Register File

alu_add A, B, C, ALU

alu_sub A, B, C, ALU

alu_and A, B, C, ALU

alu_or A, B, C, ALU

alu_not A, C, ALU

alu_copy A, C, ALU

read_instruction MAR, External Memory, IR, Register File

read_memory MAR, External Memory, MBR

write_memory MAR, External Memory, MBR

branch -

Final Report: Simulation of Simple Computer System for Teaching

Page 31 of 43

dec_dp SP, +-SP

inc_sp SP, +-SP

mar_to_temp MAR, TEMP

temp_to_mar MAR, TEMP

halt -
Table 4. Resources exclusive used by actions that cannot be used in parallel

Other than that, mismatch or undefined resources will also be checked. If the user defines an
instruction by manipulating the UI on the simulator window, i.e. selecting from drop-down
boxes, there will be small chance of having this problem. However, the situation becomes
unpredictable when the user imports a manually written text file containing inappropriate
syntax or even a wrong file that does not abide by the syntax of the import/export text file at
all. For example, by UI design, the available CPU actions are limited to the list of twenty-two
action as in table 1, and the destination of “move_via_s1” available is limited to only the
temporary register “A”. However, in an import text file, the user can put down an action string
that does not belong to any of the twenty-two actions or can make the destination of
“move_via_s1” to “PC”, which create situations that are impossible to simulate.

The solution to mal-formed or mismatched resources is that upon import of definition file, if
there are incorrectly entered data as stated above, the resource concerned will automatically
be updated to the first item in the drop-down boxes on the UI, e.g. any unrecognized CPU
action will become “move_via_s1”. This will probably lead to unsuccessful simulation result
if the user is unaware of the mistake, but at least this will not cause the simulator to fail or
unable to respond and the user will notice the result of failed simulator after all.

The following is a list of operations performed deliberately, concerning the part of instruction
definition, to ensure the simulator can handle potential errors arose from them.

1. Add and remove timeframe entries in arbitrary numbers and order
2. Remove unsaved instructions in arbitrary orders and then save in arbitrary orders
3. Remove saved instructions in arbitrary orders and then export definition text file
4. Saved randomly only some of the instructions, then export definition file
5. Saved randomly only some of the instructions and then remove randomly some of the

instructions, then export definition text file
6. Import a definition text file, then import another definition text file
7. Import a mal-formed definition text file, with mismatched resources
8. Import a mal-formed definition text file, with resource conflicts
9. Import a definition text file, then export definition text file
10. Import definition text file, remove arbitrary number of instructions and in arbitrary

order, then export definition text file
11. Import a completely random text file which is not in the required format
12. Export definition file without saving any instruction

Error Prevention in Simulation Display and Cache Memory Simulation
Possible errors from the simulation come probably from mal-formed programme input or
internal fatal error during simulation caused by irrational programme logic, assuming that
there is no mistake in instruction definition.

Final Report: Simulation of Simple Computer System for Teaching

Page 32 of 43

Preliminary precaution measures have been made to filter undesired syntax error from the
input, an error prompt is presented in figure 22.

Figure 22. Error prompt on mal-formed programme input

As seen in figure 22, the simulator checks for the length of the code lines to ensure that the
programme is properly formed with complete instruction words and the addresses are in
multiple of four for proper indexing in the simulated memory array.

The rest that have been done to test for potential error during simulation is indeed, different
test input for verification of expected result. The following figures shows the programme
inputs that have been tested, each for a specific purpose. Note that the instruction set used
for all these test programmes is attached in appendix 1.

00000: 01010101
00004: 0800ff00 00000000
0000c: 11000000

Figure 23. Test input for branch-always/goto

Figure 23 contains the code snippet that tests the branch-always execution. Note that the
“branch” action depends on the condition code specified in operand 1, i.e. the 3rd and 4th bits
of the instruction word. When the condition is “00” as seen in the figure, branching always
occurs. The result of the above programme is a never-ending loop between the first and
second line of code.

00000: 01010101
00004: 0801ff00 00000000
0000c: 11000000

Figure 24. Test input for branch-zero with zero-flag equals 1

Figure 24 contains the code that tests for branch-zero for zero-flag in value “1”. The condition
code for branch is “01”, meaning that branching occurs when zero-flag is true. The first line
of ALU operation sets the zero-flag to “1” and the result of the programme is again a never-
ending loop between the first and second line of code.

00000: 00010201
00004: 0801ff00 00000000
0000c: 11000000

Figure 25. Test input for branch-zero with zero-flag equals 0

Final Report: Simulation of Simple Computer System for Teaching

Page 33 of 43

Figure 25 contains the code that is basically the same as that in figure 24 but with zero-flag
set to “0” if the initial random value in register 1 and register 2 are not the same. The result
of the programme is revoked branching and the simulation continues to line three and halted.

00000: 00010201
00004: 0802ff00 00000000
0000c: 11000000

Figure 26. Test input for branch-nonzero with zero-flag equals 0

00000: 00010101
00004: 0802ff00 00000000
0000c: 11000000

Figure 27. Test input for branch-nonzero with zero-flag equals 1

Figure 26 and 27 contain the inputs for the last variation of branching, the branch-nonzero
execution, where the condition code is “02” meaning that the branch will occur if zero-flag is
set to “0”, as in figure 26, and revoked if zero-flag is “1”, as in figure 27. The result of running
the code in figure 26 is a never-ending loop between the first and second line of code, while
that of figure 27 continues to halt.

00000: 01010101
00004: 01020202
00008: 0600ff01 00000020
00010: 0600e103 00000024
00018: 11000000

00020: 00000004
00024: 00000024
00028: 00000ffe

Figure 28. Test input for different addressing mode

Figure 28 contains the code for testing different addressing mode. The addressing mode
identifying bit is specified in the first bit of operand 2, i.e. the 5th bit of the instruction word,
hence effectively operand 2 for specifying the register file takes into account only the second
bit, i.e. the 6th bit of the instruction word. This suggests that the maximum number of
simulated internal register supported by this simulator is one bit of hexadecimal digit, i.e.
sixteen.

At the 3rd line of the sample programme in figure 28, direct addressing is adopted and the
data content in “00020” is loaded to register 1. At the 4th, displacement addressing is adopted,
adding up the content of the second word and that stored in register 1, i.e. 24 + 4 = 28, to get
the address for the “LD” instruction. The result of the programme is register 3 having the data
content “00000ffe” in the end.

The following test inputs are dedicated for the testing of features implemented in Cache
Memory Simulation.

Final Report: Simulation of Simple Computer System for Teaching

Page 34 of 43

00000: 01010101
00004: 01020202
00008: 0600ff01 00000040
00010: 0600ff02 00000000
00018: 0600ff03 00000060
00020: 11000000

00040: 00000001
00060: 00000002

Figure 29. Test input for FIFO and LRU cache replacement

Figure 29 shows the input for testing the difference in using FIFO and LRU. When running the
code in the simulator with the different color scheme in the cache simulation window, it will
be obviously that addresses “00000”, “00040” and “00060” used in the code are of the same
set number and will be accessed via the same cache set. Due to 2-way associative mapping
but three cache lines in concern, replacement is going to happen. In the case when FIFO is
used, since “00000” is the first of the three to be referenced and read into cache, it will be
replaced at line 5 when “00060” is read into cache. On the other hand, when LRU is used,
since “00000” is accessed again in line 4, the least recently used cache line thus becomes
“00040”, which will be replaced at line 5.

00000: 0701ff00 00000030
00008: 0600ff01 00000050
00010: 0600ff02 00000000
00014: 11000000

00050: 00000001

Figure 30. Test input for write through and write back

Figure 30 contains the code that tests write policy. Again, it is clear with the difference in color
scheme provided by the simulator that “00010”, “00030” and “00050” belongs to the same
cache set. When write through is used, memory content at “00030” will be directly updated
at the first line of “ST” instruction. In the case of write back, since after the first line, “00030”
is still in the cache without getting replaced, update to the memory content will not occur
until the third line when content in “00010” replaces cache line of “00030”.

00000: 0701ff00 00000030
00008: 0600ff01 00000014
00010: 0600ff02 00000050

00014: 00000010
00050: 00000001

Figure 31. Failed test input for write policy

Figure 31 is a failed attempt to test for the difference between the two write policy. Despite
the failure to fulfill its purpose, the code snippet is still recorded for it is worth investigating
the cause of failure.

Final Report: Simulation of Simple Computer System for Teaching

Page 35 of 43

This code in figure 31 is a completely legitimate programme to be simulated. However, the
expected write back behavior did not happen during testing. This was due to the fact that the
third address competing for the cache replacement, i.e. “00050” was never accessed in the
above code. The mistake is highlighted in red. Note that the red “00000050” on the third line
is implicitly having the address of “00014” as it is the second word following the word at
“00010”. Therefore the data word in the later line highlighted in red actually introduces new
content to the memory slot and masks the content of “00050” defined previously.

This is quite an interesting mistake worth noting in this report and nothing has been done to
prevent this from happening. This shall not be seen as a defect to the simulator program, but
rather, a test of carefulness to the user when inputting their programmes for simulation.

The above test inputs are only some of the tests recorded and are displayed here because
they involve the use of some rather tricky execution logic, e.g. the branching instructions and
the different addressing modes, cache replacement and write policy etc. For sample
instruction and actions that are more straight-forward, such as the ALU related instructions,
tests have been carried out to ensure their functionality meeting expectation but are not
recorded here.

Miscellaneous
This project is after all an educational project and one of the keys is to help users properly
utilize this simulator. Comparing to the existing command-line simulator and the simulator
from the final project last year, this simulator is indeed more intuitive to operate.

Despite the comprehensiveness and flexibility in functionality that this simulator provides, it
is more intuitive in a sense that this is a standalone Java program with well-rounded UI and
requires no external configuration file to operate. For the other two simulators, external
configuration files are needed to couple with the simulator programs and the command to
start the simulator or the content and format required by the configuration files have to be
made clear to the user beforehand.

With this simulator, users can really kick start with no prior knowledge and experiment with
the UI to find the proper way to do some basic simulations. Certainly, the help from a user
manual or some operation principles about this simulator can consolidate the user’s
knowledge to some implicit features, allowing them utilize this tool to the fullest.

To better facilitate users to get the information about operating this simulator, besides the
detailed user manual which will be provided, there are two immediate help prompts built in
the simulator to offer some quick tips. The help prompts can be instantiated by clicking the
“Help” buttons in shown in figure 6 and figure 10 respectively. Figure 32 and figure 33 shows
the prompt windows the help messages.

Final Report: Simulation of Simple Computer System for Teaching

Page 36 of 43

Figure 32. Help prompt from the instruction definition window

Figure 33. Help prompt from the simulation display window

Final Report: Simulation of Simple Computer System for Teaching

Page 37 of 43

Conclusion and Future Works
This simulator has opened up opportunities for users to exploit like never before. It offers the
same level of comprehensiveness as the previous simulators for features that have long
existed in the simulators: fetch and decode the programme input, provide comprehensible
descriptive feedbacks on simulation status and the like. And it adds an novel feature of utmost
importance to the list: the construction of custom instructions from ground zero. Yet on the
other hand, this simulator is made more intuitive to use and less rigid to operate.

With more extensive features and higher flexibilities in usage, comes the cost. Unexpected
results or even errors are more likely to prompt with this simulator, despite that huge effort
has been invested in testing the program and preventing exceptions from happening. During
the preparation of this report, test cases that have not been simulated before have been
discovered, which unfortunately, may lead to failure of the program.

The following lists the possible scenarios for failure which have been discovered but not
tested or catered until this point.

1. Discontinuous index numbers of actions in definition file imported may cause unexpected

simulation behaviour
2. Parallel action with “branch” action may or may not be executed

The future works of this project will be on handling the above mentioned uncertainties and
possibly evaluate for any other potential errors. There is no guarantee that this simulator
program can be perfected to a level such that no error or failure will ever occur, rarely can
any software of complexity in this world guarantee this. But the key lies in the attitude of
learning and recovering from mistakes, there is always a way of closing the simulator program
and starting an error-free simulation again.

With the above said, it is believed that unattended errors or failures are not common in this
simulator program. While the searching for the possibility to future enhance the program, the
other major focus will be on generating the detailed user manual. After all, this is an
educational project and to enable users to utilize this tool so that they can enhance their
learning and teaching experience, is of utmost importance.

To conclude, this project has delivered a graphical simulator that has hopefully met all the
objectives and tasks that it has been intended for. While there is still a certain level of
uncertainty in the program due to its dynamic nature, it can no doubt offer a comprehensive
and exciting tool for learning and teaching in COMP2120.

Final Report: Simulation of Simple Computer System for Teaching

Page 38 of 43

References
1. sim.cc. Hong Kong: HKU COMP2120.
2. Wong, Jing Hing(Kent). FINAL REPORT TOPIC: COMPUTER SYSTEM SIMULATOR. Hong

Kong: 2015
3. Wong, Jing Hin. “FYP: Computer System Simulator”. i.cs.hku.hk. 2016. Thu. 1 Dec.

2016.

Final Report: Simulation of Simple Computer System for Teaching

Page 39 of 43

Appendix 1
Sample Definition of 12 Standard Instructions

ADD 00
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
5 * read_rf_port1
5 * read_rf_port2
6 * move_via_s1 RF1 A
6 * move_via_s2 RF2 B
7 * alu_add true
8 * move_via_d C RFIN
9 * write_rf

SUB 01
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
5 * read_rf_port1
5 * read_rf_port2
6 * move_via_s1 RF1 A
6 * move_via_s2 RF2 B
7 * alu_sub true
8 * move_via_d C RFIN
9 * write_rf

AND 02
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
5 * read_rf_port1
5 * read_rf_port2
6 * move_via_s1 RF1 A
6 * move_via_s2 RF2 B
7 * alu_and true
8 * move_via_d C RFIN
9 * write_rf

Final Report: Simulation of Simple Computer System for Teaching

Page 40 of 43

OR 03
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
5 * read_rf_port1
5 * read_rf_port2
6 * move_via_s1 RF1 A
6 * move_via_s2 RF2 B
7 * alu_or true
8 * move_via_d C RFIN
9 * write_rf

NOT 04
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
5 * read_rf_port1
6 * move_via_s1 RF1 A
7 * alu_not true
8 * move_via_d C RFIN
9 * write_rf

MOV 05
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
5 * read_rf_port1
6 * move_via_s1 RF1 A
7 * alu_copy true
8 * move_via_d C RFIN
9 * write_rf

LD 06
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR

Final Report: Simulation of Simple Computer System for Teaching

Page 41 of 43

4 * read_instruction
4 * move_via_s1 PC A
5 * alu_copy false
5 * inc_pc
6 * move_via_d C MAR
7 * read_memory
8 * move_via_s1 MBR A
9 f alu_copy false
9 e read_rf_port2
10 e move_via_s2 RF2 B
11 e alu_add false
12 * move_via_d C MAR
13 * read_memory
14 * move_via_s1 MBR A
15 * alu_copy false
16 * move_via_d C RFIN
17 * write_rf

ST 07
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc
3 * move_via_d C MAR
4 * read_instruction
4 * move_via_s1 PC A
5 * alu_copy false
5 * inc_pc
6 * move_via_d C MAR
7 * read_memory
8 * move_via_s1 MBR A
9 f alu_copy false
9 e read_rf_port2
10 e move_via_s2 RF2 B
11 e alu_add false
12 * move_via_d C MAR
13 * read_rf_port1
14 * move_via_s1 RF1 A
15 * alu_copy false
16 * move_via_d C MBR
17 * write_memory

BR 08
1 * move_via_s1 PC A
2 * alu_copy false
2 * inc_pc

Final Report: Simulation of Simple Computer System for Teaching

Page 42 of 43

3 * move_via_d C MAR
4 * read_instruction
5 * move_via_s1 PC A
6 * alu_copy false
6 * inc_pc
7 * move_via_d C MAR
8 * read_memory
9 * branch

PUSH 09
1 * dec_sp
1 * inc_pc
2 * move_via_s1 SP A
2 * read_rf_port1
3 * alu_copy false
3 * move_via_s1 RF1 A
4 * move_via_d C MAR
4 * alu_copy false
5 * move_via_d C MBR
6 * write_memory

POP 10
1 * move_via_s1 SP A
1 * inc_pc
2 * alu_copy false
2 * inc_sp
3 * move_via_d C MAR
4 * read_memory
5 * move_via_s1 MBR A
6 * alu_copy false
7 * move_via_d C RFIN
8 * write_rf

HLT 11
1 * halt

Final Report: Simulation of Simple Computer System for Teaching

Page 43 of 43

Appendix 2
Background CPU Image in Simulator

