
 1

The University of Hong Kong

COMP4801 Final Year Project

Interim Report

Simulation of Simple Computer System Teaching

Wong Yin Lok
3035094933

20 Jan 2017

 2

Abstract
This Final Year Project – Simulation of Simple Computer System for Teaching is about the
development of a simulator for the purpose of enhancing teaching and learning experience
in the Computer Science course COMP2120 Computer Organization. This project aims at
delivering two simulation components in one simulator program, one for CPU simulation
and the other for cache memory simulation. Until the point when this report is written,
development of the CPU simulation has completed by half and the remaining part is
expected to be finished in the coming month, while development of the cache memory
simulation is anticipated afterwards.

Acknowledgement
This project is supervised by Dr. K. P. Chan from the Computer Science Department at the
University of Hong Kong.

 3

Table of Content
Background …………….…………………………………………………………………………………………………… 4
Objective …….. 6
Previous Work .………. 6
Scope and Deliverables ……………………………………………………………………………………………….. 7
Methodology …....…… 10
 CPU Simulation …… 10
 Cache Memory Simulation ………………………………………………………………………………………. 12
Progress Review …….. 13
Limitations ……….. 16
References ……….. 17

List of Figures
Figure 1 ………………..………………………………………………………………………………………….………… 4
Figure 2 ………….…………………………………………………………………………………………………….……. 5
Figure 3 ……….……….. 5
Figure 4 ……………..………………………………………………………………………………………………….…… 6
Figure 5 ……………..………………………………………………………………………………………………….…… 7
Figure 6 ……………..………………………………………………………………………………………………….…… 8
Figure 7 ……………..………………………………………………………………………………………………….…… 10
Figure 8 ……………..………………………………………………………………………………………………….…… 11
Figure 9 .…………..………………………………………………………………………………………………….…….. 12
Figure 10 .…………..………………………………………………………………………………………………….…… 14
Figure 11 .…………..………………………………………………………………………………………………….…… 15

List of Tables
Table 1 ………..………..…………………………………………………………………………………………………… 9
Table 2 ………. 16

 4

Background
Computer organization and architecture is the basic knowledge to be learnt, if not
mastered, in Computer Science and related studies. The study of computer organization
explores the fundamental functions performed by any computer system – to move data
around and perform simple arithmetic operations. These two simple functions, however,
are not very intuitive to be programmed. As the operations are carried out by the CPU,
which identifies only bits of 1 and 0, all the instructions to be programmed have to be
translated to segments of numbers to indicate specific operations and data location
according to a scheme referred to as the instruction set. Figure 1 shows an example
program of CPU execution.

Figure 1. simulation of CPU execution

The instruction set is a set of mnemonic instructions, including common ones like ADD, SUB
and MOV that is performed by the CPU. The pseudo code is written in a form like “ADD
R4,R1,R4” while the actual code perceived by the CPU is like series of hexadecimal numbers
corresponding to different operations and registers or memory address. Simply
understanding the pseudo code but not being able to translate them into hexadecimal
operation codes is not enough. Students do need to understand the translation.

This means students have to write code in series of digits and try to keep track of the actual
data movements and operations based on these abstract lines of hexadecimal operation
codes. Not only is the code written in hexadecimal numbers difficult to follow, the thorough
understanding of actual CPU operations is not reflected in the code.

Figure 2 shows an example CPU architecture used in the Computer Science course
Computer Organization. In actual CPU operations, each operation code in the instruction
set, e.g. ADD and SUB, is implemented by a series of interactions between the CPU
components.

 5

Figure 2. CPU architecture used in COMP2120

For example, in an ADD operation, internal register data are read from the RF ports and
moved via the system buses, then followed by some other actions involving other CPU
components, as shown in figure 3. These details are not shown or practiced when students
write codes, since the programme codes will only be lines of instruction code like
“00040104” representing “ADD R4,R1,R4” without disclosing the CPU implementations
required for that single line of code.

Figure 3. sample “ADD” definition

In addition, memory cache replacement can be a confusing process in which different slots
of the memory cache are swapped out and replaced by new memory content. Memory
caching is the process of reading comparably slow memory into fast-access CPU cache.
While the number of slots and the size of the memory cache are fixed, the replacements
come in different orders, targeting different slots every time depending on the replacement
scheme. This is, as what we see with CPU operations, difficult to follow without proper

 6

visualization. To help students better picture the above details, the idea of a graphical
simulator was born.

Objective
The grand objective of this project is to improve teaching and learning in the course
Computer Organization regarding the working mechanism of CPU and cache memory. More
specifically, in the CPU simulation, it is to help students visualize and understand the
detailed operations inside the CPU for different instructions; in cache memory simulation, it
is to help students understand the logic of different memory replacement scheme by
visualizing the update of memory content.

Previous Work
This project is not new. Last year, another student took up this project as his Final Year
Project. But the Java simulator built in that project turned out to be more of a step by step
“video player” of execution statements loaded from some configuration files. The CPU
simulation would read in a file containing the programme executions and display the
execution results of every line of code one after another in a description panel controlled by
the user, and the memory panel would display the update of memory in respective memory
slots. Figure 3 shows a screenshot of the simulator from the project last year.

Figure 4. screenshot of the simulator from previous project

While the memory simulation might be dynamic and representable enough, the CPU
simulation was lacking in strengthening students’ understanding of the underlying CPU
actions that are performed behind each instruction.

The graphical display of the simulator would highlight the CPU component involved
according to the sequence of program executions. However, the relationship between
individual CPU actions and the corresponding instruction was not clearly demonstrated. In
addition, visualization alone has only minimal effect to the understanding of behind-the-
scene CPU operations, but thorough understanding could hardly be achieved just by
watching tens of seconds of animation.

 7

The key is to introduce the element of practical implementation, so as to install knowledge
via solid practice and hands-on experience. This current project, therefore, basically starts
all over again from scratch regarding the part on CPU simulation. For cache memory
simulation, despite the fact that it was properly catered in the project last year, its
development in this current project is partially dependent on the CPU simulation where the
source codes of the two simulations interconnect. Thus, while the code on cache memory
simulation from last year will be recycled where possible, the portion reused is expected to
be trivial.

Scope and Deliverables
The final deliverable will be a Java program including two simulator components, namely
the CPU simulation and the cache memory simulation. Java is chosen because of the
reusability of previous code and the platform independent nature of the compiled program
that can then be distributed to students as an educational tool. While simulation of any of
these two system components can involve a wide range of relevant concepts and complex
implementation details, the scope of this project is carefully controlled in order to
streamline the deliverable and make it focused on its educational purpose.

To begin with, the CPU simulation contains two major parts implemented in two separate
display panel.

The first part is mnemonic instruction definition, and its completed interface is shown in
figure 5. As stated in previous sections, the objective of the CPU simulation is to allow users
to learn and better understand the actual operations inside the CPU, via practical hands-on
experience rather than merely watching the graphical display run. Users will be able to
define the implementation of any single operation.

Figure 5. interface for mnemonic mapping of the CPU simulation

 8

As seen from the above, the input of the mnemonic names is on the left of the panel where
users will add and type in the name of the mnemonic instructions that they want to define,
with the hexadecimal operation code for that instruction. For the sake of maintaining the
program logic and reducing its complexity and thus possibility for errors, the number of
instructions that can be defined is capped at a maximum of 13, which should be more than
enough for writing general programmes.

On the right, corresponding CPU actions that implement the desired function can be added
and selected in the drop-down boxes. The index numbers in the CPU operation timeframe
and the multiple add buttons here are worth noting. These are the design for parallelization.
As different CPU operations involve different resources, there are times when the
operations are independent to each other in terms of both time and resources that they can
be parallelized instead of having to proceed in a serial manner. For example, when fetching
an instruction, the program counter can be increased alongside the operations to copy the
instruction to the instruction register without affecting the logic. As shown in figure 5,
instead of initializing a new timeframe from index 3 to index 4, the subsequent CPU
operation is added within the same timeframe such that the two operations can go in
parallel denoted by the same index number.

Similar to the limit in instructions, there is a limit of 30 CPU operation timeframes that can
be added for each instruction, regardless of the index number. This number should be more
than enough for definition of common instructions.

The second part of the CPU simulation is animated graphical display. This graphical display is
essentially a video player that shows data movements and operations in the CPU. Figure 6
shows the preliminary design of this part which is still under development.

Figure 6. interface for graphic display tab of the CPU simulation

 9

The simulator provides a large text field for users to type in their programme in hexademical
operation codes. The operation codes are mapped to their corresponding mnemonic
instructions in the previous stage. This programme input serves as the basis for the
graphical display to run.

When the play button is hit, there will be colored points, representing data signals, moving
on the CPU image to indicate data movement. Relevant CPU modules on the path, e.g. MAR
and PC, will have content update which will be shown in other description fields on the right
beside the display.

As students are required to programme with custom instruction sets in the course, this part
of the simulation allows them to test their very own implementations and enhance
understanding of the principle. However, it is not possible for the simulation to support
definition of any unseen operations, because for operations that require the use of ALU –
Arithmetic Logic Unit – to perform simple arithmetic like addition and subtraction, the ALU
operations will have to be pre-defined by the simulation system. Therefore, this simulation
will only guarantee the definitions of the basic operations listed in table 1, and the
corresponding sample definitions will be delivered along with the final simulator.

Supported Operations

ADD

SUB

AND

OR

NOT

MOV

LD

ST

BR

Table 1. Operations supported by the simulator

The other major component of the final deliverable is the cache memory simulation. With
limited size in the cache, there are different schemes to determine how to read in and
replace the cache content. The simulation will allow the user to choose from different
schemes. The implementation of these logics forms the basis of memory caching simulation.
There are indeed a variety of practical replacement schemes, some of which are not
covered in the course of COMP2120. As the key is to get students familiar with the general
concept of memory caching, the memory simulator will be limited to the universal access
method of 2-way associative mapping and the FIFO(First-In-First-Out) or LRU(Least-
Recently-Used) replacement scheme.

Figure 7 shows the design of the memory simulation panel, which basically resembles that
in the simulator last year. This panel of cache memory simulation will show in another
window besides the panel of CPU simulation at the time when the simulator program runs.
Users can choose between the cache replacement scheme by clicking on the corresponding
buttons. By default, the replacement scheme is set to FIFO.

 10

Figure 7. conceptual interface for cache memory simulation

Despite the fact that cache memory in real-life is always limited in size, but the small size of
a few KB commonly in the context of actual CPU operations is not trivial at all to be on a
visual display. Therefore, the size of the simulated cache will be limited to 8 cache lines
divided in 4 sets, which is also one analogy used in the course COMP2120. The cache
content will be displayed in a list numbered by set number on the left. Relevant content will
be updated as the input programme proceeds, and the updated slot will be highlighted.
Similarly, the size of the main memory simulated will be limited to 40 slots with its list
display on the right, ordered by the simulated memory address.

Methodology
CPU operations and memory caching in real life involves interactions of a lot of hardware
and software components. To simulate the process, different models are constructed to
have different states and data content simulating their real-life counterparts.

To better classify the different objects created, different packages are defined to categorize
different objects according to the purpose they serve. The two largest packages defined are
the packages for the CPU simulation and the cache memory simulation, within which
smaller packages are further created to better classify the different objects. The concept of
package in Java programming can be simply viewed as directories containing the class files
for better management and security measures.

CPU simulation
Figure 8 shows the structure of the classes developed for the instruction definition part of
the CPU simulation. In this simplified diagram, different classes are modelling various

#1 #1

#2

#3

#4 #4

#3

#2

 11

components and modules to be used in the simulation. Different objects initialized from
their classes will have their own states and contents.

Figure 8. class structure of the CPU simulation

To provide a brief overview of how the different classes are defined and will interact, the
Simulator class serves as the starting point. When the simulator program runs, the main
function in the Simulator class will be invoked and a singleton Simulator object will be
initialized. The Simulator object contains two different display panel corresponding to the
two parts in the CPU simulation.

In the display panel of instruction definition, instuction objects will be created per
instruction item on the display, i.e. “DisplayComp_Instruction”. In other words, as graphical
objects responsible for the user interface possess different behavior from the functional
objects that actually model the corresponding components, the rule of thumb for design of
the class relationship is that for each functional objects that will be used throughout the
simulation, e.g. “Instruction” modelling the actual mnemonic instruction defined, a
corresponding graphical controller object will cater for its display properties, e.g.
“DisplayComp_Instruction”.

The display panel of instruction definition is essentially a collection of the
“DisplayComp_Instruction” objects, with the buttons and textfields that form the entire
interface for the first part of the CPU simulation. Besides these objects, there is the other
“DisplayComp_RightPanel” that serves as the division on the right as shown in figure 5,
containing the array of “DisplayComp_Timeframe” that correlate with the “Timeframe”
objects for modelling the series of CPU operation cycles of the instruction.

The remaining classes in figure 8, similarly, correspond to the second display panel of
simulation display in the CPU simulation. There will be the “DisplayPanel_Simulation” which
is the parent panel containing all the visualization materials and the programme I/O
interface. More specifically, “DisplayComp_DispPanel” corresponds to the graphical display
as seen on the left of figure 6. An image of the CPU architecture will serve as the
background, with data signal objects moving on top to simulate the operations inside the
CPU. On the other hand, “DisplayComp_UIPanel” contains all the textual display of the
content update of the CPU components and the programme input text area.

 12

By the time when this report is written, development of the simulation display part of the
CPU simulation has only finished up to the UI. Therefore, as seen in figure 8 the classes for
simulation display are responsible for UI properties and behaviour, denoted by the prefix
“Display”.

Note that while the objects designated for graphical interface are basically independent
across the different parts of the CPU simulation, as covered by highlight in yellow in figure 9,
the functional objects, on the other hand, are connected to their respective interface classes
and the class which utilizes their properties and behaviour, i.e. “Simulator”, for sharing
necessary data content, and are denoted by grey dotted border in figure 8.

In order to differentiate the graphical and functional objects more easily and enhance the
readability of the source code, the classes follow certain naming conventions. For classes
designated for graphical interface, their names start with the word “Display”. Depending on
the scale of the objects to the entire simulation, the names are then followed by “Panel” for
a more significant display role, or “Component” for a lesser scope. And ending with the
words describing the functionalities. Functional objects, on the other hand, are not named
by “Display” or “Panel”, but rather by the direct naming of their functionalities or the
objects being modelled.

One exception here is the Simulator class, which possesses dual properties as both a
graphical object and a functional object. The Simulator contains the main function at which
the program is started and variables referencing to the functional objects defined; but it is
also responsible for the display of the main simulator window. For the sake of simplicity, the
direct naming of “Simulator” is used for this CPU simulation as well as for the cache memory
simulation.

Cache Memory Simulation
The design of classes in the cache memory simulation follows the same paradigm used in
the CPU simulation. Although development of this part has not yet started, ideas on
implementation are reflected in the conceptual class structure shown in figure 9.

 13

Figure 9. conceptual class structure of the cache memory simulation
There will be two major components in cache memory simulation. The first component
concerns the cache, the second concerns the memory. The cache will be modelled as 8
“CacheLine” objects, each having its own index number, cache set affiliation and content
etc. The 8 “CacheLine” objects together will be displayed by a single
“DisplayComp_CacheList” object. This approach is a little different from the one-functional-
object-to-one-graphical-controller practice as described above, because of the fact that
each “CacheLine” object indeed has little information to be displayed, i.e. the index number,
the data content and the updated state, and without any real-time interactive behaviour
such as button. Therefore, it is sufficient to simply extract the variables in the “CacheLine”
objects and collectively display them with one single graphical object.

The memory component will behave in the same fashion and is modelled similarly, using
only one graphical controller to display the content of a list of memory objects. The
Simulator class that will serve as the main window for the cache memory simulator contains
the display panels of the cache and memory components, and will be initialized in the main
function of the CPU simulation when the simulator runs.

The Simulator object in the cache memory simulation, when initialized, will contain the
variable referencing the “Programme” object created in the previous CPU simulation, so as
to capture the execution codes for the update of the cache content.

Note that the class structure diagram of the cache memory simulation is seemingly less
complex than that of the CPU simulation. This is on one hand due to the expected simpler
functionalities and implementation of the cache memory simulation, and on the other, the
lack of practical evaluation of the design.

As the development of the cache memory simulation is placed in later stage of the project,
which has not begun, the design illustrated above is mostly theoretical concept only. There
may be updates to existing classes or addition of new classes where the practical
development deems necessary.

Progress Review
By the time when this report is written, the development of the mnemonic instruction
definition part of the CPU simulation has basically been completed, and the interface of the
simulation display part has been finished with development on the functional components
undergoing. Figure 10 and 11 show the respective demonstration.

 14

Figure 10. mnemonic instruction definition panel completed by far

The mnemonic instruction definition part has basically been completed. The instructions can
be added on the left of the panel with symbol names and hexadecimal opcodes entirely
defined by the users. Instructions are added by clicking the “+” button at the lower left
while deletion of any instruction can be achieved by clicking the “-” button of the respective
instruction. Index numbers of the instructions will update correspondingly.

The sequence of CPU actions can be added and configured on the right, with parallelization
achievable by optionally adding the timeframes using the “+” button within the timeframes
and initializing new timeframes by clicking the “+” button at lower right. The “Save” button
will all the instructions to the respective logical objects and possibly be utilized in export the
definition in future development. But the “Save” button is currently not functional while all
instructions are saved at the moment when any changes are made. The “-” button on lower
right will remove the timeframe(s) with the last index number and individual removal of any
timeframe is currently not possible for the sake of reducing implementation complexity.

For the simulation display panel as shown in figure 11, all the implementations are currently
on the UI level but not functional. Functionalities such as accepting user programme input,
decoding the programme, executing the programme and visualizing the simulation are
proceeding. A glimpse of the expected work is provided in the display section of figure 11,
where a red dot signaled “test” is displayed, mimicking the data flow simulation when the
backend logic of this part is completed.

 15

Figure 11. simulation display panel completed by far

Besides the expected and unfinished components, there are certainly improvements that
can be made on currently available progress. The most significant problem with this
deliverable is with the user interface. With careful observation from figure 10, one will
notice that layout and spacing of the instruction components on the left and the right list of
CPU actions are not entirely comfortable. They should be more compact and organized. But
these improvements on the layout shall be catered after finishing the functional parts of the
expected components to ensure the simulator is at least sufficiently functional by the end of
this project.

The project has by far proceeded according to the schedule defined earlier in the project
plan. With the above suggestions, the development of the project will continue with the
completion of the CPU simulation expected by February 2017 and the development of the
cache memory simulation following.

Development of cache memory simulation is placed in a rather late schedule because of a
few reasons. Firstly, it is anticipated to be simpler as compared with that of CPU simulation
as the simulation in this part is basically display of data without a large extent of in-depth
user customization and interaction as the instruction definition parts does; secondly, the
basic infrastructure will be completed in the part of CPU simulation, for example, the
programme decode and simulation will be established already in CPU simulation and the
rest in memory simulation is only to retrieve useful data out of the process, which is less
development needed; thirdly, as communicated with the project supervisor, cache memory
simulation possesses a lesser importance and priority in the project as compared to CPU
simulation, thus the arrangement of developing in later stage after that of CPU simulation
has been finished.

Table 2 summarizes the progress thus far and outlines future development plan.

 16

Completed

1. Instruction Definition of CPU Simulation

2. UI of CPU Simulation

To be expected

Date Event

Feb 2017 Functionality of Simulation Display of CPU Simulation

Feb – Apr 2017 Cache Memory Simulation

Table 2. progress summary and development timeline

Limitations
The simulation of a computer system is not an easy task. Despite the carefully chosen scope
and reduced complexity of this project, there are challenges.

The major technical challenge is with CPU actions parallelization in the CPU simulation. The
customized mnemonic definition is itself challenging in a sense that there are a vast number
of action sequences resulting from the different combinations of CPU actions freely added
and selected by the student users. It is near impossible to simulate all possible sequences in
advance, capture and thus avoid errors. This problem, fortunately, can be minimized
systematically by analyzing the compatibility of consecutive CPU actions selected in
sequential order.

Nonetheless, the parallelization process adds to the degree of freedom of the possible CPU
action sequences and increases the difficulty of error handling.

A solution to this is to pose some limitations on the process. For example, the CPU actions
now are predefined where users can only choose from but not create their own. There are
also limits on the number of instructions and CPU operation timeframes that can be added.
All this prevents the complexity of the sequence definition to increase indefinitely and limits
the growth of error rate to an acceptable and avoidable scale.

Another major challenge is with user acceptance. This is an educational project and the
primary users are students taking the course COMP2120 Computer Organization. It will be
ideal to include the students as test users for user acceptance test in the process of
development to evaluate the performance of the simulator.

However, due to conflict of the development timeline of this project and the timetable of
the course, it is unlikely that any student joining the course can act as a test user.

A workaround to the problem is to include the supervisor and the teaching assistants of the
course in the process of development. Workable iterations will be sent to them upon
completion for iterative feedback and improvement. Regular meetings with the supervisor
has been set up in a bi-weekly manner and comments of improvement have been received
and refinements made accordingly.

 17

References
1. Wong, Jing Hing(Kent). FINAL REPORT TOPIC: COMPUTER SYSTEM SIMULATOR. Hong

Kong: 2015
2. Wong, Jing Hin. “FYP: Computer System Simulator”. i.cs.hku.hk. 2016. Thu. 1 Dec.

2016.

