
COMP2120 Computer Organization User Manual of the Simulator

User Manual of the Simulator

Overview

This simulator is designed to help students better understand the principle operations in the

CPU when learning and programming with the instruction set as well as follow closely the

different cache replacement algorithms, by providing them with a visualization of the

operations.

To use this simulator, users have to first define or import a set of instruction definitions.

Then they can utilize the operation codes defined to construct the hexadecimal programme

input in the simulation interface.

To start the simulator program

Enter the follow command in the command line tool at the directory containing the Java

simulator program:

 java –jar Simulator.jar

Note that Java 1.8 or above is required for this simulator program.

To define instructions

The following lists the functionalities of different interface components as shown in figure

1 for defining instructions.

Function

1 Remove the instruction

2 Mnemonic symbol that has to be unique, maximum 6 characters

3 Operation code that has to be unique, 2 hexadecimal digits

4 Show/Hide the definition configuration panel on the right

5 Add an instruction, maximum 16 instructions

6 Import instruction definitions from a definition txt file

COMP2120 Computer Organization User Manual of the Simulator

Function

7 Export currently saved instructions as a definition txt file

8 Addressing mode under which this action will run, “*” for all modes

9 Add an action in parallel within the same execution timeframe

10 Choose from 22 elementary actions

11 Supplementary configurations for this action, including bus source and destination

for system bus-related actions, and set-flag option for ALU-related actions

12 Add next timeframe

13 Remove the last timeframe, including all the parallel actions within that

timeframe. Individual removal of timeframes that are not the last is not supported.

14 Save this instruction definition

Figure 1

The key to effectively construct instructions is to know the individual end-effect of each and

every of the 22 elementary hardware-level actions, that are used in different combinations

and sequences to achieve the overall function of the instruction defined. The functions of

the actions are listed as follows.

Action Function

move_via_s1 1. update value of the data point from the data source

2. move the data point from the data source to the destination along

the S1-Bus

3. update value of the destination with the value from the data point

object

2 3 4 1
8 9 10 11

5

6 7 12 13 14

COMP2120 Computer Organization User Manual of the Simulator

Action Function

move_via_s2 same as move_via_s1, except S2-Bus is used instead of S1-Bus

move_via_d same as move_via_s1, except D-Bus is used instead of S1-Bus

inc_pc 1. update value of the data point from PC

2. move the data point from PC to IncPC

3. increment value of data point by 4

4. move the data point from IncPC to PC

5. update the value of PC from the data point

read_rf_port1 1. update value of the data point from the register file specified

in source operand 1

2. move the data point from Register File to RFOUT1

3. update value of RFOUT1 from the data point

read_rf_port2 same as read_rf_port1, except register file specified in source

operand 2 is used instead

* note that only the 5th bit in the instruction word is significant in specifying

the register file

write_rf 1. update value of the data point from RFIN

2. move the data point from RFIN to Register File

3. update value of the specified register file from the data point

alu_add 1. update values of the data points from temporary registers A

and B respectively

2. move the data points from A and B to ALU simultaneously

3. perform addition on the values of the data points

4. update value of the data point from A with the result after the

ALU operation, discard the other data point

5. move the data point from ALU to temporary register C

6. update value of C from the data point

alu_sub same as alu_add, except the ALU operation is substraction, i.e.

"A" - "B"

alu_and same as alu_add, except the ALU operation is bit-wise AND

alu_or same as alu_add, except the ALU operation is bit-wise OR

COMP2120 Computer Organization User Manual of the Simulator

Action Function

alu_not 1. update values of the data point from temporary register A

2. move the data point from A to ALU

3. perform bit-wise NOT on the value of the data point

4. update value of the data point with the result after the ALU

operation

5. move the data point from ALU to temporary register C

6. update value of C from the data point

alu_copy 1. update values of the data point from temporary register A

2. move the data point from A to ALU

3. move the data point from ALU to temporary register C

4. update value of C from the data point

read_instruction 1. update value of the data point from MAR

2. move the data point from MAR to External Memory

3. read memory content with the address data in the data point

4. update value of the data point with the data from the memory

read

5. move the data point from External Memory to IR

6. update value of IR from the data point

7. move the data point from IR to Register File to indicate

preparation of the involved register files

read_memory 1. update value of the data point from MAR

2. move the data point from MAR to External Memory

3. read memory content with the address data in the data point

4. update value of the data point with the data from the memory

read

5. move the data point from External Memory to MBR

6. update value of MBR from the data point

write_memory 1. update values of the data points from MAR and MBR

respectively

2. move the data points from MAR and MBR to External

Memory

3. update value of the simulated memory at the corresponding

address, i.e. data in MAR, with the specified data, i.e. data in

MBR

COMP2120 Computer Organization User Manual of the Simulator

Action Function

branch 1. check for branching condition, if branch, do the following, else

continue to the next operations

2. update value of the data point from MBR

3. move the data point from MBR to temporary register A

4. update value of A from the data point

5. perform alu_copy

6. perform move_via_d from C to PC

7. skip all remaining operations in the current instruction and

continue to the next instruction

dec_sp 1. update value of the data point from SP

2. move the data point from SP to +-SP

3. decrement value of data point by four

4. move the data point from +-SP to SP

5. update the value of SP from the data point

inc_sp same as dec_sp, except increment SP instead of decrement

mar_to_temp 1. update value of the data point from MAR

2. move the data point from MAR to TEMP

3. update the value of TEMP from the data point

temp_to_mar 1. update value of the data point from TEMP

2. move the data point from TEMP to MAR

3. update the value of MAR from the data point

halt halt the simulation

* note that halt is designed specifically for the simulator to break out of the

execution loop, and is not seen in real-life CPU

Animations of the respective actions can be found at http://i.cs.hku.hk/fyp/2016/fyp16026/

In addition to knowing what each of the elementary actions will do, the other important

point to pay attention to is avoiding resource conflict when configuring actions in parallel.

The following shows the respective resources occupied when running the actions. When

two actions occupying the same resource are configured in parallel, error occurs and the

definition will be denied.

http://i.cs.hku.hk/fyp/2016/fyp16026/

COMP2120 Computer Organization User Manual of the Simulator

Action Resources in use

move_via_s1 Bus Source, Bus Destination, S1-Bus

move_via_s2 Bus Source, Bus Destination, S2-Bus

move_via_d Bus Source, Bus Destination, D-Bus

inc_pc PC, IncPC

read_rf_port1 RF1

read_rf_port2 RF2

write_rf RFIN, RF

alu_add A, B, ALU, C

alu_sub A, B, ALU, C

alu_and A, B, ALU, C

alu_or A, B, ALU, C

alu_not A, ALU, C

alu_copy A, ALU, C

read_instruction MAR, External Memory, IR, RF

read_memory MAR, External Memory, MBR

write_memory MAR, External Memory, MBR

branch MBR, S1-Bus, A, ALU, C, PC

dec_sp SP, +-SP

inc_sp SP, +-SP

mar_to_temp MAR, TEMP

temp_to_mar MAR, TEMP

halt -

To simulate programme execution

The following lists the functionalities of different interface components as shown in figure

2 for beginning the graphical simulation of the programme input.

Function

1 Enable the cache memory simulation interface

2 Display of data in the registers, default in hexadecimal

COMP2120 Computer Organization User Manual of the Simulator

Function

3 Switch the display bases between decimal and hexadecimal

4 Text area for inputting hexadecimal machine codes for the simulation, execution

will start at“00000” and will terminate on “halt” or undefined memory

5 Translate the machine code into assembly code

6 Change the speed of the simulation animation

7 Begin/Pause the simulation

8 Stop and reset the simulation

9 Descriptive text field showing current CPU action being simulated

10 Descriptive text field showing current line of code being simulated

Figure 2

2

3

5

4

6 7 8

9

10

1

COMP2120 Computer Organization User Manual of the Simulator

To simulate cache memory operations

The following lists the functionalities of different interface components as shown in figure

3 for cache memory simulation.

Figure 3

Function

1 Switch between replacement

algorithms

2 Switch between write policies

3 Display of cache content, 4 cache sets

each with 2 cache lines

4 Hexadecimal representation of the

memory address being accessed

5 Binary representation of the memory

address being accessed, for reference

to the location of data in cache

6 Descriptive text field showing

operation-related information

Cache simulation will run in parallel when the simulation of CPU execution starts and

update the memory content as the simulation proceeds. The settings of cache replacement

algorithm and write policy can only be changed before the simulation starts.

Syntax for definition txt file

Besides exporting saved instructions to an instruction definition txt file, one can also

compose the txt file manually following the syntax rules below.

1. Begin an instruction definition with the mnemonic symbol of the instruction, and then

a space, then a 2-digit hexadecimal operation code.

1

2

3

4
5

6

COMP2120 Computer Organization User Manual of the Simulator

2. Starting from the next line, each line represents a CPU action entry. Begin the line

with the sequence index, starting from “1”, followed by a space, then either “*”,

“f” or “e” to indicate the addressing mode in which the action will run, then

space, then the action string from the list of 22 actions, space and finally the

supplementary attributes depending on the action.

i. For bus-related actions, i.e. move_via_s1/s2/d, after the action string, enter

space, source register, space, followed by destination register.

ii. For ALU actions, after the action string, enter space, then either “true” or

“false” to indicate whether the result will update zero-flag.

iii. All other actions do not require supplementary attributes

3. For parallel actions, begin the line with the same index number while for serial

actions, increment the index number by 1 every line.

4. At the end of the instruction definition after entering the last action, begin a new line

and enter “---”, followed by another empty line before defining another instruction.

