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ABSTRACT 
 

Computer Go has always been considered a major hurdle for Artificial Intelligence 

development [1] due to its enormous number of possible moves, which leads to its 

large degree of freedom. This hurdle was overcome in October 2015 when AlphaGo 

became the first Computer Go program to beat a professional human Go player 

without handicaps on a full-sized 19x19 board. On July 18th, 2016, it was even rated 

by Go Ratings as number one in the world according to its Elo [2]. Its most recent 

activity was playing on various Go playing websites against the best players in the 

world at the end of 2016, resulting in a final score of 60 wins out of 60 games. 

This project aims to replicate the success of AlphaGo in the game of Othello (a.k.a. 

Reversi) under the name OthelloBlitz. Using similar algorithms and components, but 

with smaller board size and degree of freedom, the overall complexity of the problem 

is simplified. We can then further the research and study the effect of different 

learning algorithms and neural networks on computer’s performance in playing 

games. 

This paper will describe the design and implementation of OthelloBlitz. It will then 

explain the main algorithms and justify the choices used in the design. Finally, it will 

showcase our progress of the project, which is the Graphical User Interface, game 

rule implementation, data collection and value network. 
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INTRODUCTION 
 

This interim report serves the purpose of reporting the progress of my Final Year 

Project named “Playing Othello By Deep Learning Neural Network”.  The project is 

conducted under the supervision of the Computer Science Department of the 

University of Hong Kong and in particular, my mentor, Dr. K.P. Chan. 

The main goal of my project is to investigate and mimic a highly successful Computer 

Go program called AlphaGo but with a different game. The game chosen is Othello 

as its simplicity would allow us to create an AlphaGo-like program without having to 

use a supercomputer. 

Among the various features, our project would be particularly focused in the effect of 

deep learning neural network and the impact of its performance as its structure is 

being altered. This is because deep learning neural network is believed by many to 

be the key feature behind AlphaGo’s success. We hope that by using the same 

principle on different kinds of neural network, we can better understand the strength 

and weaknesses of them in computer gaming. 

In the following sections, I will start by explaining the structure of AlphaGo, followed 

by the structure hence devised for our program, named OthelloBlitz. Then we will 

talk about the algorithms chosen and the rationale behind our choices. Finally, I will 

showcase the progress on Graphical User Interface, game rule implementation,  data 

collection and value network.



PREVIOUS WORK 
 

This project is greatly inspired by AlphaGo and hence it will be discussed in 

details in the coming sections. AlphaGo is the best Computer Go program in 

the world and the first to defeat a human professional player in a 5-game 

series. It was ranked number one in July 2016 by Go Ratings, a website 

dedicated to ranking Go players, humans and computers alike. 

OVERALL STRUCTURE 

The main structure of AlphaGo is the Monte Carlo Tree Search (MCTS). It is 

accompanied by two deep learning neural networks, namely the policy network 

and the value network [3]. The former one is developed for reducing branching 

factor, while the latter for reducing depth of search when necessary. While the 

policy network is accurate, a fast rollout policy is developed for side-by-side 

comparison [3]. Supervised learning and reinforcement learning are used as 

standard machine learning approaches. 

MONTE CARLO TREE SEARCH 

MCTS is a general game tree search without branching at all. Instead, each 

probe is conducted all the way to the end by moving randomly at each state 

[4]. The rewards and visit count are then back propagated to better enhance 

the next probe [4]. This continues until time runs out, which makes it ideal for 

playing under time constraint. However, as we can easily tell, moving randomly 
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does not match a rational player (or opponent) and thus policy network is 

employed to better reflect reality. 

POLICY NETWORK 

For AlphaGo, 13-layer policy network was trained from 30 million positions 

from the KGS Go Server [3].  The network is provided game states and the 

next move by human expert and would gradually learn to predict this move 

[3]. The result was an accuracy of up to 57%, compared with a maximum of 

44.4% for other research groups at that time [3]. However, it takes 3ms for 

computation, which hence limits the traversed depth of MCTS [3]. 

ROLLOUT POLICY 

Rollout policy is a fast algorithm that analyzes known patterns on the board 

for the most probable moves. This is also trained with supervised learning of 

8 million positions from human games on the Tygem server [3]. The rollout 

policy achieved a 24.2% accuracy using only 2 µs (0.067 % of Policy Network) 

[3]. In the end, both rollout policy and policy network are used in a parallel 

manner, and both results are taken into account [3]. 

VALUE NETWORK 

Value network is used to truncate tree search when deemed necessary. When 

looking at a game, professionals could understand if the dark or white side was 

at an advantage. Value network is trying to do exactly the same. At first, full 
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game histories were provided to train the value network in a similar manner 

to policy network [3]. This led to overfitting and the machine actually 

“memorized” the training set [3]. The network was then trained with distinct 

states from different games played by itself and earlier versions [3]. The 

problem was then solved.  

SUPERVISED LEARNING 

Supervised learning is used whenever a program is asked to provide answers 

to questions. It is supervised in the manner that both answers and questions 

are provided in the training examples. The program can then predict answers 

from similar questions later on. It is thus commonly used and as we can see, 

applied for all three of the policy network, rollout policy and value network [3]. 

REINFORCEMENT LEARNING  

Reinforcement learning basically means practicing. In the case of AlphaGo, the 

program played games again and again with its random former self, which can 

be the first or, for example, the 524th version [3]. The program can then 

identify its mistakes and update its value network and policy network 

accordingly. 
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OUTLINE 
 

In light of the above work, an outline for OthelloBlitz was devised. The main 

structure would remain to be the Monte Carlo Tree Search (MCTS). Whenever 

we need to truncate the tree, value network would be used to determine which 

intermediate output is more desirable. It will run alongside the policy network 

which could suggest generally common moves given current circumstance. 

 

Fig 1. An illustration of the structure of OthelloBlitz. While conducting a tree search, policy network reduces 
time taken simulating irrational moves while value network provides evaluation of current scenario whenever 
needed. 

POLICY NETWORK  

For our policy network, we will use supervised learning to do the training. Our 

network will be provided with a state of game and a corresponding reasonable 

move made by human players. After going through a large number of such 
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pairs, the computer is expected to find the move given the state of game and 

more importantly, to propose a reasonable move given an unseen state of 

game. This is especially important when the complexity level of our program 

is low, and it plays at an unreasonably low level. 

VALUE NETWORK  

For value network, there will be two stages of training. In the first stage, where 

we would like to experiment on the training of neural networks, it will be 

trained as a classification network using supervised learning. The training data 

will consist of (gameState, outcome) pairs, with outcome of 1 representing the 

winning of the black side, 0 signifying that of white side and gamestate being 

features extracted from a random instant of the entire game. 

This allows us to quickly compare the effectiveness of different structure of 

neural network such as layer composition and loss function. Also, since value 

network is to a great extent identical to the policy network, this rapid 

experimentation could theoretically speed up the training of policy network as 

well. 

In the second stage, the value network would be trained as a regression 

network using unsupervised learning. The network will be trained by exploring 

the game tree by itself using policy network, during both gaming and non-

gaming time. This should be a continuous progress and thus the network 

should be saved in between each update. Whenever a win or lose is recorded, 

all the intermediate steps should be updated and predictions made by value 
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network should be rewarded and punished according. For example, if a neuron 

inside the network contributed to a correct prediction, it will be more relied 

upon, while if it contributed to an incorrect prediction, it will be less relied upon. 
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DELIVERABLES 
 

At the end of the project, we will submit the following deliverables so that 

others can test and investigate on our results. 

MAIN PROGRAM 

The main program is the OthelloBlitz program. It will have Monte Carlo Tree 

Search and the best performing networks implemented by default. However, 

it will also allow substitutions on the networks so that its performance can be 

investigated. 

To facilitate the investigation of performance differences, our program would 

store a handful versions of itself for benchmarking, so that users can conduct 

a match on the user-modified version and older versions to observe increase 

or decrease in performance. The main program will also allow users to play 

against itself through Graphical User Interface. 

SUPERVISED LEARNING MODULE 

Supervised Learning Module (SLM) is the module we mainly train our policy 

network with. It will take in parameters such as training mode, iteration, 

training data as input and output a trained network. It should also provide the 

test function on test data to observe the predictability of our network. For easy 

documentation, our module will be able to output to the file system a binary 
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representation of the networks, from which a graphical representation can be 

created. 

REINFORCEMENT LEARNING MODULE 

Reinforcement Learning Module (RLM) would be responsible for the 

reinforcement learning process used in AlphaGo [3]. It would be able to take 

in 2 policy networks and make them play against each other. After a game, 

the network winning would contribute to the adjustment of the latest network 

parameters and even meta-parameters. 

REPORT 

Our last deliverables will be our report. After investigating which neural 

network design is the best under the scenario of computer gaming, we will 

present our findings, our design and our choices in the final report. 
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ALGORITHM 
 

In this part, we will discuss some of the algorithm or keywords commonly used 

in our project. 

MONTE CARLO TREE SEARCH 

Monte Carlo Tree Search (MCTS) is a very interesting depth-first search 

algorithm in which there is no specific order. Instead the searching is largely 

conducted in random order. 

At every search, the MCTS chooses a leaf according to its meta-algorithm and 

simulate until the end-of-game state is reached. The result is then propagated 

from the leaf back to the root, rewarding and punishing nodes on the way 

similar to that of machine learning. However, nodes in this case are not neuron 

nodes and as such has no weights and biases to update. Instead, its win-lose 

count is recorded and those with a lower winning probability is less often 

expanded. 

DEEP LEARNING NEURAL NETWORK 

Before gaining spotlight in the field of gaming, deep learning had already 

achieved over 90% accuracy in speech and handwriting recognition [5]. By 

instructing the machines to learn from their mistakes, speech recognition 

software discovered rules that even linguists are not aware of. This is all due 

to the structure of neural network, in which all input nodes can affect and 

receive feedback from all of the next-layer nodes, which can then affect and 
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receive feedback from all of its next-layer nodes, so on and forth. Layer-by-

layer affecting would result in prediction, whereas layer-by-layer feedback 

simulates human learning. This then allows computer programs to “learn” from 

mistakes and samples to extract features suitable to computers. 

In our project, we need to specify meta-parameters to alter the network under 

test. This usually means the number of layers in between input and output, as 

well as the number of nodes in each layer, the training algorithm, etc. 
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RATIONALE 
 

There may be questions as to why we chose certain decisions when designing 

the project. Here are the reasons. 

MONTE CARLO TREE SEARCH 

Monte Carlo Tree Search is chosen for one main reason. Compared with other 

traditional searching algorithm, its performance does not fall significantly when 

computation time is limited. However, similar to traditional searching method, 

as time tends to infinity, MCTS still tends to finding the perfect move. Hence 

this makes it ideal against other tree searches such as Depth-First Search of 

Breadth-First Search. 

PYTHON 

As machine learning is a key feature in our project, at the planning phase, we 

looked into the popular choices for machine learning, such as R, Matlab and 

Python. While both R and Matlab are powerful analytical software, ideal for the 

heavy calculations in Machine Learning, Python is not far behind with its scikit-

learn framework and SciPy package. Python also has the advantage for 

superior Graphical User Interface support which would be ideal for 

demonstrating our results and finding. 

While Java and C can also accomplish similar work as Python while being more 

efficient, Python was still chosen for its simpler syntax and its large community 

in Machine Learning. This makes it ideal for rapid prototyping throughout a 
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year. We can also rely on the online community for the difficulties we  

encounter. Hence Python is chosen in the end.  
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PROGRESS 

 

At the time of writing, I have completed the major skeleton in the OthelloBlitz 

main program. It is now able to play against human players via Graphical User 

Interface (GUI) using randomly selected moves from the set of legal moves. 

It can also detect illegal moves and cases when one of the players cannot make 

a move. 

Sep – Oct, 2016 Traditional AI Approach Tree Search ✖ 

GUI ✔ 

Game Rules ✔	

Nov – Dec, 2016 Value Network Training Data ✔ 

Value Network ✔ 

Jan – Mar, 2017 Extended Research Policy Network ✖ 

Genetic Algorithm ✖ 

Rollout Policy ✖ 

Apr – May, 2017 Final Product Main Program ✖ 

SLM ✖ 

ULM ✖ 

Report ✖ 

Table 1. Current progress of our project. 
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PROGRAM SKELETON 

Using PyQt5, a simple GUI was devised. It is able to receive user input and put 

down pieces accordingly. It is also able to detect illegal moves and provide 

feedback to the users using the text bar at the bottom of the interface. 

Fig2. Graphical User Interface of OthelloBlitz developed with PyQt5 

TRAINING DATA 

At first I used match data of 360 games from Othello World Cup 2013 to train 

the value network. However, despite continuous effort of redesigning the 

neural network structure, the test accuracy remains unsatisfactory, with a 

maximum of about 53.2%, slightly better than random guessing among two 

choices. As further adjustment of network only results in symptoms of either 

undertraining or overtraining, I changed the direction into finding more game 

data. 



15 

After searching for some time online, a large database called WThor was finally 

discovered on a French Othello website (Federation of French Othello: 

ffothello.org). It was however using a rather obsolete format called .wtb which 

was further modified to specifically store Othello match records. In the end, I 

wrote a code snippet in Python which decodes all the records from 1977 – 

2016. This gives us more than 100,000 game records from which we can then 

train our networks. 

  

Fig 3. Decoding of .wtb format (left) into Othello move record (right) 

VALUE NETWORK (1) 

As mentioned above, we started by using match data from Othello World Cup 

2013 to train our value network. In each game, one random game state was 

chosen and our network was asked to predict which player eventually won. 

Using the training algorithm discussed above, our network was able to score 

an accuracy of 53.2% on unseen data, while standard heuristics of Othello only 

scored 40.3%. 
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Fig 4. Accuracy score of prediction of game result of standard heuristics (left) and Othello Blitz (right) 

 

Fig 5. Picture illustrating the calculation in standard heuristics. To calculate the score of a particular player, 
we add up the scores of the grids on which that player’s pieces reside. The whole grid is filled using symmetry. 

VALUE NETWORK (2) 

Then the match records from WThor were found and used. From the 100,000 

match records, the first 2,000 were extracted as our training data due to 

limited memory space. With this increased data size, I was able to experiment 

with more network structure meaningfully. At this stage, I also decided to treat 

it as a regression network similar to that in AlphaGo. In the end, using Keras, 

a sequential network of 8 Convolution2D layers using Rectified Linear Unit as 

activation, followed by a fully connected dense network of 512 hidden nodes 
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were constructed. The input is a 3-channel representation of the gameboard, 

with the channels being black, white and empty respectively. The output is a 

single value with 1 being a win by the black side and 0 by the white side. The 

resulting testing MSE was 0.4947 and training MSE was 0.462. This is still 

remarkably distant from AlphaGo’s result of 0.226 and 0.234, but is 

nevertheless an improvement from accuracy of 53.2%. 

  

Fig 6. Illustration of the current layout of  Keras neural network 
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FUTURE PLAN 
 

In the second semester, the most important task would be implementing the 

standard tree search. This enables us to convert testing accuracy into playing 

performance, which is our primary target after all. 

After that I would retry the AlphaGo approach of training a policy network, 

followed by reinforcement learning of policy network, and in the end a value 

network trained from the game results of well-trained RL policy network. While 

doing this, I hope that I can modularize the whole process, such that future 

testing and training can be conducted at a simple manner, ideally at a GUI 

panel. 
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LIMITATION 
 

A huge limitation of my Final Year Project was computational power and 

memory space. They were crucial in any machine learning task but was 

critically lacking while I was using my MacBook Air 13’’ to do the task. 

Throughout the semester break, I have successfully migrated the whole project 

to my Desktop. This includes installing Linux, Theano, Keras, Tensorflow with 

GPU backend, and also the most important and time-consuming, NVIDIA driver 

and compiler. Luckily, these tasks were in the end successfully completed, and 

hopefully could expedite the process in second semester. 
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