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PLAYING	OTHELLO	BY	DEEP	
LEARNING	NEURAL	NETWORK	

1. INTRODUCTION	
Go	has	always	been	considered	the	pinnacle	of	artificial	intelligence	in	gaming	[1].	With	
over	300	possible	moves	at	each	turn,	it	was	believed	to	be	a	game	of	instinct,	a	proof	that	
we	humans	possess	something	unique	to	us,	a	proof	we	creators	bear	true	intelligence	
while	 the	 machines	 do	 not,	 a	 proof	 that	 held	 true	 until	 AlphaGo	 defeated	 Korean	
professional	Lee	Sedol	4	to	1	in	a	5-game	series	[2].	This	remarkable	feat	unravels	the	
endless	possibilities	of	deep	learning	neural	network,	where	work	previously	thought	to	
be	only	achievable	by	humans	may	finally	be	handed	to	our	machinery	friend.	

2. OBJECTIVE	
In	this	project,	I	will	attempt	to	apply	technologies	used	in	AlphaGo,	in	particular	deep	
learning,	on	the	game	of	Othello.	My	aim	is	to	create	a	program	which	can	play	the	game	
of	Othello	more	successfully	and	efficiently	than	current	programs	using	this	technology.	
If	 time	allows,	 I	would	attempt	 to	beat	5	out	of	 top	10	commercially	available	Othello	
software	with	this	software	by	either	(1)	using	significantly	less	computational	power,	or	
(2)	straight	up	winning.		

3. BACKGROUND	
• Artificial	Intelligence	

Traditionally,	artificial	intelligence	works	around	a	professional	teaching	(coding)	a	
computer	to	 focus	(evaluate)	on	significant	parts.	This	requires	a	 lot	of	coding	and	
relies	heavily	on	our	design	capabilities.	To	makes	 things	even	harder,	we	have	 to	
understand	our	way	of	thinking	thoroughly	to	make	the	computer	mimic	what	we	are	
doing.	Now,	 imagine	how	you	would	describe	 the	process	of	 recognizing	numbers.	
How	did	you	recognize	a	7	from	a	1?	If	the	stoke	in	the	middle	helped	you	in	it,	why	
did	you	not	recognize	it	as	a	4?	What	angle	must	the	top	of	7	tilt	at	when	it	stops	being	
a	7?	If	some	ink	failed	to	dye	the	paper,	would	your	methods	still	work?	This	list	of	
question	goes	on	and	on	and	is	just	one	of	the	many	reasons	our	traditional	approach	
reached	a	bottleneck.	Machines	don’t	have	instincts.	
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• Deep	Learning	Neural	Network	

Actually,	machines	might	indeed	have	instincts.	Before	gaining	spotlight	in	the	field	of	
gaming,	 deep	 learning	 has	 already	 achieved	 over	 90%	 accuracy	 in	 speech	 and	
handwriting	 recognition	 [3].	 By	 telling	 the	machines	 to	 learn	 from	 their	mistakes,	
speech	 recognition	 software	 actually	 discovered	 rules	 that	 even	 linguists	 are	 not	
aware	of.	This	implies	that	instincts	might	just	be	extremely	fast	calculations	of	our	
subconscious	brain,	and	all	that	was	blocked	by	this	barrier	is	now	revealed	to	our	
trustworthy	computers.	
	

• Othello	

To	apply	our	new	founded	techniques	to	Othello,	we	must	first	understand	our	game.	
In	Othello,	a	game	always	starts	with	a	cross	pattern	 in	the	center	of	 the	board.	At	
every	turn,	a	player	puts	down	a	piece	which	has	to	wrap	the	two	ends	of	an	arbitrary	
number	of	opponent	pieces	in	the	middle.	This	converts	those	opponent	pieces	into	
friendly	ones.	This	kinds	of	conversion	can	be	horizontal,	vertical	and	diagonal.	The	
dark	player	starts	first	and	the	game	continues	until	neither	player	can	make	a	move.	
	

	 								 								 	
	

Similar	 to	 Go,	 Othello	 is	 a	 zero-sum,	 perfect-information,	 partisan,	 deterministic	
strategy	game.	This	means	that	it	is	a	game	with	no	win-win	situation,	no	concealed	
information	(and	thus	no	bluffing),	practically	equal	position	for	both	players	and	no	
randomness	involved.	This	type	of	game	is	ideal	for	computers	to	play	and	is	thus	one	
of	the	reason	it	was	chosen	to	be	the	topic.	

	
Unlike	Go,	Othello	has	very	limited	moves	at	each	turn	and	connection	between	pieces	
are	much	less	relevant.	Hence,	without	the	need	of	deep	learning,	the	game	was	in	fact	
already	strongly	solved	at	smaller	sizes.	For	example,	in	4x4	Othello	games,	white	can	
always	win	under	perfect	play	and	the	best	black	can	do	is	lose	by	3-11	[4].	This	is	
similar	in	6x6	games	where	black	loses	by	17-19	[5].	This	is	why	our	objective	was	
not	 simply	 winning	 existing	 software,	 but	 playing	 at	 similar	 levels	 using	 less	
resources.	
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4. LITERATURE	REVIEW	
As	 the	project	was	practically	 inspired	by	and	 revolved	around	AlphaGo,	 the	 research	
article	of	AlphaGo	was	read	and	critical	technical	terms	are	listed	and	explained	below	
[6].	

• Overall	Structure	

The	 main	 structure	 of	 AlphaGo	 is	 the	 Monte	 Carlo	 Tree	 Search	 (MCTS).	 It	 is	
accompanied	by	two	deep	learning	neural	networks,	namely	the	policy	network	and	
the	value	network	[6].	One	is	developed	for	reducing	branching	factor,	while	the	other	
for	reducing	depth	of	search	when	necessary.	While	the	policy	network	is	accurate,	a	
fast	rollout	policy	is	developed	for	side-by-side	comparison	[6].	Supervised	learning	
and	reinforcement	learning	are	used	as	standard	machine	learning	approaches.	
	

• Monte	Carlo	Tree	Search	

MCTS	is	a	general	game	tree	search	without	branching	at	all.	Instead,	each	probe	is	
conducted	all	the	way	to	the	end	by	moving	randomly	at	each	state	[7].	The	rewards	
and	visit	count	are	then	back	propagated	to	better	enhance	the	next	probe	[7].	This	
continues	until	time	runs	out,	which	makes	it	ideal	for	playing	under	time	constraint.	
However,	as	we	can	easily	 tell,	moving	randomly	does	not	match	a	 rational	player	
(opponent)	and	thus	policy	network	is	employed	to	better	reflect	reality.	
	

• Policy	Network	

For	AlphaGo,	13-layer	policy	network	was	trained	from	30	million	positions	from	the	
KGS	Go	Server	[6].		The	network	is	provided	game	states	and	the	next	move	by	human	
expert	and	would	gradually	learn	to	predict	this	move	[6].	The	result	was	an	accuracy	
of	up	to	57%,	compared	with	a	maximum	of	44.4%	for	other	research	groups	at	that	
time	 [6].	However,	 it	 takes	3ms	 for	computation,	which	hence	 limits	 the	 traversed	
depth	of	MCTS	[6].	
	

• Rollout	Policy	

Rollout	policy	is	a	fast	algorithm	that	analyzes	known	patterns	on	the	board	for	the	
most	 probable	 moves.	 This	 is	 also	 trained	 with	 supervised	 learning	 of	 8	 million	
positions	from	human	games	on	the	Tygem	server	[6].	The	rollout	policy	achieved	a	
24.2%	accuracy	using	only	2	μs	 (0.067	%	of	Policy	Network)	 [6].	 In	 the	 end,	both	
rollout	policy	and	policy	network	are	used	in	a	parallel	manner,	and	both	results	are	
taken	into	account	[6].	
	

• Value	Network	

Value	network	is	used	to	truncate	tree	search	when	deemed	necessary.	When	looking	
at	 a	 game,	 professionals	 could	 understand	 if	 the	 dark	 or	 white	 side	 was	 at	 an	
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advantage.	Value	network	is	trying	to	do	exactly	the	same.	At	first,	full	game	histories	
were	provided	to	train	the	value	network	in	a	similar	manner	to	policy	network	[6].	
This	led	to	overfitting	and	the	machine	actually	“memorized”	the	training	set	[6].	The	
network	was	then	trained	with	distinct	states	from	different	games	played	by	itself	
and	earlier	versions	[6].	The	problem	was	then	solved.		
	

• Supervised	Learning	

Supervised	 learning	 is	 used	 whenever	 a	 program	 is	 asked	 to	 provide	 answers	 to	
questions.	 It	 is	 supervised	 in	 the	 manner	 that	 both	 answers	 and	 questions	 are	
provided	 in	 the	 training	 examples.	 The	 program	 can	 then	 predict	 answers	 from	
similar	questions	later	on.	It	is	thus	commonly	used	and	as	we	can	see,	applied	for	all	
three	of	the	policy	network,	rollout	policy	and	value	network	[6].	
	

• Reinforcement	Learning		

Reinforcement	 learning	 basically	 means	 practicing.	 In	 the	 case	 of	 AlphaGo,	 the	
program	played	games	again	and	again	with	its	random	former	self,	which	can	be	the	
first	or	the	524th	version	[6].	The	program	can	then	identify	its	mistakes	and	update	
its	value	network	and	policy	network	accordingly.	
	

• Evolution	Algorithm	

This	 is	 the	 technique	employed	by	Kurzweil	Applied	 Intelligence	described	by	Ray	
Kurzweil	in	his	book	“How	to	create	a	mind”.	This	involves	selective	“breeding”,	or	in	
other	words	mixing,	of	 two	well	performing	algorithm’s	weights.	This	 is	especially	
useful	in	deciding	the	hyper	parameters	(for	example,	how	many	layers	should	our	
neural	 network	 have)	 [3].	 While	 this	 may	 not	 be	 much	 related	 to	 the	 success	 of	
gaming,	 I	 wish	 to	 attempt	 and	 observe	 this	 approach	 to	 understand	 the	 general	
approaches	in	machine	learning.	

5. PROJECT	CHOICES	
While	 Othello	 is	 a	 simpler	 game	 to	 Go,	we	 can	 still	 introduce	 similar	 variables	 in	 the	
development	of	our	project.	

• Language	

Python	 would	 be	 the	 choice	 of	 language	 here.	 Among	 commonly	 used	 computer	
languages,	 it	has	 the	most	support	 to	machine	 learning	and	complex	mathematical	
operation.	While	compared	with	MATLAB,	which	might	be	even	more	efficient	in	this	
manner,	Python	also	has	access	to	GUI	programming,	which	is	very	favorable	in	later	
stages	when	playing	against	human	opponents.	
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• Handicap	

If	the	development	was	smooth	and	if	 time	allows,	 	our	program	should	be	able	to	
play	 against	 other	 existing	 software	 using	 handicap.	 This	 enables	 our	 program	 to	
develop	and	learn	when	no	opponents	of	similar	level	could	be	found.	
	

• Size	

Unlike	Go,	Othello	can	have	a	varying	board	size.	We	could	increase	it	steadily	while	
it	is	computationally	feasible.	This	might	be	the	most	important	variable	in	the	end,	
as	computational	difficulty	of	Othello	largely	depends	on	size.	If	possible,	we	should	
develop	a	program	which	can	play	to	any	size.	

6. METHODOLOGY		
I	will	tackle	the	problem	of	Computer	Othello	in	a	similar	manner	as	AlphaGo	on	Go.	The	
main	program	will	implement	the	Monte-Carlo	Tree	Search	accompanied	by	Value	
Network	and,	if	possible,	Policy	Network.	The	networks	will	be	trained	by	a	separate	
training	program	for	modularity	using	existing	play	history.	Finally,	we	will	further	
enhance	the	program	by	playing	with	former	versions	of	itself,	already	available	
software	and	human	players.	

7. DELIVERABLES	
• Main	Program	

At	the	end	of	the	project,	a	main	program	written	in	Python	will	be	delivered.	It	will	
play	Othello	at	a	superhuman	level.	It	will	also	have	an	option	to	play	at	two	different	
modes.	In	one	mode,	it	will	have	a	GUI	(Graphical	User	Interface)	to	enable	playing	
against	human	players.	In	the	other	mode,	it	wil	read	in	and	return	moves	in	the	most	
compact	way	while	concealing	GUI,	minimizing	overhead.	
	

• Wrapper	

A	wrapper	is	used	to	enable	to	competition	between	two	computer	Othello	programs.	
This	can	be	the	competition	between	two	versions	of	the	above	program,	or	between	
available	programs	on	the	market	and	our	main	program.	We	will	provide	support	for	
as	many	existing	programs	as	time	allows.	The	wrapper	will	be	in	whichever	language	
required	 to	 facilitate	 the	 communication	 between	 two	 programs.	 The	 burden	 of	
reinforcement	learning	will	also	lie	on	the	wrapper.	
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• Training	Program	

This	program	will	be	responsible	for	the	supervised	training	part	of	the	project.	It	will	
be	mainly	used	to	fine	tune	the	value	network	using	training	samples	provided.	It	will	
be	written	in	Python	as	it	only	needs	to	deal	with	the	main	program.	
	

• Records	

The	 records	 of	 training	 the	 program	will	 be	 stored	 in	 an	 organized	 and	 readable	
manner.	The	idea	of	ranking	and	Elo	may	also	be	considered.	This	allows	us	to	present	
our	 findings	 on	 how	 the	 program	 develops	 throughout	 the	 year.	 Quantizing	 the	
strength	of	program	is	also	important	for	similar	reasons.		

8. CHALLENGES	
• Software	

The	timeframe	might	be	too	tight	to	implement	every	software	tools	used	by	AlphaGo.	
To	counter	this,	the	modules	are	listed	in	order	of	importance.	By	implement	them	in	
order,	we	could	at	least	achieve	the	most	when	time	was	indeed	a	deciding	factor.	
	
i. Monte	Carlo	Tree	Search	
ii. Value	Network	

This	 is	 the	more	 important	 of	 the	 two	 network,	 as	 the	width	 of	 Othello	 game	
search	 tree	 is	much	 less	of	 an	 issue	 compared	with	 its	depth.	This	means	 that	
there	are	very	few	possible	moves.	This	is	especially	true	when	compared	with	
Go.	

iii. Policy	Network	
iv. Rollout	Policy	
v. Evolution	Algorithm	
	
In	the	above	list,	the	first	3	parts	are	crucial	to	the	execution	of	the	program	and	will	
be	completed	before	any	fine-tuning.	I	will	then	work	on	Rollout	Policy	and	Evolution	
Algorithm	if	time	allows.	
	

• Hardware	

As	 of	 current	 stage,	 there	 seems	 to	 be	 no	 hardware	 support	 from	 the	 Computer	
Science	department.	I	would	therefore	use	my	own	computer	which	has	Intel	6700K	
as	CPU	and	16G	RAM	at	the	date	of	writing.	This	may	limit	our	choice	of	algorithm	and	
affects	overhead	in	unforeseen	manner.	While	we	may	also	approach	the	department	
for	better	hardware	support,	it	is	more	reasonable	to	not	anticipate	any	and	simply	
develop	a	program	with	minimal	requirement.	
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9. SCHEDULE	
• Sep	–	Oct	2016	

Traditional	AI	Approach	
By	the	end	of	October,	a	functional	AI	program	written	in	Python	should	be	able	to	
compete	at	a	8x8	board.	It	should	implement	the	Monte	Carlo	Tree	Search	and	can	
adapt	 to	 different	 time	 limit	 as	 such.	 It	 would	 be	 anticipated	 to	 compete	 at	 an	
intermediate	level	and	should	not	perform	silly	mistakes.	
	

• Nov	–	Dec	2016	

Value	Network	
By	the	end	of	2016,	there	should	be	a	value	network	which	betters	the	performance	
of	the	program.	Professional	gameplay	history	would	be	used	if	access	was	available.	
If	not,	the	4	undergraduate	working	on	similar	topics	would	generate	200	games	of	
gameplay	to	train	the	network.	
	

• Jan	–	Mar	2017	

Extended	Research	
At	 this	 stage,	 we	 would	 attempt	 to	 implement	 policy	 network,	 rollout	 policy	 and	
evolution	algorithm.	They	would	be	provided	as	options	 in	 the	 final	deliverable	 to	
better	understand	their	impacts	on	the	program.	I	believe	that	observation	on	results	
would	be	more	valuable	at	this	stage	than	the	actual	deliverable.	
	

• April	–	May	2017	

Final	Product	
I	will	wrap	up	my	project	at	this	stage.	The	program	should	be	fully	functional	with	
lots	of	testing	conducted	to	better	its	credibility.	We	should	attempt	to	have	an	Elo	
ranking	 of	 the	 program	 with	 different	 options,	 as	 well	 as	 human	 players	 as	
comparison.	 We	 should	 also	 look	 into	 more	 literature	 to	 better	 understand	 the	
discrepancy	of	our	expectation	and	outcome.	
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10. CONCLUSION	
Computer	has	been	around	for	decades,	taking	off	tremendous	workload	off	the	parts	we	
are	proudest	of	–	our	brains.	We	unloaded	our	memory	to	the	Internet,	our	computation	
to	 the	 mathematical	 software,	 but	 computer	 still	 doesn’t	 seem	 smart	 enough	 to	
considered	more	than	a	clever	tool.	This	may	be	finally	changed	as	deep	learning	enables	
computers	 to	 think	more	and	more	 like	us.	There	may	be	a	 time	when	our	brains	can	
finally	take	a	rest.	Until	then,	let	us	work	this	gluey	grey	matter	to	its	greatest	potential.	
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