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Abstract: Cut-based graph theoretic problems encompass some of the most seminal prob-
lems in theoretical computer science, having wide ranging applications within and beyond
computing. The standard graph partitioning seeks to partition a graph G = (V,E) into k
pieces where k ≤ n = |V | while fulfilling a balance condition on the size of each piece. The
goal is to minimize the edges that cross from one piece to another. Unfortunately, this prob-
lem and many of its variants are NP-complete. The set of closely related problems includes
finding a balanced cut, maximum-cut and sparsest cut in a weighted undirected graph1. In
this thesis, we study various NP-hard graph partitioning problems. The overarching goals
of this thesis are: 1) to survey several breakthrough techniques in convex and continuous
optimization (such as linear programming, semidefinite programming and eigenvalue opti-
mization) that have been successfully applied to get provably good solutions for fundamental
problems in combinatorial optimization and theoretical computer science and 2) to provide
empirical evidence of the quality of approximation ratios obtained by employing such tech-
niques to solve the maximum cut and sparsest cut problems in real world problem instances.

1the weighted undirected setting is sufficiently general to encapsulate others.
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1 Introduction

In this thesis, we study a varied selection of topics in combinatorial optimization for graph
theoretic problems which arise in a wide array of practical applications. The focus will be on
studying several fundamental NP-hard problems and techniques that have been successfully
employed in the past few years to affirmatively answer long standing open questions across
complexity theory and the design of algorithms.

We aim to study NP-hard optimization problems in the broadest sense. We place spe-
cial emphasis on cut-based graph theoretic problems. Such problems arise quite commonly
in both theory and practice. For example consider a simple problem of image segmentation-
i.e. to break an image into a number of parts so that it is easier to analyze the image on
a macroscopic level. One needs to partition the image into clusters so that adjacent pixels
which are similar are allocated to the same cluster, whereas dissimilar pixels are allocated to
different clusters. This problem elegantly abstracts as a standard graph partitioning prob-
lem, where the goal is to partition the vertices (pixels) of the graph (image) into a number of
pieces (partitions) such that the weight of the edges (dissimilarity between adjacent pixels)
is minimized. One can think of each weighted edge as a connection between adjacent pixels
where the weight is proportional to the pixel similarity.

Our goals for this project are as follows:

1. Studying extensively the techniques (such as convex programming) in the design and
analysis of approximation algorithms.

2. Studying several important algorithmic results and breakthroughs over the past 2
decades in TCS.

3. Improving the state of the art results wrt approximation ratios/running times.

4. Rigorously analyze the performance of some well known algorithms for cut based prob-
lems (e.g max-cut, sparsest cut) on real world data sets.

Organization: Most sections of this thesis can be read independently of each other. Our
organization is as follows: In the next subsection we briefly discuss a general framework in
which NP-hard optimization problems are framed, and a canonical strategy to get reasonably
good solutions. In section 2 we introduce the graph partitioning problem, its variants and
other closely related problems. A brief overview of the results will also be provided. Section 3
contains a selection of problems we studied that we feel are most representative of the power-
ful algorithmic techniques and paradigms employed to tackle the curse of NP-completeness.
Section 4 is intended to acquaint the reader with the theory of metric embeddings which is
necessary to understand the sparsest cut problem. Section 5 includes the sparsest cut prob-
lem, and discusses various algorithms that have provably good guarantees. The final section
contains empirical results obtained by running the (theoretically) state-of-the-art algorithms
on real world data sets for the maximum cut and the sparsest cut problem respectively.
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1.1 NP-completeness and Optimization

Algorithms can be broadly classified in two types-deterministic and non-deterministic re-
spectively. For any given input problem, a deterministic algorithm runs exactly the same
way-the order of the steps executed by the algorithm are identical for any two given runs
on a certain underlying machine2. On the other hand, a non-deterministic algorithm is one
for which the steps may be executed in possibly different orders and need not even be the
same. A non-deterministic algorithm can be seen as one which makes certain choices during
its execution so for two different runs on the same input, the steps taken and their order
may not coincide. Non-determinism exploits the structure of the problem to yield provably
good solutions (which may be randomized) to the intended problem.

The input to a general optimization problem includes an optimization objective, an un-
derlying problem instance, and a set of constraints to be respected in a feasible solution.
An algorithm is evaluated on the basis of how well it meets the optimization objective. For
a wide variety of useful problems in both theory and practice, there is no hope to find the
optimal solution in polynomial time unless the P = NP conjecture holds true (see Figure
1.1). Thus, in these cases the goal of an algorithm designer is to design algorithms that find
feasible solutions within some factor of the optimal solutions. Such an algorithm which is
guaranteed to find a reasonably good solution for any input instance is known as an approx-
imation algorithm. The quality of the solution it obtains is measured by its approximation
ratio. Here is a formal definition:

Definition 1.1 (Approximation Algorithm [27]) An α-approximation algorithm for an
optimization problem is one which finds in polynomial time, a feasible solution whose cost
is within an α factor of the optimal solution for any problem instance. Under the standard
practice of defining an approximation ratio, it is easy to see that for a minimization objective
α ≥ 1 and for a maximization objective, α ≤ 1.

Current and past research has focused mainly on designing algorithms that have good ap-
proximation ratios and improving ones that have already been discovered. Recent work on
the Unique Games Conjecture3 has focused on the impossibility of achieving certain approx-
imation ratios for a various problems under the assumption that P 6= NP (see Figure 1.1).
Although the conjecture has not been proven yet, it is widely believed to hold true and hence
a major goal of researchers in this area is to close the gap between the current best ratio
and that which is possible assuming the UGC holds true. Similar to showing that a certain
problem is NP-complete via a reduction to a certain NP-complete problem already known,
one can establish that no better approximation ratio is possible for a given problem via a
reduction from Unique Games.

Techniques that are normally used to design approximate algorithms include linear and
semidefinite programming [10] which harness results in probability theory and concentration
of measure. Note that linear and semidefinite relaxations can be solved in polynomial time

2The Turing model of computation is normally assumed.
3Unique Games Conjecture[15] is also referred to as UGC hereafter
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Figure 1.1: Basic complexity classes under the assumption P 6= NP . Note that P ⊆ NP

via the ellipsoid algorithm or other suitable interior point methods. Moreover, low distortion
metric embeddings [3] have been used successfully in the past to approximate solutions to
certain NP-hard problems. A general approximation scheme includes the following steps.

1. Model an optimization problem exactly as an integer linear program (ILP). Note that
it is NP-hard to solve an ILP.

2. Relax the ILP. This is done by relaxing the constraints and/or variables.They are
relaxed as linear constraints in the case of LP, as vectors to give a vector programming
relaxation.

3. Solve the VP/LP.

4. Round the solution (using a rounding algorithm) to an integer solution. Bound the
cost of the rounded solution using a clever analysis.

Mathematically, we can express the canonical process as follows, where P is a maximization
problem. We let:

1. FRAC(P ): The value of the relaxed(convex) solution.

2. OPT(P ): The value of the true combinatorial optimum.

3. ROUND(P ): The value of the solution obtained by the rounding algorithm.

Then, we have that

ROUND(P ) ≤ OPT (P ) ≤ FRAC(P )

The inequalities are reversed for a minimization problem. The goal is then to find an α
s.t. ROUND(P ) ≥ αFRAC(P ). This establishes a rigorous guarantee on the quality of the
approximation scheme.
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Approximation algorithms are quite useful in practice and by banking on the fact that
linear/semidefinite programming can be solved in polynomial time, one obtains an approxi-
mation scheme in polynomial time under some compromise on the optimality of the solution.
This compromise has been shown in practice to be acceptable in many applications[25]. Note
that the number of constraints of such a program could be exponential in input size but via
a good separation oracle the number of constraints to be checked can be restricted to a
polynomial number.
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2 Background and Preliminaries

2.1 Motivation

Graph partitioning is a well studied problem in computer science. It has numerous practi-
cal applications in network design, image segmentation, task scheduling in multiprocessing
environments and sparse gaussian elemination. There are various settings of the graph par-
titioning problem. One which generally captures the gist of the problem is: Given a graph
(undirected) G, partition the graph into k pieces, such that each partition contains ap-
proximately the same number of vertices and the edge costs between those partitions are
minimized. This is known to be an NP-hard problem, therefore only approximation algo-
rithms exist currently. Related problems include the balanced cut and its specific case for
k=2, the minimum bisection problem, both of which are NP-hard too. The motivation to
study the problem comes from the pervasiveness of the problem in computer science and
other fields. The usefulness of efficient algorithms can be realized from the fact that a lot
of real world networks that are studied-such as say pathological networks, social networks,
distribution of plant species, trade routes etc have relatively concentrated regions, and the
problem of graph partitioning seeks to identify those regions.

In circuit design for example, the goal is to minimize the number of wires crossing each
other and the cost of the components used, while being restricted to a certain board size.
Graph partitioning in this case, is used to minimize the size of the interface by identifying a
set of clusters containing endpoints which should be planted close to each other to minimize
the number of crossing wires. A related problem we study extensively in this thesis is the
sparsest cut problem-closely imitating the objective sought by efficient circuit design.

Graph partitioning is intimately connected to clustering and cut problems which will also
form part of our study, and section 3 discusses some of them in detail.

2.2 Existing results on some cut-based problems

A prototypical graph partitioning, one which is called the k balanced partitioning on a graph
G = (V,E) is defined as follows:

Definition 2.1 (k-balanced partitioning problem) Given a graph G = (V,E) and a
weight function w : E → R+, partition G into k pieces of roughly equal size (i.e. n/k in the
case when k|n), such that the total weight of edges connecting the pieces together is minimized
(see Figure 2.1).

Natural extensions include relaxing the balance condition, i.e. the number of vertices in any
specific piece-this introduces a new parameter v called the balance parameter. The problem
then is to minimize the total weight of cut edges (i.e. edges belonging to endpoints in distinct
components) such that every piece contains no more than (1 + v)n

k
vertices, for v > 0. Note

that if v = 0, then it is the standard k balanced partitioning problem.
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Figure 2.1: Graph partitioning problem: Note that the 2 pieces contain are roughly the same size
such that the sum of the edge weights separating them is minimized. In this case, k = 2 and the
problem is referred to as the minimum bisection problem which is also NP-complete.

Definition 2.2 (Bi-criteria approximation algorithm) A bi-criteria approximation al-
gorithm for the (k, v) balanced graph partitioning problem is one which outputs a solution
in which each piece Pi, i ∈ {1, 2, ..., k} has size at most kv

n
for v > 1 and whose value is at

most O(g(n))OPT where g(n) ≥ 1 with OPT denoting the optimal value of the k balanced
partitioning problem.

It is quite surprising that even in the special case when k = 2 is also NP hard. To our
knowledge, the best known bicriteria approximation of O(

√
logn) is achieved by Arora, Rao

and Vazirani [3] which uses semidefinite programming. Kruthgramer et al. [16] give a bi-
criteria approximation algorithm for the general problem in which k is not restricted whose
performance is O(

√
lognlog k). They use a semidefinite relaxation which combines l22 metrics

with spreading metrics. For the rounding procedure, they use breakthrough techniques of
Charikar et al. [8] and Makarychev et al. [9] for generating orthogonal separators, which
they used to develop an efficient approximation algorithm for solving unique games.

Since the problem of graph partitioning has received so much attention over the past few
decades, various heuristic results currently exist. Note that unlike the above results, heuris-
tics do not offer any theoretical evidence that the algorithms perform better but provide
empirical evidence to support claims. In particular for the k partitioning problem, a multi-
level scheme for partitioning irregular graphs has been quite successful [13]. There are
software packages available that use heuristic approaches and are useful in practice.

Clustering is a strongly related problem to graph partitioning and one which has been studied
extensively under various objectives and settings. There has been recent work on hierarchical
clustering,[7] and which uses SDP relaxations and metric embeddings, which might imply
that similar techniques to related problems in graph partitioning might be applicable.

2.3 Problems studied

Our has had a predominantly theoretical focus and we studied a broad selection of topics.
This has not been limited to papers in prominent TCS conferences (STOC, FOCS, SODA)
but also surveys, books and courses. A partial list of the most representative problems we
have studied so far is as follows:
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1. Minimum Multiway Cut. ([5])

2. Maximum Cut. ([10])

3. Quadratic Programming. ([7], [20],)

4. Correlation Clustering. ([23])

5. Graph Coloring. ([26])

6. Unique Games. ([24] [8])

7. Graph partitioning ([16]) and its numerous variants.

8. Oblivious Routing and packing.

9. Sparsest Cut. ([3], [4])

In the next section, we present several useful techniques such as linear and semidefinite
programming, which have been used in getting better approximations to these problems.
Some of the most important techniques and results surveyed so far are presented. These
techniques can be seen as our ‘methodology’ for this project.
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3 Convex Relaxations: problems and techniques

There are two powerful convex optimization paradigms used in the design of approximation
algorithms-namely linear and semidefinite programming. In the following subsection, linear
programming and metric embedding techniques as applied to the minimum multiway cut
problem are discussed and an algorithm due to Călinescu, Karloff and Rabani [5] is pre-
sented. Then, the seminal work of Goemans and Williamson [10] for the Max-Cut problem
is presented. This was one of the first works which introduced semidefinite programming
to design approximation algorithms. We then discuss quadratic programming and graph
coloring-two problems in which semidefinite programming has been subsequently applied to
get better approximation guarantees. The style of our presentation and proof ideas closely
mirror that of [27].

3.1 The multiway cut problem

Problem 1 Given an undirected graph G = (V,E), costs ce ≥ 0 for all e ∈ E and k
distinguished vertices s1, s2, ..., sk, one is required to output a set of minimum total cost
edges, such that for any si, sj, where j 6= i are found in a different connected component of
(V,E\F ). See Figure 3.1.

First, note the connection with the graph partitioning problem here: We find k connected
components (pieces) similar to the graph partitioning problem with the same objective func-
tion namely to minimize total edge cost, but with the additional requirement that k specific
vertices must lie in different components (pieces).

Figure 3.1: The multiway cut problem: The blue vertices denote the distinguished sources. The
red vertices denote all the rest of the vertices. The goal is to separate those distinguished sources
by computing a partition of V such that the weight of edges between individual partitions (circled
in gray) are minimized.

12



Theorem 3.1 The multiway cut problem is NP-complete. Thus, one cannot solve it in
polynomial time unless P=NP.

3.1.1 A simple 2-approximation algorithm

Note the structure of an optimal solution first. Let F denote an optimal solution. Removing
F collapses G into k connected components. Let V1, V2, ..., Vk denote the set of vertices in G
reachable from s1, s2, ...., sk. Note that for any i 6= j Vi ∩ Vj = ∅. Let δ(Vi) denote the set of
removed edges which were incident to vertices in Vi. Now, note that

⋃
i δ(Vi) = F .

We now present a combinatorial 2-approximation algorithm:

Algorithm 1 2-approximation algorithm (G, s1, s2, ..., sk)

1: F ∗ = ∅
2: for i ∈ {1, 2, ..k} do
3: Add infinite capacity edges from all sj, where j 6= i to a terminal vertex t.
4: Compute the maximum si, t cut. Denote by Ei, the set of edges participating in the

cut.
5: F ∗ = F ∗

⋃
Ei

6: return F ∗

Theorem 3.2 Algorithm 1 is a 2-approximation algorithm for the multiway cut problem.

Proof: Let c(F ∗) denote the cost of our solution-i.e, the sum of weights of all edges included
in F ∗, and similarly denote c(F ) denote the cost of the optimal solution. Note that in the
optimal solution, any edge can be incident to at most 2 different connected components, i.e
for e = (ui, uj) ∈ F , ui ∈ Vi and uj ∈ Vj. Also, c(Ei) ≤ c(δ(Vi)), since Ei contains all those
edges found in the minimum isolating cut for si. Hence we have that,

c(F ∗) =
k∑
i=1

c(Ei) ≤
k∑
i=1

c(δ(Vi)) ≤ 2c(F ) = 2OPT.

Hence our algorithm yields a 2 approximation, which can be trivially extended to yield a
2(1- 1

k
)-approximation. We now discuss how linear programming can be used to give us a 3

2

approximation.

3.1.2 An LP-Rounding Algorithm: Beating factor 2

In this subsection, we describe how we can design a better algorithm using randomized
rounding of a linear program. It also demonstrates the application of l1 metrics.

We use a key insight from the above combinatorial algorithm. Indeed, to compute a mini-
mum cost set of edges F , it suffices to compute a partition of V such that each distinguished
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source is found in one of the k partitions and no two sources lie in the same partition. As
before, let Vi denote the set of all vertices reachable from si, so that we have that δ(Vi)
denotes the set of cut edges. Note that for every edge e in the optimal solution F , e is found
in δ(Vi), δ(Vj), such that i 6= j.

For each vertex v ∈ V we have a variable k different variables xiv, i ∈ [k], such that if v
is found in the Vi, then xiv = 1 and is 0 otherwise. Note that for all si, i ∈ [k], we have that
xisi = 1, since si must surely be in Vi, the set of vertices reachable from si. Similarly, for
every edge e = (u, v), we create a variable zie, such that zie = 1 if e ∈ δ(Ci) and 0 otherwise.
Note that any removed edge e must be found in δ(Vi), δ(Vj), such that i 6= j. For such an
edge e, we have that zie = 1, zje = 1.

Now note that for any edge e = (u, v) we have that zie ≥ xiu − xiv and zie ≥ xiv − xiu, so
that zie = |xu−xv|. Indeed if z is not a cut edge and is incident to vertices found in some Ci
then we have that zie = 0 and in fact ze is the all-zeroes vector. If e ∈ δ(Ci), δ(Cj) for some
i, then clearly, zje = zie = 1. We give the following Integer Linear Program(ILP) as follows:

ILP:

minimize
1

2

∑
e∈E

ce

k∑
i=1

zie

subject to
k∑
i=1

xiu = 1 ∀u ∈ V

zie ≥ xiu − xiv ∀e = (u, v) ∈ E
zie ≥ xiv − xiu ∀e = (u, v) ∈ E
xisi = 1 i ∈ 1, 2, ..., k

xiu ∈ {0, 1} ∀u ∈ V, i = 1, 2, ..., k

LP-relaxation and connection with l1 metrics

Definition 3.1 (Distance in the l1 metric) For any u, v ∈ Rd, where u, v are vectors in
the d-dimensional euclidean space the l1 metric is a metric such that the distance between
u, v is given as ‖u− v‖1 =

∑d
i=1 |ui − vi|, where ui, vi denote the ith components of vectors

u and v.

Key technique: ILP’s are NP-hard to solve. One way to cope with this is to relax the in-
tegrality constraints of the ILP yielding an LP relaxation which can be solved in polynomial
time. The LP solution is then rounded to yield a feasible integral solution (not necessarily
optimal) to the original problem.

Note that relaxing the integrality constraints of our ILP, and then using the above defi-
nition of the l1 metric, we obtain a concise LP formulation to the multiway cut problem.

14



Whereas our original ILP contained k separate variables xiv, where i ∈ [k], affter relaxing the
integrality condition and thinking of each vector as being assigned a k dimensional vector,
we have that each xv ∈ Rk must lie in a k-dimensional simplex: this follows from the first
constraint of our ILP, which enforces that the sum of entries of xv is 1.

LP:

minimize
1

2

∑
e=(u,v)∈V

ce‖xu − xv‖1

subject to xsi = 1 ∀i ∈ [k]

xu ∈ ∆k ∀u ∈ V
(3.1)

Definition 3.2 (Open and Closed Balls in l1) Let the l1 metric between any two points
x, y ∈ V ⊆ Rn be defined as follows:

‖x− y‖1 =
n∑
i=1

|xi − yi|

The norm ‖x1‖1 for a point x ∈ V is defined similarly:

‖x‖1 =
n∑
i=1

|xi|

We define the open and closed balls denoted by Bo(x, r) and B(x, r) in l1 as follows:

Bo(x, r) = {y ∈ V | ‖x− y‖1 < 2r}, and B(x, r) = {y ∈ V | ‖x− y‖1 ≤ 2r}

The factor of 2 in the definition ensures that all points lie in a ball of radius 1 from any si
where the radius, r is uniformly chosen from the open interval (0, 1).

Algorithm 2 Approximation algorithm for minimum multiway cut

1: Solve the linear program (3.1) and let x be the solution.
2: Pick a random permutation π of the set {1, 2, ..., k}.
3: Pick the radius r uniformly at random from (0,1).
4: A = ∅, Ci = ∅ for all i = 1, 2, .., k . A denotes the set of assigned vertices while Ci

denotes vertices assigned to si.
5: for i = 1 to k do
6: Let Cπ(i) = B(sπ(i), r)\A.
7: A = A

⋃
Cπ(i).

8: Cπ(i) = V \X.

9: Return
⋃k
i=1 δ(Ci).

15



Theorem 3.3 The algorithm is a 3/2 approximation to the multiway cut problem.

Proof: The proof of Theorem 3.3 relies on the following facts. The first states that the
absolute difference along any dimension is bounded by at most half of the l1 norm.

Fact 3.1 For any j ∈ {1, 2, ..., k} and u, v ∈ V , |xju − xjv| ≤ 1
2
‖xu − xv‖1.

Proof: WLOG, let xju ≥ xjv so that

|xju − xjv| = xju − xjv = 1−
∑

i 6=j x
i
u − (1−

∑
i 6=j x

i
v) =

∑
i 6=j x

i
v −

∑
i 6=j x

i
u ≤

∑
i 6=j |xiv − xiu|.

Adding |xju − xjv| to both sides yields 2|xju − xjv| ≤ ‖xu − xv‖.

Fact 3.2 A vertex u ∈ B(sj, r) if and only if 1− xju ≤ r.

Proof: By definition, u ∈ B(sj, r) iff ‖ej − xu‖1 ≤ 2r. The vertices sj correspond to the k
dimensional standard basis vectors ej from the constraints in the LP. We have,

‖ej − xu‖1 =
k∑
i=1

|eij − xiu| ≤ 2r ⇐⇒∑
i 6=j

|xiu + 1− xju ≤ 2r ⇐⇒

1− xju + 1− xju ≤ 2r ⇐⇒
1− xju ≤ 2r

The remaining part of the proof now bounds the probability that edge e = (u, v) is in
the set of edges output by the algorithm. Let Xi denote the event that i is the first index
such that at least one of u or v is assigned to B(si, r). Let Yi denote the event that exactly
one of u, v ∈ B(si, r). First note that Yi does not depend on the random permutation and for
any edge to be output by the algorithm, there must exist an i such that Xi and Yi both occur.

From Fact 3.2, we have that

Pr[Yi] = Pr[r ∈ (min{1− xiu, 1− xiv},max{1− xiu, 1− xiv})] = |xiu − xiv|.

Let j be the index which minimizes over all i = 1, 2, ..., k, min{1−xiu, 1−xiv}. The probability
that i occurs after j is 1/2 and hence for i 6= j using conditioning we have:
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Pr[Xi ∧ Yi] =Pr[Xi ∧ Yi|π(si) < π(sj)]Pr[π(si) < π(sj)]+

Pr[Xi ∧ Yi|π(sj) < π(si)]Pr[π(sj) < π(si)]

≤ Pr[Yi|π(si) < π(sj)].
1

2

=
1

2
|xiu − xiv|

Moreover, Pr[Xj ∧ Yj] ≤ Pr[Xj] ≤ |xju − xjv|. Thus, the probability that (u, v) is in the set
of edges returned is:

k∑
i=1

Pr[Xi ∧ Yi] ≤|xju − xjv|+
1

2

∑
i 6=j

|xiu − xiv|

=
1

2
|xju − xjv|+

1

2
‖xu − xv‖1

≤ 3

4
‖xu − xv‖1 .

where the last inequality follows from Fact 3.1. The expected value of the solution is then
given by: ∑

e=(u,v)∈E

ce.P r[(u, v)is returned by algorithm]

≤
∑

e=(u,v)∈E

ce.
3

4
‖xu − xv‖1

=
3

2
.
1

2

∑
e=(u,v)∈E

ce ‖xu − xv‖1

≤ 3

2
OPT.

We note that randomized rounding of linear programs is a powerful technique to design
approximation algorithms for cut problems. It has been extensively applied to numerous
variants of the graph partitioning problem.

The next subsection provides an introduction to semidefinite programming (SDP) in the
context of the Maximum-Cut Problem. The results presented are due to Goemans et al.
[10].
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Figure 3.2: The max cut problem: The goal is to find a set of red and blue vertices whose union
is V , such that the weight of the edges crossing between them is maximized. In this special case,
we have all edges of unit cost, so the problem reduces to finding two sets between which there is a
maximum number of edges.

3.2 The Maximum Cut Problem

Problem 2 Given an undirected graph G = (V,E), and a cost function c : E → R+, parti-
tion V into 2 parts S, S̄ such that the total cost of edges between those parts is maximized.

See Figure 3.2 where a graph is partitioned into a set of red and blue vertices. To solve the
Max-Cut problem, the best known algorithm [10] uses semidefinite programming.

Semidefinite programming is similar to linear programming in a lot of ways. For exam-
ple, the objectives and constraints are linear in the variables used. We now present a few
well known facts in linear algebra which SDP exploits.

Definition 3.3 (Positive semidefinite (psd) matrices) A square matrix X ∈ Rn×n is
a positive semidefinite matrix if for all y ∈ Rn, yTXy ≥ 0.

Theorem 3.4 Let X ∈ Rn×n be a symmetric matrix. Then the following statements are
equivalent:
1) X is a psd matrix.
2) X has non negative eigenvalues.
3) X = V TV , where V ∈ Rm×n,m ≤ n
4) X =

∑n
i=1 λiwiw

T
i for some λi ≥ 0 and orthonormal vectors w1, ..., wn.

The main difference between SDP’s and LP’s are that the set of variables in the constraints
can be constrained to a positive semidefinite matrix.

The following is a canonical example of a semidefinite program:
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SDP:

maximize/minimize
∑
i,j

cijxij

subject to
∑
i,j

aijxij = bk ∀k

xij = xji ∀i, j
X = (xij) � 0.

From the third statement of Theorem 3.4, it follows that the entries of X can be viewed as
dot products of some vectors. These vectors can be found via standard approaches using
an eigenvalue computation or the LU decomposition when X is sparse. Consequently, a
semidefinite program is linear in the variables used; these variables xij are inner products of
some vectors vi, vj.

We first design an alternative formulation for the Maximum Cut problem, which is then
relaxed into a semidefinite program. For each vertex i we associate a variable yi such that
yi = 1 if i ∈ S and −1 if i ∈ S̄.

maximize
1

2

∑
(i,j)∈E

ce(1− yiyj)

subject to yi ∈ {−1,+1} ∀i = 1, 2, ..., n (3.2)

Theorem 3.5 Program (3.2) models the Max-Cut problem.

Proof: Consider the cut (U, Ū) where U = {i|yi = 1} and Ū = {i|yi = −1}. Then for
any edge (i, j) participating in the cut, we have 1 − yiyj = 2 and 1 − yiyj = 0 when both
endpoints of (i, j) lie in one of U or Ū . The factor 1/2 prevents double counting of any edge.
Maximizing the sum of the quantity 1

2
ce(1 − yiyj) over all edges e = (i, j) then gives the

maximum weighted sum of cut edges which by definition, is equal to the Maximum-Cut.

In the corresponding SDP relaxation, we have a vector vi corresponding to all vertices i ∈ V .
The variable yi is essentially replaced by vi.

SDP relaxation for Max-Cut:

maximize
1

2

∑
(i,j)∈E

ce(1− vi.vj)

subject to vi.vi = 1 ∀i = 1, 2, ..., n.

Theorem 3.6 The above is a valid semidefinite relaxation of the Maximum-Cut problem.
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Figure 3.3: Randomized Rounding: AB denotes the line perpendicular to vi and CD denotes the
line perpendicular to vj . The angle between vi, vj is θ.

Proof: First note that given any feasible solution yi for the ith vertex in V , one can set
vi = (yi, 0, ....0) and then, it follows that vi is a unit vector and vi.vj = yi.yj. Note that if
(i, j) participates in the cut (S, S̄), then 1− yi.yj = 2. Hence in the objective function only
the cost of the cut edges is accounted for. The factor 1/2 prevents double counting of any
edge as before. As a result, the SDP relaxation gives a valid formulation for the Max-Cut
problem. Moreover, if V P,OPT denote the values of the SDP relaxation and the optimal
value of Max-Cut respectively, then V P ≥ OPT .

3.2.1 Randomized Hyperplane Rounding and Analysis

We now discuss a breakthrough technique due to Goemans et al. [10] to round the corre-
sponding vector solution obtained by the above SDP relaxation to an integral value for each
vertex. In other words, we want to transform an arbitrary unit vector in Rn while ensuring
that the value of the solution obtained by the SDP relaxation doesn’t change by much.
The rounding procedure is as follows:

Randomized Rounding for Max-Cut:

1) Choose a random vector r in Rn, whose each component is drawn independently from a
normal distribution with mean 0 and variance 1.
2) Compute the dot-product, r.vi for each vi obtained via the above SDP relaxation.
3) If r.vi ≥ 0, set yi = 1 otherwise set yi to -1.

Theorem 3.7 The randomized rounding procedure yields a 0.878-approximation for the
Max-Cut problem, i.e. it finds a partition of V such that the cost of edges cut is at least
0.878.OPT , where OPT is the value of the optimal solution.
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We first prove the following lemma which will lead to our theorem.

Lemma 3.1 The probability that any edge (i, j) is in the cut is 1
π
arccos(vi.vj).

Proof: Consider a random vector r which is projected in the 2 dimensional plane spanned
by vi, vj. Note that all vectors vi lie in the unit sphere in Rn. Let rp denote the projected
component of r. Then if r = rp + r′, then r′ is orthogonal to both vi and vj. Essentially one
only needs to be concerned with the projected component rp and consider the inner product
with vi, vj since rp.vi = r.vi, and similarly for vj.

Now, refer to figure 3.3. Note that edge (i, j) is cut iff rp.vi and rp.vj have opposite signs. Let
θ denote the angle between them and let AB, CD denote the perpendicular lines to vi and vj.
Then, note that only if rp lies in the sector BD or AB does the sign of 2 inner products rp.vi,
rp.vj is different. Since r is chosen uniformly at random, the probability that rp lies in those
sectors is 2θ

2π
. Since θ = arccos(vi.vj), we get that Pr[(i, j) ∈ (S, (̄S))] = 1

π
arccos(vi.vj).

Denote by Xe the indicator random variable which is 1 if e is in the cut and 0 otherwise.
Using the fact that 1

π
arccos(x) ≥ 0.878.1

2
(1− x), we have:

E[
∑

e=(i,j)∈E

ceXe] =
∑

e=(i,j)∈E

ce.P r[Xe = 1]

=
∑

e=(i,j)∈E

ce
1

π
arccos(vi.vj)

≥
∑

e=(i,j)∈E

ce.0.878.
1

2
(1− vi.vj)

= 0.878.V P

≥ 0.878.OPT.

The proof is now complete.

In the following section, we present a breakthrough result due to Charikar and Wirth [6],
which exploits randomized rounding and concentration of measure to get a better approxi-
mation algorithm for the general quadratic programming problem.
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3.3 Quadratic Programming

In this section, an Ω(1/logn) approximation algorithm is presented, which generalizes Nes-
terov’s [20] algorithm having an approximation ratio of 2

π
. In the latter result, the matrix

was constrained to be positive semidefinite. We relax this condition and only require the di-
agonal entries of the matrix to be 0. Let us first define the quadratic programming problem,
which we call IP .
IP:

maximize
∑

1≤i,j≤n

aijxixj

subject to xi ∈{−1,+1}

Why is a positive objective required? Note that in the general case if all diagonal
entries are not necessarily zero, then the objective could be negative, and hence the no-
tion of an approximation would not hold. Consider the case when all diagonal entries are
negative and all non-diagonal entries are zero-then, since x2

i = 1 ∀i it follows that the
objective is negative. An α approximation algorithm ALG for a maximization problem im-
plies that cost(ALG) ≥ αOPT , but in the case when cost(ALG) < 0, this implies that
cost(ALG) > OPT for α > 0, clearly a contradiction.

Hence, due to the above argument, we require the matrix A = (aij) to have zero-valued
diagonal entries, which results in the final objective being only changed by a constant.

Lemma 3.2 If aii = 0 for all i, then OPT ≥ 1
n2

∑
1≤i,j≤n |aij + aji|. This implies that the

maximum value of the objective is always positive.

Proof: We construct a randomized solution. Let G be a complete graph on n vertices,
with edge weights wij = aij + aji for all i, j ∈ {1, 2, ..., n}. Then choose a matching M as
follows. Pick an arbitrary edge (i, j), remove its endpoints and all edges incident to both i
and j in the graph and continue until the graph contains at most one vertex-this happens
when n is odd. Initially, the probability that edge (i, j) is chosen is equal to 2

n(n−1)
≥ 1

n2 .
This is a weak lower bound, but suffices for the proof. Given the matching M , the solution
is constructed as follows: for each (i, j) ∈ M , set xi = 1 with probabilty 1/2 and xi = −1
with probability 1/2, set xj = xi if aij + aji < 0 and xj = −xi otherwise.

Note that if (i, j) ∈M , then E[(aij + aji)xixj] = |aij + aji| and 0 otherwise. Hence,
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E[
∑

1≤i,j≤n

aijxixj] = E[
∑

1≤i,j≤n

(aij + aji)xixj]

=
∑

1≤i,j≤n

Pr[(i, j) ∈M ]E[(aij + aji)xixj|(i, j) ∈M ]

+
∑

1≤i,j≤n

Pr[(i, j) /∈M ]E[(aij + aji)xixj|(i, j) /∈M ]

≥ 1

n2
|aij + aji|

Since solving integer linear programs is NP=complete, we relax the constraints xi ∈ {−1, 1}
into linear constraints −1 ≤ yi ≤ 1, yielding a linear program, LIN .
LIN:

maximize
∑

1≤i,j≤n

aijyiyj

subject to − 1 ≤yi ≤ 1

The claim is that given a solution to this LIN , one can find an integer solution with the
same value.

Theorem 3.8 Given an α-approximation algorithm for LIN , we can obtain a randomized
α approximation algorithm for IP with integer constraints.

Proof: Let ȳ be any solution to the LIN program. Using randomized rounding, set x̄i = 1
with probability 1+ȳi

2
and -1 with probability 1−ȳi

2
. Then, whenever i 6= j,

E[x̄ix̄j] = Pr[x̄i = ȳj]− Pr[x̄i 6= x̄j]

=
1

4
(2 + 2ȳiȳj)−

1

4
(2− 2ȳiȳj)

= ȳiȳj

This completes the proof.

Note that OPT (LIN) ≥ OPT since LIN maximizes over a larger set of constraints. More-
over, OPT ≥ OPT (LIN), by 3.8, so that OPT (LIN) = OPT . Therefore, solving LIN ,
the linear program shall yield us a solution to IP whose expected value is equal to OPT , the
value of the optimal solution to the standard quadratic programming problem.
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Given these results, we will be able to give a Ω( 1
logn

) approximation algorithm. Let OPT

now denote OPT (LIN), and OPT (V P ) denote the optimal value of V P given as follows:
VP:

maximize
∑

1≤i,j≤n

aij(vi.vj)

subject to vi.vi = 1, ∀i ∈ {1, .., n}
vi ∈ Rn ∀i ∈ {1, ..., n}

The algorithm is as follows:
On a top-level, the algorithm chooses a random hyperplane, and computers computes zi for

Algorithm 3 Quadratic Programming

Solve V P and obtain the vectors vi
Draw a random vector r, s.t. ri ∼ N(0, 1)
Set zi = (vi.r)/T
if |zi| ≤ 1 then

yi = zi
else if zi < −1 then

yi = −1
else

yi = 1

return y

all i. The rounding procedure is different from Max-Cut in that the product vi.r is scaled
down by T 2. This ensures that the probability that |zi| > 1 is low, hence, allowing us to
relate the value of OPT to OPT (V P ).

Lemma 3.3 E[zizj] = 1
T 2 (vi.vj)

Proof: E[zizj] = 1
T 2E[(vi.r)(vj.r)]. We can consider the 2-dimensional plane spanned by

vi and vj, where Wlog, vi = (1, 0, ...., 0), vj = (a, b, 0, ....0), since the solution is not affected
by a rotation of the vectors and that r is uniformly distributed on the n dimensional unit
sphere. Then, vi.r = r1, vj = ar1 + br2, so that

E[zizj] = 1
T 2E[ar2

1 + br1r2] = 1
T 2aE[r2

1] + bE[r1r2]

Now, E[r2
1] = 1, since each component of r has a variance of 1, and E[r1r2] = 0, since

each component of r is drawn independently at random. Thus E[zizj] = 1
T 2a = 1

T 2 (vi.vj).
This concludes the proof.

From the above lemma, it follows thatE[
∑

1≤i,j≤n aijzizj] = 1
T 2

∑
1≤i,j≤n aij(vi.vj) = 1

T 2OPT (V P ).
Furthermore, E[

∑
1≤i,j≤n aijyiyj] =

∑
1≤i,j≤n aijE[yiyj]. To relate the values of the 2 pro-

grams, we need to bound the quantity |E[∆ij]|. This will help us bound the cost of the
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solution y.

Theorem 3.9 (Core result on the error bound)
|E[∆ij]| ≤ 8e−T

2
, where ∆ij = zizj − yiyj.

Proof: Let Xi denote the event that yi = zi. Let Ei be the expectation conditioned on
the event Xi, and E¬i as the expectation conditioned on X̄i. So for example E¬i,j is the
expectation conditioned on the event X̄i ∧Xj. Then,

|E[∆ij]| ≤ |Ei,j[∆i,j]Pr[Xi ∧Xj]|+ E¬i,j[∆i,j]Pr[X̄i ∧Xj]

+ Ei,¬j[∆i,j]Pr[Xi ∧ X̄j] + E∧i,∧j[∆i,j]Pr[X̄i ∧ X̄j]

We observe that

E¬i[|∆ij|]Pr[X̄i] = E¬i,j[∆i,j]Pr[X̄i ∧Xj] + E¬i,¬j[∆i,j]Pr[X̄i ∧ X̄j].

This holds analogously for E¬j[|∆ij|]Pr[X̄j] by symmetry.

Thus the RHS of the above inequality is bounded by:

|Ei,j[∆i,j]Pr[Xi ∧Xj]|+ E¬i[|∆ij|]Pr[X̄i] + E¬j[|∆ij|]Pr[X̄j]

For the sake of brevity, the remainder of the proof is omitted which involves upper-bounding
the 3 terms above. The first term is simply 0, while the technique for bounding the rest of
the 2 terms is symmetric.

Theorem 3.10 (Proof of approximation guarantee) For large n, Algorithm 2 is a ran-
domized Ω(1/log n) approximation algorithm for the quadratic programming problem.

Proof: We have

E[
∑

1≤i,j≤n

aijyiyj] =
∑

1≤i,j≤n

aijE[yiyj]

=
∑

1≤i,j≤n

aijE[zizj]−
∑

1≤i,j≤n

aijE[∆ij]

=
1

T 2
OPT (V P )−

∑
1≤i,j≤n

aijE[∆ij]

≥ 1

T 2
OPT (V P )− |

∑
1≤i,j≤n

aijE[∆ij]|

≥ 1

T 2
OPT (V P )−

∑
1≤i<j≤n

|aij + aji|.|E[∆ij]|

≥ 1

T 2
OPT (V P )− 8e−T

2
∑

1≤i<j≤n

|aij + aji|
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Note that
∑

1≤i<j≤n |aij+aji| ≤ n2.OPT , so that the latter quantity is ≥ ( 1
T 2−8n2e−T

2
)OPT.

If T =
√

3ln n, a Ω(1/logn) approximation results.

3.4 Coloring 3-colorable Graphs

Graph coloring lies at the heart of the hardest problems in the complexity class NP , i.e. it
is NP -complete implying that any problem in NP can be reduced in polynomial time to the
graph-coloring problem. We define the graph coloring problem as follows:

Problem 3 (Graph-coloring Problem) Given an undirected graph G = (V,E)onn = |V |
vertices, assign a color to each vertex such that for all adjacent vertices in G, i.e. for any
u, v st (u, v) ∈ E, the assignment of the colors to u and v is different. This assignment must
be done in time polynomial in n and m = |E|.

Definition 3.4 (3-colorable graphs) In general a graph is n-colorable if the minimum
number of colors required to color it is n. A 3-colorable graph is one for which exactly 3
colors suffice to color it.

NP-completeness of 3-coloring The problem of determining a valid assignment to a 3-
colorable graph is NP-complete. However, given an assignment of colors to the vertices it
takes polynomial time to determine whether the assignment is feasible.

The goal of an approximation algorithm in this case is to find a feasible assignment to
the vertices while minimizing the total number of colors used. As remarked earlier, finding
an assignment using only 3 colors is hard in general. In this section, we present a Õ(n0.387)
approximation algorithm for the 3-coloring problem. A trivial coloring algorithm uses n
colors-to color the n vertices with a different color. The algorithm in this section uses a
vector-programming relaxation combined with a randomized hyperplane rounding technique
as used in the previous subsections.

3.4.1 A combinatorial O(
√
n) approximation algorithm

In this section, we present a simple and elegant combinatorial algorithm due to Wigderson
[26]. It works as follows: While the graph contains a vertex u of degree at most

√
n, we

use 3 colors to color u and its neighbors. This can be done by assigning u a single color
and coloring the neighbors using a polynomial time 2-coloring algorithm. Then, u and its
neighbours are removed and the process continues until we have a vertex having maximum
degree less than

√
n. Subsequently, we use

√
n colors to color the remaining graph.

Lemma 3.4 The algorithm uses O(
√
n) colors to color a 3-colorable graph.

Proof: The algorithm uses at most 4
√
n colors. Note that each execution of the while loop

takes uses 3 colors and is executed at most n√
n

=
√
n times. In the second step in which the

maximum degree of any vertex in the modified graph is less than
√
n, at most

√
n colors are

used, yielding a total of at most O(
√
n) colors.
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3.4.2 A better algorithm using SDP

We now present a better approximation algorithm which uses semidefinite programming.
Let V P denote the vector program. Since the underlying assumption is that the graph re-
quires a maximum of 3 colors in order to color it, an equilateral triangle in an n dimensional
space with sides of length

√
3 whose vertices correspond to distinct colors is considered. A

vector vi corresponding to each vertex i of G is assigned a color corresponding to a vertex of
the triangle. The goal is then to assign vectors vi, vj to distinct vertices i, j of the triangle
whenever (i, j) ∈ E. We have the following program.

VP:

min λ

st vi.vj ≤ λ ∀(i, j) ∈ E
vi.vi = 1 ∀i ∈ V
vi ∈ Rn ∀i ∈ V

Theorem 3.11 (Semicoloring) A semicoloring of the vertices of G such that at most n/4
edges have endpoints of the same color. This implies that at least n/2 vertices are colored
such that any edge between them have endpoints that are colored differently.

Proof: Let the current graph be G, and let E ′ denote the set of edges sharing endpoints
with the same color. Then, at most n/2 vertices are incident to edges in E ′. Hence, there
are at least n/2 vertices st any edge between them has endpoints that are colored differently.
If a graph can be semicolored using k colors, then only klog(n) colors suffice to color the
whole graph-since induced graph containing edges having endpoints colored by the same
color can be semicolored recursively and removed from the graph to leave the part of the
graph containing edges incident to vertices colored similarly.

In contrast to the Max-Cut problem in which one random hyperplane was chosen, a total
of t = 2 + log3∆ (where ∆ is the maximum degree of any vertex in the graph) hyperplanes
r1, ..rt are chosen; for each hyperplane, the components are chosen independently at random
from N(0, 1). We bound the probability in the case that vi, vj are not separated by any of
the t hyperplanes when (i, j) ∈ E.

The t hyperplanes partition Rn into 2t pieces. In the case of Max-Cut, where t = 1, the
probability that vi, vj were separated was 1

π
arccos(vi.vj). Thus the probability that vi and

vj are not separated (assigned the same color) is 1− 1
π
arccos(vi.vj). From the independence

assumption,

Pr[i, j are assigned the same color] = (1− 1

π
arccos(vi.vj))

t

Lemma 3.5 If G is 3 colourable, then any feasible solution to VP satisfies λ ≤ 1/2.

Proof: Note that whenever (i, j) ∈ E, then cos(vi.vj) = −1
2
, since the angle between

vi, vj is 2π/3, whenever i and j are assigned different colors. Hence, in the optimal solution,
λ ≤ −1

2
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It follows that,

Pr[i, j are assigned the same color] = (1− 1

π
arccos(vi.vj))

t

≤ (1− 1

π
arccos(λ))t

≤ (1− 1

π
arccos(−1

2
))t

= (1− 1

π

2π

3
)t = (

1

3
)t

=
1

323log∆
3

=
1

9∆

Thus Pr[i, j are assigned the same color] ≤ 1
9∆

. Let 1(u,v) be the indicator random variable
s.t. 1(u,v) = 1 if (u, v) are assigned the same color and 0 otherwise. Let X be the random
variable representing the number of edges whose endpoints are assigned the same color.
Then,

E[X] = E[
∑

(u,v)∈E 1(u,v)] = mPr[1(u,v)] =
m

9∆
≤ n

18
.

The last inequality follows from the fact that m ≤ n∆
2

.

Applying Markov’s inequality, we have that

Pr[X ≥ n

4
] ≤ E[X]

n/4
≤ n/18

n/4
≤ 1

2

Lemma 3.6 The algorithm uses 2t = 4.2log3∆ = 4∆log32 colors to semicolor a graph with
probability at least 1/2.

If n is used as a bound on ∆, then we get a coloring of G that takes O(nlog32.logn) =
Õ(nlog32)4 in total.

However, this is worse than Wigderson’s algorithm since log32 ≈ 0.631. Using some ideas
from Wigderson’s algorithm, however, this guarantee can be improved to Õ(n0.387).

Theorem 3.12 There exists an algorithm which colors G using a total of Õ(n0.387) colors.

Proof: The algorithm works as follows: First, it chooses a parameter σ. Until there exists
a vertex in the graph with degree σ, it chooses 3 colors to color a vertex and its neighbors
having degree at least σ in the current graph. Subsequently, the vertices and its neighbors
are removed and the procedure is repeated until there is no vertex with degree at least σ.
After this step, a semicoloring algorithm is used to semicolor the remaining graph.

4The notation Õ(.) hides polylogartihmic factors in n
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Analysis: The first step uses at most 3n
σ

colors while the second step uses O(σlog32) colors.
We set σ such that n

σ
= σlog32 in order to balance the colors used in each part. This yields

σ = n0.613. Then, both parts use O(n0.387) colors. Thus, the overall algorithm takes at most
Õ(n0.387) colors.

Using more sophisticated ideas, it is possible to improve this result to color a 3-colorable
graph with Õ(∆1/3

√
ln∆) colors. We omit these results for the sake of brevity.

In the following section, we discus some notions which are cruicial to understanding bre-
some recent graph partitioning algorithms. They are essential prerequisites to understaning
the ARV algorithm [3] and the Leighton-Rao algorithm for the uniform sparsest cut problem
[16].
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4 Metric Embeddings

4.1 Basic concepts

So far, we have focused on a variety of algorithms which exploit linear and semidefinite
programming to give better approximation for combinatorial optimization problems. While
some detail on l1 metrics was given in the section on minimum multiway cut, general metrics
were not studied. In the past few decades, low distortion metric embeddings have become
a powerful tool in designing approximation algorithms. Two well known algorithms which
we have studied and empirically evaluated-one due to Leighton and Rao [18], and the other
due to Arora, Rao and Vazirani [3] utilize concepts in metric embeddings to give O(log n),
and O(

√
log n) approximations respectively for the sparsest cut problem.

We discuss the theory of metric embeddings briefly, which will allow us to formalize the
discussion of the sparsest cut problem. The main goal of this section is to present Bour-
gain’s theorem which concerns embedding of an arbitrary n-point metric into l1. This greatly
simplifies the analysis of the Leighton-Rao algorithm.

Definition 4.1 (General metrics) A metric d defined on set V is a function V × V →
R+
⋃
{0} such that:

1. (Non-negativity) d(u, v) ≥ 0, for all u, v ∈ V .

2. (Symmetry) d(u, v) = d(v, u) for all u, v ∈ V .

3. (Triangle inequality) d(u,w) + d(w, v) ≥ d(u, v) for all u, v, w ∈ V .

A metric space is a set for which the distances between any 2 elements is well defined. A
well-known metric space is the 3 dimensional Euclidean space, which is endowed with the
metric d such that d(u, v) = (

∑3
i=1 |ui− vi|2)1/2, where ui denotes the ith component of u. A

metric generalizes the notion of a distance in an arbitrary space. A semi-metric is one which
does not necessarily satisfy the third condition, i.e. the triangle inequality.

Definition 4.2 (Cut-Metric) Let V be a finite set. A cut metric, induced by S ⊆ V where
S 6= ∅ is defined as follows: i) d(x, y) = 0 whenever x, y ∈ S and ii) d(x, y) = 1 whenever
either x or y is in S but not both.

Definition 4.3 (Shortest path metric) Let G = (V,E) be an undirected graph with edge
weights(lengths) w(u, v) ≥ 0 defined for all e = (u, v) ∈ E. The shortest path metric
d : V × V → R is defined as follows: d(u, v) = minP

∑
(i,j)∈P w(i, j), where P is the set of

all paths from u to v in G.

Definition 4.4 (l1 embeddable metrics[27]) [27] A metric (V,d) is an l1 embeddable
metric (or embeds isometrically into l1 if there exists a function f : V → Rm for some
m such that duv = ‖f(u)− f(v)‖1.
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Definition 4.5 (Distortion of an embedding [27]) A metric (V, d) embeds into lp, for
p ≥ 1 with distortion α if there exists a function f : V → Rm, for some m and r such that:

r.duv ≤ ‖f(u)− f(v)‖p ≤ rα.duv

Informally, in cut-based problems such as graph-partitioning defining low distortion embed-
dings allows us to solve the problem on a simplified space. The quality of this solution on the
transformed metric can then be related to the quality on the original metric; this depends
crucially on the the distortion of the embedding, α.

We now prove a key theorem about the embeddability of l1 metrics which are intimately
related to the cut-metrics.

Theorem 4.1 Let (V, d) be an l1 embeddable metric and let f : V → Rm be the associated
embedding. Then this metric can be expressed as a weighted sum of cuts of the vertex set V .
The procedure takes polynomial time.

Proof: Let Γδ(S)(u, v) be an indicator function which is 1 if (u, v) is in the cut defined by
(S, S̄) and 0 otherwise. We precisely show that there exist S ⊆ V and µS ≥ 0 such that for
all u, v ∈ V the following holds:

‖f(u)− f(v)‖1 =
∑

S⊆V µSΓδ(S)(u, v)

Consider the restricted case when f embeds V into R, i.e. in one dimension. Let V =
{1, 2, .., n}, so that xi = f(i) ∈ R, and assume Wlog that x1, x2, ..., xn is a non-decreasing se-
quence. Then, consider the cuts {1}, {1, 2}, {1, 2, 3}, ..., {1, 2, ..., n−1}, and define µ{1,2,..,i} =
xi+1 − xi for i ∈ [n− 1]. For any i, j ∈ V where i < j,

|xi − xj| = xj − xi =
∑j−1

k=i µ{1,..,k} =
∑

S⊆V µSΓδ(S)(i, j).

For general m we use the same procedure as above for each component of f(xi), i.e. sort the
the points in increasing order of magnitude in a specific component and then considering the
cuts. Then,

‖f(u)− f(v)‖1 =
∑m

i=1 |xiu − xiv| =
∑m

i=1

∑
S⊆V µ

i
SΓδ(S)(u, v) =

∑
S⊆V µSΓδ(S)(u, v)

It is important to note than not every metric is l1 embeddable. Bourgain’s theorem shows
that the expected distortion incurred by embedding an arbitrary n point metric into l1 is
O(logn). Most of the presentation in the rest of the section is based on [27].
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4.2 Bourgain’s theorem: embeddability in l1

Theorem 4.2 (Bourgain (1985)) Let (X, d) be an arbitrary metric space on n points.
Then, there exists a mapping f : X → Rm, where m = O(log2 n) such that the distortion of
the embedding is O(logn).

We prove a generalized version of the theorem where there are k distinguished terminals
given by si, ti and an embedding f is constructed where ‖f(u)− f(v)‖1 ≤ O(log2 k)duv for
all u, v ∈ V and ‖f(si)− f(ti)‖1 ≥ Ω(log k)dsiti .

To see why this is a generalization, note that all
(
n
2

)
pairs can be taken as si, ti. Then,

the generalized version reduces to 4.2.

One direction of this result can be easily proved using the concept of Fréchet embeddings,
which are defined as follows.

Definition 4.6 (Fréchet Embedding) Given a metric space (V, d) and t subsets of V
given by A1, A2, ...., AD, a Fréchet embedding f : V → RD is defined by

f(v) = (d(v, A1), d(v,A2), ...., d(v, AD)),where d(v,Ai) = min
u∈Ai

d(v, u), ∀v ∈ V.

A nice property of the Fréchet embedding is that the l1 distances don’t get ‘stretched’ to
much with respect to the original distance between any two points in V .

Theorem 4.3 (Upper bound on l1 distance) Given a metric space (V, d) and a Frèchet
embedding f : V → RD the following holds:

‖f(u)− f(v)‖1 ≤ D.duv ∀u, v ∈ V

Proof: We claim that for any i, |d(u,Ai) − d(v,Ai)| ≤ duv. Then, it immediately follows
that

‖f(u)− f(v)‖1 =
∑D

i=1 |d(u,Ai)− d(v,Ai)| ≤ D.duv.

To see why the claim holds let p denote the nearest point to v in Ai. Then, d(u,Ai) ≤
d(u, p) ≤ d(u, v) + d(v, p) = d(u, v) + d(v, Ai). Thus d(u,Ai)− d(v,Ai) ≤ d(u, v). Symmet-
rically, d(v, Ai)− d(u,Ai) ≤ d(u, v) too, from which the claim follows.

Corollary 4.1 (Easier direction of generalized 4.2) By picking O(log2k) subsets Ai from
V , we have that for any u, v ∈ V , ‖f(u)− f(v)‖1 ≤ O(log2k) duv.

What remains to prove now is that for any si, ti, we have that ‖f(si)− f(ti)‖ ≥ Ω(log k) dsiti .
To this end, we will pick O(log2k) by randomly choosing elements from V and apply Chernoff
bounds to obtain the result.
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A constructive proof sketch of 4.2:
Note that we have k pairs of terminals si, ti. Let T =

⋃
i = 1k{si, ti}. Let δ denote the closest

power of 2 to 2k such that δ = O(log(k)). For l = 1, 2, ..., L = O(log k) and t = 1, 2, ..., δ,
we pick sets Atl by choosing 2δ−t vertices randomly from T with replacement. The goal is to
show that for these O(log2k) sets, the Fréchet embedding has the desired properties.

The closed ball around v ∈ V is defined as B(v, r) = {u ∈ T |duv ≤ r}, and the open
ball as Bo(v, r) = {u ∈ T |duv < r}. Then define r0 = 0 and rt be the minimum distance
such that |B(si, r)| ≥ 2t and |B(ti, r)| ≥ 2t for all t = 1, ..., δ. Also we define µ to be the mini-
mum index such that rµ ≥ 1

4
dsiti , and redefine rµ = 1

4
dsiti . Note that B(si, rµ)∩B(ti, rµ) = ∅.

Furthermore if µ = δ, then from the fact that |B(si, rµ−1)|, |B(ti, rµ−1)| ≥ 2µ−1 we have that
for rµ (which was redefined earlier to 1

4
dsiti), |B(si, rµ)| = |B(ti, rµ)| = 2δ−1.

Using standard probability arguments, it can be shown that for any l = 1, 2, ..., L and
any t = 1, ...., µ, Atl has a constant probability of having an intersection with B(si, rt−1)
and having no intersection with B(si, rt), where the roles of si, ti can be interchanged as
necessary. Thus |d(si, Atl− d(ti, Atl)| ≥ rt− rt−1. By applyting a Chernoff bound this would
hold w.h.p for l = 1, ..., L, i.e.

∑L
l=1 |d(si, Atl)− d(ti, Atl)| ≥ Ω(L(rt − rt−1)). Then,

‖f(si)− f(ti)‖ ≥
δ∑
t=1

L∑
l=1

|d(si, Atl)− d(ti, Atl)|

≥
δ∑
t=1

Ω(L(rt − rt−1))

= Ω(Lrδ)

= Ω(Ldsiti)

= Ω(log k dsiti)

We are now ready to discuss various relaxations which yield approximation algorithms for the
uniform sparsest cut problem. These relaxations are detailed in the next section and include
the spectral(eigenvalue), Leighton Rao [18] and the Arora, Rao and Vazirani [3] relaxations.
Considered in this order, these relaxations give increasingly better approximations and can
be seen as solving a more relaxed variant of the uniform sparsest cut problem. In a later
section, we give empirical evidence of these algorithms on real world data sets.
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5 The Sparsest Cut Problem

In this section, we discuss and formalize the sparsest cut problem. First, the definition and
connection to edge expansion will be given. Then, we present the spectral relaxation of the
problem and an algorithm due to Fiedler (closely related to Cheeger’s inequalities). In the
remaining subsections, we discuss better relaxations of the problem that can be solved in
polynomial time to yield better approximations.

Problem 4 (Sparsest Cut) Given an undirected graph G = (V,E), costs ce ∀e ∈ E, and
k pairs of vertices si, ti with positive integer demands di, find a set of vertices minimizing

ρ(S) =

∑
e∈δ(S) ce∑

i:|S∩{si,ti}|=1 di
.

The uniform sparsest cut problem in an undirected graph is a special case, which we will
focus on. Specifically, we consider all pairs of vertices u, v where u, v ∈ E having unit demand
between them.

Problem 5 (Uniform Sparsest Cut) Given an undirected graph G = (V,E), costs ce for
all e ∈ E, and a single unit demand between all s, t ∈ V , find a set S of vertices minimizing
ρ(S) as defined above. Furthermore, when there is a unit cost associated with all e ∈ E,

ρ(S) = |E(S,S̄)|
|S||V−S| .

In the case when G has unit cost for all edges, solving the uniform sparsest cut problem
approximates the edge expansion of the graph. The edge expansion of a cut S ⊆ V , such
that |S| ≤ n

2
is given by φ(S) = δ(S)

|S| and the edge expansion of the graph is given by

φ(G) = minS⊆V :|S|≤|V |/2 φ(S).

Note that since we only consider sets S where |S| ≤ |V |/2, |V − S| ≥ |V |/2. Thus the
following inequalities hold (where n = |V |):

φ(S)

n
≤ ρ(S) ≤ 2

n
φ(S)

A well defined quantity in clustering and partitioning problems that commonly arises is the
graph conductance, Φ(G) defined as:

Φ(G) = min
S:|S|≤|V |/2

Φ(S) = min
S:vol(S)≤vol(G)/2

|E(S, S̄)|
vol(S)

The quantity vol(S) =
∑

v∈S dv, where dv is the degree of v is the volume of S. Thus,
conductance is a measure of the number of cut edges with respect to the trivial upper bound
on the number of possible edges between S and S̄. Another intuitive way to view conductance
is as the probability that from any given vertex v in S, one can get to S̄ by following any
edge incident to v.
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5.1 Spectral Graph Theory and Eigenvalue Relaxations

In this subsection, we discuss approximation schemes for finding the edge expansion of a
graph via spectral graph theory-which relates the eigenvalues of the Laplacian matrix of a
graph G to pure combinatorial properties such as connectivity. This is necessary to study
here in order to compare and contrast (both theoretically and empirically) traditional but
faster approaches using eigenvalue computations to recent but slower approaches which in-
volves solving an LP or SDP. While the appeal of the latter is in the quality of approximation,
we note that spectral partitioning algorithms have been found to be quite applicable in prac-
tice. Moreover, in the empirical evaluation of sparsest cut algorithms where computing the
value of the sparsest cut is quite difficult in practice, such spectral methods would give us
reasonably good bounds on the value and hence allow us to evaluate the quality of the cor-
responding solution using SDP.

Some definitions and notations from linear algebra would be useful and are presented here.
The key theorem that will be utilized is the spectral theorem which relates the eigenvectors
of a real symmetric matrix in Rn to a corresponding basis for the n dimensional Euclidean
space. Proofs of basic facts and theorems are omitted.

Definition 5.1 (Eigenvalues and Eigenvectors) Let M ∈ Cn×n be a square matrix hav-
ing complex valued entries. Note that R ⊆ C. Then λ is an eigenvalue of M iff Mv = λv
for some v 6= 0. We say that v is an eigenvector of M corresponding to the eigenvalue λ.

Definition 5.2 (Eigenvalues of a real symmetric matrix) Let M ∈ Rn×n be a sym-
metric matrix with all real-valued entries. Then, all eigenvalues of M are real. Furthermore,
there exists a real eigenvector corresponding to each real eigenvalue of M .

Definition 5.3 (Orthogonal and Orthonormal vectors) Two vectors are u, v ∈ Rn are
orthogonal iff u.v = 0, where (.) is the standard dot product defined by u.v =

∑n
i=1 uivi.

An orthonormal basis for Rn is a set S of unit vectors (having magnitude 1) such that
span(S)=Rn, and for every u, v ∈ S, u, v are orthogonal.

Given the above definitions, we can now state the spectral theorem, which relates the eigen-
values of a real symmetric matrix to the corresponding orthonormal basis of eigenvectors.

Theorem 5.1 Let M ∈ Rn×n be a real symmetric matrix. Then there are n real eigenvalues
of M , λ1, λ2, ...., λn not necessarily distinct and n orthonormal vectors x1, x2, ...., xn such
that xi is an eigenvector of λi.

The algebraic multiplicity of an eigenvalue λi is the number of times the eigenvalue occurs
in the characteristic polynomial of M . The geometric multiplicity on the other hand, is the
dimension of the eigenspace spanned by the eigenvectors corresponding to λi. Note that for
a real symmetric matrix, it follows from the spectral theorem that the algebraic multiplicity
coincides with the geoemtric multiplicity.
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5.1.1 Rayleigh Quotients and Eigenvalue Optimization

We will now discuss how the eigenvalues are related to the optimum value of a continuous
optimization problem.

Definition 5.4 (Rayleigh Quotient) Let M ∈ Rn be a symmetric real valued matrix.

Then, the Rayleigh quotient of a vector x ∈ Rn with respect to M is defined as RM(x) = xTMx
xT x

.

Quite interestingly, the eigenvalues of M are the optimum values of the problem of optimizing
the Rayleigh quotient of M under certain constraints.

Theorem 5.2 (Eigenvalues as optimum values) Let M ∈ Rn be a symmetric real val-
ued matrix and λ1 ≤ λ2 ≤ .... ≤ λn be the eigenvalues of M in non-decreasing order. Then,

λk = min
k−dimV

max
x∈V \{0}

RM(x)

Proof: Let v1, v2, ..., vn be the orthonormal eigenvectors of M corresponding to the eigen-
values λ1, λ2, ..., λn-the latter which are in non-decreasing order. We consider an arbitrary
vector x in the k-dimensional subspace spanned by v1, ..., vk and let x =

∑k
i=1 aivi. Then,

note that:

xTMx =
∑
i,j

aiajv
T
i Mvj =

∑
i,j

aiajv
T
i λjvj =

k∑
i=1

λia
2
i ≤ λk

k∑
i=1

a2
i .

The denominator, xTx =
∑k

i=1 a
2
i and hence we have that RM(x) ≤ λk.

We now show that RM(x) ≥ λk, where x ∈ V for an arbitrary k dimensional subspace
V . To this end, we let S be the subspace spanned by vk, .., vn. Clearly, the dimension of S
is n − k + 1 and the dimension of V is k so there must exist a vector x ∈ V ∩ S. Now, let
x =

∑n
i=k aivi. Similar to the above argument, we have:

xTMx =
∑
i,j

aiajv
T
i Mvj =

∑
i,j

aiajv
T
i λjvj =

n∑
i=k

λia
2
i ≥ λk

n∑
i=k

a2
i .

The denominator is
∑n

i=k a
2
i , so we have that RM(x) ≥ λk. This completes the proof.

We state a corollary without proof which directly follows from the above theorem.

Corollary 5.1 Let λ1 be the smallest eigenvalue of M . Then λ1 = min
x6=0

RM(x). Furthermore

λ2 = min
x⊥x1,x 6=0

RM(x).
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5.1.2 Cheeger’s Inequalities and Second Eigenvalue

In this section, we give a brief overview of the relationship between the eigenvalues of the
Laplacian of a graph (tbd shortly) and the combinatorial properties of the graph such as
the number of connected components and bipartiteness. In addition, the second largest
eigenvalue will enable us to compute a good approximation to the conductance (and the
edge expansion), which in turn as we saw earlier will yield an approximation to the value
of the sparsest cut. The value obtained would roughly serve as a benchmark to compare
spectral partitioning algorithms and those using LP/SDP’s. Some of the proofs are omitted
for the sake of brevity; however we fill in the most important ones.

Definition 5.5 (d regular graph) A graph G=(V,E) is regular (d-regular) if every vertex

v ∈ V has the same number of neighbors (d neighbors). Thus, |E| = d|V |
2

. We let A be the
adjacency matrix of G such that Aij = 1 if (i, j) ∈ E or A(i, j) = wij if G is a weighted
graph.

Definition 5.6 (Normalized Laplacian of a regular-graph) Let G be a d-regular graph.
Define L, the normalized Laplacian of G to be the matrix:

L = I − 1

d
A

where I is the n by n identity matrix.

Theorem 5.3 (On the combinatorial properties) Let G be a d-regular graph and L be
its normalized Laplacian. Let λ1 ≤ λ2 ≤ .... ≤ λn be the eigenvalues of L including multi-
plicities. Then,

1. λ1 ≥ 0 and λn ≤ 2.

2. λk = 0 iff G has at least k connected components.

3. λn = 2 iff G has at least one bipartite connected component.

Note that it is immediate from the above theorem that if λ2 is strictly positive then G
is connected. For irregular graphs, we define the Laplacian acccordingly such that similar
properties hold. In this case L is defined to be:

L = I −D−1/2AD−1/2

where D is the n by n diagonal matrix having such that (D)ii = di, where di is the degree
of vertex i ∈ V .

We now state Cheeger’s inequalities which hold for regular and irregular graphs. The key
takeaway is that the second eigenvalue λ2 is close to zero if there exists sparse cut or a 2
clustering of G.
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Theorem 5.4 (Cheeger’s Inequalities and Conductance) Let G be any graph with nor-
malized laplacian L such that 0 ≤ λ1, ..., λn ≤ 2. Then, the following hold:

λ2

2
≤ Φ(G) ≤

√
2λ2

Tightness: Both sides of the inequalities are tight in the cases of a disconnected graph and
a cycle.

Proof: (λ2

2
≤ Φ(G))

Recall that from 5.1 we have that λ2 = min
x⊥x1,x 6=0

RM(x). If we let M = L, the normalized

Laplacian of G, then

λ2 = min
x⊥x1,x 6=0

RL(x) = min
x⊥x1,x 6=0

∑
(u,v)∈E(xu − xv)2∑

v dvx
2
v

.

If we let x = 1S

|S| −
1S̄

|S̄| , then note that every cut edge contributes to 4 in the numerator, and

from the fact that vol(S̄) ≥ vol(S), we have that

RL(x) ≤ 4|E(S, S̄)|
2vol(S)

≤ 2Φ(S).

Then,

Φ(G) = min
vol(S)≤vol(G)/2

≥ 1

2
minR(x) =

λ2

2

The proof of the other direction (which is algorithmic) is omitted. However, we give the
following algorithm for spectral partitioning due to Fiedler. The running time of this algo-
rithm is O(|E|+ |V |log|V |). The input is an eigenvector corresponding to λ2. However, we
note that an approximate eigenvector also suffices, and in fact just needs to be one whose
Rayleigh quotient is small enough, i.e. RL(x2) ≤ O(λ2).

Algorithm 4 Spectral Partitioning (G = (V,E), x2)

1: Sort v ∈ V according to the entries in x2.
2: Output the cut which minimizes Φ(v1, .., vk) for k = 1, .., n− 1.

The algorithm finds a cut (S, S̄) such that min{Φ(S),Φ(S̄)} ≤
√

2λ2 ≤ 2
√

Φ(G), where the
latter inequality follows from Theorem 5.4.

In the next section we discuss an LP based relaxation which yields a O(logn) approximation
to the uniform sparsest cut problem.
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5.2 The Leighton-Rao(LR) relaxation [18]

Note that λ2 is a continuous relaxation of the conductance Φ(G) of the graph-and Cheeger’s
inequalities state that λ2 can not be arbitrarily smaller than the edge expansion. The conduc-
tance and the sparsity of the cut are related in the sense that given the value of one quantity
one can (within some factor) compute the value of the other via a reduction. Recall that

the uniform sparsest5 cut problem is concerned with minimizing the quantity ρ(S) = |E(S,S̄)|
|S||S̄|

across all sets S ⊆ V such that |S| ≤ V/2. The eigenvalue approach in the previous sec-
tion can be seen as relaxing the indicator functions 1S for a set S, to arbitrary functions
f(u)→ R, u ∈ V .

The LR approach relaxes the indicator functions to semi-metrics. To formalize,

ρ(S) =
|E(S, S̄)|
|S||S̄|

=

∑
(u,v)∈E |1S(u)− 1S(v)|∑
u∈S,v∈S̄ |1S(u)− 1S(v)|

If dS(u, v) := |1S(u) − 1S̄(v)| for a set S, then dS(., .) defines a semimetric over V because
dS(u, u) = 0 for all u ∈ V , dS(u, v) = dS(v, u) and fulfills the triangle inequality. The LR
relaxation relaxes dS to arbitrary semi-metrics d : V × V → R.

Leighton-Rao(G):

min
d:d is a semimetric

∑
(u,v)∈E d(u, v)∑
u,v∈V d(u, v)

Note that the denominator denotes the sum of d(u, v) for all
(
n
2

)
unordered pairs u, v ∈ V .

This is equivalent to solving the following linear program where semimetric conditions are
imposed as constraints, and the denominator is normalized to one. The notation duv is used
to denote the distance between u and v w.r.t semimetric d.

LR:

minimize
∑

(u,v)∈E

duv

subject to
∑
u,v∈S

duv = 1

duv ≤ duw + dw,v ∀u, v, w ∈ V
du,v ≥ 0 ∀u, v ∈ V

5Referred to as USC hereafter.
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Let LR(G) be the optimum value of the linear program for an input graph G. From the above
arguments, LR(G) ≤ ρ(G). Note that the semimetric considered is completely arbitrary.
Moreover, the function dS(u, v) = |1S(u) − 1S(v)| can be seen as mapping every vertex to
the real line and then defining the distance between any two vertices u, v as their l1 norm.
We now show that relaxing the dimensionality condition i.e. considering arbitrary mappings

in higher dimensions s.t. f : V → Rm and minimizing the quantity
∑

(u,v)∈E‖f(u)−f(v)‖1∑
u,v∈V ‖f(u)−f(v)‖1

over

all f yields the optimum value of the uniform sparsest cut. This would allow us to use
Theorem 4.2 and get an O(log n) approximation guarantee.

Theorem 5.5 For any graph G, the optimum value of the l1 relaxation of the USC problem
over arbitrary functions f for some m > 0 is equivalent to the optimum value of the USC of
G, i.e.

min
|S|≤|V |/2

|E(S, S̄)|
|S||S̄|

= min

∑
(u,v)∈E |1S(u)− 1S(v)|∑
u∈S,v∈S̄ |1S(u)− 1S(v)|

= inf
f :V→Rm

∑
(u,v)∈E ‖f(u)− f(v)‖1∑
u,v∈V ‖f(u)− f(v)‖1

Furthermore, given such a mapping a cut (S, S̄) can be found in polynomial time.

Proof: Note first that for any non-negative reals a1, a2, ..., an and positive reals b1, b2, ..., bn,

we have that min
i

ai
bi
≤
∑n

i=1 ai∑n
i=1 bi

since,

n∑
i

ai =
n∑
i

bi
ai
bi
≥ min

i

ai
bi

n∑
i=1

bi. (5.1)

Denote by fi(v) the ith coordinate of v in the mapping. Then,

∑
(u,v)∈E ‖f(u)− f(v)‖1∑
u,v∈V ‖f(u)− f(v)‖1

=

∑
i

∑
(u,v)∈E ‖fi(u)− fi(v)‖1∑

i

∑
u,v∈V ‖fi(u)− fi(v)‖1

≥ min
i

∑
(u,v)∈E ‖fi(u)− fi(v)‖1∑
u,v∈V ‖fi(u)− fi(v)‖1

Let j denote the coordinate of the mapping f which minimizes the above. Then, w.lo.g. con-
sider g the normalized version of fj-which is just the mapping f restricted to the jth dimen-
sion. Note that max

v
g(v)−max

u
g(u) = 1. Picking a threshold t ∈ (0, 1) uniformly at random

and defining the set St = {v : g(v) ≤ t}, we get that E[|1St(u) − 1St(v)|] = |g(u) − g(v)|.
Hence,

min
i

∑
(u,v)∈E ‖fi(u)− fi(v)‖1∑
u,v∈V ‖fi(u)− fi(v)‖1

=

∑
(u,v)∈E |g(u)− g(v)|∑
u,v∈V |g(u)− g(v)|

≥
E[

∑
(u,v)∈E

|1St(u)− 1St(v)|]

E[
∑

u,v∈V
|1St(u)− 1St(v)|]
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Then, from equation 5.1 such a set St must exist and can be found by going through all the
cuts ({v1, ..., vk} for k = 1 to n− 1 such that g(vj) ≥ g(vi) whenever j > i.

Theorem 5.6 (O(log n) guarantee for USC) Given an optimal solution OPT (LR) and
distances duv for all u, v ∈ V , one can find an embedding in polynomial time f : V → Rm

such that, with high probability for all u, v ∈ V

‖f(u)− f(v)‖1 ≤ duv ≤ O(logn) ‖f(u)− f(v)‖1

yielding an O(log n) approximation guarantee for the USC.

Proof: Note that the existence of f follows directly from 4.2. From the LP relaxation we
have,

OPT (LR) =

∑
(u,v)∈E duv∑
u,v∈S duv

≥
∑

(u,v)∈E ‖f(u)− f(v)‖1∑
u,v∈S O(log n) ‖f(u)− f(v)‖1

≥ ρ(St)

O(log n)

where the last inequality follows from theorem 5.5. St refers to the optimal cut found from
an application of theorem 5.5. Since OPT (LR) ≤ ρ(S∗) where (S∗, V − S∗) is the cut of
minimum sparsity in G,

ρ(St) ≤ O(log n)OPT (LR) ≤ O(log n)ρ(S∗).
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5.3 Goemans-Linial Relaxation and the ARV Algorithm [3]

We intend to give a brief overview of the breakthrough work of Arora, Rao and Vazirani
[3] who gave a semidefinite programming relaxation of the uniform sparsest problem in
undirected graphs to get a O(

√
log n) approximation algorithm. This result affirmatively

answered several long standing open questions on embeddings of arbitrary metrics into l1,
embeddability of expander graphs in arbitrary graphs and mixing time of random walks.

Many of the proofs are quite long and are therefore omitted. However, we give key the-
orems and the main algorithm for solving that are sufficient to appreciate the complexity of
solving Problem 5 and the power of the approximation ratio achieved.

The SDP relaxation:

minimize
1

n2

∑
e=(i,j)∈E

ce ‖vi − vj‖2

subject to
∑

i,j∈V :i 6=j

‖vi − vj‖2 = n2

‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2 ∀i, j, k ∈ V
vi ∈ Rn ∀i ∈ V.

Note that the triangle inequality is required to hold for the l22 norm instead of the usual
l2 norm. This ensures that the angle subtended by any 2 sides of a triangle formed by
the corresponding vectors is not obtuse. Each vertex i of the graph is associated a vector
vi. The goal is to translate (roughly) the proximity of the nodes in the original graph to
the proximity in the Euclidean space and to find a corresponding assignment of vectors to
nodes such that the average distance between endpoints of edges is small while the average
distance between any 2 vertices is large. Unlike previous SDP relaxations, the vectors are
not constrained to lie in the unit sphere in Rn. Before moving on, we give a few definitions.

Definition 5.7 (Closed ball around i) Let i ∈ V . Then the ball of radius r around v is
given by B(i, r) = {j ∈ V : d(i, j) ≤ r}. Note that d(i, j) = ‖vi − vj‖2. Also known as the l22
metric, the square of the usual Euclidean metric.

Definition 5.8 (∆-Separated Sets) Let d(i, S) = min
j∈S

d(i, j). Sets S, T are ∆-separated

if ∀i, j ∈ ‖vi − vj‖2 ≥ ∆.

Definition 5.9 (α−large sets) Sets L,R are α−large if |L| ≥ α.n and |R| ≥ α.n for some
α ∈ (0, 1].

The rounding algorithm works as follows: Given the vectors vi, a fat-hyperplane rounding
technique is used. A random vector in Rn is chosen-each of whose component is uniformly
drawn at random from N(0, 1). Then, only vectors which have significant projection on
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the random vector are considered. The rest of the vectors are discarded. It is then shown
that this strategy yields sets L,R which are α-large and ∆-separated for some α and ∆. A
sparsest cut of cost O(

√
log n) ratio of the optimal is then found.

The algorithm is as follows:

Algorithm 5 Sparsest Cut via Fat-Hyperplane Rounding

1: if there is an i ∈ V st |B(i, 1/4)| ≥ n/4 then
2: L′ = B(i, 1/4)
3: else
4: Pick o ∈ V which maximizes |B(o, 4)|
5: Pick a random vector r.
6: Let L = {i ∈ V : (vi − vo).r ≥ σ}, R = {i ∈ V : (vi − vo).r ≤ −σ}
7: Let L′ = L,R′ = R
8: while there exists i ∈ L′, j ∈ R′ st d(i, j) ≤ ∆ do
9: Remove i, j from L′, R′ resp.

10: Sort i ∈ V in non-decreasing order of d(i, L′) to get i1, .., in.
11: Return Sk = {i1, i2, .., ik} which minimizes p(Sk), 1 ≤ k ≤ n.

The proof of approximation ratio the algorithm achieves is based upon the following theo-
rems. One concerns the existence of large enough sets L and R which are both Ω(n)-large
and the other establishes a good guarantee on the separation of those sets. We present these
theorems without proof which will allow us to establish the O(

√
log n) guarantee.

Theorem 5.7 (Large-enough L,R) If there is no i ∈ V st |B(i, 1/4)| ≥ n
4
, then with

constant probability, L,R are α-large for some constant α.

Theorem 5.8 (Large-enough and well separated L′, R′) If L,R are α-large, then with
constant probability, L′, R′ are α/2 large, and ∆-separated where ∆ = C/

√
log n for some C.

Theorem 5.9 (Existence of a Cut) A cut S st L ⊆ S ⊆ V −R can be found st. ρ(S) ≤∑
e=(i,j)∈E ce‖vi−vj‖

2∑
i∈L,j∈R‖vi−vj‖

2 .

Theorem 5.2 lies at the heart of the algorithmic guarantee. The original proof in [3] is for
∆ = C/log2/3 n. Using ideas from this proof, it is shown how to get a better separation
of ∆ = C/

√
log n. The proof is via contradiction whose strategy is briefly described later.

An important lemma (not provided here) on measure concentration is also used in the final
analysis.

Theorem 5.1 mainly uses combinatorial arguments and is not the reason for the main dif-
ficulty of the overall proof. Theorem 3 uses standard arguments which are quite similar to
those used for the LP-relaxation of Leighton and Rao to bound the cost of the cut output
by the algorithm.

Lemma 5.1 Algorithm 3 for the sparsest cut via the fat hyperplane rounding technique gives
a O(

√
log n) approximation to the uniform sparsest cut problem.
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Proof: From theorem 17, once such a cut S has been found, we have∑
i,j∈V :i 6=j

‖vi − vj‖2 ≥
∑

i∈L,j∈R

‖vi − vj‖2

≥ Ω(n2/
√
log n).

From Theorem 5.3 we have

ρ(S) ≤ O(
√
log n

1

n2

∑
e=(i,j)∈E

‖vi − vj‖2

≤ O(
√
log n).OPT.

The last inequality follows from the constraint in the SDP relaxation.

Proof ideas for theorem 5.2
The proof structure for theorem 5.2 when ∆ = C/log2/3 n is now presented. This is due to
Lee[17].

The proof is via contradiction so assume that L and R are α-large while L′ and R′ are
not.

1. If L′, R′ are not α-large, then there must exist at least |M(r)| = Ω(n) ‘matching’ edges
(i, j) which are removed.

2. A matching graph M is subsequently constructed. Its edges include all those incident
pairs i, j which are removed by the algorithm for the distribution of random vectors r.

3. The probability that d(i, j) ≤ ∆ given that they are in L,R respectively is polynomially
small (using Gaussian tail bounds).

4. Yet, such pairs exist for a constant fraction of the probability space of random vectors-
this gives a contradiction.

In the next section, we present empirical results for the 3 approaches to achieving an ap-
proximation for the uniform sparsest cut problem. Additionally we evaluate the performance
of the classical Goemans and Williamson[10] algorithm for Maximum Cut. All results are
tested on real world graph data sets.
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6 Empirical Results and Our Contribution

We now present our experimental results on evaluating the quality of approximation for
various approximation algorithms for coping with NP-completeness in cut-based and parti-
tioning problems. First, we provide experimental evidence of the approximation achieved by
the SDP-based algorithm for Max-Cut due to Goemans et al. [10]. This is compared to the
derandomized version of Max-Cut-one which can be seen as a greedy algorithm to maximize
the number of cut edges at each step.

We then build upon the powerful techniques presented in Section 5 to approximate the
uniform sparsest cut and present empirical evidence of the quality of cut (as measured by
the value of USC) attained by the spectral, Leighton-Rao and ARV algorithms respectively.
Although there has been quite a long line of work on the sparsest cut problem (and its
dual, which is the maximum multicommodity flow problem), there has been relatively few
instances where recent theoretical breakthroughs have been empirically supported. It is dif-
ficult to say whether the theoretical improvements are translated into improved performance
on real-world data sets. We note that heuristics are still quite popular for solving many NP-
hard graph theoretic problems. One of the major goals of this thesis has been to validate
and align the elegant theoretical insight developed developed over the past 2 decades with
concrete, workable implementations.

The work of Arora, Rao and Vazirani[3], for example, has been a major breakthrough over
the past decade in TCS; in fact based on this result, there has been progress on other funda-
mental NP-hard problems (see [1], [16]). However, there have been few attempts to evaluate
the algorithm to generate ‘well-separated sets’ on real world graph data sets. This work
seeks to address the performance guarantee one can achieve in practical settings with the
theoretically sound O(

√
log n) approximation. The algorithm (and its accompanying analy-

sis) is quite complex and as a result, most practitioners have relied on traditional approaches.

Experimental Setup: All experiements were run on a standard Intel Core i5 Proces-
sor with dual processing capability (@3.2 GHz) and 4 GB of RAM. All development was
done on MATLAB; To solve linear and semidefinite programs, we used CVX[11, 12] (which
contained built-in solvers SDPT3, SeduMi) a package for specifying and solving convex pro-
grams. For practical and testing purposes we restricted the size of graphs as necessary so
that any given run of a convex program on a specific graph data set could terminate with a
feasible solution within 10 minutes. For the maximum-cut problem, we ran our algorithms
on graphs having 200-300 nodes while for sparsest cut, the LP and SDP based approaches
restricted us to about 60 nodes. However, the graphs we considered were typically dense
and could accommodate about a quadratic number of edges. We note that the running time
greatly increased as we scaled up the number of nodes for LP and SDP based approaches.
All graph data sets we used in our algorithms were found from Network Repository (an
interactive network data repository), see [22]. MATLAB codes and the data sets used for
this project can be found at: http://i.cs.hku.hk/fyp/2017/fyp17002/.
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6.1 Results for Max-Cut

The maximum cut problem seeks to find a cut which maximizes the number of cut edges
(see section 3.4). The seminal result of Goemans et al. uses a semidefinite relaxation to
get a 0.878 approximation factor with high probability in polynomial time. The random-
hyperplane rounding introduces a degree of randomness-hence to be precise, the approx-
imation guarantee holds only w.h.p. We note that a general framework to derandomize
semidefinite programs, including Max-Cut was proposed by Mahajan et al.[19].

We now discuss the derandomized algorithm for Max-Cut which is guaranteed to give 0.5-
approximation in polynomial time to Max-Cut. In fact it is stronger in the sense that it
always outputs a cut having at least half of all edges in the graph. This can be discussed
in terms of the general framework of derandomization-however, we provide the algorithm
without proof for the sake of brevity.

Algorithm 6 Derandomized Max-Cut (G=(V,E))

1: C = {v1} . C denotes the cut which maximizes |E(C, C̄)|
2: for i = 2, ..., |V | do
3: Let cut-edges(C, vi) denote the number of cut edges incident to vi w.r.t C
4: if cut-edges(C, vi) ≤ degree(vi) then
5: C = C

⋃
{vi}

6: Return C

If we simply assign each vertex with probability 1/2 to C, then we get a randomized 0.5
approximation to Max-Cut. This follows from the linearity of expectation on the random
variables Xe where e = (u, v) ∈ E and Xe = 1 iff C ∩{u, v} = 1 and 0 otherwise. Therefore,∑

eE[Xe] = 1
2
|E|.

Derandomized Max-Cut can be seen as a derandomized version of the randomized 0.5-
approximation to Max-Cut due to the fact that in every iteration, it adds vertex vi to
C only if not assigning to C leads to a fewer number of cut-edges. That is to say, that vi
is added to C if it maximizes the expected number of cut edges with respect to the current
assignment of vertices v1, v2, ...., vi−1 to either C or C̄.

Claim 6.1 Algorithm Derandomized Max-Cut outputs C in time O(mn) s.t |E(C, C̄)| ≥ |E|
2

.

This derandomized version effectively provides a good benchmark to compare the perfor-
mance of the SDP-based relaxation of Max-Cut. Since computing the exact value of cut
can take a prohibitive amount of time, we feel it is most useful to compare the SDP-based
algorithm6 with other previously known polynomial time algorithms with reasonable approx-

6referred to as Max-CutSDP hereafter
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imation ratios. The derandomized version is a fast algorithm providing a (reasonably) good
certificate of the value of Max-Cut that can be achieved by any polynomial time algorithm.

Due to memory constraints our experimental setup handles graphs containing up to 230
nodes. For each graph data set we run Max-CutSDP and Derandomized Max-Cut simulta-
neously and obtain the value of the maximum cut. For almost all data sets, we note that
the Max-CutSDP runs in comparable time and outputs a cut of value which is very close to
the derandomized version. Note that if we were to derandomize Max-CutSDP based on the
technique of Mahajan et al.[19], chances are that it could even beat Derandomized Max-Cut
on most real world instances.

For each algorithm A, on an input I (I is the adjacency matrix of the graph) we compute
the following ratio, βA defined as follows:

βIA =
#cut edges output by A on I

|E|

Note that β does not give us an approximation ratio for the maximum cut but simply allows
the performance of Max-CutSDP and Derandomized Max-Cut to be compared by normal-
izing the value of the number of cut edges returned. Moreover βDR where DR corresponds
to Derandomized Max-Cut lies in the interval [0.5, 1]. Moreover, suppose OPT (MC) is an
algorithm to solve Max-Cut exactly. Then,

0.5 ≤ βIDR ≤ βIOPT (MC) ≤ 1 ∀I.

Intuitively, if BSDP (where SDP denotes the Max-CutSDP algorithm) has value close to
BDR it is a good approximation. Since we are not concerned with the exact value of the
optimal solution, we treat BDR as best possible on most instances where BSDP < BDR. It
is also unrealistic to expect BSDP to fare better than BDR on most instances, since Max-
CutSDP makes a randomized choice for hyperplane rounding while Derandomized Max-Cut
essentially makes deterministic choices yielding a cut whose value is at least |E|/2. It is also
quite possible for most instances that |BOPT (MC) − BDR| is quite small. In fact this gap is
bounded by |1−BDR|.

As expected, the results prove to be quite convincing, with the average difference BDR−BSDP

being about 0.17 across all data set instances we ran the algorithms on. In fact, in most
cases BSDP is just slightly less than BDR and on one instance BSDP turned out to be strictly
greater than BDR. This shows that deterministic choices might not always result in the best
algorithms in the case of an adversarial input. However, we also note that for some input
instances BSDP was much smaller than BDR emphasizing the crucial need to derandomize
SDP-based approaches to be acceptable in practice.

The results are summarized in Figures 6.1 and 6.2.
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Figure 6.1: As can be seen, Derandomized Max-Cut fares well on nearly all instances. However,
for most inputs the difference between the values is small. As claimed BDR ≥ 0.5.

Figure 6.2: The mean difference is about 0.17 shown as the horizontal line, while the highest
difference is about 0.4. The important thing to note is that Max-CutSDP outperforms Derandom-
ized Max-Cut on one instance. It is interesting since Max-CutSDP might discover some large cut
owing to randomization in the case when such large cuts are rare in a graph, while Derandomized
Max-Cut might overlook such a cut.
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6.2 Results for Uniform Sparsest Cut

We now discuss the results we obtained for the three algorithms (Spectral, Leighton-Rao and
the Arora, Rao and Vazirani algorithm)7 for the USC problem. These form the significant
part of our experimentation step due to the difficulty and effort involved to implement and
evaluate the performance of those algorithms on real world data sets. Significant time was
expended to make sure that the code was highly robust and optimized to handle large
enough instances. Rounding steps for LR and ARV were quite nontrivial and to the best
of our knowledge, there is little or no evidence of how the ARV algorithm as presented in
[3] fares on real world data sets. Our most significant contribution include fully functional
MATLAB functions which implement the three algorithms for the USC problem. They take
an adjacency matrix of a graph as input and return the value of the uniform sparsest cut.
Given that the adjacency matrix is well defined (i.e. symmetric with ones on the diagonal)
the functions return a feasible value for USC, which is between 0 and 1. This follows from
the definition of the USC, since

ρ(S) =
|E(S, S̄)|
|S||S̄|

where the denominator is an upper-bound for the number of edges that can participate in
the cut.

Most of the data sets in this section are different from the ones used in the previous section
to evaluate the performance of algorithms for Max-Cut. One of the reasons was that the
convex programs for solving the USC problem took significant amount of time to test graphs
having more than 60 vertices and since we wanted to test on many different data sets to get
an overview of the overall performance of the 3 algorithms, the maximum instance size was
restricted. We also wanted to ensure that such graphs represented practical instances for
which a common objective is to find well-connected clusters and sub-graphs.

Nevertheless, all algorithms can evaluate larger graphs (200-300 vertices) with the current
implementation given sufficient time-which can be a few hours for the largest instances. The
time the largest graph (on 51 nodes) took was about 10 minutes for both the LR and ARV
algorithm to return the value of USC. The running time for the LR and ARV algorithm was
about the same. The spectral algorithm (which relies on an eigenvalue computation of the
Laplacian matrix) was significantly faster than both LR and ARV algorithm and took only
a few seconds.

A total of 54 data sets were used in the experiments and chosen from a wide variety of
networks including (but not limited to) biological, infrastructure, transportation, social,
ecological, web, dynamic and brain networks. This ensured that the performance of any
particular algorithm could be evaluated on almost all types of networks arising in practice.

7Throughout this section, they are abbreviated as SP, LR and ARV and used interchangeably.
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Comment on exact value and approximation ratio:
We note that computing the ‘exact’ value of the uniform sparsest cut is not possible in fea-
sible time since this involves enumerating an exponential number of cuts. The next most
accurate measure to certify the quality of the approximation ratio attained by various al-
gorithms is to compare their values against the best performing algorithm. Moreover, since
our motivation was to compare and contrast the performance differences between successive
theoretical improvements for the USC problem, we decided not to compare against heuristic
approaches. The main goal was to see whether O(

√
log n) approximation was observable in

practice and yielded measurably different results against the an older O(log n) approxima-
tion and the more classical spectral approach.

Discussion of Results:

Throughout the remainder of this section, let uscSP , uscLR and uscARV denote the value
of the uniform sparsest cut returned by the algorithms SP, LR and ARV. Since O(

√
log n)

is still small for our problem instances and the value of the constants are not accounted for,
there should be little expectation for the performance of ARV to be much different from
LR. Interestingly, the results confirmed the intuition. ARV performed better on only some
instances while on most others, it either output the same value(of USC) as LR or slightly
higher.

In terms of running times SP was the fastest-with the value returned in a matter of a
few seconds. For modest sized inputs LR and ARV took a few minutes while on the largest
inputs they took up to 10 minutes. Since our main goal is to compare the quality of the
approximation attained we do not compare the exact running times of each algorithm. Es-
sentially, we only compare the values uscSP , uscLR and uscARV . This is in line with the
observation that researchers in approximation algorithms are most concerned about attain-
ing better approximation ratios instead of running time improvements.

The results are summarized in Figures 6.3, 6.4, 6.6 and 6.5. Figure 6.3 is a plot of the
value of the uniform sparsest cut against the indexed data sets, for SP, LR and ARV respec-
tively. As can be seen, the error between all 3 algorithms is small and in general each of
them tends to ‘follow’ the others.

Data sets for which only two points are plotted correspond to duplicate values of USC
attained by any 2 algorithms. In cases where two colors are missing, all 3 algorithms attain
the same value-hence MATLAB only shows one point. This is also the reason why any single
plot (corresponding to a specific algorithm) is sometimes ‘disconnected’ due to superimpo-
sition by another plot-corresponding to another algorithm achieving similar value. Thus,
we conclude that for most real world instances, all algorithms perform satisfactorily. More
importantly, the spectral partitioning algorithm is useful where the graph has expansion
bounded by a constant, i.e Φ(G) = Θ(1). This is the case for most real world data sets
where the second eigenvalue, λ2 is a good approximation to Φ(G).
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Figure 6.3: The value of the uniform sparsest cut against inputs to the algorithm. Note in particular
how each of the 3 algorithms do not perform much worse than the rest. The differences are small
and whenever the values output are the same for any 2 algorithms, only one is shown.

It can be observed from 6.3 that on most instances, uscLR ≤ min{uscSP , uscARV }. More
interestingly, uscARV ≤ uscSP for more than 60% for the instances. SP does better than
LR on very few inputs while ARV is worse than LR on roughly 60% of the instances. The
average differences are as follows:

uscSP − uscLR
#ofinstances

= 0.0136 ;
uscARV − uscLR
#ofinstances

= 0.0187;
uscARV − uscSP
#ofinstances

= 0.0051.

These are plotted against the actual differences in Figures 6.4, 6.5 and 6.6 and shown as a
horizontal black line.
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Figure 6.4: Plot of uscARV − uscSP : ARV does better than SP on most instances. However, the
average difference is positive but small.

Figure 6.5: Plot of uscARV − uscLR: LR clearly does better than ARV in most instances. This
is also reflected by the greater average difference than in Figure 6.4. The maximum difference is
bounded by about 0.12.
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Figure 6.6: Plot of uscSP − uscLR: SP does strictly better than LR for exactly 4 instances. The
average difference is small while the maximum difference is bounded by roughly 0.12.

It would be difficult to say which algorithm is truly the best among all. If running time
is the concern, then the spectral algorithm performs quite well and outputs a cut of value
which is close to both the LR and the ARV algorithm. However, if one wants the best cut
and is willing to settle for a trade-off on running time, then either LR or ARV should be
good choices. It must be remarked that as the input size increases, both LR and ARV would
take quite a significant amount of time with the current implementation. Thus, an inter-
esting future research direction would be to reduce the size of the constants in the running
time, or reduce the width of constraints of convex programs. Both LR and ARV in this work
involve O(n3) constraints corresponding to the triangle inequalities in the convex relaxations.

We remark that recently, there has been an interesting line of work on optimizing the running
time of the semidefinite program in the seminal work of Arora et al. [3]. The multiplicative
weights update method has been proposed as an alternate way to approximately solve linear
and semidefinite programs with high accuracy in feasible time [2]. Khandekar et al. [14] also
propose solving the sparsest cut problem by computing single commodity flows attaining
a O(log n) approximation. Orecchia et al. [21] further generalized the single commodity
flow framework to get O(

√
log n) approximation to the uniform sparsest cut. It would be

interesting to see whether this new framework gives rise to better algorithms that can accom-
modate bigger inputs in practice; and whether, such improvements are worth the difference
in performance with respect to traditional approaches and heuristics such as METIS [13].

53



7 Conclusion

One of the overarching goals of this thesis included studying approximation algorithms in
the context of recent techniques and methods developed over the past two decades. To
this end, we surveyed various papers in top TCS conferences and journals containing both
old and new results. We learnt that it was impossible to appreciate modern developments
without appreciating limits of old ones. For example, while the ARV algorithm was con-
tained in one paper (albeit long and challenging), it would have been pointless to study it
without covering linear programming algorithms and spectral approaches in sufficient detail
for sparsest cut and other related problems. Moreover, to fully understand the theoretical
results we continuously branched into mastering several other topics deemed as prerequisites.

Another major goal was to provide empirical evidence of the usefulness of approximation
algorithms. The implementation stage posed quite a number of problems. It was initially
unclear how to translate the theoretical components of various algorithms into running code,
let alone expect them to perform well on real world instances. At many points throughout the
year, it seemed an ambitious and relentless task to contribute on evaluating these algorithms
given the numerical inaccuracies associated with convex programs and rounding algorithms.
This work affirmatively answered the question of whether algorithms based on solving convex
relaxations of NP-hard problems were ‘competitive’ enough in practice. Through extensive
experimentation, we demonstrated how these methods fare better if one can afford to slightly
relax the constraint on running time. We also believe that the theoretical insights gained
via this project would enable us to work on various directions in algorithms and contribute
to advancing the state of knowledge in theoretical computer science in the future.
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