
COMP4801: Detailed Project Plan

Deterministic and Approximation Algorithms for Graph Theoretic

Problems

Omer Wasim
Supervisor: Dr Hubert Chan

30th September, 2017

1



Contents

1 Introduction 3

2 Background 4

3 Objectives 5

4 Goals and Methodology 5

5 Project Schedule 6

6 References 7

2



1 Introduction

The field of theoretical computer science is broad and vast. It includes a multitude of areas and
draws from various disciplines-arguably most from mathematics. A few areas of active research
includes the design and analysis of efficient algorithms in combinatorial optimization, algorithmic
game theory, differential privacy, operations research and mechanism design. In general the field
has grown vastly over the past few decades and strong results in theory lay the foundation and
framework for applied research in numerous areas.

In this project, we will study only a small but greatly powerful selection of topics in combina-
torial optimization for graph theoretic problems. Algorithms in this area normally come in 2
flavors-deterministic and non-deterministic(approximation/randomized) respectively. A determin-
istic algorithm is one which for any given input problem runs exactly the same way-the order of the
steps executed by the algorithm are identical for any 2 given runs on certain underlying machine,
while a non-deterministic algorithm is one for which the steps may be executed in possibly different
orders and need not even be the same. A non-deterministic algorithm can be seen as one which
makes certain choices during its execution so for 2 different runs on the same input, the steps
taken and their order may not coincide. Consider now an algorithm for an optimization problem.
Typically, the input includes an optimization objective, the underlying problem instance, and a set
of constraints to be respected in a feasible solution, and an algorithm is evaluated on the basis of
how well it meets the optimization objective. For a wide variety of useful problems in both theory
and practice, there is no hope to find the optimal solution in polynomial time unless the P = NP
conjecture holds true. Thus, in these cases the goal of an algorithm designer is to design algorithms
that find a feasible solution within some factor of the optimal solution.

More formally, an α-approximation algorithm is one which finds in polynomial time, a feasible
solution whose cost is within an α factor of the optimal solution for any problem instance. Under
the standard practice of defining an approximation ratio, it is easy to see that for a minimization
objective α ≥ 1 and for a maximization objective, α ≤ 1. Current and past research has focused
mainly on designing algorithms that have good approximation ratios and improving ones that have
already been discovered. Recent work [5] on the Unique Games Conjecture has focused on the
possibility of achieving certain approximation ratios for a various problems under the assumption
that P 6= NP . Although the conjecture has not been proven yet, it is widely believed to hold and
hence a major goal of researchers in this area is to close the gap between the current best ratio and
that which is possible assuming the Unique Games conjecture holds true. Similar to showing that a
certain problem is NP-complete via a reduction to a certain NP-complete problem already known,
one can establish that no better approximation ratio is possible for a given problem via reduction
from Unique Games.

Techniques that are normally used to design approximate algorithms include linear, convex and
semidefinite programming [4] and using efficient randomization techniques. Low distortion metric
embeddings have been used successfully in the past to approximate solutions to certain NP-hard
problems. Let OPT denote the value of an optimal solution. Typically an approximation algorithm
would include the following steps:

1) Formulate a linear/semidefinite program for a relaxed version of a problem. Show that the
cost of this program P , denoted by c(P ) is bounded by the cost of the optimal solution, i.e. OPT.
2) Round the solution to obtain a feasible solution, say S.

3



3) Show that the cost of S, say c(S) is within some factor of c(P ). Then it follows that c(S) is
within some factor of OPT.

Thus, approximation algorithms are quite useful in practice and banking on the assumption that
linear/semidefinite programming can be solved efficiently, one obtains an approximation scheme in
polynomial time under some compromise on the optimality of an application. This compromise
has been shown in practice to be acceptable in many applications[7]. Note that the number of
constraints of such a program could be exponential in input size, but via a good separation oracle,
the number of constraints to be checked can be restricted to a polynomial number.

In the next section, we describe some problems which we will be focusing on in this project.

2 Background

Graph partitioning is a well studied problem in computer science. It has numerous practical
applications-network design, image segmentation, task scheduling in multiprocessing environments
and sparse gaussian elemination, to name a few. There are various settings of the graph partitioning
problem. One which roughly captures the gist of the problem is: Given a graph (undirected) G,
partition the graph into k pieces, such that each partition contains approximately the same number
of vertices and the edge costs between those partitions are minimized. This is an NP-hard problem,
therefore only approximation algorithms exist. Related problems include the balanced cut and its
specific case for k = 2, the minimum bisection problem, both of which are NP-hard too.

A typical approach as described above is to balance the size of the partitions while minimizing
the number (cost) of the cut edges between them. A recent framework of edge partitioning has
been proposed, in which the number of edges are evenly distributed into k clusters while mini-
mizing the cost objective which is commonly associated with minimizing the communication cost
between vertices. The current best approximation ratio is O(dmax

√
log(n)log(k)) [2] where dmax

is the maximum degree of any vertex. The natural open question to ask is: Is it possible to im-
prove the approximation ratio-or remove the dependence on dmax completely. For the problem
in which vertices are distributed to k different partitions whilst minimizing the cost of the edges
between them, a O(

√
log(n)log(k)), where n is the number of vertices, is known[6]. What makes

the edge partitioning problem difficult? Can we apply similar techniques [1],[6] to this problem too?

Clustering is a strongly related problem to graph partitioning and one which has been studied
extensively under various objectives and settings. There has been recent work on hierarchical clus-
tering,[3] and which uses SDP relaxations and metric embeddings, which might imply that similar
techniques to related problems in graph partitioning might be applicable. In general, we aim to
retain the focus of this project to these 2 broad problems, read seminal papers on both and inves-
tigate the open problems and settings that can be useful in the practical sense. The project will
predominantly be focused on reading the vast amount of literature on these problems and more
broadly on approximation algorithms including identifying potential areas in which approaches
could be made better, theoretically. It may include evaluating certain algorithms experimentally
as need be.

4



3 Objectives

Our key objectives are as follows:

1. A major objective of this thesis is to study and explore the techniques that have been used
in the past to design efficient algorithms for approximation. Areas of focus will include low-
distortion metric embeddings, linear programming and semidefinite programming. We will
select papers from top conferences (typically in STOC, FOCS, SODA) and study those results.

2. We will identify the areas in which we can contribute to, such as improving the approximation
ratio or the running times of algorithms. We would also investigate alternative and more
efficient implementations of certain algorithms.

3. We will then work on a specific problem in a restricted setting that we will chose later and
aim to improve on the merits as descrived above.

4. Currently, we do not expect to contribute towards an implementation, but instead try to
bridge the theoretical gaps that exist. Although quite ambitious, we feel this is an integral
element of our thesis.

5. Based on the outcome of the above, we might decide to instead work on an experimental
evaluation. Towards this end, we would implement certain algorithms and compare their
performances. Also, we will work on heuristics that may be relatively efficient in practice.

4 Goals and Methodology

Broadly speaking, the goal is to produce something original and of good quality-work which could
potentially submitted to a conference/workshop proceeding. At a minimum we expect to meet the
aforementioned objectives within the allotted time.

Since it is expected that the work will be mostly mathematical, discussions would be helpful in our
case. Certain papers deemed to be useful will be read and fully understood. The open problems
arising will be then discussed and investigated. Based on whether the theoretical improvement is
possible within time constraints or otherwise due to the inherent difficulty of the problem, we might
turn to an experimental evaluation and heuristic implementation.

The methodology will constantly evolve with the goals and may include programming at a late
stage. Since at this point, our project is of a theoretical nature and significantly different than
purely programming projects, we would appreciate if the difficulty of improving an approximation
ratio is acknowledged and the time and effort put in to read and understand challenging mathe-
matical and algorithmic results given due recognition.

5



5 Project Schedule

A rough time frame for the project is given as follows:

1. 1st October to 15th November: Read and discuss papers on graph partitioning/clustering that
have appeared in top conferences from 2000-present. This would take significant time since
the number of papers and the time to fully understand one takes at least 2-3 days (or more
depending on the result).

2. 16th November to 31st December: Pursue some of the possible directions and try to im-
prove/come up with a better algorithm for the problems in the papers read previously. Also
identify any open problems of interest to the community and see if they could be feasibly
tackled in the time allotted.

3. 1st January to 15th March: If there has been theoretical progress or if there is any reason to
expect one, then continue working on the problem(s) and validate the results. Otherwise, try
to come up with a heuristic implementation of the algorithms understood so far. The second
portion of the final report, in the latter case, will include some implementation on real data.

4. 15th March onward: Finalize the FYP report and present the project. Identify areas of further
refinement.

6



6 References

[1] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. “Expander flows, geometric embeddings
and graph partitioning”. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004. Ed. by László Babai. ACM, 2004, pp. 222–
231. isbn: 1-58113-852-0. doi: 10.1145/1007352.1007355. url: http://doi.acm.org/10.
1145/1007352.1007355.

[2] Florian Bourse, Marc Lelarge, and Milan Vojnovic. “Balanced Graph Edge Partition”. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’14. New York, New York, USA: ACM, 2014, pp. 1456–1465. isbn: 978-
1-4503-2956-9. doi: 10.1145/2623330.2623660. url: http://doi.acm.org/10.1145/

2623330.2623660.

[3] Moses Charikar and Vaggos Chatziafratis. “Approximate Hierarchical Clustering via Spars-
est Cut and Spreading Metrics”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, Jan-
uary 16-19. Ed. by Philip N. Klein. SIAM, 2017, pp. 841–854. isbn: 978-1-61197-478-2. doi:
10.1137/1.9781611974782.53. url: https://doi.org/10.1137/1.9781611974782.53.

[4] Michel X. Goemans and David P. Williamson. “Improved Approximation Algorithms for Max-
imum Cut and Satisfiability Problems Using Semidefinite Programming”. In: J. ACM 42.6
(Nov. 1995), pp. 1115–1145. issn: 0004-5411. doi: 10.1145/227683.227684. url: http:

//doi.acm.org/10.1145/227683.227684.

[5] Subhash Khot. “On the Power of Unique 2-prover 1-round Games”. In: Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of Computing. STOC ’02. Montreal, Quebec,
Canada: ACM, 2002, pp. 767–775. isbn: 1-58113-495-9. doi: 10.1145/509907.510017. url:
http://doi.acm.org/10.1145/509907.510017.

[6] Robert Krauthgamer, Joseph (Seffi) Naor, and Roy Schwartz. “Partitioning Graphs into Bal-
anced Components”. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’09. New York, New York: Society for Industrial and Applied Math-
ematics, 2009, pp. 942–949. url: http://dl.acm.org/citation.cfm?id=1496770.1496872.

[7] Vijay V. Vazirani. Approximation Algorithms. New York, NY, USA: Springer-Verlag New York,
Inc., 2001. isbn: 3-540-65367-8.

7

https://doi.org/10.1145/1007352.1007355
http://doi.acm.org/10.1145/1007352.1007355
http://doi.acm.org/10.1145/1007352.1007355
https://doi.org/10.1145/2623330.2623660
http://doi.acm.org/10.1145/2623330.2623660
http://doi.acm.org/10.1145/2623330.2623660
https://doi.org/10.1137/1.9781611974782.53
https://doi.org/10.1137/1.9781611974782.53
https://doi.org/10.1145/227683.227684
http://doi.acm.org/10.1145/227683.227684
http://doi.acm.org/10.1145/227683.227684
https://doi.org/10.1145/509907.510017
http://doi.acm.org/10.1145/509907.510017
http://dl.acm.org/citation.cfm?id=1496770.1496872

	Introduction
	Background
	Objectives
	Goals and Methodology
	Project Schedule
	References

