Learning to Play Computer Games
with Deep Learning and Reinforcement Learning

Final Report

COMP4801 Final Year Project
UID: 3035207956

Student Supervisor
Mak Jeffrey Kelvin Dr. Dirk Schneiders

April 15, 2018



Abstract

With the integration of deep learning into the traditional field of reinforcement learning in
the recent decades, the spectrum of applications that artificial intelligence caters is currently
very broad. As using Al to play games is a traditional application of reinforcement learning,
the project’s objective is to implement a deep reinforcement learning agent that can defeat
a video game. Since it is often difficult to determine which algorithms are appropriate given
the wide selection of state-of-the-art techniques in the discipline, proper comparisons and in-
vestigations of the algorithms are a prerequisite to implementing such an agent. As a result,
this paper serves as a platform for exploring the possibility and effectiveness of using conven-
tional state-of-the-art reinforcement learning methods for playing Pacman maps. In particular,
this paper demonstrates that Combined DQN, a variation of Rainbow DQN, is able to attain
high performance in small maps such as 506Pacman, smallGrid and mediumGrid. It was also
demonstrated that the trained agents could also play Pacman maps similar to training with
limited performance. Nevertheless, the algorithm suffers due to its data inefficiency and lack
of human-like features, which may be remedied in the future by introducing more human-like
features into the algortihm, such as intrinsic motivation and imagination.



Acknowledgements

I would like to take this opportunity to thank my supervisor Dr. Dirk Schneiders from the
Department of Computer Science for his advice and careful guidance in this project, as well
as permission to use the GPU from the department. I would also like to express my gratitude
towards Cezar Cazan from Center for Applied English Studies for various suggestions when
drafting this paper. I also thank HKXF for providing financial support to this project through
the FYP+ Support Scheme. Finally, a final thanks to HKU for providing a variety of quiet
learning environments for me to write this paper without hindrance.



Contents

List of Figures

List of Tables

1

2

Abbreviations

Introduction

Background

3.1 Deep Q Networks . . . . . . . .

3.2 Variants of Deep Q Networks . . . . . . . . . . .. ... ... ...
3.2.1 Double DQN . . . . .
3.2.2 Dueling Network architecture . . . . . ... ... ... ... ... ....
3.2.3 Prioritized Experience Replay . . . . . . . .. ... ..o
3.2.4 Multi-step Q learning . . . . . . . . . ..o
3.2.5 Noisy Networks . . . . . .. ... .
3.2.6 Distributional DQN . . . . . . . ...
3.2.7 Rainbow DQN . . . . . ..
3.2.8 Count-Based Exploration and Intrinsic Motivation . . . . . . . .. . . ..
3.2.9 Deep Recurrent Q Network . . . . . ... ... ...
3.2.10 Other variants of Deep Q Network . . . . . . . .. ... ... ... ...

3.3 Other Deep Reinforcement Algorithms

Related Works
4.1 History of Deep Reinforcement Learning
4.2 Mrs. Pacman . . . ... ... ... ..

Methodology

5.1 Exploration phase . . . . . . ...

5.2 Game . ...

5.3 Exploration Phase . . . . . . . . . ...
5.3.1 Deep Reinforcement Learning Algorithms . . . . . . . .. ... ... ...
5.3.2 Software and Hardware Requirements . . . . . . . . . .. ... ... ...
5.3.3 Neural Network . . . . . . . . .. o
5.3.4 Deep Q Networks and Its Variants . . . . . . .. ... ... ... ....
5.3.5 Benchmark Algorithms . . . . . . . .. .. ... ... L.
5.3.6 Data Collection . . . . . . . . . ...

5.4 Implementation Phase . . . . . . . .. ... oo
0.41 Map . ..o
5.4.2 Algorithm . . . . . . . .
5.4.3 Experiment . . . . . . . ...

Results and Discussion

6.1 Exploration Phase . .. ... ... ..
6.2 Implementation Phase . .. .. .. ..
6.2.1 Generalization . . . . . . .. ..

6.3 Limitation and Difficulties Encountered

Future Work

13
13
14

14
15
15
17
17
17
17
18
19
19
20
20
21
22

23
23
26
28
30

32



8 Conclusion

9 References

34

34



List of Figures

1

10
11
12
13
14
15
16
17
18
19

An illustration of the interaction between the agent and the environment through
states and actions. Extracted from [1]. . . . .. ... ... ... .. L. 7
Image extracted from [2]. CNN architecture used in DQN (left) and Dueling
DQN (right). Note that the convolutional layers are followed by two separate
fully connected layers, which splits the network into two parts, and leads to
the value function and the advantage function as outputs of the CNN. The Q
function is reconstructed from the the value function and advantage function at
the end of the network. . . . . . . . . .. ... 10
A Pacman map consisting of all game elements. Pacman, represented by a yellow
circle with a mouth, is enclosed by walls, as shown in a blue outline. The ghosts
are represented by characters with two googly eyes. The dots and capsules
are represented by small and large white dots. Image produced in the Pacman
software by UC Berkeley[3]. . . . . . . .. ... ... 15
Examples of start game states for 506 Pacman, a 3 x 3 map consisting of Pacman,
one dot and one ghost that are randomly placed. Image produced in the Pacman

software by UC Berkeley[3]. . . . . . . . . . ... ... 16
Map of smallGrid. The map consists of pacman, one ghost, two dots and walls
in a 7 x 7 map. Image produced in the Pacman software by UC Berkeley[3]. . . 16
Start game states for Pacman maps mediumGrid and smallClassic. Image pro-
duced in the Pacman software by UC Berkeley[3]. . . . . . ... ... ... ... 16
32 x 32 greyscale image used to observe change in QQ values during training.
Image produced in the Pacman software by UC Berkeley[3]. . . . ... ... .. 19

Number of game state visited over the when playing a random policy in 506Pac-
man, smallGrid, mediumGrid, miniClassic and smallClassic. Note that game
states are also classified as different in the Pacman API if the sprites’ locations

are the same but the direction Pacman faces is different. . . . . . . .. ... .. 20
Deep Q Networks training results with default ghost Al in 506Pacman . . . . . 22
Deep Q Networks training results with default ghost Al in 506Pacman . . . . . 24
Deep Q Networks training results with minimax ghost Al in 506Pacman . . . . 24
Deep QQ Networks training results with default ghost AI in 506Pacman . . . . . 25
Deep Q Networks training losses in Pacman . . . . . . . . ... ... ... ... 25

Training loss of DQN with proporitional-based PER in 506 Pacman for 6000 games 26
Results obtained from playing 506 Pacman with random ghost Al for 10000 games 27
Results obtained from playing smallGrid with random ghost AT for 5000 games . 28
Results obtained from playing mediumGrid with random ghost Al for 5000 games 29
Results obtained from playing smallClassic with random ghost AT for 10000 games 30
Sum of noisy training parameters during training in 506Pacman, smallGrid and

mediumGrid. No data was gathered due to the policy having 0% win rate for

smallClassic. . . . . . . . . . e 31

List of Tables

2

Reported Ms. Pacman scores from [4] . . . . . .. ... ... o L 14
Collation of Ms. Pacman scores from [5], [6], [2], [7], [8],and [9] . . . . . . ... 14
Score modification for various events in the game Pacman. Ghosts become scared

for 40 moves when Pacman eats a capsule. . . . . . .. .. ... L. 15



10
11

Description of the convolutional neural network used in the DQN, DDQN, Duel
DQN and DQN with PER implementation for Pacman. The input of the network
is an array of 32x 32 preprocessed grayscale images for the three implementations,
and the output of the network is an array, where each element consists of five
Q-values, one for each possible action from the input image’s state. The network
is trained using Adam [10] as the optimizer, where the huber loss is minimized.
The total number of trainable parameters in this network is 87205. . . . . . ..
List of DQN training hyperparameters and their values in Pacman . . . . . . . .
Shaped reward for agent in Pacman. The rewards are kept between -1 and 1 in
order to prevent from obtaining large gradients, which may hinder learning. . . .
List of Combined DQN training hyperparameters and their values in Pacman . .
Win rate and average score obtained after running a trained 506Pacman agent
using different ghost Als in 506Pacman. . . . . . . . . . . ... ... ... ...
Win rate and average score obtained after running a trained 506Pacman agent
in 506Pacman containing different number of dots. . . . . . . . ... .00
Results from testing smallGrid agent on different variants of smallGrid . . . . .
Project Schedule . . . . . . . . .



1 Abbreviations

Al Artificial Intelligence

CNN Convolutional Neural Network
DRL Deep Reinforcement Learning
DQN Deep Q Networks

DDQN Double Deep Q Networks
Duel DQN Dueling Deep Q Networks
DRQN Deep Recursive Q Networks
MDP Markov Decision Process

PER Prioritized Experience Replay
PIL Python Image Library

POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning



2 Introduction

Reinforcement learning, a subdiscipline of artificial intelligence, is becoming increasingly pop-
ular as a method of creating Al agents. Despite of such popularity, the idea of reinforcement
learning is not a recent one, and originated from experiments in behavioural psychology re-
lating to how animals learn tasks by perceiving rewards. In the context of computer science,
reinforcement learning deals with how an agent learns an optimal policy 7*, ie. a series of
actions, that maximizes the expected cumulative reward R; = Zgzt 7 ~try by interacting with
the environment, where 7; is the reward received at time step t and ~ is the discount rate.

In order for an agent to learn, the manner in which it interacts with the environment is key
for facilitating learning. In the field of reinforcement learning, there are two major approaches
to modelling agent-environment interaction in reinforcement learning, namely Markov Decision
Process (MDP) and Partially Observable Markov Decision Process (POMDP). In an MDP, the
action At taken by the agent is based on only the reward r; and state s; observed from the
environment at time step t, as illustrated in Figure 1. However, it is assumed that the agent
always observes full information of the current state in each time step. To compensate for
such a limitation, one can adopt a Partially Observable Markov Decision Process (POMDP)
instead, where the agent only observes partial information of its current state. For example,
the interaction would be modelled as a MDP for the game Pacman, since the player can see
the entire map in Pacman during gameplay. Conversely, a POMDP would be used as a model
for interactions in FPS games [11], since the player’s view is often obscured by obstacles. This
makes certain game information hidden, such as the position of enemies.

’J Agent ll
state reward action

S R, A,

S.. | Environment |€———r

Figure 1: An illustration of the interaction between the agent and the environment
through states and actions. Extracted from [1].

One may question the rationale of using deep reinforcement learning to play games, since the
primary purpose of games is for entertainment. Nonetheless, a major reason for this is due to
the relatively cheap training cost in a game simulation in comparison to training in the physical
world. In particular, training in the real world often requires regular hardware maintenance
of physical agents such as robots. For instance, a robot attempting to learn to walk would
fall constantly during training, which would become unfavorable due to constant repairing of
the robot. Another reason is that replication of agent training is much easier in games than
in the real world, since the physical environment is often unpredictable. A consequence of
this is that games serve as a convenient platform for benchmarking and comparing various
reinforcement learning techniques. Finally, games are traditionally considered as a method of
measuring human intelligence. This is especially apparent in chess, where logical reasoning



plays a key component for the construction of a winning strategy. As a result, games can be
used for comparison between artificial intelligence and human intelligence.

In light of deep reinforcement learning being an active research field and game playing as con-
venient medium for data collection, this project’s objective is to construct a deep reinforcement
learning agent in an unexplored game in literature. Nevertheless, proper comparison and inves-
tigation of existing deep reinforcement learning algorithms is required. As a result, this paper
explore the possibilities of using Deep Q Network and its variants to play the game Pacman
through small-scale experiments, while creating software implementations of the aforementioned
techniques. With the results in hand, this paper serves as a gateway for an improved under-
standing on pros and cons of well-studied techniques, as well as their applicability in small-scale
problems in game playing.

The remainder of the paper is organized as follows. Chapter 3 surveys existing state-of-the-art
deep reinforcement learning algorithms in the literature, and chapter 4 summarizes the list of
games that have been investigated in the literature. Chapter 5 details the phases in the project,
followed by implementation details of Deep Q Network and its variants and experiments used
to evaluate the techniques. Chapter 6 then compares the implemented methods by analyzing
experimental results, and concludes by discussing the future work to be completed in Chapter
7.

3 Background

3.1 Deep Q Networks

Similar to tabular Q learning in traditional reinforcement learning, Deep Q Networks [12, 4]
also uses QQ values in order to predict the expected sum of future discounted rewards. However,
a problem with tabular Q learning is that the @ values for state-actions pairs are encoded
using a table, which uses a large amount of memory in the case of an environment involving
a large state-action space. Moreover, each Q-value for different state-action pairs needs to be
learned separately, thereby making improvement in training performance slow. As a result,
the replacement of the QQ table by a convolutional neural network in the form of a nonlinear
function approximator in DQN that minimizes the loss function

Li(0;) = E [(7‘ +ymax Q(s',a’;0;) — Q(s, a; Oi)>2]

(s,a,r,s")~U(D)

, where U (D) is the experience replay training minibatch, 6; is the network parameters for the
online neural network and 6} is the network parameters for the target neural network. The
use of a convolutional neural network greatly reduces the memory required to encode the Q-
values, as well as allowing the agent to generalize encoded information learned from the past
to unfamiliar scenarios.

Apart from the use of a convolutional neural network, a prominent feature in DQN is the
use of experience replay. Such a concept originated from the observed hippocampus activity
in the brain. In particular, experience replay involves the use of an experience replay buffer,
where the agent’s past experience is stored in the form of experience tuples e, = (s, az, 14, S41)-

8



During gameplay the agent learns from past experience by sampling mini-batches from the
experience replay buffer in order to train the CNN. Such sampling allows for increased use of
past memory when compared to the on-policy variant, which reduces the time taken to learn
a policy. Moreover, experience replay prevents the CNN from being trained on consecutive
experience tuples, which could cause convergence to a suboptimal policy [12].

To solve the exploration-exploitation dilemma, the DQN algorithm uses an epsilon-greedy al-
gorithm. In particular, the agent picks actions uniformly at random with probability ¢ and
greedily with probability 1 — €. To encourage exploration during the start of training and ex-
ploitation near the end of training, epsilon is set to 1 and linearly annealed to 0.1 over training
games [12, 1].

To improve the training of DQN, the original paper proposed several implementation tricks
used during coding [12]. First, the raw image is preprocessed in order to reduce the size of the
CNN while still retaining sufficient information to solve the desired task. Various techniques
can be used for preprocessing, such as downscaling of images and conversion of RGB image to
grayscale. Owing to the large variation in reward ranges between different Atari 2600 games, the
original papers uses clipping rewards to the range [—1, 1] in order to limit the gradient during
training. Lastly, a target network is used in order to stabilize the @ value during training
[12].

An advantage of Deep Q Networks is that minimal prior game-specific information can be used
to develop an end-to-end framework, where the input and output of the network would be the
preprocessed image from the game and the Q values of the state-action pairs of the current state
respectively. In other words, the algorithm is agnostic to domain knowledge. This idea is also
reinforced by the fact that the agent only learns by playing the game itself. In particular, the
agent begins with minimal information about the game’s environment (eg. controller inputs),
and training data is generated and learned by the agent as training occurs. The use of an
end-to-end framework is unlike previous approaches, where game-specific feature extraction
to construct an internal grid world representation of the game state coupled with tabular Q
learning was required [13] in order for learning to occur, which may limit the policies that the
agent could develop.

3.2 Variants of Deep Q Networks

After the development of DQN in 2012, many variations of DQN with improvements were devel-
oped subsequently. Some of the significant variations are detailed in the following subsections.
Note that the improvements can be combined together, since they each focus on a different
component of the algorithm.

3.2.1 Double DQN

One limitation of DQN is that Q values are often overestimated during training, resulting in
overly optimistic policies. To remedy this situation, Double DQN, ie. DDQN, [5] is introduced
where the target value for the CNN to train with is modified to

r+ymax Q(s', argmax Q(s', a; 0;); 0;)

9



Such modification increases the stability of the Q values during learning, thus allowing the
algorithm to attain improved policies, as shown by the substantially better scores attained in
various Atari 2600 games [5].

3.2.2 Dueling Network architecture

Another limitation of DQN is that Q values for different actions for the same state are learned
separately. To allow the network to generalize learning of state value across state-action pairs
with the same states, one may dconsider the following definition of the Q value function

Q(s,a;0,0,8) = V(s;0, ) + A(s, a; 0, )

where V' is the value function, A is the advantage function, and 6, o, and § are parameters of
the dueling CNN. However, the paper describes the use of such an equation for estimating Q
values as inefficient, since the value and advantage functions developed are not unique to the
problem. To fix this issue, the paper proposes to use the definition of the Q value function

Q(s,a;0,a,8) =V (s;60,8) + (A(s,a; 0, ) — max A(s,a';@,oz))

a’€|A|

instead [2]. The use of the above equation then leads to the modification of the CNN architec-
ture as shown in Figure 2, which allows the dueling variant of DQN, ie. Duel DQN, to learn
the two functions separately. When compared to DDQN, Duel DQN outperforms it in 46 out
of 57 Atari 2600 games [2]. It is also mentioned that the Duel DQN with PER outperforms
DDQN significantly.

( I8 L N !
[— ]

Figure 2: Image extracted from [2]. CNN architecture used in DQN (left) and Du-
eling DQN (right). Note that the convolutional layers are followed by two separate
fully connected layers, which splits the network into two parts, and leads to the
value function and the advantage function as outputs of the CNN. The Q function
is reconstructed from the the value function and advantage function at the end of
the network.

3.2.3 Prioritized Experience Replay

At the end of [4] and [12], Minh et al. described that it may be possible to improve the algorithm
via prioritized sweeping, where training would be biased towards significant events. Such idea

10



was subsequently further developed by Schaul et al. [6], where two types of prioritized experi-
ence replay (PER) was investigated, namely rank-prioritized PER and proportional-prioritized
PER. In particular, prioritized experience replay involves a non-uniform distribution when
sampling for experience tuples, where the probability of sampling experience tuple 7 is

. Py
P(i) = S
k Lk

In particular, p; = |§;|+¢€ in proportional prioritization, where 4 is the training error and epsilon
is a small constant, and p; = Wlk(z) in rank-based prioritization, where rank(7) is the rank of i
when sorted by |0;] in descending order. Results from the paper showed that DQN with PER

outperformed DQN in 41 out of 49 Atari 2600 games [6].

3.2.4 Multi-step Q learning

Mutli-step Q learning uses multi-step targets as opposed to single targets, leading to better
Q value estimates jcitation;sutton. In particular, the truncated n-step return can be defined
as Rln), = Y120 'Vt(k)Rt—&—k—&-l» and the n-step target as Q(s,a) = R} + 7{ maxy Q(St4n,a’)

[1].

3.2.5 Noisy Networks

Contrary to the inefficient state-independent exploration in epsilon-greedy, NoisyNet provides
an efficient state-dependent exploration strategy without bias by adding noise into fully con-
nected layers in the CNN in order to perturb Q-values and the corresponding policy. The output
of the noisy dense layer is described by y = (pt + 00w ) €w)T + iy + 05 () € Where iy, 0o,
and oy, are trainable weights, and €, and ¢, is the Gaussian noise injected. Factorised Gaussian
noise is preferred, as it requires less random number generations, thus lowering computational
time. In an ideal situation, the noisy training weight parameters should converge to zero when
the agent attains an optimal policy during training [8].

3.2.6 Distributional DQN

In reinforcement learning, it is often the case that the Q value is not a single value, but rather
a distribution due to stochasticity in agent-environment interaction. In fact, this model could
even be multimodal in nature. As a result, Distributional DQN models Q values using a
distribution and allows the distributional Bellman equation to be satisfied by minimizing the
Wasserstein metric, which measures the distance between two distributions. In particular, c¢51
[14] models the distribution using 51 bins, whereas QR-DQN [7] models the distribution using
quantiles. In either case the output of the CNN is replaced with a Q value distribution for each
action. Results show that QR-DQN outperforms c51.

11



3.2.7 Rainbow DQN

Since many algorithmic improvements are complementary in nature, the effect of combining
different improvements were investigated. The result showed that combining DDQN, PER,
Dueling DDQN, ¢51 and Noisy DQN, termed as Rainbow DQN [9], resulted in a significantly
higher median human-normalized score when compared to any individual augmentation.

3.2.8 Count-Based Exploration and Intrinsic Motivation

Another drawback of using DQN to play games is that the algorithm requires frequent gratifica-
tion in order to learn efficiently, meaning that such a limitation becomes problematic in games
such as Montezuma’s Revenge, where rewards are sparse. One solution to this problem is the
use of pseudo-counts and bonus rewards with DQN in order to increase the agent’s curiosity
about the environment and encourage in-depth explorations. Bellemare et al. (2016) showed
that the agent with exploration bonus was able to explore 15 rooms in Montezuma’s Revenge
during training, as compared to 2 rooms for an agent without exploration bonus [15].

3.2.9 Deep Recurrent Q Network

A requirement for the use of MDP for modelling the agent-environment interaction is that the
agent must be able to observe all information about the current state. However, this requirement
is often not satisfied in games such as Doom where partial information is observed at each frame,
resulting POMDP being used to model the agent-environment interaction instead. In order to
preserve state information across states, Hausknecht and Stone [16] proposed to attach a Long
Short Term Memory (LSTM) [17] to the end of DQN’s architecture in order to make the neural
network recurrent. Although results showed no significant improvement over DQN in Atari 2600
games if stacked frames are used as input to the neural network, Deep Recurrent Q Networks
(DRQN) are still able to play Atari 2600 games even in the presence of a flickering screen [16],
and is effective for playing first player shooting (FPS) games such as Doom [11].

3.2.10 Other variants of Deep Q Network

Apart from the variants above, there exists many other modifications that can be found in recent
literature regarding improvement on the DQN algorithm. For example, a Bayesian exploration
approach can be taken by using the uncertainty Bellman equation (UBE) to obtain a tight
bound for the true Q value interval. Together with the use of Thompson sampling, the paper
reports better performance for UBE in 51 out of 57 games when compared to that of DQN [18].
Another example is the use of optimality tightening through constrained optimization in order
for the network to converge faster to a policy [19].

12



3.3 Other Deep Reinforcement Algorithms

Apart from Deep Q Networks and its variants, other deep reinforcement algorithms have also
been developed and experimented in the context of games. For example, A3C [20] and ACER
[21] are actor-critic algorithms that were shown have comparable performance to DQN. Policy
gradient algorithms, where the network outputs action probabilities instead of Q values, such
as DDPG [22], TRPO [23] and PPO [24], can also be used to play Atari 2600 games. In the
context of board games, AlphaGo was able to achieve superhuman performance either with [25]
or without [26] the presence of prior training data in the game Go through a Monte Carlo Tree
Search-based approach.

4 Related Works

4.1 History of Deep Reinforcement Learning

The history of using reinforcement learning and neural networks to play games dates back to
the 1990’s, where agents were developed to play traditional board games such as Backgammon
and chess. In particular, TD-Gammon [13] was developed to play backgammon through the use
of temporal difference algorithm and a multilayer perceptron network. The incorporation of
handcrafted features further improved TD-Gammon’s performance. However, progress in the
field stagnated subsequently due to lack of success in replicating similar performances in other
board games [1]. It was not until the development of Deep Q Networks by Google DeepMind
that a wider variety of games could be played, notably video games such as those in Atari
2600[12, 4]. The concept of agents playing highly complex video games was furthered by using
a CNN-LSTM network architecture to play Doom, an FPS game. The recent spark in deep
reinforcement learning inspired development of DRL agents in many video games, including
the popular games Super Mario world and Flappy Bird. Open-source APIs for games such as
Minecraft [27] and Starcraft 11 [28] were also developed to encourage research on the use of deep
reinforcement learning in such open-ended games. Finally, OpenAl Gym [29] provides a simple
platform for playing a wide variety of games or simulations, and is often used for establishing
baselines for comparing DRL algorithms.

13



4.2 Mrs. Pacman

The above papers all use the Atari Learning Environment in order to play Atari 2600 games.
One of the games in Atari 2600 is Ms. Pacman. Since the nature of Ms. Pacman is similar to
the Pacman game used in this paper, a review of the scores is performed below.

Table 1: Reported Ms. Pacman scores from [4]

Random Play | Best linear Learner | Contingency (SARSA) | Human | DQN
307.3 1692 1227 15693 | 2311525

Table 2: Collation of Ms. Pacman scores from [5], [6], [2], [7], [8], and [9]

Referonce | Condition | Random syNet-Ducling
DDON 5 [ 3073
DDON

A3C DDQN Ducl DDQN | PER DDQN | PER-Ducl
/7 N/A N/A y

51 [ QRDQN NoisyNet-DQN [ NoisyNet-A3C
3210.0 N/A V, N,

N/A A
N/A N/A

EEEEEREE

arts | 196.8 TI01.8, N/A N/A N/A
12013 (tuned)

A
A
A 1241.3, 1865.9 (rank-b) [ N/A 1824.6 N/A
A
A

PER
Duel
Duel

22 |z~
EEREE

307.3 6951.6 | 3085.6 2711.4 6283.5 6518.7 3327.3

A. Noi
N N/#
N N/
197.8 15375.0 [ 763.5, 1263.0 (Gorila), 964.7 (rank-b) | N/ N/A N/
N / N/
I N/ 12413 2250.6 1865.9 1007.8 N/AT[N/A N/A N/A N/
QR-DQN [ n 6951.6 | 3085.6 N/A N/A N/A N/A 3327.3 3415 5822,5821 (huber) [ N/A N/A N/
NoisyNet | 1 6952 2674+43 2436249 [ N/A 3650+445 N/A N/A N/A N/A 2722+148 3
Rainbow | no-op starts [ N/A N/A 1092.3 653.7 1241.3 2250.6 1824.6 N/A 2064.1 | N/A 1012.1
Rainbow | human starts [ N/A N/A 3085.6 N/A 2711.4 6235.5 4751.2 N/A 3769.2 [ N/A 2501.6

15375.0 | 1092.3

101761 55462367 N/A
7 N/
N/X 53804

=]
&
Bl

Table 1 and 2 shows the raw scores obtained from evaluating various agents in Ms. Pacman
using either human starts or no-op starts. From the scores, it can be seen that DQN and
its variants reach higher scores generally in comparison to other DRL algorithms, such as
A3C. It can also be seen that each improvement leads to better scores. In addition, it can
be seen that the combination of techniques in general leads to a higher score. In particular,
Rainbow, which combine five improvements to DQN, scores highest when compared to any
other variation of DQN. Nevertheless, any agent?s performance does not supercede human
expert performance.

However, the first DQN agent that is able to achieve super-human performance and even attain
the highest score in Ms. Pacman was designed by Microsoft ??7. In particular, it uses a hybrid
reward architecture, where the reward function is decomposed and subsequently used to train
different ) value heads in the architecture. Nevertheless, this project will not adopt such an
algorithm, as decomposing the reward function involves a significant amount of reward shaping.
This would likely introduce domain knowledge of the game into the algorithm, which is not
desirable for the purpose of this project.

5 Methodology

The project is broadly separated into two phases, namely an exploration phase and an imple-
mentation phase. In particular, the objective of the exploration phase is to construct one or
more deep reinforcement learning agents that can beat the game Pacman. Various RL methods
are to be used in this phase, including but not limited to Deep Q Networks and its variants.
The results gathered from the selected implemented algorithms are to be evaluated against
benchmark algorithms, namely traditional Al agents, ie. Minimax and Expectimax.

The implementation phase involves further improving the algorithm using state-of-the-art tech-

niques, and subsequently using it to play larger Pacman maps. Since DRL techniques provide
a domain-agnostic approach for training a task, this phase also investigates how agents inter-

14



act with similar but unseen environments. In case of Pamcan, how the agent would react to
different maps of the same size.

5.1 Exploration phase

5.2 Game

Pacman, a popular arcade game, is the game studied in the exploration phase of this project.
In particular, the game consists of a map containing dots, capsule, Pacman, and one or more
ghosts (see Figure 3), and the objective of the game is to consume all the dots. A score is
counted throughout the game, and is modulated as Pacman receives positive and negative
rewards (see Table 3). This game was first studied, as the associated game implementation is
open-sourced by UC Berkeley, meaning that implementing deep reinforcement algorithms would
not be too challenging [3]. In terms of writing code, the game implementation also allows for
map customization and control over behavior of both Pacman and ghosts, thus providing a
convenient platform for algorithm testing on custom designed maps of varying difficulty.

Table 3: Score modification for various events in the game Pacman. Ghosts become
scared for 40 moves when Pacman eats a capsule.

’ Event \ Score ‘
Win +500
Lose -500
Eats dot +10
Eats capsule +10
Collides with scared ghost | +200
Each turn -1

Figure 3: A Pacman map consisting of all game elements. Pacman, represented by
a yellow circle with a mouth, is enclosed by walls, as shown in a blue outline. The
ghosts are represented by characters with two googly eyes. The dots and capsules are
represented by small and large white dots. Image produced in the Pacman software
by UC Berkeley|3].

In the exploration phase, algorithmic implementations are tested on a simple map named
506Pacman (see Figure 4). In particular, the map consists of Pacman, one dot and one ghost in
a 3 x 3 grid, and the sprite positions are randomized uniformly each time the map is initialized.
Specifically, the map’s name originates from the fact that there are 506 possible game states,
with 72 accessible states in one game. One of the main motivation for using this map is

15



its randomness, which helps to demonstrate whether the algorithm has performed generalized
learning, as opposed to rote memorization of the path to a win the game. Furthermore, the
implementations are also tested on a simple realistic map named smallGrid, as shown in Figure
5 in order to see whether the agent is also able to successfully learn in this map as well. The
paper starts with 506Pacman and smallGrid, namely small maps, in order to make training of
the DRL algorithms feasible in a reasonable amount of time.

In the implementation phase, the algorithmic implementations are trained and tested in both
small and large maps, where small maps consist of 506Pacman and smallGrid, and large maps
include mediumGrid and smallClassic, as shown in Figure 6.

Figure 4: Examples of start game states for 506Pacman, a 3 x 3 map consisting of
Pacman, one dot and one ghost that are randomly placed. Image produced in the
Pacman software by UC Berkeley|[3].

Figure 5: Map of smallGrid. The map consists of pacman, one ghost, two dots and
walls in a 7 X 7 map. Image produced in the Pacman software by UC Berkeley/[3].

(a) mediumGrid (b) smallClassic

Figure 6: Start game states for Pacman maps mediumGrid and smallClassic. Image
produced in the Pacman software by UC Berkeley[3].

16



5.3 Exploration Phase

5.3.1 Deep Reinforcement Learning Algorithms

Since deep reinforcement learning is currently an active research field, there is a wide selection
of algorithms to choose from. As a result, the current phase focuses on simple and effective
methods that can solve Pacman maps. Since Deep Q Networks and its variants, ie. Double
Deep Q Network, Dueling Deep Q Network, and Deep Q Networks with prioritized experience
replay, are well studied in deep reinforcement learning, these algorithms are implemented first.
In particular, they are implemented as detailed in [4, 12], [5], [2] and [6] respectively. Due
to time limitations, this paper only considers proportional-based prioritized experience replay,
as results from Schaul et al. indicated that the two variants of PER had similar performance

[6].

5.3.2 Software and Hardware Requirements

Algorithms used in this paper are implemented in Python in view of its conciseness. In addition,
neural networks are implemented either in Keras [30] with Tensorflow [31] backend, since Keras
provides a platform for convenient and efficient prototyping and experimentation. Since the
experiments are conducted in a small scale, they are run on a 2.8 GHz Intel Core i5 CPU on
a Macbook Pro if possible. If the time taken to run the experiment is too long, an NVIDIA
GPU can be used to speed up training.

Since the original Pacman software does not offer an API for capturing images, an API must
be written in order to run the previously described algorithms. There are two approaches
for capturing each frame of gameplay in Pacman, namely through direct screen capture by
ImageGrab or to redraw the frame through Python Image Llbrary (PIL). Although ImageGrab
contains a simple API, it does not exactly capture the correct area properly. This is important
since only pixels within the Pacman should be fed into the program. Moreover, using PIL
for the frame capture implementation allows training to be done in the absence of a GUI and
thereby reducing training time. As a result, this paper adopts the use of PIL for capturing
gameplay frames in Python as opposed to ImageGrab.

5.3.3 Neural Network

In light of the effectiveness of the neural network used by Minh. et. al. in playing a wide
range of Atari 2600 games[4, 12], similar architectures are adopted for DQN and its variants,
as detailed in Table 4. Since the input image to the network has size 32 x 32, the filter size for
the last convolutional layer is adjusted to size 2. Similar to the original paper, the RGB input
image is converted into a grayscale image before feeding it into the network to reduce the size
of the input layer. The parameter weights of the neural networks are also initialized uniformly
at random with zero bias in order to break the symmetry of the networks and to increase the
number of features learned during training.

17



Table 4: Description of the convolutional neural network used in the DQN, DDQN,
Duel DQN and DQN with PER implementation for Pacman. The input of the
network is an array of 32 x 32 preprocessed grayscale images for the three imple-
mentations, and the output of the network is an array, where each element consists
of five Q-values, one for each possible action from the input image’s state. The net-
work is trained using Adam [10] as the optimizer, where the huber loss is minimized.
The total number of trainable parameters in this network is 87205.

‘ Layer ‘ Input ‘ Filter Size ‘ Stride ‘ No. of filters/Nodes ‘ Activation ‘ Output ‘ No. of parameters
conv2d_1 (input) | (#samples,32,32,1) | 8 x 8 4 32 Relu (#sample, 7, 7, 32) | 2080
conv2d 2 (#samples,7,7,32) | 4x4 2 64 Relu (#samples,2,2,32) | 32832
conv2d 3 (#samples,2,2,32) | 2x 2 1 64 Relu (#samples,1,1,64) | 16448
flatten_1 (#samples,1,1,64) - - - (#samples, 64) 0
dense_1 (#samples,512) - - 512 Relu (#samples, 512) 33280
((ic?:llt}e)ft) (#samples, 512) - - 5 (#samples, 5) 2565

5.3.4 Deep Q Networks and Its Variants

Since DQN, DDQN, Dueling DQN and DQN with PER are very similar value-based RL meth-
ods, they are implemented using the same training hyperparameter for ease of implementation.
In particular, Table 5 shows the hand-optimized hyperparameters used in DQN and DDQN.
Similar to the original publications [12, 4, 5], several trick are used to accelerate network train-
ing for both algorithms. Firstly, an experience replay buffer is used to store the last 128 steps
of gameplay in order to decorrelate consecutive training data when updating the network. Such
storage of game history is especially useful, since training correlated experiences induces a large
variance when training a neural network [12]. Secondly, the rewards for each step is clipped to
the range [-10,10] in order to increase speed of convergence to optimal Q values. Lastly, the
gradient during training is clipped to [-1,1] in order to stabilize network training [12].

To train the network, Adam [10] is used as the neural network’s optimizer, and to facilitate
convergence of Q values, and the Huber loss function provided by Tensorflow is used as the
training loss function in order to clip the gradient of the network.

Table 5: List of DQN training hyperparameters and their values in Pacman

’ Hyperparameter \ Value ‘
No. of frames per input 1
Experience buffer size 2000
Batch size 256
Initial training epsilon 1
Final training epsilon 0.1
No. of exploration frames 2000
Discount factor 0.99
Target network update frequency | 20
Replay start size 100
Optimizer learning rate 0.00025

18



5.3.5 Benchmark Algorithms

In this experiment, three baseline algorithms are chosen, namely Minimax, Expectimax, and
DQN agent. In particular, minimax and expectimax agents are traditional optimal Al algo-
rithms that have access to game state information. The algorithmic implementations will also
be compared against an existing implementation of DQN in Pacman that uses feature extrac-
tion in order to confirm whether an end-to-end architecture is better than the use of feature
extraction for learning in DQN [32]. The establishment of these benchmark algorithms serve
as a medium for showing the optimality and learning progress that the deep reinforcement
learning techniques have achieved.

5.3.6 Data Collection

All four implementations were trained for 7000 games for 506 Pacman, where the epsilon value
was linearly decreased from 1 to 0.1 over 2000 frames and kept at 0.1 for the rest of training.
After training, the trained agents were tested on the same map for 500 games but with a
constant test epsilon value of 0.05 for 506Pacman. The epsilon value was set to 0.05 in order to
prevent the CNN from overfitting. To vary the map difficulty, the agent is trained and tested
with random ghost and Minimax ghost behaviour.

In order to compare the effect of using map features or raw greyscale image as input data to
the CNN on the agent’s performance, the two versions of DQN were trained for 5000 games
and tested for 1000 games on smallGrid using the same training and testing parameters as
previously described.

In terms of metrics measured for both maps, the average score, percentage of games won and
maximum () values were measured over the course of training and testing. In addition, average
scores and win percentages are measured as an indication of whether the agent was successful
in completing the map. To gain insight on the policy learned, the maximum Q value obtained
for the map shown in Figure 7 are recorded.

Figure 7: 32x 32 greyscale image used to observe change in () values during training,.
Image produced in the Pacman software by UC Berkeley/[3].

19



5.4 Implementation Phase

5.4.1 Map

In order to see how Pacman handles tasks of varying difficulty, five maps were tested in this
phase, namely 506Pacman, smallGrid, mediumGrid, miniClassic and smallClassic. For simplic-
ity, a random ghost Al is To compare the difficulty between the maps, an agent with random
was run on 506Pacman and smallGrid for 2000 games and 10000 games for mediumGrid, mini-
Classic and smallClassic, and the number of states visited was recorded, as shown in Figure 8.
It can be seen that 506Pacman and smallGrid have approximately the same amount of states,
and is fastest to converge in terms of number of states visited, reaching approximately 1000 and
800 states respectively (see Figures 8(a) and 8(b)). Figures 8(c) and (d) shows that medium-
Grid and smallClassic, with approximately 20000 and more than 200000, reaches substantially
more number of states. From this, it can readily be determined that the map difficulty is in
the following order: 506Pacman, smallGrid, mediumGrid and smallClassic.

1000 1000

800 800

600

600

400 400

Num States Visited
Num States Visited

200 200

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Epoch Epoch

(a) 506Pacman (b) smallGrid

18000

16000
200000
14000

12000
150000

ted

10000

8000 100000

Num States Visited
Num States Vis

6000

4000 50000

2000

o

0 100000 200000 300000 400000 500000 600000 0 50000 100000 150000 200000 250000 300000 350000
Epoch Epoch

(¢) mediumGrid (d) smallClassic

Figure 8: Number of game state visited over the when playing a random policy in
506Pacman, smallGrid, mediumGrid, miniClassic and smallClassic. Note that game
states are also classified as different in the Pacman API if the sprites’ locations are
the same but the direction Pacman faces is different.

20



5.4.2 Algorithm

During the implementation phase, the algorithm was improved to include NoisyNet jcitation;,
and Quantile Regression, thus forming a variant of Rainbow DQN, termed Combined DQN.
The neural network architecture, as well as some hyperparameters were modified.

Similar to the previous phase, the neural network architecture used in this phase consists of
three convolutional layers and two fully connected layers. However, the three convolutional
layers uses 8 x 8 filter with stride 3, 4] x 4 filter with stride 3 and 3 x 3 with stride 2. Such
modification allows for larger image input sizes, which is required for playing larger maps in
Pacman, as well as to minimize the number of network parameters. As different maps have
different sizes, neural networks with different input dimensions are required for different maps.
In particular, the input image size is 64 x 64 for 506Pacman, smallGrid, 64 x 56 mediumGrid
and 120 x 45 for smallClassic.

The algorithm implemented in this phase is Rainbow DQN, with a few modifications. First,
¢b1 is replaced with QR-DQN since QR-DQN directly minimizes the Wasserstein metric and
provides theoretical convergence to an optimal policy. In addition, multi-step learning is not
used, since Pacman is a reward-rich game. In order to reduce training time, the CNN is trained
using a batch size of 256 every 4 steps taken by the agent. The game reward function was also
modified in order to speed up convergence of the ) value (see Table 6).

Table 6: Shaped reward for agent in Pacman. The rewards are kept between -1 and
1 in order to prevent from obtaining large gradients, which may hinder learning.

Event Score
Win +1
Lose -1
Eats dot 1
Eats capsule 1
Collides with scared ghost | 0.5
Each turn -0.1

Since the algorithm uses quantile regression, a quantile regression huber loss function is used.
For prioritized experience replay, the § is annealed from 0.4 to 1 over 90% of the number of
training games, where /3 is annealed per game episode [6]. Since Pacman is a simple game, 10
quantiles were used to model the Q value distribution [7]. In terms of the noisy dense layers
used in the CNN, factorized normal distribution was used to reduce computational cost and
sigma was set to 0.5. Note that NoisyNet replaces epsilon-greedy algorithm, meaning that the
agent?s policy is greedy with respect to noisy Q-values and does not involve making random
actions [8]. Table 7 summarizes the hyperparameters used during training.

21



Table 7: List of Combined DQN training hyperparameters and their values in Pac-

man
Hyperparameters value
No. of frames per input 1
Experience buffer size 50000
Batch size 256
No.of steps per training step 4
Discount 0.95
Target network update frequency | 20
Replay start size 10000
Adam learnin grate 0.0042
Adam epsilon 0.00001953125
PEP alpha 0.6
PEP initial beta 0.4
QR no. of targets 10
NoisyNet sigma 0.5

5.4.3 Experiment

The experimentation in this phase is separated into two parts. Similar to the exploration phase,
the first part involves training the algorithm for sufficient amount of games until the agent?s
policy converges. The agent is subsequently testing for 500 games on the Pacman maps without
initial human or random actions. To track the agent?s performance during training, the win
rate, game scores, loss function and Q values are recorded. During testing, the average score
and win rate is recorded. To further examine the policy generated from training, QQ values of
individual states are also recorded.

=]

Qo

(a) Variant 1

(d) Variant 4 (e) Variant 5 (f) Variant 6

Figure 9: Deep Q Networks training results with default ghost Al in 506Pacman

22



The second part involves testing the developed agents from the first part on different maps
or conditions. Specifically, a Combined DQN agent trained using 506Pacman is tested using
variants of the 506Pacman map, where either the number of dots in the map or the ghost Al
is altered. To determine how the agent interacts with an unfamiliar environment, a trained
smallGrid agent is tested on six variants of smallGrid, as shown in Figure 9. Note that the
map used during training and testing must have identical map dimensions, as the sprites? sizes
would change, which would disadvantage the network.

6 Results and Discussion

6.1 Exploration Phase

Figures 10 and 11 show results from training in 506Pacman using default and minimax ghost
AT respective, Figure 12 shows the results obtained from training in smallGrid, Figure 13 show
the training losses for training in the two maps and Figure 14 shows the training loss when
using DQN with proportional-based prioritization. In particular, the metrics are plotted either
against training games or training epochs, where a single epoch corresponds to one neural
network batch update in the algorithms.

From Figures 10(a), 10(b), 11(a), and 11(b), a gradual increase in average score and win rate
is observed, indicating that the agent does perform learning during training. This can be
confirmed in Figures 10(c) and 11(c), where the maximum Q value converges to a value close to
10 during training. During training, DQN won 6330 and 6141 out of 7000 games, ie. a win rate
of 90.4% and 87.7%, in 506Pacman with default and Minimax ghost behaviour respectively.
The amount of training steps taken were around 16000-17000, taking approximately 3-4 hours
to train. During testing, DQN won 455 and 451 out of 500 games (91% win rate) for default
and ghost Al repectively. These scores are lower than the win rate of a Minimax or Expectimax
agent in 506Pacman, which achieved over 98% win rate for both ghost behaviors, implying that
the policy attained by DQN is not optimal.

It is interesting to note that by analysing the ) values obtained with the image in Figure 7 as
input, it is observed that the action corresponding to the maximum Q value in 10(d) and 11(d)
is south, which is consistent with what a human player would do, since moving south in the
map would increase Pacman’s distance from the ghost and decrease Pacman’s distance from
the dot.

In addition, Figure 12 shows the results obtained from running DQN in smallGrid. Similar to
506Pacman, Figures 11(a) and 11(b) show an increase in average score and win rate respectively,
which also shows that the agent has converged to a winning strategy in smallGrid. In particular,
4007 out of 5000 games (80.4%) was achieved during training, and 891 out of 1000 games (89.1%)
was achieved during testing. This is in contrast to the results of the feature extraction DQN
implementation from [32], where 1267 out of 5000 and 499/1000 games were won during training
and testing respectively. From the results above, it can be concluded that . The explanation
for such an observation may be due to extra information encoded by the input pixel image that
is not conveyed via feature extraction, such as the direction that Pacman is facing, thereby
allowing better policies to be made.

23



=200 1

—400

Score
S 8
o 8 8
Win %
N = o ®
3 ] 3 g

-

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Game Game

—600

(a) Average scores during training  (b) Win percentage during training

Jm

Max Q-Value
T
n o & 8 w o b o
Start Q-Value
° ~ - > @

6 20‘00 40‘00 50'00 BDI()O 10600 12600 14600 15600 NO;’th SO\‘lth Ea‘st Wést St‘np
Epoch
(c¢) max Q values for a specific start (d) start Q values
state during training from map in Figure 7

Figure 10: Deep Q Networks training results with default ghost Al in 506Pacman

80+
400 4
200 60
o 8
§ O £
2 404
=200
20
—400
[

—600 T T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Game Game

.

(a) Average scores during training  (b) Win percentage during training

g

Max Q-Value

L e a2 o e B
Start Q-Value

L b o v s e

6 2560 5060 7560 10600 12 500 15600 17%00 NO‘I’th SO\‘lth EE‘S( Wést St‘n ]
Epoch
(c) max Q values for a specific start (d) Last training game’s
state during training start Q values

Figure 11: Deep Q Networks training results with minimax ghost Al in 506Pacman

24



=200 1

—400

—600 T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Game Game

(a) Average scores during training  (b) Win percentage during training

Figure 12: Deep Q Networks training results with default ghost Al in 506Pacman

Figure 13(a), 13(b) and 13(c) show the training losses during training in smallGrid and
506Pacman. All three figures show a decline in training losses, indicating learning performed
by the agent. However, it is worthwhile to note that the decline stops with training loss at
around 1072, indicating that the agent does not converge to an optimal policy. The training
loss not converging to zero may be an indication of the CNN either under-fitting. As a re-
sult, further hyper-parameter tuning may be required in order to further improve the agent’s
performance.

[ 2000 4000 6000 8000 10000 12000 14000 16000 [ 2500 5000 7500 10000 12500 15000 17500
Epoch Epoch

(a) Training loss in 506Pacman  (b) Training loss in 506Pacman
with default ghost behavior with default ghost behavior

o 20000 40000 60000 80000
Epoch

(c) Training loss in smallGrid

Figure 13: Deep QQ Networks training losses in Pacman

25



Apart from performing the aforementioned experiments, there were many preliminary experi-
mentation performed during the process. In particular, there were also attempts to use Double
DQN and Duel DQN, as well as combination of the DQN variants in playing 506 Pacman. How-
ever, the subsequent results indicated that the agent often scored below -550 after training for
approximately 1000 games, indicating that the agent learned how to avoid the ghost but did
not learn to eat the dot in order to win the game. This may be likely due to the CNN having
trouble distinguishing between the ghost and dot sprite. It is also observed that the use of
prioritized experience replay leads to a faster reduction in training loss, as well as a substantial
decrease in training loss to the magnitude of 1075, as shown in Figure 14. Moreover, testing
of the resulting agent results in a 96% win rate, which agrees with the. Therefore, it can be
concluded that DQN with proportional-based PER leads to a better agent than DQN, which
is in line with the literature [6].

Loss

Figure 14: Training loss of DQN with proporitional-based PER in 506Pacman for
6000 games

6.2 Implementation Phase

Figure 15 shows the results obtained after training for 10000 games on 506 Pacman using random
ghost Al. From Figure 15, it can be seen that the agent has converged to a policy to a score over
500 (Figure 15(a)). Figures 15(b), 15(c) and 15(d) shows that the policy is converging, although
the loss function (Figure 15(c))) shows that the convergence is not complete. Nevertheless,
during testing, the agent obtains an average score of 507.67 and a win rate of 100%, indicating
an optimal policy is attained. It is interesting to note that the policy converges early on after
approximately 4000 games, but still makes errors infrequently (see figure (b)).

Figure 16 shows the data obtained after training for 4000 games on smallGrid using random
ghost Al. As shown in Figure 16(e), the Q value function has not converged yet, indicating
that the agent has not completed learning. As a result, during testing, the agent attains an
average score of -21.35 and 48% win rate. During testing, a spike in number of states visited was
observed at around epoch 40000, which is likely due to the agent being able to consistently eat
one dot in the map (see Figure 7?). Similar to 506Pacman, informal experimentation suggests
that the converged agent will attain 100% after approximately 7000 games, although testing
has yet to be done due to time limitaiton.

Figure 17 shows the data obtained after training 2500 games on mediumGrid using random

Ghost AI. The agent is able to converge to an optimal policy, attaining 478.34 and 95.2%
win rate during testing (see Figure 17(b)). Similar to the previous two maps, the Q value

26



Score
o

=200 -200

—400 —400

-600 -600

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Game Game

(a) Raw scores (b) Moving average

L

Max Q-Value
o
n

0 1000 2000 3000 4000 5000 0 5000 10000 15000 20000 25000 30000
Epoch Epoch

(¢) Training loss (d) max Q values for the image in
Figure 7 during training

Figure 15: Results obtained from playing 506Pacman with random ghost Al for
10000 games

function converges (see Figures 17(c) and 17(d)), but not completely yet. Upon informal
experimentation, it was noted that an agent with 100% win rate can be attained by training
for at least 7000 games.

Figure 18 shows the data obtained after training 1000 games on smallClassic using random
Ghost AL It can be observed that the agent has reached a suboptimal policy (see Figures 18(a)
and18(b) ) even though the training loss and @ value functions appear to have converged (see
Figures 18(c) and 18(d) ) . During testing, the average score and win rate obtained are -261.84
and 0% respectively. A reason for the long time taken for the agent’s policy to converge is due
to the large number of dots on the map. Such a large amount forces the agent to perform to
perform implicit path planning, which DQN and its variants are not very good at currently

[9].

In summary, although Combined DQN is able to attain high scores and win rates in general,
the number of steps taken to attain such a result increases substantially as the map difficulty
increases.

In general, the training weights associated with noise decreases as the agent learns (see Figure
19). However, the weights do not decrease to a value near zero even after an optimal policy is
attained in the respective maps. This means that the policy relies on a degree of randomness
even after an optimal policy was attained. Alternatively, the non-zero weights could be due to
the fact that the amount of noise does not affect which action the agent chooses.

27



Score
)
o

-200 -200

—400 -400

—600

T T T v v T —600 T v v v v v
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Game Game

(a) Raw scores (b) Moving average

Max Q-Value

0 2000 4000 6000 8000 10000 12000 14000 0 10000 20000 30000 40000 50000 60000
Epoch Epoch

(¢) Training loss (d) max Q values for the map’s start
game state

800

» @
= 2
S 3

Num States Visited

N
]
S

0 10000 20000 30000 40000 50000 60000
Epoch

(e) max Q values for the map’s start
game state

Figure 16: Results obtained from playing smallGrid with random ghost Al for
5000 games

6.2.1 Generalization

To investigate the extent to which trained agents can generalize, some trained agents from the
previous part were tested on maps with different conditions. Table 8 shows the win rate and
average score after testing a 506Pacman Combined DQN agent on a 506Pacman map with
either random, direct, Minimax or Expectimax ghost behavior. In particular, it is observed
that changing the ghost behavior does not hurt the agent?s performance substantially. The
consistent high win rate is likely due to the random ghost AI, which promotes the agent to pick
an action based on the worst-case move that the ghost could pick. As a result, this phenomenon
prevents the agent from losing games even if the ghost acts more aggressively.

Table 9 shows how the agent’s performance is affected from increasing the number of dots in

28



-200

—400

T T T T T T —600 T T v T v y
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Game Game

(a) Raw scores (b) Moving average

L
Max Q-Value

-0.5

0 2000 4000 6000 8000 0 10000 20000 30000 40000
Epoch Epoch

(¢) Training loss (d) max Q values for the map’s start
game state

Figure 17: Results obtained from playing mediumGrid with random ghost Al for
5000 games

Table 8: Win rate and average score obtained after running a trained 506Pacman
agent using different ghost Als in 506Pacman.

Ghost Al Win Rate (%) | Average Score
random 100 507.67
direct 100 507.52
Minimax 100 507.27
Expectimax | 100 507.60

the 506Pacman map. In general, the win rate and average score decreases as the number of
dots increases. The main reason to this is likely because Pacman did not learn to perform path
finding during training, which leads it to act impulsively during testing.

Table 10 shows the results obtained from running a smallGrid agent on variations of the small-
Grid map. In general, the performance is quite poor, although maps containing characteristics
that resemble the original map tend to have higher scores and win rates. In particular, the
agent in the first map only eats one dot, and even gets stuck in the lower left corner of the map
in the third variant. From such observations, it appears that the policy attained from training
on one map only is unable to generalize to unfamiliar situations.

29



600

400

200

=200

-400

600

400

200

_400m

400 600 800 1000 0 200 400 600 800 1000
Game Game

(a) Raw scores (b) Moving average

10°

Max Q-Value

0 1000

2000 3000 4000 5000 6000 7000 _0 5000 10000 15000 20000 25000 30000 35000 40000
Epoch Epoch

(¢) Training loss (d) max Q values for the map’s start

game state

Figure 18: Results obtained from playing smallClassic with random ghost Al for

10000 games

Table 9: Win rate and average score obtained after running a trained 506Pacman
agent in 506Pacman containing different number of dots.

Number of dots | Win Rate (%) | Average Score
2 93.4 448.18
3 85.6 375.96
4 82.4 351.06
> 68.8 217.56
6 60.2 135.32

6.3 Limitation

**hyperparameter tuning completed **bottleneck on computation instead of Pacman API now

and Difficulties Encountered

( eg. computation of target values for training)

Several difficulties were encountered during implementation and experimentation of the algo-
rithms used in this paper. In particular, it was challenging to optimize the algorithms, since
there seems to be no fast and systematic method of optimizing the hyperparameters for the
above algorithms. This was especially the case for tuning epsilon since a balance between
exploration and exploitation is required in order for the reinforcement agents to learn. Since
hand optimization of hyperparameters is expensive and time consuming, the project progress
was slowed by a significant amount. Since little literature regarding this issue has been read,

this problem may have to be addressed in the future through further literature search.

30



0.022 0.022

, 0.021 » 0.020
] ]

s
0.020

Valut

0.018

o
0.019 0.016

f Noisy Weight
f Noisy Weight Valu

-]
5 0.018 S 0.014

5

Sum
Sum

0.017
0.012

0.016

0.010

0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000 12000 14000
Epoch Epoch

(a) smallGrid (b) Moving average

0.022

0.020

0.018

0.016

0.014

0.012

m of Noisy Weight Values

S
“ 0.010

0.008

0.006

0 2000 4000 6000 8000
Epoch

(c¢) Training loss

Figure 19: Sum of noisy training parameters during training in 506Pacman,
smallGrid and mediumGrid. No data was gathered due to the policy having 0%
win rate for smallClassic.

Table 10: Results from testing smallGrid agent on different variants of smallGrid

Variant win rate | average score
smallGrid_varl | 0 -510.41
smallGrid_var2 | 42 -82.37
smallGrid_var3 | 0 -510.37
smallGrid_var4 | 34 -159.46
smallGrid_varb | 0 -481.46
smallGrid_var6 | 0 -492.92

Apart from hyperparameter tuning, another problem was that the values of the hyperparam-
eters were dependent on the map being played. As a result, only two map was studied thus
far. Nevertheless, similar experiments involving much larger maps with more ghosts are to be
performed at a later stage in the exploration phase.

In terms of limitations of the algorithms, one of the problems is that an increase the state-action
space causes the deep reinforcement learning agent to take longer to converge to an optimal
policy. Such a characteristic of deep reinforcement learning algorithms can be problematic, due
to time and resource constraints. Even when a GPU is used, training time can still be lengthy
due to image drawing and processing being the bottleneck. As a result, further investigations
regarding such bottleneck may be required in order to minimize the use of computational
resource and time in the future. One possible way to do this would be to parallize to, although
a thread-safe implementation of DQN or Combined DQN would be rather tricky.

31



Numerous technical problems appeared when implementing the algorithms. One such issue
was that the provided Pacman software did not provide a direct API method for observing the
visual output of a game state. As a result, unexpected time was spent on implementing such
a feature in addition to the original software, which slowed the project’s progress by a small
amount.

Another challenge was on the mechanism when handling illegal moves. Since the Pacman API
does not accept illegal moves, the algorithms were programmed so that any illegal action would
cause Pacman to execute the stop action. Nonetheless, the intended action that Pacman wanted
to take is recorded in the experience replay buffer so that the action taken was propagated back
to the associated nodes in the network.

7 Future Work

In view of the major obstacle being the inability for the deep reinforcement learning agent to
approach 100% win rate, the next step of the project involves the modification of the existing
implementation to mitigate this issue. For example, additional experiments may be devised
in order to determine the impact of neural architecture on DQN for a better understanding of
the optimal architecture to use in deep reinforcement learning. Apart from tackling with the
problems previously mentioned, various benchmark algorithms may also be explored in order
to better compare experimental results obtained. Lastly, experiments conducted in this paper
will also be repeated with Pacman maps of higher complexity in order to better compare the
computational differences between the studied deep reinforcement learning techniques.

Since the survey of deep reinforcement learning algorithms on different games is still incomplete,
it is rather difficult to plan in a detailed manner in the exploration phase. Nevertheless, it is
projected with a high probability that the project will do some kind of Al agent implementation
in either Minecraft or StarCraft, since Microsoft and Deepmind have respectively provided an
API for programmers to create agents in these games as part of an initiative to encourage

community implementation and exploration of deep reinforcement learning through such games
27, 28].

There are many things that can be done for this project. First, the DQN agents developed
in this project are unable to play large-sized maps, such as the originalClassic map in Ms.
Pacman. In addition, the current agents have the limitation of only being able to play in
maps of the same size as that during training due to a fixed input in the CNN. As a result, it
would be interesting to see whether a general Pacman agent can be developed that can play
maps of varying sizes. Lastly, one limitation of current DQN algorithms is that the agent lacks
imagination or curiosity, which may help in ameliorating the agent in exploring the map to find
rewards that are more sparse.

The project is completed, and is summarized in Table 11, where bold items represent strict
deadlines and deliverables. Note that significant amendments were made over the course of
the project in view of the change of the project’s scope to narrow the project’s scope to only
consider DQN and its variants. In terms of met deadlines, all items up to Apr 15, 2017 are
currently completed.

32



Table 11: Project Schedule

Date Task
Preliminary Research
e Perform preliminary literature research on existing games that use
Early . . . .
reinforcement learning and deep learning techniques.
October . . . . : . .
2017 e Experiment with various classic RL methods, including policy
iteration, value iteration and tabular Q-Learning
October 1, | Phase 1 Deliverables (Inception): Project Scheme, Detailed
2017 Project Plan
Mid Stage 1: Algorithmic Exploration
e Implement and evaluate the performance of DQN in Pacman
October . :
9017 e Read up on variants of DQN algorithm
October 31 e Read up on variants of DQN algorithm
e Implement DDQN, Duel DQN and DQN with proportional-based
2017
PER
Nol\grcllber e Implement the 506Pacman map
;O 17 e Experiment with DRL algorithms in different Pacman maps
December e Train and Test DQN and its variants on 506Pacman and establish
2017 results
January . .
92, 2018 First Presentation
January | Phase 2 Deliverables (Elaboration): Pacman RL
29, 2018 | Implementations, Interim Report
Jan Stage 2: RL implementation and Optimization
_ April e Improve upon existing reinforcement learning algorithms
92018 e Play on larger Pacman maps
April 15, | Phase 3 (Construction): Game RL Implementation, Final
2018 Report
April 19, . .
2018 Final Presentation
May 2, . oy s
2018 Project Exhibition

33




8 Conclusion

This project aims to explore the applicability of deep reinforcement learning methods in the
context of playing games. Starting with an implementation of DQN in the exploration phase,
the project saw success in attaining a high score and win rate in the simple map 506Pacman.
However, it was determined that the current paper’s DQN implementation is not optimal,
and further work is required to determine whether it can be further improved. In terms of
network architecture, it was confirmed that the use of an end-to-end CNN architecture is more
advantageous than the use of feature extraction and a CNN in the context of smallGrid. Several
observations were also made, leading to additional motivation to improve the use of algorithms
such as DDQN and DuelDQN in Pacman. Nevertheless, the exploration phase saw development
of Combined DQN, which led to significantly better

Despite of the limited selection of techniques and games explored in this paper, steps are to
be taken in order to explore other techniques and tricks that ameliorate learning of a task in a
wide variety of games, such as Atari 2600 games, in the exploration phase. This is an important
part of the project in view of the rapid progress in the field, which could easily render previous
surveys outdated. With proper comparisons and investigation completed in the future, the
implementation phase will subsequently use the results to make informed decisions on the
selection of algorithms to use and apply in a sophisticated video game or to gain insight on
drawbacks of existing algorithms and subsequently improvements to them.

9 References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction. MIT Press,
1998.

[2] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for
deep reinforcement learning,” CoRR, vol. abs/1511.06581, 2015. [Online|. Available:
http://arxiv.org/abs/1511.06581

[3] (2017, Oct). [Online]. Available: http://ai.berkeley.edu/reinforcement.html

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529-533, 02 2015. [Online|. Available: http://dx.doi.org/10.1038 /naturel14236

[5] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double g-learning,” CoRR, vol. abs/1509.06461, 2015. [Online]. Available: http:
//arxiv.org/abs/1509.06461

[6] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” CoRR,
vol. abs/1511.05952, 2015. [Online]. Available: http://arxiv.org/abs/1511.05952

34



[7]

[10]

[11]

[12]

[19]

[20]

W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional reinforcement
learning with quantile regression,” CoRR, vol. abs/1710.10044, 2017. [Online]. Available:
http://arxiv.org/abs/1710.10044

M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, “Noisy networks for exploration,”
CoRR, vol. abs/1706.10295, 2017. [Online]. Available: http://arxiv.org/abs/1706.10295

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow: Combining improvements
in deep reinforcement learning,” CoRR, vol. abs/1710.02298, 2017. [Online]. Available:
http://arxiv.org/abs/1710.02298

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

G. Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement learning,”
CoRR, vol. abs/1609.05521, 2016. [Online|. Available: http://arxiv.org/abs/1609.05521

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” in NIPS Deep Learning Work-
shop, 2013.

G. Tesauro, “Temporal difference learning and td-gammon,” Commun. ACM, vol. 38, no. 3,
pp. 5868, Mar. 1995. [Online|. Available: http://doi.acm.org/10.1145/203330.203343

M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective
on reinforcement learning,” CoRR, vol. abs/1707.06887, 2017. [Online|. Available:
http://arxiv.org/abs/1707.06887

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,
“Unifying count-based exploration and intrinsic motivation,” CoRR, vol. abs/1606.01868,
2016. [Online]. Available: http://arxiv.org/abs/1606.01868

M. J. Hausknecht and P. Stone, “Deep recurrent g-learning for partially observable mdps,”
CoRR, vol. abs/1507.06527, 2015. [Online]. Available: http://arxiv.org/abs/1507.06527

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,
no. 8, pp. 1735-1780, Nov. 1997. [Online]. Available: http://dx.doi.org/10.1162/neco.
1997.9.8.1735

B. O’Donoghue, I. Osband, R. Munos, and V. Mnih, “The uncertainty bellman
equation and exploration,” CoRR, vol. abs/1709.05380, 2017. [Online]. Available:
http://arxiv.org/abs/1709.05380

F. S. He, Y. Liu, A. G. Schwing, and J. Peng, “Learning to play in a day: Faster
deep reinforcement learning by optimality tightening,” CoRR, vol. abs/1611.01606, 2016.
[Online|. Available: http://arxiv.org/abs/1611.01606

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and

35



[21]

[22]

[23]

[24]

[26]

[27]

[29]

[30]

[31]

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” CoRR, vol.
abs/1602.01783, 2016. [Online|. Available: http://arxiv.org/abs/1602.01783

Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas,
“Sample efficient actor-critic with experience replay,” CoRR, vol. abs/1611.01224, 2016.
[Online|. Available: http://arxiv.org/abs/1611.01224

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR, vol.
abs/1509.02971, 2015. [Online]. Available: http://arxiv.org/abs/1509.02971

J.  Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” CoRR, vol. abs/1502.05477, 2015. [Online]. Available:
http://arxiv.org/abs/1502.05477

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and

D. Hassabis, “Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484-489, January 2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go without
human knowledge,” Nature, vol. 550, pp. 354 EP — 10 2017. [Online]. Available:
http://dx.doi.org/10.1038 /nature24270

M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The malmo platform for artificial
intelligence experimentation,” in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
2016, pp. 4246-4247. [Online]. Available: http://www.ijcai.org/Abstract/16,/643

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Kiittler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen, K. Simonyan,
T. Schaul, H. van Hasselt, D. Silver, T. P. Lillicrap, K. Calderone, P. Keet, A. Brunasso,
D. Lawrence, A. Ekermo, J. Repp, and R. Tsing, “Starcraft II: A new challenge
for reinforcement learning,” CoRR, vol. abs/1708.04782, 2017. [Online]. Available:
http://arxiv.org/abs/1708.04782

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540, 2016. [Online]. Available:
http://arxiv.org/abs/1606.01540

F. Chollet et al., “Keras,” https://github.com/fchollet /keras, 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

36



A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[32] T. van der Ouderaa, “Deep reinforcement learning in pac-man,” 2016.

37



