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Abstract 

Diagnostic microscopy is currently used for the diagnosis of many common infections 

including bacterial vaginosis and malaria, but the dependence of diagnostic microscopy on 

human expertise limits its availability. Recent attempts of using machine learning algorithms 

in the development of automated diagnostic tools have been successful. In this project, three 

prototypes of a diagnostic system for bacterial vaginosis were developed using a number of 

computer vision and machine learning algorithms. The best performing prototype has an 

accuracy of 71.4% in correctly identifying the degree of infection and an accuracy of 85.7% 

in identifying the Nugent Score within an error margin of 2. A deployable version of the 

diagnostic system was developed, which can be used as the starting point for developing a 

robust and professional diagnostic system. 
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 Introduction 

1.1. Background 

Bacterial infection is a common medical condition in humans, and several pathogens were 

found to be responsible for the development of malignant tumours [1]. Bacterial vaginosis 

(BV), one of the most common bacterial infections found in women at reproductive age, was 

estimated to affect tens of millions of people in the United States of America alone [2]. The 

prevalence of this infection varies by countries and can be as high as 50% [1]. Studies have 

also shown that this infection increases the risks of being infected with human 

immunodeficiency virus (HIV) [1], [3]. The Nugent Score System [4], which involves the 

investigation of Gram-stained vaginal smears from patients, is considered to be the gold 

standard in diagnosing bacterial vaginosis [1], [5], [6]. In addition, diagnostic microscopy is 

also the main diagnostic method for parasitic infections, including Malaria, in major hospitals 

[7], [8]. 

 

1.2. Motivation 

Diagnostic microscopy, however, requires a considerable amount of training and skills, where 

the accuracy of the diagnosis often depends on the experience level of the microscopist [6], 

[9]. Furthermore, it could be time-consuming since it involves human diagnosis, and hence 

could be expensive for patients. In the light of the prevalence and consequences of 

aforementioned infections, an automated process could reduce the dependency on human 

expertise and provide a more affordable way to perform diagnosis. 

Attempts in applying machine learning techniques to the diagnosis of several common 

infections have been successful with a high level of performance [10]. However, an 

automated system for the diagnosis of bacterial vaginosis based on patients’ smears is still not 

available. 
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1.3.  Objectives 

This project aimed to explore the possibilities in employing machine learning and computer 

vision techniques in diagnostic microscopy. An automated diagnosis system for bacterial 

vaginosis was developed, such that the time and cost of bacterial vaginosis diagnosis could be 

reduced. 

In addition, an analysis on the development process, especially in terms of limitations of 

applying machine learning and computer vision techniques in medical contexts was explored, 

such that this project can be used as a guideline for future projects using similar techniques. 

 

1.4. Scope 

The project consists of two main components. First, an automated diagnostic tool which 

estimates the degree of infection based on a blood smear image, with a simple interface was 

developed. The auxiliary data collection tool, which facilitated the collection of detailed 

information of blood smear images, was also developed. This project did not directly involve 

the acquisition of blood smear images from patients nor the labelling process, where data 

were provided by the medical experts from the Li Ka Shing Faculty of Medicine, the 

University of Hong Kong, and other publicly available sources. Second, a report on 

development process and limitations of applying machine learning techniques in diagnostic 

microscopy was produced.  

 

1.5. Related Works 

A number of recent studies have made use of computer vision and machine learning 

techniques on diagnostic microscopy. In particular, Quinn et al. [10] explored the use of 

convolutional neural networks (a machine learning algorithm) in detecting several infections 

including tuberculosis and hookworm. The detection tools were successfully developed with 

high accuracy. Kraus et al. [11] combined convolutional neural networks and image 

segmentation with multiple instance learning in classifying segmented images only using 

high-level annotations for the entire image. These studies showed that deep learning 

techniques had a range of advantages in diagnostic microscopy and demonstrated significant 

improvements over traditional techniques. 
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1.6. Outline of the report 

The remainder of this report starts by outlining the major deliverables of the project, followed 

by the methodologies employed in the development of the deliverables. The results including 

the performance of the detection tools are then given. Major difficulties encountered and 

mitigation strategies in the development process are elaborated in the next section, followed 

by a conclusion at the end. 
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 Outline of Deliverables 

2.1. Data collection tool 

A simple auxiliary tool, Clicklable (see Section 3.3.3 for detailed information), for labelling 

the microscopic images was developed to facilitate detailed data labelling. Data labelling is 

an essential step for supervised machine learning, where known truths about input data are 

annotated with the expected output and these input / output pairs are then used to train 

machine learning models. This tool facilitates this process by allowing the user to load a 

blood smear image and perform labelling by clicking and dragging using a pointer device to 

mark regions where bacteria are present. The labelled points are visualized with a shape 

around it, and high level of customization can be done. The aim is to reduce the time required 

for labelling the images, as well as to tailor the data representation. 

 

2.2. Automated diagnostic system for bacterial vaginosis 

The main objective of this project is to develop an automated diagnostic system for bacterial 

vaginosis with desirable accuracy. Most of the components will be written in Python, and a 

simple user interface is developed. A trained classifier will be the core component of this 

system, with other processing modules supporting the overall flow of the system, including 

image processing, segmentation and interpretation tools. This system will allow the user to 

select images and get predictions on the degree of infection. 

In this project, three diagnostic system prototypes were developed with different sets of data, 

machine learning algorithms and model architecture. The three prototypes have different 

performances and resources requirement, and the final prototype with the highest accuracy is 

deployed as the automated diagnostic tool. 
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 Methodology 

3.1. Overview 

In this project, an auxiliary image labelling tool was first produced. Images annotated with 

positions and types of bacteria, as well as the overall degree of infection by medical experts 

were then obtained. 

Table 1. The Nugent Scoring system [4] 

 Score 

Average Abundance 

per oil immersion field 

(1000X magnification) 

Lactobacillus 

morphotypes 

Gardnerella and 

Bacteroides 

morphotypes 

Curved Gram-variable 

rods 

0 4 0 0 

< 1 3 1 1 

1 – 4 2 2 1 

5 – 30 1 3 2 

> 30 0 4 2 

 

The degree of infection is evaluated according to the Nugent Scoring system [4] (see Table 

1), which is based on the average density of three types of bacteria present in the smear: 

Lactobacillus morphotypes (scored 0 – 4), Gardnerella and Bacteroides morphotypes (scored 

0 – 4), and Curved Gram-variable rods (0 – 2).  

Table 2. The interpretation of the Nugent Score [4] 

Total Score Interpretation 

0 – 3 Normal 

4 – 6 Intermediate 

7 – 10 Bacterial vaginosis infection 

 

The three scores for each type of bacteria is then summed to a score ranging from 0 to 10, 

which indicates the overall degree of infection (see Table 2). 
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After data collection, the development of an automated classification tool using machine 

learning typically involves the stages of pre-processing, segmentation, training and 

evaluation. The images are first pre-processed and segmented [12], and the segmented areas 

are then used as training data as well as testing data for the classification task. An evaluation 

of the performance of the classification task is carried out afterwards. These require both 

hardware and software support. The aim is to develop a machine learning model with high 

accuracy in estimating the degree of infection by examining a blood smear image. 

 

3.2. Prerequisites 

3.2.1. Hardware 

The access to GPUs (Graphical Processing Units) will be required for training machine 

learning models. GPUs are optimized for parallel computations, and the nature of machine 

learning model training, which typically involves a large number of mathematical 

computations, is highly parallelizable and hence, can be completed in much shorter time 

using GPUs [13]. 

 

3.2.2. Software 

Machine learning, computer vision and graphics libraries will be required in order to 

eliminate the time spent in developing such tools and to focus on the development of the 

diagnostic tool. A number of widely available libraries including Torch [14], Tensorflow [15] 

and Keras [16] are identified. Torch [14], a library implemented in the programming 

language Lua, was used in the first phase of the project because the auxiliary programs, 

which act as the interface between the machine learning training process and the GPUs 

available in the Department of Computer Science, are available from previous projects and 

using them could allow fast prototyping. Tensorflow [15] and Keras [16], libraries 

implemented in the programming language Python, were used in the development of the 

second and final prototypes because of the widely available resources including pre-trained 

machine learning models, tutorials and cloud computing platform support.  
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3.3. Data Collection 

The collection of data is essential for the development of a classification system using 

machine learning methods, where these data are used for both developing and testing the 

system. Furthermore, the quality of data for training machine learning models has significant 

effects on the performance of the models [17]. Therefore, in order to achieve satisfactory 

performance, a tailored dataset is needed for this project. External sources of data tend to be 

limited in many ways, including the quantity of data, the variations among data, and the 

difficulty in combining different sources of data. The collaboration with the Li Ka Shing 

Faculty of Medicine, the University of Hong Kong, enabled efficient communication, the 

production of a tailored dataset for the project, as well as the possibility of obtaining original, 

unaltered data.  

For supervised learning algorithms, data can be separated into two components: the input 

dataset, which consists of data to be given to the models, and the corresponding output 

dataset, which consists of facts known about the corresponding input data [18]. In this 

project, the input dataset consists of a mix of anonymised vaginal smear images collected 

from patients and bacterial colony images, and the output dataset consists of the detailed 

locations and types of bacteria, as well as the overall degrees of infection for vaginal smear 

images. 

  



Classification for Pathological Images Using Machine Learning Final Report 

Page 18 of 57 

3.3.1. Smear Images 

 

Figure 1. A Gram-stained vaginal smear 

Images of Gram-stained vaginal smears (see Figure 1) of varying degrees of bacterial 

vaginosis infection were provided by the medical experts from the University of Hong Kong, 

where the images were anonymised and collected with the consent from the patients.  

 

Figure 2. A Gram-stained bacterial colony smear 

In addition, images of bacterial colonies (see Figure 2) were also obtained. Both types of 

images are collected to mitigate the shortcomings typically found in each type of images. 

Vaginal smear images are used in the actual diagnosis of infection by the medical 

professionals, and hence accurately capture the environment where the bacteria are found in 
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the human body. However, according to the feedback from the microscopists, many of the 

bacteria present in the smear images cannot be accurately identified by observing the images 

alone, due to the fact that some of the bacteria may share similar shapes and morphologies at 

different stages. On the other hand, although the bacterial colony images might not accurately 

capture the morphologies of the bacteria found in human body fluids, the purity of the 

specimen provides a guarantee on the type of bacteria that is present in these images. Hence, 

these two types of images are used in conjunction to achieve higher performance. 

 

3.3.2. High-level Interpretation of Images 

In order to develop an automated diagnostic tool, information about the images, including the 

degree of infection of the patient, is necessary. The high-level interpretations of the images 

including the Nugent Score and the overall degree of infection are usually readily available 

because they are usually recorded during diagnosis. 

 

3.3.3.  Detailed Labelling of Images and the tool Clicklable 

However, the detailed labelling of the images, which includes the locations and types of 

bacteria of individual bacteria is usually not recorded due to the high amount of extra effort 

required.  

  

Figure 3. The main user-interface of the data collection tool, Clicklable. 

Hence, the aforementioned software, Clicklable (see Figure 3), was developed to facilitate 

the annotation.  
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 User Interface of Clicklable 

The tool Clicklable allows the medical professionals to load smear images previously 

captured and annotate the image by clicking and dragging on the locations of individual 

bacteria. There are two modes for labelling available: one is for marking point locations and 

the other is for annotating bounding box locations. Each annotated point location has a shape 

around it (for example, the red circle which can be at the top centre of Figure 3), and each 

annotated bounding box has the corresponding rectangular box drawn on the image.  

Furthermore, a number of functionalities are implemented to 

enhance the user experience. When the user moves the 

cursor close to an annotation, the corresponding annotation 

is automatically highlighted (as seen by a semi-transparent 

white circle around the point, see Figure 3). A popup menu 

is shown when the user right-clicks on the annotation, and 

information about the annotation is shown (see Figure 4, 

where the location and the type of bacteria are shown as the 

first two items of the menu), together with functionalities to 

make changes to the label.  

 

Figure 5. Annotation settings in Clicklable 

In addition, the user-interface elements are highly customisable, where the user can choose 

the shape, fill and background colours, sizes of the annotations, by changing the 

corresponding settings (see Figure 5).  

These functions allow the user to customise the tool to fit their needs. 

Figure 4. The popup menu in Clicklable 
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Figure 6. The “File” menu with options to export the data in Clicklable 

The data recorded by the tool can be easily exported to a single data file to facilitate data 

transferral (see Figure 6). 

 

 Supporting technologies in Clicklable 

In order to ensure the usability and reliability of the software, various technologies are used 

in the development of Clicklable. 

Firstly, Java is the major programming language used in the development of Clicklable. 

Although it requires an installation of the Java Runtime Environment, it is widely available 

(over 15 billion devices run Java software [19]) and it is independent of the underlying 

operating system that it is running. This reduces difficulties in distributing this tool to 

different platforms and also lowers development time. 

Secondly, all the data are stored in a database using a Structured Query Language (SQL) 

database engine, SQLite. SQLite is a reliable database engine which is resilient against 

failure and relatively light-weight [20]. Since the data stored in Clicklable are simple (only 

annotation and basic file information), the small amount of extra resources required, and the 

robustness of the engine are very desirable features. 

 

3.4. Image Processing 

After the collection of data, different image processing techniques will be employed to reduce 

the variations between training samples and hence to increase the reliability of the machine 

learning models. This involves the pre-processing stage and the segmentation stage. 
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3.4.1. Pre-processing 

In this stage, variations between images due to different background lighting, degrees of 

staining and image acquisition techniques are calibrated.  

 

Figure 7. An example of convolution on an image with a Sobel filter [21] 

Noises in images can often be effectively removed by applying spatial filtering, a computer 

vision technique which involves the convolution (also known as filtering) of the image with a 

kernel, a weighted matrix (see Figure 7). The convolution of an image f with kernel (also 

called convolution filter) g is defined on the set of real numbers as [22]: 

(𝑓 ∗ 𝑔)[m, n] = ∑ ∑ 𝑓[

𝑙𝑘

m − 𝑘, n − 𝑙 ] g [𝑘, 𝑙]  

The convolution operation combines the values of the neighbourhood of each pixel in the 

image. For example, as shown in Figure 6, the highlighted region around the source pixel, is 

convoluted with the convolution filter to obtain the destination pixel. The calculation is done 

by multiplying each value in the source region with the corresponding value in the filter, 

followed by a summation operation (as shown in the top-right corner of Figure 6). This is 

similar to perceiving an image at a distance, where the information of individual details is not 

directly perceivable, but rather the general information in an area. The size of the kernel as 

well as the weights of the kernel are adjusted for different uses. In particular, Gaussian filters 
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are commonly used for reducing noises before edge detection [23]. 

Level of illumination, on the other hand, can be effectively calibrated by subtracting an 

empty film (control image) [12], thresholding or analysing the histogram and apply histogram 

transformation.  

Finally, the variations in the scales of images, if not handled properly, could result in 

meaningless estimations from the model due to that fact that the morphology, in particular, 

the length of bacteria is important in identifying the identity. This can be resolved when the 

magnification of the microscope is known. However, if the information is not available, it is 

possible to rely on the assumption that healthy human red blood cells and platelets have 

similar sizes and a more advanced technique called granulometric analysis [24], can be used 

to estimate the sizes of the cells and scale accordingly [12].  Different combinations of 

aforementioned techniques were applied in different prototypes according to the variations 

observed generally in the data.  

 

3.4.2. Segmentation 

Segmentation is the process of dividing the image into smaller patches of images. Two 

different segmentation strategies, namely region of interest segmentation and sliding window 

segmentation, were used in the development process of different prototypes, according to the 

classification algorithm used. 

 

 Region of interest segmentation 

   

Figure 8. The segmentation of a smear image into regions of interest 

The main goal of this segmentation strategy is to separate the images into small regions 

which contain one or more bacteria (see Figure 8). Blob detection algorithms, as well as data 
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clustering algorithms, are used for this task. In particular, Maximally stable extremal regions 

(MSER), Density-based spatial clustering of applications with noise (DBSCAN) and Otsu's 

method were used.  

MSER, proposed by Matas et al. [25], is a blob detection method which was originally 

proposed for identifying the correspondence areas or objects of images taken from different 

perspectives. This method is adaptive to a number of common transformations in images 

taken of the same objects, where the regions identified are invariant to linear transformations 

of brightness and relatively stable [25]. These are the desired properties and features of the 

method used for segmenting the smear images, such that regions identified are not easily 

affected by the variation in illumination.  

DBSCAN [26] is a data clustering algorithm which is used in identifying clusters in data 

points such that region of nearby neighbouring data points is identified as a single cluster. 

This algorithm is robust against outliers, as well as highly flexible in terms of the shapes of 

the clusters, which are applicable to the smear images. 

Otsu's method [27] is a clustering-based image thresholding algorithm which is used in the 

reduction of grey-level images into binary images. An adaptive version of the Otsu’s method 

[28] can be used to adaptively separate background from foreground and cluster 

neighbourhoods of similar intensities. It is possible to specify the typical bacteria size as the 

window size and perform flexible clustering on smear images. 

This segmentation strategy was used in both the first and the second prototypes of the project 

because the classification task is directly performed on the input images (see Section 3.5 

Direct classification). 
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 Sliding window segmentation 

 

Figure 9. Sliding window segmentation on a smear image 

This segmentation strategy aims to reduce the image size of individual image patches used 

for object detection (see Section 3.6 Detection). It involves sliding as fixed size image 

window across the entire image, cropping each patch covered by the window as a new image 

(see Figure 9).  

This segmentation strategy was used in the final prototype of the project, because the 

classification and localization tasks are combined into one learning task, and due to the 

increased complexity in the machine learning model, smaller input images allow faster 

learning and require fewer resources (see Section 3.6 Detection). 

 

3.5. Direct classification 

After the region of interest segmentation, areas of interests or local frames of the images are 

identified. A classifier which distinguishes among the target bacteria categories, namely 

Gardnerella Lactobacillus, Gardnerella and curved rods is trained. In addition, different 

techniques in determining the number of bacteria in each area of interest were explored. A 

number of machine learning algorithms including neural networks, support vector machine 

and fuzzy logic are potential candidates for developing the classifier. This project mainly 

focuses on the use of neural networks. 

 

… 

…
 

…
 

…
 

… 

… 



Classification for Pathological Images Using Machine Learning Final Report 

Page 26 of 57 

3.5.1. Artificial Neural networks 

Artificial neural network [29] is a machine 

learning algorithm, where a neural network is 

formed by combining a collection of artificial 

neurons. These artificial neurons are modelled by 

a mathematical function (see Figure 10), defined 

on the set of real numbers from inputs 

𝑥0, 𝑥1, … , 𝑥𝑖, weights 𝑤0, 𝑤1, … , 𝑤𝑖, bias 𝑏, and 

activation function 𝑓 to output 𝑦 , as [30]: 

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑖

+ 𝑏) 

This aims to model a neuron in the human 

brain (see Figure 11), the fundamental 

unit of computation of the human brain.  

 

 

 

These artificial neurons are then connected, to form an artificial neural network. They are 

separated into three groups: input, output and hidden (see Figure 12). For example, in Figure 

12, there are 3 neurons in the input layer, 4 neurons in the hidden layer and 3 neurons in the 

output layer. These nodes are interconnected such that values except for the input nodes are 

calculated based on the values of other nodes and variable parameters. Supervised learning 

for classification, where each learning sample is provided with its desired output, involves 

finding the parameters in the network such that when presented with new data, the network is 

Figure 12. A 3-layer neural network [28] 

Figure 11. The diagram of a human neuron [28] 

Figure 10. The mathematical model of a neuron 

(a node in artificial neural networks) [28] 
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able to generate desired output with high accuracy. This generalization process typically does 

not require handcrafted features or weightings of the input, where the network “learns” by 

inferring the relationship between the inputs and the outputs from the training samples. This 

significantly reduces the necessity of expertise in the related area for tailoring the important 

features. A variety of architectures have been proposed, mainly differing in how the network 

is structured, how the parameters are tuned, and what functions are used in the calculations. 

Different architectures are chosen based on the problem to solve. 

 

3.5.2. Convolutional neural networks 

Convolutional neural networks [31], a type of artificial neural networks, make use of the 

convolution operation (as presented earlier in section 3.4.1) in addition to standard linear 

operations. 

  

Figure 13. Example of a network with many convolutional layers. [32] 

A convolutional neural network for classification typically starts with the input image as the 

input nodes and subsequently applies convolutions (filtering) and sub-sampling (max 

pooling) on the values until the output layer which indicates the likelihood of being in a 

certain category is reached (see Figure 13). During training, the weights of the convolution 

filters are adjusted to fit the expected outcome. This type of architecture is very effective in 

dealing with image inputs, due to the nature of the convolution operation which uses values 

from local neighbourhoods of the image. The first pattern recognizer which achieved human-

level performance on several tasks was based on this learning method. 

Since the segmented areas are essentially a part of the image and because of the successes 

seen in other similar projects, the convolutional neural network is a strong candidate for the 

architecture of the classifier in the project.  
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3.5.3. Residual Network 

As the depth (number of layers) of artificial neural networks increases, more complex 

functions can be modelled. However, the problem of overfitting [33], where the machine 

learning model captures a function that is overly complex and does not generalize well to 

unseen data, becomes more significant as the model becomes more complex. Furthermore, as 

the complexity increases, it becomes more difficult for the model to optimize, where the 

training error and the testing error remain higher than a less complex model [34].   

Regularization [35] is a common strategy for mitigating the effects of overfitting, in which 

the model is penalised if it heavily relies on a small set of nodes. In order to combat the 

problem of high training and testing error, the residual learning framework was proposed by 

He et al. [34]. 

 

Figure 14. A shortcut connection in residual networks [34] 

The residual learning framework involves the addition of the shortcut identity connection, 

where the output from one layer is directly added to layers beyond the next layer (see Figure 

14). These connections allow layers to learn the identity mapping easily when an identity 

function is sufficient to capture the relation [34]. This is particularly useful for deep networks 

because in many cases, a deeper plain network (networks without shortcut connections) does 

not optimize as well on training as a shallower one even if the deeper network has higher 

modelling power [34], and the addition of shortcut connections helps the deep networks to 

capture a simpler function. In addition, these connections only slightly increase the 

computational complexity, which does not have a noticeable impact on training time for each 

iteration.  
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3.5.4. The network architecture of the first prototype 

The first prototype has a machine learning model consisting of 7 

convolutional layers together with 3 fully connected layers (see 

Figure 15). In Figure 15, “3x3 conv, 64” refers a convolutional 

layer with 64 filters, each of 3x3 filter size, “max pool, /2” refers to 

a maximum pooling layer with filter size 2x2, and a stride (number 

of position moved in each step) of 2, and “fc 1024” means a 

standard layer with 1024 neurons fully connected. Each 

convolutional layer is interleaved with a maximum-pooling layer, 

which is an operation also based on the convolution operation but 

only the maximum value in the filter neighbourhood is selected. A 

maximum-pooling layer with size 2x2 and stride of 2 effectively 

halves the input tensor in two dimensions, keeping only the 

maximum value of each 2x2 box (quartering in size). This follows 

the standard architecture for a convolutional neural network with 

pooling operations [36].  

  

Figure 15. Network 

architecture for the first 

prototype 
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3.5.5. The network architecture of the second prototype 

In the light of having contrasting performance in the first 

prototype (see Section 4.3 Performance of the first diagnostic 

tool prototype), the second prototype of the diagnostic system 

adopts a deeper residual network architecture with the 

view to increase performance as well as reduce the risk of 

having high training error.  

 

In this prototype, the Bottleneck variant [34] (see 

Figure 16) of residual networks is used, which has a 

similar complexity yet reducing the requirement for 

computational power. Furthermore, Bottleneck 

convolutional residual blocks (see Figure 17) are used 

to replace the maximum pooling layers, due to the 

change in dimensions after the first convolution with 

a stride of 2.  

 

In addition, the operation of global average pooling, 

proposed by Lin et al. [37] is used towards the final 

layers, similar to that of the models used in [34]. A 

global average pooling layer, which is similar to a 

normal pooling layer, is a pooling across the entire 

spatial resolution of each filter, giving a vector with 

the size of the number of filters (see Figure 18). This 

has the effect of reducing overfitting compared to 

that of using fully connected layers [37]. 

 

 

 

 

Figure 16. A residual block in a 

“Bottleneck” residual network 

Figure 18. Applying global average 

pooling on a 3D tensor. 

Figure 17. A convolutional residual 

block in a “Bottleneck” residual network 
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The overall architecture is composed of a total of 4 

standard residual blocks, 4 convolutional residual blocks, 

1 standard convolutional layer, 1 fully connected layer, 1 

maximum pooling layer and 1 global average pooling 

layer (see Figure 19), with a total of 30 layers with 

trainable parameters (3 for each identity residual block 

and 4 for each convolutional residual blocks). 

In Figure 19, a “res conv, 32-32-128” block is a 

convolutional residual block with Bottleneck structure 

(see Figure 17), with f1, f2 and f3 being 32, 32 and 128 

respectively. A “res id” block is the standard residual 

block with identity shortcut connection. 

This network architecture resembles the ResNet-50 

network in [34], with fewer layers because of the 

computational constraints and the problem complexity. 

 

3.6. Detection 

In the final prototype developed in this project, the object detection approach is taken instead 

of the separated segmentation and classification approach found in first two, with the aim of 

tackling some of the problems identified in the first and second prototypes (see Section 5.2 

and Section 5.4). 

Object detection is the task of combining object localization and object classification, where 

the target is to both find the position and the class of the objects.  

Figure 19. Network architecture 

for the second prototype 
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3.6.1. Faster Region-based Convolutional Neural Network (Faster R-CNN)  

Faster Region-based Convolutional Neural 

Network (Faster R-CNN) [38] is one of the 

top performing object detection algorithm 

based on deep learning. It is an 

improvement on Regions with CNN 

features (R-CNN) [39] and Fast Region-

based Convolutional Neural Network (Fast 

R-CNN) [40], by combining the network 

for proposing potential regions and the 

classification network to form an end-to-

end model for object detection.  

The Faster R-CNN detection systems 

consist of two main components: the 

Region Proposal Network which proposes regions that could 

contain objects in question, and the Fast R-CNN detector, 

which takes in the proposed regions and further refines the 

bounding boxes and classifies the region [40]. Earlier layers of 

the entire network are shared between the Region Proposal 

Network and the Fast R-CNN detector, in order to speed up 

the training and inference process [39]. 

 

3.6.2. The network architecture of the final prototype 

In the final prototype, a pretrained base network of ResNet-50 

[34] architecture is used. This network is versatile yet deep, so 

the model is pretrained with natural object detection datasets. 

The convolutional layers are then used as the first 

convolutional layers in Faster R-CNN, giving the output of a 

feature map. After the convolutional layers, one convolutional 

layer with filter size 3x3 and 512 filters followed by two 

separate 1x1 convolutional layers are used to form the Region 

Proposal Network, with one of them outputting the proposed 

Figure 20. The Faster R-CNN architecture [36] 

Figure 21. The ResNet-50 

Architecture [32] 
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regions and the other with the corresponding confidence in its prediction. The model then 

extracts the corresponding parts of the feature map according to the proposed regions, and 

feed into two fully connected layers, and give a refined position of the bounding boxes and 

classifies the object present in the region [39]. 

 

3.7. Interpretation 

After identifying the number of different bacteria present in the smears, a final data analysis 

which estimates the degree of infection will be done. The numbers of bacteria in each 

category of the Nugent Score System [4] are identified and an overall interpretation based on 

the same system is made. 

 

3.8. Performance Evaluation 

The performance of the models is evaluated by determining the accuracy of the predictions 

for images which are not used in training process. Performance evaluation can be separated 

into two stages: validation and testing. Data collected are typically separated into three sets 

accordingly: the training set, the validation set, and the testing set, where only the training set 

is used for training the model. The validation set is used to evaluate the performance of the 

model, and the hyper-parameters including the architecture, number of learning iterations, are 

tuned to maximize the performance. The testing set, on the other hand, is reserved for the 

final evaluation after the hyper-parameters are tuned and is used to reflect the generalizability 

of the model. The reason for separating the performance evaluation into two stages is that 

tuning hyper-parameters to maximize performance actually leaks certain information about 

the testing data into the model, which could lead to a false performance of the model because 

the model might only show good performance on the current dataset and fail to generalize 

[41]. Hence, an exclusive set of testing data is reserved for the final evaluation of the model. 

In this project, there two sets of evaluation metrics used for each prototype, namely low-level 

and high-level evaluation. 
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3.8.1. Low-level evaluation of the first and second prototypes 

For the first and second prototypes, the low-level evaluation is performed by determining the 

accuracy of the classifier in correctly classifying unseen segmented regions into the 

corresponding classes.  

3.8.2. Low-level evaluation of the final prototype 

 

Figure 22. A comparison between the ground truths and predictions of an unseen image 

(Left: Ground truth bounding boxes; Right: Predicted bounding boxes) 

For the final prototype, since the detection pipeline with Faster R-CNN is used, different 

metrics should be used. 

Due to the fact that not all bacteria in the smear images were labelled by the technicians (see 

Figure 22, where the bacteria pointed by the arrow is not labelled), it is inappropriate to 

penalise the model when it predicts a region which is not labelled (the corresponding 

predicted with Gardnerella in Figure 22). Hence, the low-level evaluation metrics is taken to 

be the accuracy of the classifier correctly classifying the regions which are labelled. A region 

predicted by the classifier and a region labelled are said to be overlapping if the Intersection 

over Union (IoU) (the ratio between the area of the two regions’ intersection and the area of 

the two regions’ union) is at least 0.5.  

3.8.3. High-level evaluation of all prototypes 

Apart from measuring the performance on classifying each region, the overall performance in 

correctly determining the degree of infection (Normal, Intermediate and Infected), as well as 

the performance in estimating the Nugent Score (from 0 to 10) [4] of one full image are also 

measured.  
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 Results 

4.1. Work completed 

4.1.1. Data collection 

The first batch of images was obtained during meetings held in March and April 2017. This 

includes 40 bacterial colony images and 31 vaginal smear images. The smear images are 

annotated with high-level interpretations, including Nugent Score and overall degree of 

infection only. 

The second batch of images was obtained during meetings held in October 2017. This batch 

consists of 119 vaginal smear images, all annotated with high-level interpretation. After the 

development of the data labelling tool, the collection of detailed point labelling started in late 

October 2017 and finished in mid-December 2017. The dataset was later augmented from 

point labels to bounding box labels in March 2018. 

 

4.1.2. Data Labelling Tool 

The development of the data labelling tool, Clicklable, was completed and distributed to the 

medical experts in October 2017. The feedback from the medical professionals was 

satisfactory. 

A second version of the tool was developed in March 2018 with the additional functionalities 

of marking bounding boxes, which allowed the data augmentation. 

 

4.1.3. Diagnostic system 

The first phase of the project, which involved the development of the first prototype of the 

diagnostic system was completed in September 2017. Basic image segmentation tools were 

then developed, and the auxiliary programs for training the model learning models were also 

adapted for the project. The first classifier prototype for the type of bacteria was trained and 

evaluated. 

The second phase of the project, which included the review of the scope of the project, the 

development of the second prototype and streamlining the auxiliary tools, was finished in late 

January 2018. 
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Figure 23. The main user-interface of the BV Diagnostic System 

The final phase of the project was finished in April 2018. In this phase, a new way of tackling 

the problem with state-of-the-art deep learning algorithms was explored, which led to the 

development of the final prototype. A deployed diagnostic system was completed (see Figure 

23). 

The tool has a relatively simple user interface, where the user can choose which machine 

learning model (the model used in the final prototype is provided) to use for diagnosis. The 

user can then select the images to be analysed and click the “Analyse selected image” button 

to start the diagnosis process. The entire diagnosis process is automated and monitored, 

where the user can track the progress of the diagnosis in the status bar (see Figure 23). 
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Figure 24. The results screen of the BV Diagnostic System 

After the analysis, the results are visually presented to the user (see Figure 24), where the 

detected regions are annotated accordingly, with the type of bacteria and the confidence of 

the predictions. A certain level of customizability is available to the user where the threshold 

for minimum confidence to be counted as a valid prediction, and visualization size can be 

adjusted. The results can be turned on and off, and export to a digital image for further 

investigation. A text summary of the diagnosis is also provided at the bottom, with both high-

level and low-level evaluation metric including the degree of infection, the Nugent Score, and 

the number of bacteria detected. Further improvements to the diagnostic tool including a 

higher degree of customization available could potentially improve the user experience. 
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4.2. Project Schedule 

This project is separated into three phases, each with important deliverables and milestones at 

completion. 

4.2.1. Schedule of phase 1 

Table 3. The project schedule for phase 1 

Item Finished on 

Training of the first batch of machine learning models and the 

analysis of their performance 
29 September 2017 

Submission of detailed project plan and the construction of 

project web page 
1 October 2017 

Meetings with medical experts to get feedback for the 

performances of the models 
14 October 2017 

 

4.2.2. Schedule of Phase 2 

Table 4. The project schedule for phase 2 

Item Finished on 

Further investigation into image processing modules 14 November 2017 

Collection of new data from the medical experts 14 December 2017 

Development of the second prototype based on new data and 

new image processing techniques 
25 January 2018 

First presentation 29 January 2018 
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4.2.3. Schedule of Phase 3 

Table 5. The project schedule for phase 3 

Item Finished on / Finish by 

Exploring deep learning algorithms in object detection 25 February 2018 

Augmentation of data to higher level details 14 March 2018 

Development of the final prototype using the augmented data and 

new algorithms 
7 April 2018 

Final fine-tuning of the integrated diagnosis system 12 April 2018 

Final presentation 24 April 2018 

Project exhibition 2 May 2018 

 

4.3. Performance of the first diagnostic tool prototype 

The first batch of data collected consists of 71 images, and out of all images, 31 of those, 

which were collected from the patients, the Nugent Score is also available for them and hence 

are used for testing. All images were directly segmented using MSER. The segmented images 

which originated from the bacterial colonies were used as the training and evaluation data for 

the machine learning model, with 30% of the data reserved for validation. All the remaining 

segmented images, which were originally collected from the patients, were then used as 

testing data. These images were not used for training nor validation due to the lack of detailed 

labelling of individual bacteria in the patient images. The first classifier prototype was trained 

using mini-batch gradient descent (each with 16 samples) with momentum for around 30000 

steps and fine-tuned according to the performance on the validation set. 
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Table 6. Validation results on the type of bacteria in segmented images of the first classifier 

prototype 

 
Predicted type of bacteria by the model 

Lactobacillus Gardnerella Curved rods Other 

Actual type 

of bacteria 

Lactobacillus 499 6 1 2 

Gardnerella 0 559 3 4 

Curved rods 0 2 589 0 

Other 2 5 0 63 

 

The first classifier prototype has an accuracy of 98.6% in the validation stage, with the 

detailed performance shown in Table 6. Out of the 1735 segmented regions within the 

validation set, 1710 were accurately classified by the model. Some confusion between 

bacteria types is observed, for example, there are 6 segmented images of bacteria type 

Lactobacillus wrongly classified as Gardnerella by the model (as shown in the cell by the 

column “Gardnerella” and row “Lactobacillus” in Table 6), but overall this is a highly 

satisfactory performance which indicates that the model generalizes well for bacteria found in 

the colony images. 

Table 7. Testing results on the degree of infection of the first classifier prototype  

 
Estimated degree of infection by the model 

Normal Intermediate BV Infection 

Actual degree 

of infection 

Normal 8 0 0 

Intermediate 5 3 0 

BV Infection 6 6 3 

 

However, in the final evaluation using patient images, the model only achieved an accuracy 

of 45.1% (see Table 7) for the high-level evaluation on the degree of infection. Out of the 31 

patient images, only 14 of them are accurately estimated the degree of infection. For the 

remaining 17 patient images, all of them are underestimated by the model. 
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Table 8. Testing results on Nugent Score of the first classifier prototype 

 
Estimated Nugent Score by the model 

0 1 2 3 4 5 6 7 8 9 10 

Actual Nugent Score 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 2 1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 

3 2 1 0 0 0 0 0 0 0 0 0 

4 0 1 1 1 0 0 0 0 0 0 0 

5 0 1 1 1 0 0 1 0 0 0 0 

6 0 0 0 0 0 1 0 0 0 0 0 

7 0 0 0 2 1 0 0 0 0 0 0 

8 0 1 2 1 1 1 0 0 1 0 0 

9 0 1 0 0 0 1 0 0 0 0 0 

10 0 0 0 0 0 1 2 2 0 0 0 

 

Furthermore, the model only achieved an exact-match accuracy of 9.6% (3 out of 31), an 

accuracy of 22.5% (7 out of 31) within an error margin of 1, and an accuracy of 32.3% (10 

out of 31) within an error margin of 2 (see Table 8) for the high-level evaluation on Nugent 

Score. Almost all the estimations by the model are underestimations, which can be seen from 

the majority of values lying below the diagonal. It can be inferred that the model tends to 

underestimate the severity of the infection.  

This drastic difference in performance indicates that the model does not generalize well to the 

smear images and may have the problem of overfitting. 

 

4.4. Performance of the second diagnostic tool prototype 

The second batch of data consists of 119 patient images, with 57 being diagnosed with 

infection, 38 intermediate, and 24 normal. There are 2 images with a Nugent Score of 0, 21 

images with a score of 1, 1 image with a score of 2, 0 of them with a score of 3, 15 of them 
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with a score of 4, 10 of them with a score of 5, 13 of them with a score of 6, 17 of them with 

a score of 7, 16 of them with a score of 8, 22 of them with a score of 9, and 2 of them with a 

score of 10. There are in total 522 annotated locations of Lactobacillus, 2528 locations of 

Gardnerella and 246 locations of curved rods. All images were pre-processed and segmented 

using the adaptive Otsu’s method. 99 out of 119 images are used for training. All the 

segmented images from the training set and the corresponding labels are used for training. 

The second classifier prototype was trained using the Adam optimization algorithm with 

mini-batch of 64 samples for around 12000 steps and fine-tuned according to the 

performance on the validation set. 

Table 9. Validation results on the type of bacteria in of the second prototype 

 
Predicted type of bacteria by the model 

Lactobacillus Gardnerella Curved rods Other 

Actual type 

of bacteria 

Lactobacillus 42 10 0 0 

Gardnerella 10 78 7 2 

Curved rods 4 16 5 11 

Other 1 1 2 143 

The second prototype achieved an accuracy of 80.7% (268 out of 332) in the validation stage, 

with the detailed performance shown in Table 9. A higher degree of confusion between 

bacteria types is observed, especially between Gardnerella and curved rods. Overall this is a 

satisfactory performance in the newly labelled dataset. It is important that this performance 

should be directly compared to that of the first prototype because in the first prototype, the 

validation is done on colony images where the distribution of data can be different from those 

found in patients. 

Table 10. Testing results on the degree of infection of the second prototype on all images 

 
Estimated degree of infection by the model 

Normal Intermediate BV Infection 

Actual degree 

of infection 

Normal 15 9 0 

Intermediate 5 25 8 

BV Infection 0 13 44 

In the final evaluation using all patient images, the model achieved an accuracy of 70.6% (see 
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Table 10) for the high-level evaluation on the degree of infection. Out of the 119 patient 

images, 84 of them are accurately estimated the degree of infection. It is desirable that the 

model does not overestimate or underestimate the degree of infection by a large margin, 

which can be seen that none of the images which are labelled “BV infection” estimated to be 

“Normal” or labelled “Normal” estimated to be “BV infection”. 

Table 11. Testing results on Nugent Score of the second prototype on all images 

 
Estimated Nugent Score by the model 

0 1 2 3 4 5 6 7 8 9 10 

Actual Nugent Score 

0 0 0 1 1 0 0 0 0 0 0 0 

1 0 3 1 9 5 3 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 1 2 2 3 4 2 1 0 0 

5 0 0 1 0 2 4 2 1 0 0 0 

6 0 0 0 1 0 1 7 3 1 0 0 

7 0 0 0 0 0 0 5 7 3 2 0 

8 0 0 0 0 0 0 1 8 4 3 0 

9 0 0 0 0 0 2 3 7 7 1 2 

10 0 0 0 0 0 0 2 0 0 0 0 

For the high-level evaluation on Nugent Score, the model achieved an exact-match accuracy 

of 23.5% (28 out of 119), an accuracy of 58.8% (70 out of 119) within an error margin of 1, 

and an accuracy of 82.3% (98 out of 119) within an error margin of 2 (see Table 11).  

It can be seen that the performance is higher compared to the first prototype, which indicates 

the new adopted model and the detailed dataset have improved model in generalizing to 

unseen data. 

4.5. Performance of the final diagnostic tool prototype 

The same batch of data as used in the second prototype (second batch) was used in the 

development of the final prototype. However, instead of annotated point locations of bacteria, 
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the labels are augmented to bounding boxes around the corresponding labels. There are in 

total 531 annotated locations of Lactobacillus, 2411 locations of Gardnerella and 232 

locations of curved rods. Each image (of resolution 1280 x 960) is segmented into 165 

160x160 smaller patches by the sliding window segmentation, where each time the window is 

moved 80 pixels in one direction. Similarly, 99 out of the original 119 images are used for 

training. All the segmented images from the training set and the corresponding labels are 

used for training. The final classifier prototype was then trained using mini-batch gradient 

descent (each with 8 samples) with momentum for around 22000 steps and fine-tuned 

according to the performance on the validation set. 

Table 12. Validation results on the type of bacteria in of the final prototype 

 
Predicted type of bacteria by the model 

Lactobacillus Gardnerella Curved rods Other Missed 

Actual 

type of 

bacteria 

Lactobacillus 15 21 0 0 12 

Gardnerella 1 82 1 1 123 

Curved rods 3 3 0 4 24 

Other 0 0 0 0 14 

In this prototype, the evaluation metric is the calculated using only the regions which are 

labelled by the technicians (see Section 3.8.2). Among the areas which are also captured by 

the model, the accuracy of identifying the type of bacteria is 74.0% (97 out of 131) (see Table 

12). However, the accuracy dropped to 33.4% (97 out of 290) if the missed labels (where the 

model does not give a prediction) of Lactobacillus, Gardnerella and Curved rods are taken 

into account. However, this metric again cannot be directly compared to the previous 

prototypes because in this model, the locations of the bounding boxes are also predicted by 

the mode, rather than relying on other segmentation algorithms. 
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Table 13. Testing results on the degree of infection of the final prototype on all images 

 
Estimated degree of infection by the model 

Normal Intermediate BV Infection 

Actual degree 

of infection 

Normal 15 9 0 

Intermediate 0 31 7 

BV Infection 0 18 39 

 

In the high-level evaluation on degree of infection using all patient images, the model 

achieved an accuracy of 71.4% (see Table 13). Out of the 119 patient images, 85 of them are 

accurately estimated the degree of infection. This model again has a desirable property that 

there is no overestimation or underestimation on the degree of infection by a large margin. 

Table 14. Testing results on Nugent Score of the final prototype on all images 

 
Estimated Nugent Score by the model 

0 1 2 3 4 5 6 7 8 9 10 

Actual Nugent Score 

0 0 0 1 1 0 0 0 0 0 0 0 

1 0 0 1 11 8 1 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 2 4 8 1 0 0 0 

5 0 0 0 0 1 3 4 2 0 0 0 

6 0 0 0 0 1 2 6 3 1 0 0 

7 0 0 0 0 0 2 5 4 6 0 0 

8 0 0 0 0 0 0 7 6 3 0 0 

9 0 0 0 0 0 0 4 11 6 1 0 

10 0 0 0 0 0 0 0 2 0 0 0 

 

In terms of Nugent Score estimation, the model achieved an exact-match accuracy of 16.0% 
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(19 out of 119), an accuracy of 48.7% (58 out of 119) within an error margin of 1, and an 

accuracy of 85.7% (102 out of 119) within an error margin of 2 (see Table 14).  

It can be observed that the performance is similar to that of the second prototype, with 

slightly higher performance in identifying the degree of infection. 
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 Limitations and mitigation strategies 

5.1. Limited amount of data 

The availability of images was relatively low in the development, where the total number of 

images is below 80 in the first phase, and below 200 in the later phases.  This restriction on 

data makes it impractical to directly develop an end-to-end classifier using entire images. 

To mitigate this problem, the images were segmented in all prototypes, and the machine 

learning models were chosen accordingly. Data augmentation techniques including random 

flipping, rotation and translation were also used to increase the variety of data. 

 

5.2. Similarity among bacteria 

  

Figure 25. Segmented area containing a 

bacterium type “Lactobacillus” 

Figure 26. Segmented area containing a 

bacterium type “Gardnerella” 

It is sometimes difficult to distinguish between the bacteria types Gardnerella and 

Lactobacillus (see Figure 25, Figure 26) due to the similarity of morphology and variations in 

staining. The medical experts who provided us with the data also confirmed the ambiguity. 

This limitation could be the main source of inaccuracy in prediction in all prototypes 

developed, which could potentially undermine the feasibility of developing a highly accurate 

automated diagnostic system. 

In the final phase of the project, an object detection algorithm was selected such that the 

surroundings of the bacteria are also used as input to the models, aiming to reduce the effects 

of such similarity.  
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5.3. High variation in smear images 

As the smear images are obtained in different batches and are prepared by hand, there are 

sometimes significant variations in the degree of staining and level of illumination.  

 

Figure 27. A patient smear image in image 

batch 1 

 

Figure 28. A patient smear image in image 

batch 2 

Among some of the images, the variation is very noticeable (see Figure 27, Figure 28), where 

the levels of staining are significantly different. 

Image processing algorithms including spatial filtering and smoothing were applied in later 

prototypes to mitigate this issue. However, certain Gram-negative bacteria including curved 

rods might be removed by image processing because of their pale colours. As a result, only 

the algorithms with mild effects on Gram-negative bacteria were used.  

 

5.4. Discrepancies in morphology in different environments 

A noticeable difference in morphology of the same type of bacteria in different environments 

(colony and patient) is observed. This could be the explanation for the contrasting difference 

in performances in the first prototype, because it was trained only using the colony images. 

This problem was tackled in the second phase of the project, where a larger, more detailly 

labelled set of images was sought from the medical experts. The difference in performance 

between validation and testing was then significantly narrowed. 
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5.5. Incomplete labelling of data 

 

Figure 29. The ground truth labelling for an image (unlabelled areas are circled) 

Although a more detailly labelled dataset was obtained, most images are not fully labelled 

(see Figure 22, Figure 29), where there are many bacteria instances without any label. In 

many cases, it cannot be determined whether a region, without any ground truth label, 

recognised by the model as a certain type of bacteria is a false-positive or true-positive. This 

made it difficult to perform an evaluation on the models and fine-tuning. 

Furthermore, in the final prototype, since a Faster R-CNN architecture is used, it is necessary 

in the training process to suppress false-positives because it is common to allow the model to 

propose a large number of regions to accommodate the complexity of the problem. In this 

project, the penalty for false-positives (determined by whether the predicted label is wrong or 

there is no label in the region) is reduced by lowering the fraction of false-negatives samples 

in the learning process. However, this strategy is not perfect for such problem, and there 

might still be cases where a correctly identified region is penalised due to the lack of labels.  

 

5.6. Difference between real-life diagnosis and this project 

According to the medical professionals, in real-life diagnosis, it is typical to examine 10 to 20 

smear images before making a final diagnosis. However, in this project, each image is taken 

as a standalone sample and an estimation of degree of interpretation is performed.  

This problem is amplified because of the sensitivity of the Nugent Score system, where the 

difference in score determined when there is just one mis-classified sample could be as high 
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as 2. For example, a false-positive of the Gardnerella bacteria type could increase the score 

by 2 if there is originally no Gardnerella present in the image. Hence, a dataset with 

information about images from the same patient could be used to better reflect the 

performance of the models. 

 

5.7. Imbalanced Dataset 

From the information about the statistics of data given in Section 4.4 and Section 4.5, it can 

be observed that the numbers of labels annotated as Lactobacillus, Gardnerella and curved 

rods have a ratio of around 2:10:1. This imbalance in the dataset makes the models developed 

prone to bias in classifying regions to be Gardnerella. This can be observed from the low 

number of curved rods predicted in any region. 

Selective data augmentation can be applied where certain labels are augmented more often 

than the others, however, due to the relatively small dataset, it could lead to overfitting 

problem where very similar data are used to train much more times than normal. More 

complex techniques including extra classification model for scarce classes might be required 

to solve this problem. 
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 Future Development 

As mentioned in Section 5, there are multiple problems and limitations that require further 

work to overcome. 

First of all, in terms of data, a more complete dataset with full labelling would be the most 

beneficial to the object detection models. A larger and more balanced dataset could also 

allow the performance to improve. More samples in different staining and illumination could 

reduce the dependence on image processing techniques to accommodate such variance and let 

the model infer the generalized representation of the bacteria classes directly. Information 

across images from the same patient could be useful in better evaluating the performance of 

the models. 

It is also possible to take an interactive approach to improving the quality and quantity of data 

by inviting the medical professionals to review the regions identified by the models which 

were not labelled any ground truth. This is because it can be observed that there are many 

such detections present in the prediction. 

In addition, non-region-based object detection architecture could be used to tackle the 

problem. Algorithms including YOLO (“You only look once”) [42] and SSD (Single Shot 

MultiBox Detector) [43] do not rely on an underlying region proposal network, but rather 

tackle it as a regression problem. These architectures might pose new challenges and allow 

better understanding of the nature of the data. 

Furthermore, new deep learning architectures and learning algorithms including Capsule 

Network [44] and focal loss (RetinaNet) [45] which showed improvement over other 

architectures in object detection can be used to develop a better performing diagnostic tool. 

With a higher availability of data and computational power, an end-to-end machine learning 

model might be practical where images without segmentation are used as input for training. 
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 Conclusion 

Diagnostic microscopy is the gold standard for the diagnosis of many infections, including 

bacterial vaginosis. However, the high costs and the dependence on human expertise in 

microscopic diagnosis are preventing it from becoming widely available. There have been 

successful cases of developing automated diagnostic tools for some common infections using 

machine learning or related techniques. This shows a promising possibility for the success in 

developing one for bacterial vaginosis. 

This project explores the practicability and possibility of using machine learning and 

computer vision techniques in the development of such tool. In order to facilitate the 

development of similar tools in medical contexts, the limitations in the development process 

are discussed with proposed mitigation strategies, such that this project can be used as an 

example for future research. 

Three diagnostic tool prototypes were developed, with the first one using standard 

convolutional neural networks and the first batch of data, second one using residual network 

and the second batch of detailly labelled data, and the final one using Faster R-CNN as the 

object detection algorithm on top of a residual network and bounding boxes annotated data. 

Throughout the three phases of this project, an increase in performance of the diagnostic tool 

prototypes was observed, where the testing accuracy of identifying the degree of infection 

increased from 45.1% to 70.6% and to 71.4%, and that of estimating the Nugent Score within 

an error margin of 2 increased from 32.3% to 82.3% and 85.7% for the three prototypes 

respectively. 

The results have shown that the limitations of the dataset in terms of the amount of data, the 

balance of data and completeness of labelling could be the factors limiting the performance of 

the models.  

Due to the restriction on the amount of data, this project did not tackle the classification task 

directly using whole blood smear images. With a higher availability of data, the approach of 

using blood smear images as a whole might be possible in future research, and the difference 

in terms of performance and complexity could be explored. Also, different object detection 

and machine learning algorithms and architectures, including YOLO, SSD, Capsule Network 

and focal loss, have shown new possibilities in tackling this problem, which could be applied 

to further improve the diagnostic tool.  
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