Michael Chi Ian Tang 3035209241 Classification for pathological images using machine learning

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

(

CONVOLUTION + RELU POOLING

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

Machine Learning Model

Training

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

Digital Pathology

Highly accurate

Time-consuming, Expensive, Dependent on experience

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

An image is just a collection of numbers stored in the memory

How to build a machine that recognizes objects?

How to build a machine that recognizes objects?

We model the human brain - neurons

We model the human brain - neurons

We model the human brain - neurons

A neural network

Approximating human vision - Convolution Source pixel $(-1 \times 3) + (0 \times 0) + (1 \times 1) +$ $(-2 \times 2) + (0 \times 6) + (2 \times 2) +$ $(-1 \times 2) + (0 \times 4) + (1 \times 1) = -3$ Convolution filter (Sobel Gx) Destination pixel

Approximating human vision - Convolution Source pixel $(-1 \times 3) + (0 \times 0) + (1 \times 1) +$ $(-2 \times 2) + (0 \times 6) + (2 \times 2) +$ $(-1 \times 2) + (0 \times 4) + (1 \times 1) = -3$ Convolution filter (Sobel Gx) Destination pixel

Approximating human vision - Convolution Source pixel $(-1 \times 3) + (0 \times 0) + (1 \times 1) +$ $(-2 \times 2) + (0 \times 6) + (2 \times 2) +$ $(-1 \times 2) + (0 \times 4) + (1 \times 1) = -3$ Convolution filter (Sobel Gx) Destination pixel

Scale up the model

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

(

CONVOLUTION + RELU POOLING

Overfitting and Underfitting

Overfitting and Underfitting

Overfitting and Underfitting

Skip Connection

Skip Connection

Skip Connection

CNN to Residual Network

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

Machine Learning Model

Training

Step 1: Separation of training and testing Data

Step 1: Separation of training and testing Data

Step 1: Separation of training and testing Data

Step 2: Segmentation of images

Gardnerella Vaginosis colony

Step 3: Training using the images

Step 4: Testing using the patients images

The First Prototype – Model Architecture

The First Prototype - Performance

Hold-out validation of 30% of unseen training data: 98.7% accuracy

		Prediction by the model			
		Lactobacilli	Gardnerella	Curved rods	Other
Actual type of bacteria	Lactobacilli	499	6	1	2
	Gardnerella	0	559	3	4
	Curved rods	0	2	589	0
	Other	2	5	0	63

The First Prototype - Performance

Testing on 31 patient images:

45.1% accuracy

		Prediction by the model			
		Normal	Intermediate	BV Infection	
	Normal	8	0	0	
Actual degree of	Intermediate	5	3	0	
infection	BV Infection	6	6	3	

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

Step 1: Collection of Data by Customized Tool "Clicklable"

Step 2: Regions of Interest (ROIs) Identification by Image Processing

Step 3: Image Segmentation

Step 4: Training and Validating using the images

The Second Prototype – Model Architecture

1 Standard Convolutional Layer

7 Residual Blocks

1 Fully Connected Layer

The Second Prototype – Performance (Provisionary)

Hold-out validation of 10% of unseen training data: 81.4% accuracy

Testing on unseen image data (not used in tuning): 72.9% accuracy

- Digital Pathology
- Convolutional neural networks (CNN)
- From CNN to Residual Network
- First prototype
- Second prototype
- Future direction

Future Direction

Validation accuracy < 90% \rightarrow Increase complexity, fine-tuning and further training

Future Direction

Large number of unlabelled data \rightarrow Exploration of other learning algorithms / architecture

YOLO algorithm for object recognition

