
Project Plan: Deep Learning on Mobile Devices

JI ZHUORAN, 3035139915

I. INTRODUCTION

In recent years, we have witnessed the great
success of General Purpose Graphics Processor
Unit (GPGPU) in massively computing task. This
achievement encourages processor manufactures to
improve general computing capability of Desktop
GPUs. Nowadays, programmable GPUs are also
available on mobile devices, such as smartphones,
autopilot cars, and IoT devices, which lead to sig-
nificant performance boost and substantial energy
reduction for massively mobile computation tasks
[1].

Deep learning also drew significant attention re-
cent years, especially in computer vision [2], speech
recognition [3] and natural language processing [4].
Almost all of recent successful systems in these
areas are built based on the deep neural network.
However, even these technologies are critical to
many mobile-phone apps, only a few of them take
advantage of deep learning techniques [5]. This
situation is caused by limited computation ability
and memory space on mobile devices. Additionally,
as the network grows more complicated, compu-
tation is also increasing exponentially, that makes
deployment even more intractable [6].

Mainstream of these successful attempts of mo-
bile deep learning usage is based on cloud [5],
which has a lot of drawbacks, such as affecting
privacy confidentiality, no real-time guarantee, and
network overhead. However, porting deep learning
framework to mobile or embedded devices is not
trivial and is relatively under-studied especially on

GPUs. There are a few of successful attempts in
using mobile CPU for local execution, and CPUs
present an attractive potential solution, especially
because they are available on all mobile devices.
However, CPUs will drain batteries in few hours if
not few minutes, while most apps keep executing
inference during running or even on background.
As a result, CPU solution is not suitable for battery
powered devices.

This project will introduce the MobileDL Toolkit,
a deep learning toolkit that executed locally on
mobile GPUs with reasonable speed and battery
consumption. Instead of porting current framework
directly, this toolkit is highly customized for mobile
GPUs by taking computation, memory limitation
and power consumption into consideration. Though
our toolkit is customized for mobile GPUs, it is
still universal as long as OpenCL is supported, as
there is no assumption of specific GPU architec-
tures. However, beyond code-level optimization, it
offers two novel algorithms, namely: (1) Neural Net-
work Minimization (NNM) and (2) converge points
transition (CPT). Through these two algorithms,
MobileDL automatically minimizes a convolutional
neural network to balance the computation overhead
and inference accuracy. Furthermore, a new fine-
tuning scheme is introduced to transfer objective
function into an equivalent one but is easier to
minimize, by which MobileDL suppress error ac-
cumulated from multiple layers.

The following parts of this project plan has
been organized as follows: first introducing the



fundamental terms related (§ II); next reviewing
the literature based on two core concepts (§ III);
then presenting two novel methodology for neural
network minimization (§ IV); afterwards showing
how MobileDL will be implemented(§ V) and finally
giving a brief conclusion for this project plan (§ VI).

II. PRELIMINARY

This section will begin with a primer on some
basic concepts related to deep learning and mobile
GPUs.

A. Mobile GPUs

Mobile GPUs have become increasingly pow-
erful, which push forward the general computing
technology for mobile devices over the past few
years [7]. However, there are few papers discussing
the general computing capability of mobile GPUs.
Experience on desktop GPUs is not applicable on
mobile GPUs, as design criteria of mobile GPU is
different with desktop GPU. First of all, as mobile
GPUs are usually powered by batteries, they are
generally with lower frequency and much fewer
cores [8]. Additionally, as most mobile GPUs are
integrated into SoCs, graphics memories are not
available [9][10] and accessing external memory
will lead to much lower memory bandwidth. Last
but not least, there are plenty of mobile GPU man-
ufactures, such as Qualcomms Adreno family [9],
Mali family [10], and NVIDIA Tegra family [11],
leading to varies of mobile GPU architecture.

B. Convolutional Neural Networks

Convolutional Neural Networks (CNNs), which
is composed of three major layers: convolution
layers, pooling layers, and fully connected layers is
the state-of-art neural network for vision and image
related work [12].

The core operation in convolution layers is essen-
tially 2-dimensional sliding-window convolutions
with 2-dimensional convolution filters. Each con-
volution filter is related to one input channel and
one output channel. It first convolves with its cor-
responding input activation plane and then accu-
mulated to its output activation plane [13]. For a
convolution layer with C input channels, K output
channels, an R × S element filter is applied over
a W × H element input channel to produce a
W × H output activation plane. The overall time

complexity is O(C×K×R×S×W ×H). Figure
1 shows a 2-dimensional matrix for illustration of a
4-dimensional tensor, and each small rectangle is a
single convolution filter reshaped from R×S matrix
to a vector.

Fig. 1. Convolution Tensors: A convolution tensor with 3 input
channels and 16 output channels, each small rectangle is a single
convolution filter reshaped from R× S matrix to a vector.

For most CNNs, convolution layers dominate
execution time of inference. For instance, for a
typical neural network described in [14], on our
platform: Snapdragon 820 development board, all
its five convolution layers take 81.7% forwarding
time, while all other layers only take the reminding
18.3%. The reason why convolution layers consume
so much time is that, the order of time complexity of
convolution layers is much higher than other layers.
As discussed in the previous paragraph, the time
complexity of convolution layers is O(C×K×R×
S ×W × H), in other words, in each convolution
layer, there are C × K convolution filters, and for
each filter, O(R × S × W × H) computation is
needed, and C ×K is usually more than 32× 32 in
state-of-art CNNs [14][15][16].

The time complexity of convolution layers make
local execution intractable, however, Denil et al.
has demonstrated that there are huge redundancies
in neural networks [17]. They achieve an accurate
prediction of all parameter within a layer by a small
subset of them (about 5%), which implies neural
networks could be heavily compressed. However,
these redundancies are necessary during train as
deeper neural networks provide larger capacity for
functional approximation. Their work inspires us
to apply K-means clustering method to explore the



redundancy in parameter space.

C. K-means clustering

K-means clustering is a method for vector quanti-
zation [18], originally from data mining, that is also
popular for data clustering. The basic ideas of K-
means clustering is partition n vectors into k clusters
in which each vector is represented by the center of
the whole cluster.

K-means clustering is a NP-hard problem [19].
However, many efficient heuristic algorithms con-
verge quickly [20] [21], especially with initializa-
tion that is close to the final results. Because K-
means clustering is applied in every iteration dur-
ing training in our approach and parameters are
updated smoothly in gradient descent method [22],
the clustering result in the last iteration should
close to clustering mean in this iteration. These two
properties make it possible to use the previous result
as initialization, which makes K-means clustering
extremely efficient, so the overhead introduced by
our approach is only minor.

III. RELATED WORK

A. Deep Learning on Mobile Devices

Almost all popular deep learning framework,
such as Caffe [2], Tensor-flow [23], Torch7 [24],
Caffe2Go [25], Deeplearning4j [26], support An-
droid platforms, and Shiro [27] took an important
first step towards porting deep learning framework
to mobile devices and achieve Cifar-10 recognition
on Android devices in reasonable time. However,
only a few of these frameworks adjust source codes
for performance optimization on mobile devices.
Even worse, all of them provide only CPU-based
solutions for Android platforms, which are not fea-
sible as discussed in section I.

DeepEye [28] demonstrated a device that is capa-
ble of executing several state-of-the-art deep vision
models with nearly 17 hours battery life. DeepX
[5] then proposed a decomposition method which
split monolithic networks into unit-block of various
types, significantly reduce latency of full connected
layers. Both of these two works proved that no-
table speedup and power-saving could be achieved
if mobile hardware-characteristics are taken into
consideration when design the framework.

CNNdroid [29] proposed an Android GPU-
accelerated library, which specifically designed and
optimized for inference only on Android-Based mo-
bile devices. Then DeepMon [30] showed early evi-
dence that mobile device could handle large DNNs,
and devised a suite of optimization techniques to
reduce the processing latency.

Different with these previous works, MobileDL
is a deep learning framework highly customized for
less-powerful mobile devices. Also, MobileDL sup-
port OpenCL, which enables MobileDL running on
heterogeneous SoCs, especially on power efficiency
computation unit, such as GPU. Finally, different
with CNNdroid and DeepMon, MobileDL is more
aggressive, as little accuracy loss is permitted.

B. Neural Network Compression

After Denial et al. [17] proved the redundancies
of neural networks, several CNN compression ap-
proaches have been proposed. Denton et al. [31]
showed an early successful attempt of compress-
ing the fully-connect layer by applying truncated
singular value decomposition with insufficient of
prediction accuracy. Then Gong et al. [6] exploited
different vector quantization methods for neural
network compression. Different with these previous
works, which focus on reducing storage of network
parameters, our approach focus on computation-
reduction.

Jaderberg et al. [32] presented the speedup pen-
itential of convolutional neural networks by low-
rank decomposition of convolution tensors, they
achieve about 2× speedup on desktop CPUs. Then
Lebedev et al. [33] demonstrated that using CP-
decomposition on a full convolution tensor ob-
tains 8.5× CPU speedup with only minor accuracy
drop (from 91% to 90%). Kim et al. [34] applied
these compression techniques discussed above for
fast and low-power mobile deep learning applica-
tions. They tested AlexNet [14], VGG-16 [15], and
GoogleLeNet[16] in aspects of both energy con-
sumption and execution time, and proved that these
complexity state-of-art neural networks executing
efficiently on mobile devices after compression. Mo-
bileDL extends these works by taking memory di-
vergence and parallelism into consideration to make
compressed neural networks efficiently execute on
GPUs.



In the work that is most related to ours, Wu
et al. [35] have proposed a unified framework for
CNNs, named Quantized CNN(Q-CNN). Q-CNN
quantize convolution tensors along the dimension of
output channels. By splitting the weighting matrix
into several sub-matrices and learning code-book
on each of them, each sub-matrix is quantized into
a smaller matrix with a code-book. Compressed
outputs will be computed by convolution between
smaller matrices and original inputs. Then desired
outputs are reconstructed by searching compressed
outputs and code-books. Our approach different with
Wu et al.’s work in that our framework take advan-
tage of massively computation unit such as GPU, so
memory divergence introduced by Q-CNN should
be removed. On the other hand, our approach does
not introduce any memory storage overhead as no
code-book nor sub-matrix need to be stored. Finally,
our approach modifies fine-tuning method to drag
the related convolution filters close to each other,
by which accumulated errors are further reduced.

IV. APPROACH

Overall our approach is conceptually a simple
two-phase methodology: neural network minimiza-
tion during inference and converge points transition
during training. In this section, first, we introduce
an efficient test-phase convolution method with net-
work minimization. Secondly, we demonstrate that
better minimization can be achieved by fine-tuning
the entire network using converge points transition.

A. NNM

For a convolution layer, its core operation is
essential sliding window convolution. Convolution
filters are stored as 4-dimensional tensors in CNNs,
which can be denoted as W ∈ RK×C×R×S , where
K and C are number of output channels and input
channels, respectively. For each Wij ∈ RR×S , it is
the convolution filter corresponding to input channel
i and output channel j, and R× S is the filter size.

In our approach, tensor is divided into c sub-
tensor groups, each sub-tensor is denoted as W ∈
RK×R×S , and a group is mathematically defined as
Gm = {Wij|∀j = m}. Each Gm is then be treated
as a set of vectors S = {v1, v2, ..., vk}, where each
vector vi is a R × S real vector reshaped from
Wim. For each S, NNM aims to partition these
k vectors into k̃ sets by k-means clustering, then

Fig. 2. Convolution Computation: For convolution filters refer to
same input image, minimization is applied. Then, each input image
is convolved with its corresponding minimized convolution filters to
generate temporary outputs. Finally, actually outputs are reconstructed
from these temporary outputs.

each set is represented by one single vector ṽk, and
the set of all representation vectors is denoted as
S̃ = {ṽ1, ṽ2, ..., ṽk̃}. The mapping matrix is denoted
as M , and Mij = 1 if vj is assigned to ṽi, otherwise
Mij = 0. Then S ′ is reconstructed from S̃ and
M , mathematically, S ′ = S̃M . The objective is
to minimize ”distance” between S and S ′. Within-
cluster sum of squares is chosen as loss function,
mathematically, the follow objective function is go-
ing to be optimized:

min
n∑

i=1

‖v′i − vi‖
2

The computation process of convolution layers is
illustrated in Figure 2, which has 3 input channels
and 8 output channels. As the output dimensions are
reduced from k to k̃, only c × k̃ convolutions are
actually computed, the temporary result is denoted
as O′ =

{
o′1, o

′
2, ..., o

′
k̃

}
. Afterward, the original

outputs can be approximately reconstructed from
temporary Output′ and mapping matrix M , which
can be mathematically expressed as

O = O′M

As a result, the overall time complexity can be
reduced from O(C × K × R × S × W × H) to
O(C× K̃×R×S×W ×H+K×W ×H). On the
other hand, as only the clustered kernels and map-
ping index need to be stored, storage consumption
can also be reduced.

B. CPT

With NNM, inference stage is significantly
speedup. However, there is still a critical drawback:



the model which gives minimal before compression
is not necessarily the one gives minimal after com-
pression. As there are a lot of acceptable minimal
of the objective function [22], a model which gives
acceptable loss of the objective function before
NNM is usually not the one give best classifica-
tion accuracy after NNM. Furthermore, as NNM
of each layer is independent of each other, the
error will be accumulated. The accumulated error
may be intolerable if the network is deep. With
CPT, the parameters of the model are transited to
other minimal of the objective function with least
accuracy loss after NNM.

Fig. 3. CPT: There are two clusters, which are colored with blue
and red, separately. Black arrow is centripetal direction, where green
arrow is gradient direction. In a cluster, centripetal direction cancel
each other, and the resultant direction is the sum of gradient direction.

CPT is essential a modified gradient descent
method that adds a centripetal descent factor to the
original descent direction. For state-of-art stochastic
gradient descent, the parameters updating method
is θ = θ − εD, where ε is the learning rate
and D is the descent direction. Furthermore, the
direction D is determined by two factor: gradient
and regularization. The updating function then could
be expressed as θ = θ − ε(g + α∇Ω(θ)), where
g is the gradient, α is the weight decay rate, and
∇Ω(θ) is the regularization factor, for example, if
L2 regularization is used, then Ω(θ) = 1

2
||ω||22. This

regularization strategy drives the weights closer to
the origin, while CPT approach is based on driving
the weights close to each other within same cluster
to limit the various of model. The CPT factor is

calculated as

Ψ(θ) = reshape
{
S̃1M1, S̃2M2, ..., S̃cMc

}
− θ

The new updating function now is

θ = θ − ε(g + α∇Ω(θ) +
β

ε
Ψ(θ))

This method can be intuitively illustrated in
Figure 3. For simplification, each high-dimension
vector is expressed as a point. Vectors assigned to
the same cluster are in the same color. A cluster
is represented by the mean of vectors within it and
is expressed as a small square. To further simplify
the problem, regularization factor is ignored. The
descent direction of a vector could be treated as
the combination of gradient direction and centripetal
direction. If a cluster is regarded as a system, then
all centripetal descent will cancel each other, as

Σk
i (s̃i − v) = Σk

i s̃i − kv = kv − kv = 0

Only the gradient descents contribute to resultant
descent, which applied to the mean-vector, and the
resultant descent is mathematically expressed as
Ds = Gs = Σk

i gi. Objective function will descent
along the gradient in the granularity of cluster.
Hence, after adding CPT factor, from system point
of view, it is still the same optimization problem as
before. Because within-cluster descent and between-
cluster descent are independent, the whole parameter
will also converge.

V. PROJECT METHODOLOGY

The approaches discussed in the previous section
will be implemented on Caffe [2]. There are two
main reasons why we choose Caffe. First, as far as
we know, Caffe is the only deep learning framework
that supports OpenCL, and OpenCL is the only
general computation API available on non-NVIDIA
mobile devices. Secondly, we have already ported
Caffe to mobile devices and gained state-of-art
performance, and improving from the best solution
is more convincing. Even though our approach is
tested on Caffe with OpenCL, it is a universal
approach that can be applied to any deep learning
frameworks.

The implementation is composed of two main
parts: (1) Modifying OpenCL code of convolution
layer, (2) Adding centripetal descent in the solver.
After implementation, we will test MobileDL on



several popular datasets and convolutional neural
networks. We will train models with different min-
imization ratios. To make the training fast enough,
we will use powerful desktops or workstations for
training, while actually, training could be executed
on mobile devices locally. Afterwards, both models
and the toolkit will be deployed to our test platforms.
Finally, speedup and accuracy loss will be measured
and analyzed.

The detailed test plan is shown in Table 1.
The neural network we test are AlexNet, VGG-16,
and GoogleLeNet, and the datasets used are Mnist,
Cifar-10, and LabelMe. Minimization ratio is chosen
heuristically according to the capacity of the neural
network.

TABLE I. DETAILED TEST PLAN

Neural Network Dataset Minimization Ratio
AlexNet Mnist [2, 4, 8]
AlexNet Cifar-10 [2, 4]
AlexNet LabelMe [2, 4]
VGG-16 Mnist [2, 4, 8]
VGG-16 Cifar-10 [2, 4, 8]
VGG-16 LabelMe [2, 4, 8]
GoogleLeNet Mnist [2, 4, 8]
GoogleLeNet Cifar-10 [2, 4, 8]
GoogleLeNet LabelMe [2, 4, 8]

VI. SCHEDULE

Tentative Schedule refers to Appendix.

VII. CONCLUSION

In this project plan, we propose a deep learning
toolkit for mobile GPUs, and mainly focus on ac-
celerating convolution layers. Extensive experiments
will be conducted on state-of-art neural networks
such as AlexNet [14], VGG-16 [15], and Google-
LeNet [16]. In expection, there will be up to 4×
speedup with only negligible accuracy loss.
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TABLE II. TENTATIVE SCHEDULE

Index Task begin end
1 Literature Review 01.09.17 01.10.17
2 project Plan 01.09.17 30.09.17
3 Read caffe code 03.10.17 10.10.17
4 Port Caffe to Mobile Devices fnished in summer
5 First Iteration for NNM 10.10.17 17.10.17
6 Second Iteration for NNM 18.10.17 25.10.17
7 Third Iteration for NNM 26.10.17 05.11.17
8 Milestone Test for NNM 06.11.17 10.11.17
9 First Iteration for CPT 11.11.17 18.11.17
10 Second Iteration for CPT 19.11.17 26.11.17
11 Third Iteration for CPT 27.10.17 05.12.17
12 Milestone Test for CPT 06.12.17 10.12.17
13 Detailed Intermediate Report 10.11.17 21.01.18
14 First Presentation 01.01.18 12.01.18
15 Port the Whole System to Embedded GPUs 22.01.18 27.01.18
16 Train Several Typical Models 28.01.18 02.02.18
17 Measure Inference Time on Mobile GPUs 30.01.18 04.02.18
18 Data Collection and Prepossessing 05.02.18 10.02.18
19 Final Report 11.02.18 11.04.18
20 Final Presentation 01.04.18 20.04.18
21 Project Exhibition 21.02.18 30.05.18


