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Abstract

The development of robotics has been rapid recently in different areas, for
instance, industrial, social and medical. Robot navigation is a fundamental
part among robotic applications in all these domains. The task of navigat-
ing from one point to another with collision-free trajectories is referred as
collision avoidance. Conventional methods exploited geometric rules or re-
quired excessive amount of real-world data. Without the need of expensive
real-world data, this project aims to show that a robot can be trained with
synthetic data only in simulation environment and navigate safely. Deliver-
able includes a simulation environment learning framework, two high-quality
simulation environments and two trained navigation policies, which serve as
a decision maker to navigate the robot and avoid collision.
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Chapter 1

Introduction

Applications of robotics have been increasing in different fields. Among there,
robot navigation is one of the most important capability. This project focuses
on collision avoidance in robot navigation.

1.1 Outline of the Report

This report is structured as following. Chapter 1 will provide an introduction
on the topic. Chapter 2 will discuss the methodology. Chapter 3 will cover
the experiments and result, where two different trained network is compared
in two different simulation environments. Finally Chapter 4 will investigate
potential future work, followed by a conclusion.

1.2 Background

Safe navigation in environments with obstacles is fundamental for mobile
robots to perform various tasks. Conventional approaches generally search
for optimal control to avoid collision based on the geometry or topological
mapping of the environment. Environments were perceived as a geometri-
cal world and decisions were only made with preliminary features detected.
Robots often follow specific rules and thus it would be hard to adapt to a
new environment that would require strenuous effort for different settings.

With the advance of machine learning, people begin to adapt machine learn-
ing techniques on robotic problems. Additionally, simulation techniques have
been improved along with computer hardware upgrades, enabling computers
to simulate and render authentic graphics.
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One of the biggest constraints in robotics is hardware. It can be danger-
ous if a robot performs a task poorly in real world, causing collision and
even more serious consequences. Collision avoidance, in particular, requires
the robot to explore and navigate in an environment full of obstacles with
collision-free trajectories. As a result, safety is one of the biggest concerns in
collision avoidance.

1.3 Previous Work

Works in the past in collision avoidance focused mainly on the safety issue.
Recently people shifted the focus to social-friendliness, emphasizing the need
that the robot should not only avoid collision, but also imitate the way human
avoid colliding each other.

Potential-field based

[2] mapped sensor reading from robot into a histogram grid. It then selected
the sectors with obstacle density low enough for safe passage and with direc-
tion best matching the objective’s. [7] made use of the concept of potential
field from physics to represent the admissible velocities.

Dynamic based

[6] selected an optimal solution in the search space that is restricted to safe
circular trajectories that can be reached within a short time interval and are
free from collisions. [5, 21, 15, 22] focused on computing the set of collision-
free velocities between all entities, and choose the one closest to the original
preferred velocity. This is particularly suitable in multi-agent simulation
when all obstacles information are fully observable.

Learning-based

Convolutional neural network (CNN) has been performing well in tasks re-
lated to robotics (will be discussed in Section 2.1.2). For collision avoid-
ance, [9] trained a CNN network with collision avoidance data collected by a
multi-agent simulator with different parameter settings. [18] trained a CNN
network with real-world manually labelled depth images.

Deep Reinforcement Learning (DRL) works robustly in numbers of robotic
problems (will be discussed in Section 2.1.5). Using DRL in collision avoid-
ance, [20], [19] and [10] used laser range findings, depth images and predicted
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depth from RGB images to train a deep network from simulation, respec-
tively. [3] designed a reward function that respected common social norms
in human walking and trained a deep network to exhibit socially compliant
behaviors.

1.4 Motivation

Reinforcement learning works well in numbers of robotic problems. However,
safety issue is still the stumbling block of its usage. The introduction of
simulation is beneficial as illustrated by [14] in training a drone to fly. Similar
idea is applied on a robot in work such as [20, 3, 10]. One of the potential
improvement among the works is the simulation environment. Currently all
other simulations only contained simple geometric shapes with a low variety,
or fixed map.

1.5 Scope

This project aims to develop a simulation framework where policies can be
obtained and provide realistic simulation environments. The policy will serve
as a decision maker and enables a robot to navigate safely, in the form of a
neural network.
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Chapter 2

Methodology

This section presents the algorithm used, named Double Dueling Deep Q-
Learning (DQN), combining the work from [12, 24, 23]. An overview of each
component will be discussed.

2.1 Terminology

2.1.1 Deep Neural Network

Artificial Neural networks (ANN) is inspired by biological theories and serves
as a programming paradigm which enables a computer to learn from existing
data. It usually consists of multiple layers between input and output.

Deep neural network (DNN) is an ANN with multiple hidden layers between
input and output layers. DNNs can model complex non-linear relationships
and the architectures generate compositional models where the object is ex-
pressed as a layered composition of primitives. The extra layers enable com-
position of features from lower layers, potentially modeling complex data
with fewer units than a similarly performing shallow network.

2.1.2 Convolutional neural network

Convolutional Neural Network (CNN) is a type of hierarchical neural net-
works for feature extraction. It works well on extracting the underlying
information from high-dimensional data such as images. In general, three
operations are involved: convolution, non-linear activation and pooling.
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Convolution

The convolution operation takes weighted sum on data, for example, pixel
values on an image, and returns a feature map. Considering a two-dimensional
context, the mathematical expression is denoted by

yij = (W ∗ xij) + b

where yij represents the value at coordinate (i, j) of the resulting feature
map, W represents the convolution kernel, xij is the (i, j) patch of the input
and b is the bias vector of the convolution kernel .

Non-linear activation

Inspired by the biological nerve system inside our brain, an element-wise non-
linear activation function is applied to the output feature maps. Common
activation functions includes the sigmoid function s(x) = 1

1+e−x , the hyper-

bolic tangent function tanh(x) = ex−e−x

ex+e−x and the rectifier f(x) = max(0, x).

Pooling

The function of a pooling layer is to progressively reduce the spatial size of
the representation, thus reduce the amount of parameters and computation in
the network, and hence to also control overfitting. Usually a pooling layer will
take the maximum over patches of customized size while the depth dimension
will remain unchanged. Pooling layer can also perform other functions, such
as averaging.

2.1.3 Reinforcement learning

Reinforcement learning (RL) [17] is one of the machine learning methods
that are used to solve sequential decision making problems. In general, a
sequential decision making problem can be formulated as a Markov decision
process (MDP), which is defined by the following: < S,A, P,R, λ >, where
S is the state space, A is the action space, P is the state-transition model,
R is the reward function, and λ is the discount factor which represents how
important the previous action is, relative to the current state.

2.1.4 Q-Learning

Q-learning is one of the reinforcement learning techniques. It can be used
to find an optimal action-selection policy for any given (finite) Markov deci-
sion process (MDP). A policy refers to a function that makes decision given
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the perception of the current state. For example, in the context of collision
avoidance in robot navigation, the policy decides movement direction and
velocity given the current captured images perceived by the robot.

The action-value function Q(s, a) represents the maximum discounted future
reward when we perform an action at in state s. The function is denoted as

Q(s, a) = r + γmaxa′Q(s′, a′)

where r is the immediate reward by performing action a in state s, s′ is
the next state and γ is the discount factor. By learning the action-value
function, it eventually results in an optimal policy by selecting the action
with the highest action-value in each state.

2.1.5 Deep Reinforcement Learning

Deep reinforcement learning (DRL) methods generally use deep neural net-
works as function approximator on components of reinforcement learning, for
example, the action-value function. It stabilizes the training of action-value
function approximation with deep neural networks.

2.1.6 Deep Q-Learning

Deep Q-learning is an good example of DRL. In the context of Q-Learning, a
DNN can be used to replace the action-value function. This enables process-
ing of high-dimensional data and thus Q-Learning can be applied on more
complex problems. It stabilized the training of action value function approx-
imation with the help of experience replay [8] and target network[11], which
will be discussed below.

Experience replay

Experience replay refers to the playback of the experiences stored in a replay
memory. After each action, an experience in the form of < s, a, r, s′ > will
be saved, which are current state, action performed, reward and the next
state, respectively. The experiences are then used to train the network. One
way is to select the replays subsequently. However, it may cause overfitting
or lead to local minimum. Instead, drawing minibatches from the replay
memory randomly would break the similarity of subsequent training samples
and avoid the problems above.
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Target network

The target network refers to the usage of an extra network to store the
action-values. The idea is to separate one network into two, where one used
to choose actions and the another one is responsible to store the action-values.
In contrast, frequent shift of network values will cause destabilization when
using a single network. Therefore, by separating the network and updat-
ing the target network slowly, [20, 23] found that it stabilized the training
process. The update of action-value then becomes

Q(s, a) = r + γQ′(s′, argmax(Q(s′, a)))

where Q and Q′ represent the two separate networks.

It presented an end-to-end reinforcement learning approach, only required
minimal domain knowledge, for instance, images or game scores. In addi-
tion, the trained network with the same structure and hyperparameters was
illustrated to be capable of being applied to many different tasks, which is 49
Atari games in [1], and achieved good results, even comparably to a human
professional player.

2.2 Simulation Environment

This project uses Unreal Engine 4 (UE4) to simulate the virtual training
environments, a game engine that allows game developers to design and
build games, simulations, and visualizations. UnrealCV[13] is a open-source
plugin that enables access and modification of the internal data structures
of the games. This project uses UnrealCV for communication between UE4
and the reinforcement learning module implemented with Keras[4], a high-
level neural networks API written in Python and capable of running on top
of TensorFlow, CNTK, or Theano. Figure 2.1 shows some examples of the
simulation environment.

2.3 Network Structure

Figure 2.2 illustrates the network structure. It takes four consecutive depth
images as input, processed by a CNN followed with a dueling DQN. The
output of the network are the q-values (or likelihood) of each linear and
angular action. The best action is simply the one with highest q-value. The
following two extensions were not present in the original DQN. They were
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Figure 2.1: (left) Third-person view. The black cylinder is the robot (right)
First-person view (bottom) depth image

adopted after experiments which proved the extensions to be beneficial to
the performance of the network.

Dueling network

[24] proposed the idea of state-value function V(s) and advantage function
A(s,a), namely the dueling network architecture, in contrast to the conven-
tional action-value function Q(s, a). The state-value function V(s) repre-
sented how good it is to be in the state s and advantage function A(s,a)
represented how much better taking a certain action would be compared to
the other possible actions. The two functions were combined to estimate
Q(s, a), for faster convergence. The idea can be better illustrated in figure
2.3. The corresponding action-value function then becomes

Q(s, a) = V (s) + A(s, a)

Dropout

[16] proposed this idea to avoid overfitting in training phrase. The key idea
was to randomly drop units (along with their connections) from the neural
network during training.
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Figure 2.2: The network structure.

2.4 Overview of learning

The agent interacted with the environment and chose random actions based
on a probability index which decreased over time. After the agent chose an
action, reward was given to the agent and once collision was detected, the
episode will restart and the agent will be spawned at next random available
location. During training, the agent will store its experience into a buffer and
learn from the buffer at the same time. Intuitively the agent will keep learning
by distinguishing actions with high rewards under different circumstances.
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Figure 2.3: Dueling network structure. (Top) The standard network struc-
ture with Q(s,a) as action-value function. (Bottom) The dueling network
structure with state-value function and advantage function.

10



Chapter 3

Experiments and Results

3.1 Experiment

Experiments were carried out to evaluate the performance of two network
for collision avoidance in two different simulation environments, where each
of them is trained separately from the two environments.

The details of experiments, including the environment, action space, task
rules and reward function will be discussed here.

3.1.1 Environment-1: Corridor

Setup

The simulation environment is a corridor setting. The agent was spawned at
a random available location and no specific tasks or orders were assigned to
them. The agent can choose among five different angular actions (0◦, ±10◦,
±20◦) and two different linear actions (move forward or stay). For simplicity,
the distance travelled for moving forward was fixed to be 20 units. When
collision was detected, the episode will restart and the agent will be spawned
at next random available location. Agent was given images from the previous
3 frames appended with the current frame. Figure 3.1 shows the top-view
and perspective-view of the map.

Reward

Reward refers to the score the agent obtained according to an action in order
to evaluate how well an action is with respect to the current state the agent
is in. The reward is defined as R = k · v · cos4θ where v is the velocity, θ is
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Figure 3.1: The corridor top-view and perspective-view. The red circle refers
to the agent and the green line indicates the available space.

the angular velocity and k is a constant for reward normalization. Reward
for collision is -10.

3.1.2 Environment-2: A generic map

Setup

The second environment is a generic map, generated at run time by com-
bining square blocks into different shape. The implementation detail will be
explained in the next section.
For this map, the agent was spawned at a fixed location and no specific tasks
or orders were assigned to them. To reduce problem complexity, the number
of actions that agent can choose is reduced to three different angular actions
(0◦, ±10◦) and two different linear actions (move forward or stay). Similarly,
the distance travelled for moving forward was fixed to be 20 units. When
collision was detected, the episode will restart and the agent will be spawned
at the fixed location. Agent was given 1 image only, which is the current
frame.

Generic map generation

A map is generated from 4 kinds of blocks: begin/end, left, right and straight
(refer to Figure 3.2) with random size obstacles generated at random location.
There exists only one obstacle in one block. Figure 3.4 shows an overview of
a map and Figure 3.3 shows some more examples.
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Figure 3.2: (from left to right)begin/end block, left block, right block and
straight block. A map will be built by randomly combining these blocks.

Figure 3.3: Some examples of the dynamic environment.

Reward

Similarly, the reward is defined as R = k · v · cos4θ where v is the velocity, θ
is the angular velocity and k is a constant for reward normalization. Reward
for collision is -10.

3.2 Results

3.2.1 Tuned hyperparameter

Discount factor is also a crucial factor to the network performance. Discount
factor represents the importance of an action relative to its following actions,
known as λ in the action-value function

Q(s, a) = r + γmaxa′Q(s′, a′)

Intuitively, a larger discount factor means the previous action is more im-
portant and accountable for its future actions. In the context of collision
avoidance, collision may be caused by a sequence of actions, instead of a
single action. Therefore, consideration of previous actions is necessary for a
robust policy. After some trial, discount factor of 0.95 was found to have the
best performance in general, illustrated in Figure 3.5.
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Figure 3.4: The generic map environment top-view. The red line indicates
the block boundaries, yellow circle indicates the obstacles and the red circle
represents the agent.

3.2.2 Comparison

Two algorithms were compared on two different simulation environment. Al-
though the action space is different, the reward function for both environ-
ments are the same. For convenience, PCor refers to the policy trained in
Corridor while PGen refers to the policy trained in Generic map.

Policy Tested in Rewardaverage* SD*
PCor Corridor 9.84 0.035
PGen4 Corridor 9.78 0.083
PGen1 Corridor 6.73 3.40
PCor Generic map 9.25 1.47
PGen4 Generic map 9.72 0.81
PGen1 Generic map 6.90 2.65

Table 3.1: Performance comparison for two different network. Average re-
ward and standard deviation were obtained from 100 episodes, each episode
with 500 steps. Maximum average reward is 10.00.

The result showed an unexpected correlation between training and testing
environment. Each of the policy was expected to perform better at the
environment which it was trained in. However, PCor outperform PGen in
both environments.
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3.2.3 Intuition

Intuitively Corridor is of less complexity, hence the features are less vague
and the agent may learn better. In addition, 4 consecutive images are fed to
PCor while only 1 was fed to PGen. Motion information was captured in the
4 consecutive images which may cause PCor to be more stable (smaller SD).

Along with training input and environment, reward function here may
also be a crucial factor in determining the performance. The reward func-
tion was designed to encourage walking straight without collision. Corridor
environment somehow provided a clear and suitable environment to the agent
to learn that, since there was mainly straight road and no obstacles through-
out the path. Meanwhile, Generic map consisted of numbers of corners and
random obstacles. This, however, caused the agent to get use to turning,
yielding a smaller reward.
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(a) (b)

(c) (d)

Figure 3.5: The figure shows the average cumulative episode reward across
training time. (a) λ=0.9 with original network structure (b) λ=0.9 with
dueling network (c) λ=0.99 with dueling network (d) λ=0.95 with dueling
network. Notice that (d) has a maximum score of around 90, which is the
highest score among all. Although the curve is less smooth, higher maximum
score represents the policy produces better trajectories.
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(a) (b)

(c) (d)

Figure 3.6: Performance of network(a) PCor tested in Corridor (b) PCor tested
in Generic map (c) PGen tested in Corridor (d) PGen tested in Generic map
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Chapter 4

Future Work

The SimNav framework is flexible, providing a training environment along
with communication tool between software modules. Eventually, the trained
network can be applied onto a robot.
The robot will be using Kinect, a motion sensing input device developed by
Microsoft, for obtaining real time depth images or RGB images, according
to the setting.
However, one would need to overcome the sensor noise issue and reduce the
difference between real and simulation sensor feedback. In simulation, the
environment is deterministic. The depth images can be perfectly obtained.
However, the sensor data in real world usually contain noisy data. Effort
would be needed to mitigate the difference. Figure 4.1 shows an example of
a noisy depth image obtained by a Kinect device.

Figure 4.1: (Left) Kinect device. (Right) An example of noisy depth image
obtained by Kinect.
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Chapter 5

Conclusion

Collision avoidance in robot navigation is an essential area in robotic applica-
tions. People in the past adopted constraint-based methods for this problem,
while recently majority tended to use learning-based methods. This report
proposes a simulation training framework, namely SimNav, and investigates
the possibility to train a robot to navigate safely by performing training in
SimNav, without any real world data. State-of-the-art reinforcement learning
algorithms with different variation will be compared.
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