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1    Abstract  

Heterogeneous Information Network (HIN) is a graphical representation of a dataset. This 

depiction enables researchers to carry out unprecedented knowledge discovery tasks and to 

discover unnoticeable but promising facts from the data. Meta-paths and meta-graphs are two 

meta-level data structures. They were proposed to aid the task of similarity searches and others. 

However, discovering those structures is difficult manually. Although there has been some 

effort put into the study of meta-paths generation, most of them cannot scale well enough to 

handle meta-graphs discoveries. This work therefore investigates the problem of how to 

discover meta-graphs in large HINs efficiently. A greedy algorithm adapted from an existing 

framework was proposed in this work to gradually select the most relevant meta-graph and to 

include it in a regression model. At this stage, the design of the greedy algorithm of generating 

all potential types has been completed. The implementation of it on discovering a subset of all 

meta-graphs is under construction. Analysis on the time complexity, space complexity of the 

algorithm and experiments on how certain variables influence the results will be conducted in 

March this year.  

  

  



iii  

  

Table of Contents  

  Cover Page  i  

  Abstract  ii  

  Table of Contents  iii  

  List of Figures   iv  

  Abbreviations  v  

1 Introduction    

1.1 Background                                                                     1  

1.2 Previous works       3  

1.3 Problem statement and objectives     4  

1.3.1 Problem Definitions     4              

1.3.2 Objectives       5  

2 Methodology   

2.1 Forward Stagewise Structure Generation (FSSG)   6  

2.1.1 Theoretical background     6  

2.1.2 Demonstration      11 

3  Progress and Schedule       14  

4 Preliminary results     

4.1 Assumption        15  

4.2 Execution result at Phase One     16  

  

5 Difficulties encountered    

5.1 Impediments to implementing FSPG framework   19  

5.2 Insufficient memory capacity     19  

  

6 Conclusion         20  

  Reference  21  



iv  

  

List of Figures  

Figure 1(a)  HIN  2  

Figure 1(b)  Meta paths  2  

Figure 1(c)  Meta-graph  3  

Figure 2  A node class hierarchy  6  

Figure 3  Step 1-3  11  

Figure 4(a)  Step 4 – part I  11  

Figure 4(b)  Step 4 – part II  12  

Figure 5  Step 4a  12  

Figure 6(a)  Step 7 – part I  13  

Figure 6(b)  Step 7 – part II  13  

Figure 7  Schedule  14  

Figure 8  Examples and counterexample of 2B meta-graphs  15  

Figure 9  DBLP schema  16  

Figure 10  Four pairs of positive example  16  

Figure 11(a)  Data Reading – Start  17  

Figure 11(b)  Data Reading – End  17  

Figure 12(a)  Link-only meta-paths generation – Part I  18  

Figure 12(b)  Link-only meta-paths generation – Part II  18  

  



v  

  

Abbreviations  

HIN  Heterogeneous Information Network  

FSPG  Forward Stagewise Path Generation  

FSSG  Forward Stagewise Structure Generation  

LCA  Lowest Common Ancestor  

BSCSE  Biased Structure Constrained Subgraph Expansion  

MLAR  Revised model of Least-Angle Regression Model  

AMPG  Automatic meta-path generation  

SMPG  Set-expansion meta-path generation    



1  

  

1    Introduction  

Background information of the topic is presented in Chapter 1.1. In Chapter 1.2, there is a 

discussion of some prior works on the related research topics while the problem statement 

and objectives of this project are introduced in Chapter 1.3 at the end of Chapter 1.   

1.1      Background  

Data has been increasingly available as the use of the Web and social media by people has been 

surging. This copious amount of rich information enables the study of knowledge discovery in 

data aimed for better understanding of the human behaviour. For instance, researchers mine 

patterns from the training data for the use of trend projection; researchers investigate the topic 

of relevance between objects to enhance the similarity search. In recent decades, mining in 

information networks has aroused growing attention from researchers because many datasets 

can be organized into a graph whose complex structural characteristics allows one to dig out 

promising knowledge. An information network is a graph G = (V, E), where V is the set of 

nodes (i.e. objects) and E is the set of edges (i.e. relationships) [17]. An example is depicted in 

Figure 1(a). For each node, it has one or more associated node classes; for each edge, it has one 

associated edge type. Thus, there are two more important functions: 𝜏: 𝑉 → Α ; 𝜑: 𝐸 → ℛ. The 

first function 𝜏 is the node class matching function where each object 𝑣 ∈ 𝑉 matches to one or 

more node classes 𝜏(𝑣) ∈ Α. Likewise, the second function 𝜑 is the edge type matching function 

where each edge 𝑒 ∈ 𝐸 belongs to one edge type 𝜑(𝑒) ∈ ℛ. Accordingly, there are two kinds 

of information network:  

if |Α| = 1 and |ℛ| = 1, it is a homogeneous information network  

if |Α| > 1 or |ℛ| > 1, it is a heterogeneous information network (aka HIN) [14]  

Homogeneous information network mining has been studied since the last few decades 

during which researchers have been developing methods for analysing homogeneous 

information networks on the task of clustering, ranking and link prediction [14]. It although 

seems feasible to extend some of these techniques to handle the study of HINs, most of them 

cannot be directly applied to the problem. It is because the schema of an HIN is far more 

complicated than the one in a homogeneous information network and this enables an HIN to 

express richer information. In addition, node classes and edge types are different across objects 

and relations. Consequently, considering them as identical as those in the case of homogeneous 

information network loses the semantic meaning and possibly the valuable information one 
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would have mined from the network. Therefore, researchers should develop a new set of 

methodologies and principles in studying HINs.  

              

 Figure 1(a) HIN  

One interesting research topic in HINs analysis is relevance and similarity search. 

Relevance of two objects defines how similar they are or how tightly they are being related. 

These research results provoke the analysis of similarity search, classification, clustering and 

link prediction in HINs [14]. While many works have been done on relevance study, e.g. 

Personalized PageRank [5], Jaccard’s coefficient [11] and SimRank [6], these measures neither 

consider the different semantic meanings of node classes nor that of edge types. Regarding this 

issue, Sun. et al [17] proposed the concept of meta path and a family of meta path-based 

similarity measures. A meta path is a path comprising of node classes and edge types instead 

of the actual objects and relations. Node classes and edge types are called meta data in network 

analysis and thus a path of meta data is recognized as a meta path. Two examples are illustrated 

in Figure 1(b).   

Figure 1(b) Meta paths  
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Figure 1(c) Meta-graph   

Although meta path has been proved to be useful in many applications, it can only 

capture simple relationships between the source node and the target one. More importantly, it 

simplifies all the relations as a single path relation and overlooks the semantic different between 

a combination of meta paths and a structural relation. Huang et al. [4] subsequently proposed a 

concept of meta structure aiming to provide a data structure depicting complex relations; Fang 

et al. [2] at the mean time suggested metagraph, being a generalisation of meta path and meta 

structure, to represent various semantic relations. An example of metagraph is shown in Figure 

1(c). Meta-graphs (i.e. meta path, meta structures and metagraph) have then been proved to be 

beneficial to product recommendation, community detection, classification and clustering as 

well as link prediction [1-4,7-8,10].   

1.2      Previous works  

Despite the substantial studies of meta-graphs application, most of the works assumed these 

structures are given by experts or are discovered using enumeration or Breadth First Search. 

Sun et al. [15] assumed the meta paths defining the co-author relationship are given by experts 

in the study of applying meta paths in prediction and recommendation. Yu et al. [18] and Li et 

al. [10] both presumed the meta paths will be given in the analysis of recommendation and 

clustering. Although some researchers attempted to use Breadth First Search to discover the 

meta path [8,16], they required the user to input the maximum meta path length restricting the 

search space. Similarly, researchers expected meta-graph are given by domain experts [19] or 

by enumeration [7] for the study of its applications. Since meta-graphs are difficult to define 

for a complex schema and it is a labour-demanding task [12], while Breadth First Search and 

enumeration are not efficient for large HINs, it is obvious that researchers should develop an 

efficient approach to discover these meta-graphs automatically in large heterogeneous 

information networks.  

Some researchers have studied this problem in the last few years attempting to 

automatically discover and to locate these illustrative data structures in large HINs. Regarding 

the discovery of meta paths, there are in general two approaches: example-based training and 

adapted sequential pattern mining. Example-based training means the user must first provide 
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positive example pairs. The algorithm framework trains a model based on these pairs and 

transverses the HIN to discover the meta paths highly explaining the relationship of the given 

pairs. There are many proposed algorithms using this framework, e.g. FSPG [12], AMPG [1] 

and SMPG [20], though they differ subtly in some areas. For example, the definitions of the 

priority score for heuristics pruning and the method of discarding unimportant meta paths. 

Additionally, Shi et al. [13] proposed a method adapted from well-known knowledge discovery 

techniques − sequential pattern mining, aiming to simulate mining interesting meta paths as 

sequential pattern mining. “Generate-and-Discard” suggested by Shi [13] targeted to generate 

meta paths linking the two target nodes by considering the linkage between the siblings of the 

two target nodes.   

Regarding the discovery of meta-graphs, Fang et al. [2] proposed a heuristic approach 

to mine meta-graphs from HINs. They suggested to use a set of seed candidate meta-graphs, 

assuming that two structurally similar meta-graphs are functionally similar. By maximizing the 

structural similarity of any potential meta-graphs to any seed meta-graphs, it means that the 

chosen one is structurally and functionally similar to any seed meta-graphs. However, it is 

unclear whether functional similarity and structural similarity are highly correlated. Moreover, 

using a set of seed meta-graphs would limit the diversity of candidates. It thus needs more 

justifications. In short, researchers should develop a more unified and efficient framework in 

handling automatic discovery of meta-graphs for large heterogeneous information networks.  

1.3      Problem statement and Objectives  

The goal of this work is to develop a systematic and methodical algorithmic framework 

allowing efficient discovery of meta-graphs in large heterogeneous information networks. In 

this work, the method proposed in [12] is adapted with modifications for optimization in the 

discovery. Below are the definitions of the models used in this study and the specific objectives 

of this work.  

1.3.1    Problem Definitions  

DEFINITION 1 (HETEROGENEOUS INFORMATION NETWORK).  

A heterogeneous information network is a graph G containing V, which is the set of nodes (i.e. 

objects), and E, which is the set of edges (i.e. relationships). There are two more important 

functions: 𝜏: 𝑉 → Α ; 𝜑: 𝐸 → ℛ. The first function 𝜏 is the node class matching function where 

each object 𝑣 ∈ 𝑉 matches to one or more node classes 𝜏(𝑣) ∈ Α. Likewise, the second function 

𝜑𝜑 is the edge type matching function where each edge 𝑒 ∈ 𝐸 belongs to one edge type  
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𝜑(𝑒) ∈ ℛ. Note that |Α| > 1 or |ℛ| > 1.  

DEFINITION 2 (META-GRAPHS).  

Given an HIN G = (V, E, ℒ, ℛ) with 𝜏 and 𝜑, a meta-graph is a graph �̅� = (�̅�, �̅�) where �̅� ∈  A and �̅� ∈ 

ℛ.  

PROBLEM 1 (RELEVANT META-GRAPHS).  

Given an HIN G = (V, E, Α, ℛ) with 𝜏 and 𝜑, together with a set of n example pairs Sep = {(si,ti)  

|𝑖 ∈ [1, n]} and a similarity function 𝜎𝜎(𝑠, 𝑡|𝑆𝑆𝑚g), discover a set of m meta-graphs Smg = {gi  | 

𝑖 ∈ [1, 𝑚]} that capture the characteristics of each pair in Sep.  

1.3.2    Objectives  

In this project, studies are separated into three phases and their corresponding objectives are 

listed as follows:  

• Phase One: Use the existing algorithm framework in [12] to implement a program such 

that link-only meta-paths can be discovered.   

• Phase Two: Extend and modify the work in Phase One such that link-only meta-graphs 

can be generated and implement the Lowest Common Ancestor (LCA) lookup.  

• Phase Three: Conduct analysis and experiments to understand the performance of the 

proposed algorithm.  

 The remainder of this report is arranged as follows. The theoretical information of FSSG is 

introduced in Chapter 2.1.1. There is a detailed illustration of how the algorithm works for 

mining meta-graphs in Chapter 2.1.2. The schedule of this study is presented in Chapter 3. 

Chapter 4 focuses the discussion on the preliminary results obtained from the first phase of the 

implementation. Theoretical and technical difficulties encountered are discussed in Chapter 5. 

Conclusion is presented in Chapter 6 with a brief discussion on the future planning for Phase 

Two and Phase Three.  
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2    Methodology  

The proposed algorithm – Forward Stagewise Structure Generation (FSSG) is introduced in 

this chapter. There are separate analyses on the theoretical information and the algorithm logic.    

2.1      Forward Stagewise Structure Generation (FSSG)  

In this chapter, there is an in-depth discussion on the theoretical information of FSSG in 

Chapter 2.1.1. To better illustrate the idea and the flow of logic of FSSG, an example is shown 

in Chapter 2.1.2 to walk readers through the execution of FSSG.  

2.1.1      Theoretical background  

FSSG is an example-based training algorithm whose framework was adapted from FSPG 

proposed by Meng et al. [12]. FSSG incorporates a two-phase framework in discovering 

metagraphs in large HINs given a set of positive example pairs. In the first phase of FSSG, it 

generates meta-graphs that have edge types only leaving the node classes empty. Then FSSG 

fills in the node classes by using the node class hierarchy. A node class hierarchy shows the 

relationship between various classes. Figure 3 illustrates an instance of a node class hierarchy. 

In general, FSSG uses greedy strategies to select a set of meta-graphs with high correlation 

values which denotes their ability in explaining the relationship of every example pairs under 

a specific similarity measure.   

  

  

Figure 2. A node class hierarchy [12]  

Before executing FSSG, users must provide the program with a set of positive example 

pairs. These example pairs must be in the form of (i,j) where i is the source node and j is the 

destination node. Given a pair of (a,b), it means that the user wants to discover meta-graphs 

that can explain the relationship of a and b. Given a set of these example pairs, the user would 

like to locate a collection of meta-graphs that explains the relationship of each pair. For example, 
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if the user provides two pairs: (B. Obama, M. Obama) and (G.W. Bush, L. Bush), the user may 

want to determine meta-graphs that can explain the relationship of the US President and the US 

First Lady.   

Then, the algorithm generates the same number of negative example pairs. It is 

necessary to include negative example pairs in the discovery process because negative pairs 

can lower the priority score (i.e. uniqueness) of popular meta-graphs. And thus, the results 

favour unique meta-graphs instead of common meta-graphs. Next, the algorithm initializes a 

data structure called GreedyTree with a root node containing all the source nodes, their 

similarity score and the priority score. Here is a short discussion of the two scores. First, a 

similarity score function determines how close two entities s and t are related given a set of 

meta-graphs. Applying this function allows the algorithm to select the best set of meta-graphs 

in explaining all the example pairs. Below is the equation of similarity function 𝜎𝜎.  

𝜎(𝑔, 𝑖 |𝑆, 𝑡) =  
1

|𝜌(𝑔, 𝑖|𝑆, 𝐺)|𝛼
∑ 𝜎(𝑥, 𝑖 + 1| 𝑆, 𝑡)

𝑥∈𝜌(𝑔,𝑖|𝑆,𝐺)

 

𝜎(𝑔, 𝑛 |𝑆, 𝑡) = 1 𝑖𝑓 𝜒(𝑛𝑑) = 𝑡 

where S is a meta-graph, t is the sink object, 𝜌(𝑔, 𝑖|𝑆, 𝐺) is the set of instances at (i+1)-th layer. 

The similarity score ns and nt given a meta-graph S is 𝜎(ns, 1 | 𝑆,nt). This is the definition of 

BSCSE function proposed by Huang in his work on meta-structure [4]. Second, the priority 

score is required to perform a heuristic discovery on the GreedyTree and it in fact is an upper 

bound of the actual correlation value. The true correlation function is defined as the standard 

cosine function as below:  

cos(𝒎, 𝒓) =  
𝒎 ⋅ 𝒓

‖𝒎‖ × ‖𝒓‖
 

where m is the similarity score vector in which each entry is the BSCSE score of an example 

pair; r is the residual vector which represents the difference between the regression model and 

the ground truth value [12]. The default difference of positive example pairs is 1 while -1 is set 

for negative example pairs. Below shows the definition of the priority score.  

𝑆𝑐 =  
∑ 𝜎(𝑔, 𝑖 |𝑆, 𝑣) ⋅  𝑟(𝑢,∗)𝑢+

‖�⃗⃗⃗�‖ × ‖𝑟‖
⋅  𝛽𝐿 
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where u and v are the current starting and ending node; u+ are all positive example pairs; 𝑟(𝑢,∗) 

is the maximum value in the residual vector for example pairs starting from u; 𝛽 is a decay 

factor and L is the current meta-graph layer.   

After calculating the similarity scores and the priority score of the root node, FSSG 

extends the tree by generating all relevant paths/graphs and create a new node to represent each 

scenario. FSSG continues expanding the tree with the node having the highest priority score. 

Moreover, if there are some entries in a node where pairs are identical, it signifies that some 

individual paths collapse at this point. Therefore, FSSG creates a new node to represent the 

joint. The process of expansion repeats until a tree node reaches some destination entities. If 

the actual correlation value of that node is the largest, FSSG returns the meta-graph and its 

similarity score vector to the main programme where the BSCSE score vector will be added to 

a modified version of the Least-Angle Regression Model (MLAR). This expansion and addition 

procedure iterates until the residual vector is negligible. That symbolizes that any additional 

meta-graphs to be included in the MLAR will not improve the model significantly. At this stage, 

the discovery is completed, and at last, FSSG returns the set of meta-graphs with edge-types 

and their weight trained in the regression model.  

In phase two, the possible node classes that match the empty spots in each graph are 

being recorded. Since there are many available choices for a single blank, Meng et al. [12] 

suggested using the node class hierarchy to resolve the issue. He proposed to take the Lowest 

Common Ancestor (LCA) on a class hierarchy of all possible node classes for one spot. It is 

because it can maximize the number of example pairs possibly being explained by each 

candidate. After the bottom-up transversal on the node class hierarchy and the substitution of 

the LCA for each missing node class, the results are finalized. FSSG incorporates this method 

in completing the class information in stage two. Note that ExpandGreedyTree is a function 

that uses a heuristic data structure GreedyTree and it discovers the most relevant meta-graph 

at one stage in the search space efficiently. Below are the pseudocodes of the algorithm. Most 

of the variables are defined as they are in FSPG allowing readers to reference and understand 

better. Interested readers may refer to [12] for additional information and explanation on the 

FSPG framework.  
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2.1.2      Demonstration  

A user scenario is presented below to provide a clear illustration of the execution of FSSG.  

User Scenario – Co-authorship  

Step 1. Input positive example pairs by user  

Step 2. Generate negative example pairs  

 

Figure 3. Step 1-3  

  

Step 4. Expand the tree with node having the largest priority score  

 

Figure 4(a) Step 4 – part I  

Step 3.  Initialize  GreedyTree  with a root node  

  

1   

2 

3   
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Figure 4(b) Step 4 – part II  

  

Step 4a. If some entries containing identical pairs, create a new node  

  

Figure 5. Step 4a  

  

Step 5. If a node reaches some sink nodes and its priority score is the largest, returns the meta-

graph with its similarity score vector  

Step 6. Repeat Step 4-5 until the residual vector is negligible  

  

Step 7.  Perform LCA lookup to fill in class information  
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Figure 6(a) Step 7 – part I  

  

Figure 6(b) Step 7 – part II  
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3   Progress and Schedule  

This chapter provides a discussion on the progress of this work and the future schedule.  

 

Figure 7. Schedule  

Figure 7 illustrates the progress of this project and the time distribution of each subtask. A 

thorough literature review has been performed during September and October 2017. The 

major tasks done in this period were to research the background and to design FSSG. This 

included reading research papers on related topics, comparing and understanding the 

shortcomings of existing designs, being familiar with the FSPG framework and designing 

efficient data structures for FSSG. As indicated in Figure 7, the first phase of the 

implementation focusing on link-only meta-paths has been completed by December 2017. It 

denoted that the programme currently can discover link-only meta-paths given a set of 

positive example pairs.   

In the coming months (i.e. January and February 2018), the coding of the phase two of 

the implementation will be finished, and at the end of February, the programme will be able 

to discover meta-graphs with all necessary information (edge types and node classes). In 

March 2018, analyses will be conducted to examine the theoretical effectiveness and 

efficiency of FSSG. More importantly, empirical studies will be carried out to understand the 

performance of FSSG on real datasets.  
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4    Preliminary results  

The first phase of implementation of FSSG was completed. This chapter focuses its discussion 

on some of the critical assumptions made in Chapter 4.1 and illustrates the output of FSSG 

executing on real dataset for phase one in Chapter 4.2.  

4.1     Assumption  

As highlighted by the discussion in Chapter 2.1.1., FSSG is designed to build upon the FSPG 

framework allowing the algorithm to discover all types of meta-graphs. However, long and 

complicated meta-graphs are in fact not interesting and not meaningful nor are they easy to 

generate [12]. Therefore, to facilitate the effectiveness of the algorithm as well as the returned 

results, FSSG is being implemented in the way that it discovers only two-branches (2B) 

metagraphs. Here is the definition of 2B meta-graphs:  

Given an HIN G = (V,E) and the schema TG = (A,R), a 2-braches meta-graph is a 

metagraph H’ = (N,M,ns,nt), where for all x ∈ N, out-degree(x) ≤ 2.  

Below diagram shows two positive examples of 2B meta-graphs and one counterexample:  

  

Figure 8. Examples and counterexample of 2B meta-graphs  

In short, a node of a 2B meta-graph can perform either no branch or binary branch at every 

stage of expansion.   
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4.2     Execution results at Phase One  

To demonstrate the result FSSG have achieved, an execution on real dataset was conducted to 

illustrate the output. One dataset had been chosen for the execution: DBLP four area. This 

dataset is one of the representative datasets in the study of data mining, network mining and 

HIN analysis.   

 DBLP is a bibliography network containing computer sciences journals and conference papers. 

Since the entire network is enormous and most of the details are not useful for this study, a 

subset of this network was extracted containing sufficient data for the experimentation. The 

subset consists of papers published in four research areas: information retrieval, databases, data 

mining and artificial intelligence [12]. The schema of this subset is shown in Figure 9.  

There are four edge types namely writtenBy, mentions, cites and publishedIn. Paper (P), 

Author (A), Venue (V) and Topic (T) are the four node classes. The subset contains more 

than 170000 links.  

  

Figure 9. DBLP schema  

    

  

Figure 10. Four pairs of positive example  

  

writtenBy   

cites   

mentions   publishedIn   
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Four pairs of positive example were fed into the program and they are shown in Figure 

10. Each pair is an instance of co-authorship, and thus the expecting result should be a set of 

meta-graphs directly or indirectly explaining co-authorship. Since only the first phase of FSSG 

has been implemented, the expecting output at this moment instead is a set of link-only 

metapaths symbolizing co-authorship.   

 Regarding the setting of variables, as Meng suggested in [12], 𝜀𝜀 was set to 0.01 in FSSG. 𝛼𝛼 

was adjusted to 0.5 according to the empirical studies done in [4] and 𝛽𝛽 as the decay factor 

was set to 0.8 [12] to avoid the search going indefinitely. The programme was written in C++ 

and the execution was conducted on an 4GB memory Win10 machine. The output of the 

execution is illustrated through Figure 11 to Figure 12.  

  

Figure 11(a) Data Reading – Start  

  

Figure 11(b) Data Reading – End  
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Figure 12(a) Link-only meta-paths generation – Part I  

  

Figure 12(b) Link-only meta-paths generation – Part II  
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5    Difficulties encountered  

During the first stage of the project, the team was confronted by numerous theoretical and 

practical problems. Chapter 5.1 discusses the difficulties in understanding and replicating 

FSPG framework, and Chapter 5.2 shows an example of technical issue of the execution.  

5.1    Impediments to implementing FSPG framework  

Since FSSG employs FSPG framework as the main backbone, understanding FSPG thoroughly 

is required for such extension. However, the description of the FSPG framework in Meng’s 

work [12] is limited and it became difficult to rewrite the FSPG framework from scratch. 

Although the team fortunately got access to the original coding of the FSPG framework, the 

authors of the programme did not leave any comments to explain the usage of certain enigmatic 

variables and the confusing flow of logic. The programme did not have any syntax or 

compilation errors, it though contains severe runtime errors due to its bewildering and 

perplexing flow of control. To replicate and to fully extend the framework, the team spent 

months studying the codes line by line, rewriting the functions, removing unnecessary variables 

and logic. Despite the delay caused by the unexpected workload, the team has successfully 

rewritten the FSPG framework as part of the FSSG algorithm by late-December.   

5.2     Insufficient memory capacity  

Memory capacity inadequacy is a common problem of running experiments in graph mining 

and network mining field. It is because graphs and networks were embedded with richer 

information than raw text data. For example, the dataset at the minimum must store all object, 

all edges, classes of each object, types of each edge and the connections. Lacking memory 

capacity occurs when the dataset is too large to be loaded into the main memory, the dataset is 

too large to be searched or the execution requires large amount of memory to support. FSSG 

indeed requires copious amount of memory to execute because it must store all information of 

each node on the GreedyTree as well as perform cross-checkings. Some potential solutions 

include running the programme on a server platform providing more memory capacity and 

designing efficient data structures to facilitate the searching.  
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6    Conclusion  

Meta-graph is a useful tool in many knowledge discovery tasks, e.g. similarity search, 

recommendation. However, currently there has been little research done on studying effective 

discovery algorithms concerning meta-graphs. The first stage of this work recreates the 

framework of generating link-only meta-paths given a set of example pairs. FSSG framework 

was proposed to facilitate the search of relevant meta-graphs. Preliminary execution of the 

algorithm shows that FSSG is accurate in generating related link-only meta-paths at phase 

one, and it is likely to return a set of relevant meta-graphs with class information in a 

reasonable amount of time after the work in phase two.  

  Even though FSSG did well in the demonstration, there are some limitations of this 

study. First, most of the parameter values were set by domain experts. Although these 

suggested values were determined by previous works, it would be beneficial if these values 

are adaptive to current study or new datasets. Second, although FSSG can effectively mine 

various types of meta graphs, the running time and the space required when it is deployed in 

an application would be humongous. More studies are needed to better understand the topic 

of discovering any types of meta-graphs in large HINs efficiently. In the second phase of this 

study, the work will focus on how to extend the searching to meta-graphs and how to 

incorporate class information for the results. A comprehensive analysis on the time and space 

complexity of the algorithm will be conducted in stage three and a rigours experiment on 

evaluating the influence of some variables will also be performed during that period.  
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