
i

COMP4801 Final Year Project 2017-18

Interim Report

Project Title: Discovering and Querying Meta-Graphs in

Large Heterogeneous Information Networks

Supervisor: Dr. Reynold C.K. Cheng

Student Name: Fung Yuet

UID: -

FYP account: fyp17045

Date of Submission: 21st January, 2018

ii

1 Abstract

Heterogeneous Information Network (HIN) is a graphical representation of a dataset. This

depiction enables researchers to carry out unprecedented knowledge discovery tasks and to

discover unnoticeable but promising facts from the data. Meta-paths and meta-graphs are two

meta-level data structures. They were proposed to aid the task of similarity searches and others.

However, discovering those structures is difficult manually. Although there has been some

effort put into the study of meta-paths generation, most of them cannot scale well enough to

handle meta-graphs discoveries. This work therefore investigates the problem of how to

discover meta-graphs in large HINs efficiently. A greedy algorithm adapted from an existing

framework was proposed in this work to gradually select the most relevant meta-graph and to

include it in a regression model. At this stage, the design of the greedy algorithm of generating

all potential types has been completed. The implementation of it on discovering a subset of all

meta-graphs is under construction. Analysis on the time complexity, space complexity of the

algorithm and experiments on how certain variables influence the results will be conducted in

March this year.

iii

Table of Contents

 Cover Page i

 Abstract ii

 Table of Contents iii

 List of Figures iv

 Abbreviations v

1 Introduction

1.1 Background 1

1.2 Previous works 3

1.3 Problem statement and objectives 4

1.3.1 Problem Definitions 4

1.3.2 Objectives 5

2 Methodology

2.1 Forward Stagewise Structure Generation (FSSG) 6

2.1.1 Theoretical background 6

2.1.2 Demonstration 11

3 Progress and Schedule 14

4 Preliminary results

4.1 Assumption 15

4.2 Execution result at Phase One 16

5 Difficulties encountered

5.1 Impediments to implementing FSPG framework 19

5.2 Insufficient memory capacity 19

6 Conclusion 20

 Reference 21

iv

List of Figures

Figure 1(a) HIN 2

Figure 1(b) Meta paths 2

Figure 1(c) Meta-graph 3

Figure 2 A node class hierarchy 6

Figure 3 Step 1-3 11

Figure 4(a) Step 4 – part I 11

Figure 4(b) Step 4 – part II 12

Figure 5 Step 4a 12

Figure 6(a) Step 7 – part I 13

Figure 6(b) Step 7 – part II 13

Figure 7 Schedule 14

Figure 8 Examples and counterexample of 2B meta-graphs 15

Figure 9 DBLP schema 16

Figure 10 Four pairs of positive example 16

Figure 11(a) Data Reading – Start 17

Figure 11(b) Data Reading – End 17

Figure 12(a) Link-only meta-paths generation – Part I 18

Figure 12(b) Link-only meta-paths generation – Part II 18

v

Abbreviations

HIN Heterogeneous Information Network

FSPG Forward Stagewise Path Generation

FSSG Forward Stagewise Structure Generation

LCA Lowest Common Ancestor

BSCSE Biased Structure Constrained Subgraph Expansion

MLAR Revised model of Least-Angle Regression Model

AMPG Automatic meta-path generation

SMPG Set-expansion meta-path generation

1

1 Introduction

Background information of the topic is presented in Chapter 1.1. In Chapter 1.2, there is a

discussion of some prior works on the related research topics while the problem statement

and objectives of this project are introduced in Chapter 1.3 at the end of Chapter 1.

1.1 Background

Data has been increasingly available as the use of the Web and social media by people has been

surging. This copious amount of rich information enables the study of knowledge discovery in

data aimed for better understanding of the human behaviour. For instance, researchers mine

patterns from the training data for the use of trend projection; researchers investigate the topic

of relevance between objects to enhance the similarity search. In recent decades, mining in

information networks has aroused growing attention from researchers because many datasets

can be organized into a graph whose complex structural characteristics allows one to dig out

promising knowledge. An information network is a graph G = (V, E), where V is the set of

nodes (i.e. objects) and E is the set of edges (i.e. relationships) [17]. An example is depicted in

Figure 1(a). For each node, it has one or more associated node classes; for each edge, it has one

associated edge type. Thus, there are two more important functions: 𝜏: 𝑉 → Α ; 𝜑: 𝐸 → ℛ. The

first function 𝜏 is the node class matching function where each object 𝑣 ∈ 𝑉 matches to one or

more node classes 𝜏(𝑣) ∈ Α. Likewise, the second function 𝜑 is the edge type matching function

where each edge 𝑒 ∈ 𝐸 belongs to one edge type 𝜑(𝑒) ∈ ℛ. Accordingly, there are two kinds

of information network:

if |Α| = 1 and |ℛ| = 1, it is a homogeneous information network

if |Α| > 1 or |ℛ| > 1, it is a heterogeneous information network (aka HIN) [14]

Homogeneous information network mining has been studied since the last few decades

during which researchers have been developing methods for analysing homogeneous

information networks on the task of clustering, ranking and link prediction [14]. It although

seems feasible to extend some of these techniques to handle the study of HINs, most of them

cannot be directly applied to the problem. It is because the schema of an HIN is far more

complicated than the one in a homogeneous information network and this enables an HIN to

express richer information. In addition, node classes and edge types are different across objects

and relations. Consequently, considering them as identical as those in the case of homogeneous

information network loses the semantic meaning and possibly the valuable information one

2

would have mined from the network. Therefore, researchers should develop a new set of

methodologies and principles in studying HINs.

 Figure 1(a) HIN

One interesting research topic in HINs analysis is relevance and similarity search.

Relevance of two objects defines how similar they are or how tightly they are being related.

These research results provoke the analysis of similarity search, classification, clustering and

link prediction in HINs [14]. While many works have been done on relevance study, e.g.

Personalized PageRank [5], Jaccard’s coefficient [11] and SimRank [6], these measures neither

consider the different semantic meanings of node classes nor that of edge types. Regarding this

issue, Sun. et al [17] proposed the concept of meta path and a family of meta path-based

similarity measures. A meta path is a path comprising of node classes and edge types instead

of the actual objects and relations. Node classes and edge types are called meta data in network

analysis and thus a path of meta data is recognized as a meta path. Two examples are illustrated

in Figure 1(b).

Figure 1(b) Meta paths

3

Figure 1(c) Meta-graph

Although meta path has been proved to be useful in many applications, it can only

capture simple relationships between the source node and the target one. More importantly, it

simplifies all the relations as a single path relation and overlooks the semantic different between

a combination of meta paths and a structural relation. Huang et al. [4] subsequently proposed a

concept of meta structure aiming to provide a data structure depicting complex relations; Fang

et al. [2] at the mean time suggested metagraph, being a generalisation of meta path and meta

structure, to represent various semantic relations. An example of metagraph is shown in Figure

1(c). Meta-graphs (i.e. meta path, meta structures and metagraph) have then been proved to be

beneficial to product recommendation, community detection, classification and clustering as

well as link prediction [1-4,7-8,10].

1.2 Previous works

Despite the substantial studies of meta-graphs application, most of the works assumed these

structures are given by experts or are discovered using enumeration or Breadth First Search.

Sun et al. [15] assumed the meta paths defining the co-author relationship are given by experts

in the study of applying meta paths in prediction and recommendation. Yu et al. [18] and Li et

al. [10] both presumed the meta paths will be given in the analysis of recommendation and

clustering. Although some researchers attempted to use Breadth First Search to discover the

meta path [8,16], they required the user to input the maximum meta path length restricting the

search space. Similarly, researchers expected meta-graph are given by domain experts [19] or

by enumeration [7] for the study of its applications. Since meta-graphs are difficult to define

for a complex schema and it is a labour-demanding task [12], while Breadth First Search and

enumeration are not efficient for large HINs, it is obvious that researchers should develop an

efficient approach to discover these meta-graphs automatically in large heterogeneous

information networks.

Some researchers have studied this problem in the last few years attempting to

automatically discover and to locate these illustrative data structures in large HINs. Regarding

the discovery of meta paths, there are in general two approaches: example-based training and

adapted sequential pattern mining. Example-based training means the user must first provide

4

positive example pairs. The algorithm framework trains a model based on these pairs and

transverses the HIN to discover the meta paths highly explaining the relationship of the given

pairs. There are many proposed algorithms using this framework, e.g. FSPG [12], AMPG [1]

and SMPG [20], though they differ subtly in some areas. For example, the definitions of the

priority score for heuristics pruning and the method of discarding unimportant meta paths.

Additionally, Shi et al. [13] proposed a method adapted from well-known knowledge discovery

techniques − sequential pattern mining, aiming to simulate mining interesting meta paths as

sequential pattern mining. “Generate-and-Discard” suggested by Shi [13] targeted to generate

meta paths linking the two target nodes by considering the linkage between the siblings of the

two target nodes.

Regarding the discovery of meta-graphs, Fang et al. [2] proposed a heuristic approach

to mine meta-graphs from HINs. They suggested to use a set of seed candidate meta-graphs,

assuming that two structurally similar meta-graphs are functionally similar. By maximizing the

structural similarity of any potential meta-graphs to any seed meta-graphs, it means that the

chosen one is structurally and functionally similar to any seed meta-graphs. However, it is

unclear whether functional similarity and structural similarity are highly correlated. Moreover,

using a set of seed meta-graphs would limit the diversity of candidates. It thus needs more

justifications. In short, researchers should develop a more unified and efficient framework in

handling automatic discovery of meta-graphs for large heterogeneous information networks.

1.3 Problem statement and Objectives

The goal of this work is to develop a systematic and methodical algorithmic framework

allowing efficient discovery of meta-graphs in large heterogeneous information networks. In

this work, the method proposed in [12] is adapted with modifications for optimization in the

discovery. Below are the definitions of the models used in this study and the specific objectives

of this work.

1.3.1 Problem Definitions

DEFINITION 1 (HETEROGENEOUS INFORMATION NETWORK).

A heterogeneous information network is a graph G containing V, which is the set of nodes (i.e.

objects), and E, which is the set of edges (i.e. relationships). There are two more important

functions: 𝜏: 𝑉 → Α ; 𝜑: 𝐸 → ℛ. The first function 𝜏 is the node class matching function where

each object 𝑣 ∈ 𝑉 matches to one or more node classes 𝜏(𝑣) ∈ Α. Likewise, the second function

𝜑𝜑 is the edge type matching function where each edge 𝑒 ∈ 𝐸 belongs to one edge type

5

𝜑(𝑒) ∈ ℛ. Note that |Α| > 1 or |ℛ| > 1.

DEFINITION 2 (META-GRAPHS).

Given an HIN G = (V, E, ℒ, ℛ) with 𝜏 and 𝜑, a meta-graph is a graph �̅� = (�̅�, �̅�) where �̅� ∈ A and �̅� ∈

ℛ.

PROBLEM 1 (RELEVANT META-GRAPHS).

Given an HIN G = (V, E, Α, ℛ) with 𝜏 and 𝜑, together with a set of n example pairs Sep = {(si,ti)

|𝑖 ∈ [1, n]} and a similarity function 𝜎𝜎(𝑠, 𝑡|𝑆𝑆𝑚g), discover a set of m meta-graphs Smg = {gi |

𝑖 ∈ [1, 𝑚]} that capture the characteristics of each pair in Sep.

1.3.2 Objectives

In this project, studies are separated into three phases and their corresponding objectives are

listed as follows:

• Phase One: Use the existing algorithm framework in [12] to implement a program such

that link-only meta-paths can be discovered.

• Phase Two: Extend and modify the work in Phase One such that link-only meta-graphs

can be generated and implement the Lowest Common Ancestor (LCA) lookup.

• Phase Three: Conduct analysis and experiments to understand the performance of the

proposed algorithm.

 The remainder of this report is arranged as follows. The theoretical information of FSSG is

introduced in Chapter 2.1.1. There is a detailed illustration of how the algorithm works for

mining meta-graphs in Chapter 2.1.2. The schedule of this study is presented in Chapter 3.

Chapter 4 focuses the discussion on the preliminary results obtained from the first phase of the

implementation. Theoretical and technical difficulties encountered are discussed in Chapter 5.

Conclusion is presented in Chapter 6 with a brief discussion on the future planning for Phase

Two and Phase Three.

6

2 Methodology

The proposed algorithm – Forward Stagewise Structure Generation (FSSG) is introduced in

this chapter. There are separate analyses on the theoretical information and the algorithm logic.

2.1 Forward Stagewise Structure Generation (FSSG)

In this chapter, there is an in-depth discussion on the theoretical information of FSSG in

Chapter 2.1.1. To better illustrate the idea and the flow of logic of FSSG, an example is shown

in Chapter 2.1.2 to walk readers through the execution of FSSG.

2.1.1 Theoretical background

FSSG is an example-based training algorithm whose framework was adapted from FSPG

proposed by Meng et al. [12]. FSSG incorporates a two-phase framework in discovering

metagraphs in large HINs given a set of positive example pairs. In the first phase of FSSG, it

generates meta-graphs that have edge types only leaving the node classes empty. Then FSSG

fills in the node classes by using the node class hierarchy. A node class hierarchy shows the

relationship between various classes. Figure 3 illustrates an instance of a node class hierarchy.

In general, FSSG uses greedy strategies to select a set of meta-graphs with high correlation

values which denotes their ability in explaining the relationship of every example pairs under

a specific similarity measure.

Figure 2. A node class hierarchy [12]

Before executing FSSG, users must provide the program with a set of positive example

pairs. These example pairs must be in the form of (i,j) where i is the source node and j is the

destination node. Given a pair of (a,b), it means that the user wants to discover meta-graphs

that can explain the relationship of a and b. Given a set of these example pairs, the user would

like to locate a collection of meta-graphs that explains the relationship of each pair. For example,

7

if the user provides two pairs: (B. Obama, M. Obama) and (G.W. Bush, L. Bush), the user may

want to determine meta-graphs that can explain the relationship of the US President and the US

First Lady.

Then, the algorithm generates the same number of negative example pairs. It is

necessary to include negative example pairs in the discovery process because negative pairs

can lower the priority score (i.e. uniqueness) of popular meta-graphs. And thus, the results

favour unique meta-graphs instead of common meta-graphs. Next, the algorithm initializes a

data structure called GreedyTree with a root node containing all the source nodes, their

similarity score and the priority score. Here is a short discussion of the two scores. First, a

similarity score function determines how close two entities s and t are related given a set of

meta-graphs. Applying this function allows the algorithm to select the best set of meta-graphs

in explaining all the example pairs. Below is the equation of similarity function 𝜎𝜎.

𝜎(𝑔, 𝑖 |𝑆, 𝑡) =
1

|𝜌(𝑔, 𝑖|𝑆, 𝐺)|𝛼
∑ 𝜎(𝑥, 𝑖 + 1| 𝑆, 𝑡)

𝑥∈𝜌(𝑔,𝑖|𝑆,𝐺)

𝜎(𝑔, 𝑛 |𝑆, 𝑡) = 1 𝑖𝑓 𝜒(𝑛𝑑) = 𝑡

where S is a meta-graph, t is the sink object, 𝜌(𝑔, 𝑖|𝑆, 𝐺) is the set of instances at (i+1)-th layer.

The similarity score ns and nt given a meta-graph S is 𝜎(ns, 1 | 𝑆,nt). This is the definition of

BSCSE function proposed by Huang in his work on meta-structure [4]. Second, the priority

score is required to perform a heuristic discovery on the GreedyTree and it in fact is an upper

bound of the actual correlation value. The true correlation function is defined as the standard

cosine function as below:

cos(𝒎, 𝒓) =
𝒎 ⋅ 𝒓

‖𝒎‖ × ‖𝒓‖

where m is the similarity score vector in which each entry is the BSCSE score of an example

pair; r is the residual vector which represents the difference between the regression model and

the ground truth value [12]. The default difference of positive example pairs is 1 while -1 is set

for negative example pairs. Below shows the definition of the priority score.

𝑆𝑐 =
∑ 𝜎(𝑔, 𝑖 |𝑆, 𝑣) ⋅ 𝑟(𝑢,∗)𝑢+

‖�⃗⃗⃗�‖ × ‖𝑟‖
⋅ 𝛽𝐿

8

where u and v are the current starting and ending node; u+ are all positive example pairs; 𝑟(𝑢,∗)

is the maximum value in the residual vector for example pairs starting from u; 𝛽 is a decay

factor and L is the current meta-graph layer.

After calculating the similarity scores and the priority score of the root node, FSSG

extends the tree by generating all relevant paths/graphs and create a new node to represent each

scenario. FSSG continues expanding the tree with the node having the highest priority score.

Moreover, if there are some entries in a node where pairs are identical, it signifies that some

individual paths collapse at this point. Therefore, FSSG creates a new node to represent the

joint. The process of expansion repeats until a tree node reaches some destination entities. If

the actual correlation value of that node is the largest, FSSG returns the meta-graph and its

similarity score vector to the main programme where the BSCSE score vector will be added to

a modified version of the Least-Angle Regression Model (MLAR). This expansion and addition

procedure iterates until the residual vector is negligible. That symbolizes that any additional

meta-graphs to be included in the MLAR will not improve the model significantly. At this stage,

the discovery is completed, and at last, FSSG returns the set of meta-graphs with edge-types

and their weight trained in the regression model.

In phase two, the possible node classes that match the empty spots in each graph are

being recorded. Since there are many available choices for a single blank, Meng et al. [12]

suggested using the node class hierarchy to resolve the issue. He proposed to take the Lowest

Common Ancestor (LCA) on a class hierarchy of all possible node classes for one spot. It is

because it can maximize the number of example pairs possibly being explained by each

candidate. After the bottom-up transversal on the node class hierarchy and the substitution of

the LCA for each missing node class, the results are finalized. FSSG incorporates this method

in completing the class information in stage two. Note that ExpandGreedyTree is a function

that uses a heuristic data structure GreedyTree and it discovers the most relevant meta-graph

at one stage in the search space efficiently. Below are the pseudocodes of the algorithm. Most

of the variables are defined as they are in FSPG allowing readers to reference and understand

better. Interested readers may refer to [12] for additional information and explanation on the

FSPG framework.

9

10

11

2.1.2 Demonstration

A user scenario is presented below to provide a clear illustration of the execution of FSSG.

User Scenario – Co-authorship

Step 1. Input positive example pairs by user

Step 2. Generate negative example pairs

Figure 3. Step 1-3

Step 4. Expand the tree with node having the largest priority score

Figure 4(a) Step 4 – part I

Step 3. Initialize GreedyTree with a root node

1

2

3

12

Figure 4(b) Step 4 – part II

Step 4a. If some entries containing identical pairs, create a new node

Figure 5. Step 4a

Step 5. If a node reaches some sink nodes and its priority score is the largest, returns the meta-

graph with its similarity score vector

Step 6. Repeat Step 4-5 until the residual vector is negligible

Step 7. Perform LCA lookup to fill in class information

13

Figure 6(a) Step 7 – part I

Figure 6(b) Step 7 – part II

14

3 Progress and Schedule

This chapter provides a discussion on the progress of this work and the future schedule.

Figure 7. Schedule

Figure 7 illustrates the progress of this project and the time distribution of each subtask. A

thorough literature review has been performed during September and October 2017. The

major tasks done in this period were to research the background and to design FSSG. This

included reading research papers on related topics, comparing and understanding the

shortcomings of existing designs, being familiar with the FSPG framework and designing

efficient data structures for FSSG. As indicated in Figure 7, the first phase of the

implementation focusing on link-only meta-paths has been completed by December 2017. It

denoted that the programme currently can discover link-only meta-paths given a set of

positive example pairs.

In the coming months (i.e. January and February 2018), the coding of the phase two of

the implementation will be finished, and at the end of February, the programme will be able

to discover meta-graphs with all necessary information (edge types and node classes). In

March 2018, analyses will be conducted to examine the theoretical effectiveness and

efficiency of FSSG. More importantly, empirical studies will be carried out to understand the

performance of FSSG on real datasets.

15

4 Preliminary results

The first phase of implementation of FSSG was completed. This chapter focuses its discussion

on some of the critical assumptions made in Chapter 4.1 and illustrates the output of FSSG

executing on real dataset for phase one in Chapter 4.2.

4.1 Assumption

As highlighted by the discussion in Chapter 2.1.1., FSSG is designed to build upon the FSPG

framework allowing the algorithm to discover all types of meta-graphs. However, long and

complicated meta-graphs are in fact not interesting and not meaningful nor are they easy to

generate [12]. Therefore, to facilitate the effectiveness of the algorithm as well as the returned

results, FSSG is being implemented in the way that it discovers only two-branches (2B)

metagraphs. Here is the definition of 2B meta-graphs:

Given an HIN G = (V,E) and the schema TG = (A,R), a 2-braches meta-graph is a

metagraph H’ = (N,M,ns,nt), where for all x ∈ N, out-degree(x) ≤ 2.

Below diagram shows two positive examples of 2B meta-graphs and one counterexample:

Figure 8. Examples and counterexample of 2B meta-graphs

In short, a node of a 2B meta-graph can perform either no branch or binary branch at every

stage of expansion.

16

4.2 Execution results at Phase One

To demonstrate the result FSSG have achieved, an execution on real dataset was conducted to

illustrate the output. One dataset had been chosen for the execution: DBLP four area. This

dataset is one of the representative datasets in the study of data mining, network mining and

HIN analysis.

 DBLP is a bibliography network containing computer sciences journals and conference papers.

Since the entire network is enormous and most of the details are not useful for this study, a

subset of this network was extracted containing sufficient data for the experimentation. The

subset consists of papers published in four research areas: information retrieval, databases, data

mining and artificial intelligence [12]. The schema of this subset is shown in Figure 9.

There are four edge types namely writtenBy, mentions, cites and publishedIn. Paper (P),

Author (A), Venue (V) and Topic (T) are the four node classes. The subset contains more

than 170000 links.

Figure 9. DBLP schema

Figure 10. Four pairs of positive example

writtenBy

cites

mentions publishedIn

17

Four pairs of positive example were fed into the program and they are shown in Figure

10. Each pair is an instance of co-authorship, and thus the expecting result should be a set of

meta-graphs directly or indirectly explaining co-authorship. Since only the first phase of FSSG

has been implemented, the expecting output at this moment instead is a set of link-only

metapaths symbolizing co-authorship.

 Regarding the setting of variables, as Meng suggested in [12], 𝜀𝜀 was set to 0.01 in FSSG. 𝛼𝛼

was adjusted to 0.5 according to the empirical studies done in [4] and 𝛽𝛽 as the decay factor

was set to 0.8 [12] to avoid the search going indefinitely. The programme was written in C++

and the execution was conducted on an 4GB memory Win10 machine. The output of the

execution is illustrated through Figure 11 to Figure 12.

Figure 11(a) Data Reading – Start

Figure 11(b) Data Reading – End

18

Figure 12(a) Link-only meta-paths generation – Part I

Figure 12(b) Link-only meta-paths generation – Part II

19

5 Difficulties encountered

During the first stage of the project, the team was confronted by numerous theoretical and

practical problems. Chapter 5.1 discusses the difficulties in understanding and replicating

FSPG framework, and Chapter 5.2 shows an example of technical issue of the execution.

5.1 Impediments to implementing FSPG framework

Since FSSG employs FSPG framework as the main backbone, understanding FSPG thoroughly

is required for such extension. However, the description of the FSPG framework in Meng’s

work [12] is limited and it became difficult to rewrite the FSPG framework from scratch.

Although the team fortunately got access to the original coding of the FSPG framework, the

authors of the programme did not leave any comments to explain the usage of certain enigmatic

variables and the confusing flow of logic. The programme did not have any syntax or

compilation errors, it though contains severe runtime errors due to its bewildering and

perplexing flow of control. To replicate and to fully extend the framework, the team spent

months studying the codes line by line, rewriting the functions, removing unnecessary variables

and logic. Despite the delay caused by the unexpected workload, the team has successfully

rewritten the FSPG framework as part of the FSSG algorithm by late-December.

5.2 Insufficient memory capacity

Memory capacity inadequacy is a common problem of running experiments in graph mining

and network mining field. It is because graphs and networks were embedded with richer

information than raw text data. For example, the dataset at the minimum must store all object,

all edges, classes of each object, types of each edge and the connections. Lacking memory

capacity occurs when the dataset is too large to be loaded into the main memory, the dataset is

too large to be searched or the execution requires large amount of memory to support. FSSG

indeed requires copious amount of memory to execute because it must store all information of

each node on the GreedyTree as well as perform cross-checkings. Some potential solutions

include running the programme on a server platform providing more memory capacity and

designing efficient data structures to facilitate the searching.

20

6 Conclusion

Meta-graph is a useful tool in many knowledge discovery tasks, e.g. similarity search,

recommendation. However, currently there has been little research done on studying effective

discovery algorithms concerning meta-graphs. The first stage of this work recreates the

framework of generating link-only meta-paths given a set of example pairs. FSSG framework

was proposed to facilitate the search of relevant meta-graphs. Preliminary execution of the

algorithm shows that FSSG is accurate in generating related link-only meta-paths at phase

one, and it is likely to return a set of relevant meta-graphs with class information in a

reasonable amount of time after the work in phase two.

 Even though FSSG did well in the demonstration, there are some limitations of this

study. First, most of the parameter values were set by domain experts. Although these

suggested values were determined by previous works, it would be beneficial if these values

are adaptive to current study or new datasets. Second, although FSSG can effectively mine

various types of meta graphs, the running time and the space required when it is deployed in

an application would be humongous. More studies are needed to better understand the topic

of discovering any types of meta-graphs in large HINs efficiently. In the second phase of this

study, the work will focus on how to extend the searching to meta-graphs and how to

incorporate class information for the results. A comprehensive analysis on the time and space

complexity of the algorithm will be conducted in stage three and a rigours experiment on

evaluating the influence of some variables will also be performed during that period.

21

Reference
[1] X. Cao, Y. Zheng, C. Shi, J. Li and B. Wu, "Meta-path-based link prediction in schema-rich heterogeneous information network",

International Journal of Data Science and Analytics, vol. 3, no. 4, pp. 285-296, 2017.

[2] Y. Fang, W. Lin, V. Zheng, M. Wu, K. Chang and X. Li, “Semantic proximity search on graphs with metagraph-based learning”, in

ICDE, 2016.

[3] Z. Huang, B. Cautis, R. Cheng and Y. Zheng, “KB-Enabled Query Recommendation for Long-Tail Queries”, in CIKM, 2016.

[4] Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis and X. Li, “Meta Structure: Computing Relevance in Large Heterogeneous

Information Networks”, in KDD, 2016.

[5] G. Jeh and J. Widom, “Scaling Personalized Web Search”, in WWW, 2003.

[6] G. Jeh and J. Widom, “SimRank: A Measure of Structural-Context Similarity”, in KDD, 2002.

[7] H. Jiang, Y. Song, C. Wang, M. Zhang and Y. Sun, “Semi-supervised Learning over Heterogeneous Information Networks by Ensemble

of Meta-graph Guided Random Walks”, IJCAI, 2017.

[8] X. Kong, B. Cao, P. Yu, Y. Ding and D. Wild, “Meta Path-Based Collective Classification in Heterogeneous Information Networks”, in

CIKM, 2012.

[9] N. Lao and W. Cohen, “Relational Retrieval using a combination of path-constrained random walks”, Machine Learning, 2010.

[10] X. Li, Y. Wu, M. Ester, B. Kao, X. Wang and Y. Zheng, “Semi-supervised Clustering in Attributed Heterogeneous Information

Networks”, in WWW, 2017.

[11] D. Nowell and J. Kleinberg, “The link-prediction problem for social networks”, J. Assoc. Inf. Sci. Technol., 58(7), 2007.

[12] C. Meng, R. Cheng, S. Maniu, P. Senellart, and W. Zhang, “Discovering meta-paths in large heterogeneous information networks,” in

WWW, 2015, pp. 754–764.

[13] B. Shi and T. Weninger, “Mining interesting meta-paths from complex heterogeneous information networks,” in ICDM-MODAT, 2014.

[14] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han, “Co-author relationship prediction in heterogeneous bibliographic networks,”

in ASONAM, 2011, pp. 121–128.

[15] Y. Sun and J. Han, Mining Heterogeneous Information Networks: Principles and Methodologies. Morgan & Claypool Publishers, 2012.

[16] Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla, “When will it happen? Relationship prediction in heterogeneous information

networks,” in WSDM, 2012, pp. 663–672.

[17] Y. Sun, J. Han, X. Yan, P. Yu, and T. Wu, “Pathsim: Meta path-based top-k similarity search in heterogeneous information networks,” in

VLDB, 2011, pp. 992–1003.

[18] X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han, “Recommendation in heterogeneous information networks

with implicit user feedback,” in RecSys, 2013, pp. 347–350.

[19] H. Zhao, Q. Yao, J. Li, Y. Song and D. Lee, “Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks”, in

KDD, 2017, pp. 634-655.

[20] Y. Zheng, C. Shi, X. Cao, X. Li and B. Wu, “Entity Set Expansion with Meta Path in Knowledge Graph”, in PAKDD, 201, pp. 317-329.

[21] F.M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledhe. In WWW, New York, 2007.

