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Abstract  

High availability, which is the ability to recover quickly after a hardware failure, is hard to 

achieve yet desirable. Nowadays, high availability is achieved through virtual machines using a 

checkpoint mechanism where changes are propagated to a backup machine at a fixed checkpoint 

(up to 40 times in a second). This can produce unnecessary load on the system especially multi 

core systems. Previous work has shown that adaptive checkpointing is a more efficient solution 

when modeled around the properties of the software being run on it. The objective of this project 

was to produce an algorithm for adaptive checkpointing which can be integrated into existing 

solutions such as Plovcr. The project provides a comprehensive workload analysis on Plover 

with variable checkpoint epoch lengths. The algorithm developed adapts to the workload on the 

virtual machine. The algorithm has shown promising primary results in improving the run time.  
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Abbreviations  

 
VM Virtual Machine 

CPU Central Processing Unit  

PC Personal Computer  

I/O Input/Output  

GB GigaByte  

SSD Solid State Drive  

GHZ Gigahertz  

TB Terabyte 

GBPS GigaBytes per second  

TCP Transmission Control Protocol  

IP Internet Protocol  

RDMA Remote Directory Memory Access  

FTP File Transfer Protocol  

PHP Hypertext Preprocessor 

 

 

 

 

 

 

 

 



 
 

I. Introduction  

 

Recently, there has been an increasing demand for online service deployment on virtualized 

infrastructure [1]. Online services are processing more and more requests concurrently nowadays 

which require virtual machines (VM) to utilize more and more virtual CPUs on multi-core 

hardware. Because of this rise in cloud computing, hardware failures have become more 

common [5]. The need for high availability is rising.  

 

However, high availability is hard to obtain. Previously, high availability was only possible using 

commercial hardware or application specific replication software [2]. Several Solutions have 

been given in the past to make high availability common place. One of the most common 

solutions is checkpoint recovery. The entire state of the Virtual machine is copied at very high 

frequencies and the changes are propagated to the backup virtual machine almost 

instantaneously. While the changes are being copied, the virtual machine runs speculatively and 

no output is being released to the user. The output is released when the two machines have been 

synchronized successfully. This process is carried out at fixed intervals [5].  

 

The problem with this method is that it can cause significant overhead because of the large 

amount of data that needs to be copied and transferred, even on uniprocessor VM setups, so 

frequently [3]. Research (eg [3], [4]) has suggested that adaptive checkpointing instead of fixed 

frequency checkpointing can improve the system performance.  

 

 



 
 

The main aim of this project is to produce an algorithm for adaptive checkpointing to decrease 

the overhead, especially on multi-core systems and effectively improve the system performance. 

The algorithm has been has also been implemented using PLOVER [1]. The source code is 

available at https://github.com/angad2102/Plover/tree/Adaptive-Plover.  

 

The rest of this report is organized as follows. Section II covers the background of the project. 

Section III covers Literature Review of four papers related to this field. Section IV describes the 

detailed methodology of the project. Section V describes the algorithm. Section VI talks about 

the evaluation of the algorithm and results. Section VII discusses the future plans for the project 

and section VIII concludes this report.  
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II. Background  

 

High Availability is defined as the ability of a system to be operational and fully functional for a 

suitable length of time [8]. To achieve High Availability we need to make sure that there is a 

backup for the system which can be accessed at any time without any major delay in case of a 

hardware failure and the web service can be resumed from the point where the system crashed. 

There should ideally be no data or network packet loss.  This can be achieved by using 

commercial hardware built for this purpose or restructuring the code of each and every 

application in the virtual machine to include complicated logic for recovery [2]. However, these 

solutions are expensive and are not available to the masses. Another approach would be to 

propagate the system state synchronously to a backup machine, but this will slow down the 

system and the systems memory throughput would be comparable to a replication performing 

network device, which is not desirable.  

  

 Remus [2] provided a very good solution to this problem by replicating the system state at 

frequent predefined checkpoints. It lets the host system perform its computations in speculative 

state and propagates the changes asynchronously to the backup machine at every 25 ms [2].  

 

COLO (Coarse Grain Lock Stepping) is another solution to keep the primary and backup systems 

in sync [14]. It compares the generated output from both the systems and only executes a 

checkpoint if the output differs. However analysis has shown that COLO’s performs severely 

deteriorates when there are multiple client connections [1].  

 



 
 

 

Plover is a new system which implements adaptive checkpointing depending on the load on the 

system. Incoming output is supplied to both the primary machine and the secondary machine. A 

checkpoint is issued when the primary system detects that the secondary system is in an idle state 

which increases efficiency and reduces idle system time [1]. However experiments carried out in 

this project showed that the system can carry out very frequent and unnecessary checkpointing 

causing excessive overhead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

III. Literature Review  

 

i. “Remus: High Availability via Asynchronous Virtual Machine Replication” [2] 

 

Remus [2] adopts a frequent checkpoint backup model to maintain High Availability. Remus 

keeps a backup host and propagates the changes to this backup host from the primary at a 

predefined interval.  

 

The network output from Remus is stored in the buffer until the system state synchronizes with 

the backup’s state. The checkpoint is very frequent, at every 25 milliseconds [2] (Which implies 

a rate of upto 40 checkpoints in a second). Disk changes are propagated to the backup 

asynchronously since the entire disk snapshot needs to be transferred. The output is only released 

once the two machines have synchronized and a confirmation from the backup machine has been 

received. This essentially takes care of the output commit problem [2] which means that any 

system state which has already been displayed should be recoverable [6]. When a failover 

occurs, the backup is started and replaces the primary. However, it is important to note that the 

virtual machine does not do any execution until a failover occurs [2].  

 

Due to the amount of data which needs to be transferred this task can prove to create a significant 

overhead even on uniprocessors [3]. On multi-core systems the overhead is even more because 

of more number of cores working concurrently, hence increasing the workload per time unit.  

 

 



 
 

ii. “PLOVER: Fast and Scalable Virtual Machine Fault Tolerance on Multi-core” [1]  

 

State machine replication (SMR) enforces the same total order of inputs for a service which is 

replicated along hosts. By doing this most of the memory pages in the two hosts get updated and 

thus do not require to be transferred from the primary to the secondary host.  

 

This paper discusses the system PLOVER which is the first Virtualized State machine 

Replication (VSMR) System. VSMR enforces the same total order of inputs across replicated 

virtual machines [1]. This keeps majority of the memory pages updated and equivalent, and very 

few divergent pages have to be transferred across systems.  

 

Plover implements an adaptive checkpointing model in which a checkpoint is carried out by the 

primary system only when it detects the secondary system to be in an idle state. However when 

the system is not under load or is idle, the frequency of the checkpoints can be very excessive.  

 

iii. “Workload Adaptive Checkpoint Scheduling of Virtual Machine Replication” [3] 

 

This paper discusses adaptive checkpointing based on an analysis of workloads of several 

applications. This paper attempts to reduce the overhead by dynamically adjusting the 

checkpoint frequency based on properties such as the number of dirtied memory pages, the 

number of disk I/O operations, the number of transferred network packets and the network 

bandwidth available for replication [3].  

 



 
 

 

Apart from the adaptive checkpoint scheduling, the paper also implements a fine grained 

copy-on-write mechanism to avoid the downtime caused by checkpointing [3]. This has been 

achieved by only locking the memory pages of which the values have to be transferred to the 

backup machine, allowing the virtual machine to run concurrently [3].  

 

iv. “Adaptive Remus: adaptive checkpointing for Xen-based virtual machine replication” [4]  

 

This paper attempts to decrease the overhead by adapting the checkpoint frequency according to 

the application being run on it. It suggests the virtual machine to run in two modes. (i) Network 

mode: where it increases the checkpoint frequency where high output network traffic is detected. 

(ii) Processing mode: where it decreases the checkpoint frequency because of the low output 

network traffic [4].  

 

 

 

 

 

 

 

 

 

 



 
 

IV. Methodology  

 
The project was carried out primarily in two phases. First phase consisted of workload analysis 

of several different applications on PLOVER. The applications selected for this analysis were 

Mongoose, Apache (using PHP), Tomcat, FTP (File Transfer Protocol) server, and NAS parallel 

benchmarks. The applications were tested with varying intervals for checkpoints ranging from 

10ms to 500ms. Properties such as dirtied memory pages and runtime were compared. After this 

analysis, an algorithm was developed to reduce the system overhead and runtime. Phase two 

consisted of integrating the algorithm with PLOVER and comparing its performance with 

PLOVER. 

 

The reason for choosing PLOVER was that it is one of the most recent solutions for high 

availability and its runtime is considerably better than REMUS or COLO and is more scalable 

than the 2 systems [1].  

 

All the tests and experiments have been done on Dell R430 servers with Linux 3.16.0, 2.6 GHz 

Intel Xeon CPU with 24 hyper-threading cores, 64GB memory, and 1TB SSD. All NICs are 

Mellanox ConnectX-3 Pro 40Gbps connected with infiniband [10]. The ping latency between 

every two replicas is 84 microseconds (the TCP/IP over RDMA round-trip latency).  

 

The rest of the section talks about the workload analysis conducted.  

 

 

 



 
 

i ) Workload Analysis  

 

The workload analysis was performed on PLOVER with varying checkpoint frequency from 

10ms to 500ms. Mongoose, Apache (using PHP), Tomcat, FTP (File Transfer Protocol) server, 

and NAS parallel benchmarks were run on the virtual machine. The number of memory pages 

dirtied and runtime were collected and compared.  

 

a) Mongoose  

 

Apache’s HTTP server benchmark tool, ab, was used to send 128 requests with a concurrency of 

16 requests being sent at the same time to the mongoose server running on the virtual machine. 

The mongoose server was serving a simple web page with a very small calculation being done on 

the backend side. 

 

Figure 1.a shows the number of dirtied memory pages and the number of pages which need to be 

transferred on average at each checkpoint with ranging epoch lengths for checkpoints. The test 

was carried out 50 times with a different checkpoint frequency interval ranging from 10ms to 

500ms (with steps of 10ms).  

 



 
 

 

Figure 1.a Mongoose - Dirtied memory pages vs epoch length  

 

The average number of memory pages dirtied and the number of memory pages which need to be 

transferred at each checkpoint are roughly about the same for all epoch lengths. No Major pattern 

can be observed from this graph.  

 

Figure 1.b shows the runtime of the experiment in respect to the epoch length of the checkpoints.  

 

 



 
 

Figure 1.b Mongoose - Runtime vs epoch length  

 

The runtime increases with increasing epoch length. This makes sense as the output is not 

released till a checkpoint is carried out and our experiment relied heavily on network packet 

exchange as 128 requests were being sent out.  

 

This indicates that an application which needs to send out network packets quite frequently 

thrive better at low epoch lengths as compared to higher ones. This produces a load on the 

replication software as it has to transfer quite a lot more pages cumulatively as compared to if the 

checkpointing was being done at longer epoch lengths. Though network output is released as 

soon as possible resulting in reduction of runtime.  

 

 



 
 

b) Apache (using PHP) 

 

Apache’s ab tool was used to send 128 requests with a concurrency of 8 requests being sent at 

the same time to the apache server running on the virtual machine. The php page on the server 

was doing a time consuming calculation before sending the web page with the response back to 

the client.  

 

Figure 2.a shows the number of dirtied memory pages in respect to the variable epoch length 

from 10 ms to 500 ms (with steps of 10ms).  

  

 

Figure 2.a Apache - Dirtied memory pages vs epoch length  

 

 



 
 

Figure 2.b shows the runtime of the 50 experiments with respect to epoch length.  

 

Figure 2.b Apache - Runtime vs epoch length 

 

The experiment showed similar results and similar graphs as the experiments with Mongoose. 

However in this experiment, a long calculation is a also being done each time and there is both 

network packet exchange and processor load. In a situation like this an algorithm which switches 

quickly between high checkpoint frequency and low checkpoint frequency would be ideal.  

 

 

 

 

 



 
 

c) Tomcat 

 

For tomcat, 8 requests were sent by ab all at the same time to the Tomcat server running on the 

virtual machine. The tomcat server does a small calculation and sends the response back to the 

client.  

 

Figure 3.a shows the number of dirtied memory pages vs epoch length. The tests were again 

done with a variable epoch length from 10 ms to 500 ms (steps of 10 ms).  

 

Figure 3.a Tomcat - Dirtied memory pages vs epoch length 

 

The number of memory pages seem to be increasing with increase in epoch length. Figure 3.b 

shows the runtime of the experiment with respect to the epoch length.  

 



 
 

 

Figure 3.b Tomcat - Runtime vs epoch length 

 

d) FTP (File Transfer Protocol) server 

 

A file of 50 MB was sent to the virtual machine via the FTP server running on it. The experiment 

was conducted 50 times with varying epoch length from 10 ms to 500 ms (steps of 10 ms).  

 

Figure 4.a shows the number of dirtied memory pages in respect to the epoch length and figure 

4.b depicts the runtime with respect to varying epoch length.  

 

 



 
 

 

Figure 4.a FTP - Dirtied memory pages vs epoch length 

 

Figure 4.b FTP - Runtime vs epoch length 

 



 
 

 

FTP is a network intensive application. It constantly sends and receives network packets. There 

is little processing involved. WIth increasing epoch length, runtime and the number of dirtied 

memory pages both increase. If we keep the epoch length at minimum, FTP will have a faster 

runtime.  

 

e) NAS Parallel Benchmarks 

 

NAS Parallel Benchmarks is a collection of computational intensive parallel applications 

performing various scientific computations developed by NASA [15]. Two of the benchmarks lu 

and sp were chosen for the tests.  

 

Figure 5.a shows the number of dirtied memory pages in respect to the epoch length and Figure 

5.b shows the runtime in respect to the epoch length. Due to the time consuming nature of this 

experiment,  the experiment was performed only 12 times from 10ms to 500ms (with steps of 

50ms).  

 



 
 

 

Figure 5.a NAS - Dirtied memory pages vs epoch length 

 

Figure 5.b NAS - Runtime vs epoch length 

 

 



 
 

NAS parallel benchmarks did not require any network exchange and these experiments were 

very processing intensive. Although the number of memory pages being dirtied increase with 

increase in epoch length, the cumulative memory pages being sent are lower. 

 

For example, let’s consider epoch lengths of 10 ms and 100 ms. The system is transferring 315 

memory pages in 100 ms with a checkpoint frequency of 10 ms. However, on the other hand the 

system only transfers 104 pages in 100ms.  

 

Looking at Figure 5.b, we realise that the runtime actually decreases and then stabilizes as the 

epoch length is increased. This works in our favor. We can reduce the checkpoint frequency and 

at the same time we will be increasing the runtime.  

 

Most of the times the Plover system ran with a checkpoint frequency of 10 ms even if it was 

doing no significant work. This is unnecessary as there is no network output flowing out, and 

hence there is no need for urgency to make the two systems synchronised.  

 

 

 

 

 

 

 



 
 

V. Algorithm  

 

The algorithm attempts to divide the running of applications on the system into two categories, 

networking mode and processing mode. The two modes are described below :-  

 

i)  Networking Mode (Default)  

 

In this mode the network outgoing traffic is more than 0. In this mode the checkpointing is done 

as per the default PLOVER mode which is to wait for the guest to be in idle mode before 

carrying on with the checkpoint.  

 

Calculating outgoing Network traffic at every checkpoint will create additional overhead which 

is not ideal in this mode. To avoid this additional overhead, Network outgoing traffic is only 

updated after a certain number of checkpoints. If the value of network outgoing traffic reaches 

zero, the algorithm would switch over to the processing mode.  

  

ii) Processing Mode  

 

This mode is activated when the network outgoing traffic is 0. In this mode the checkpointing is 

done after every 100ms to reduce the checkpointing overhead. Outgoing network traffic is 

updated after each checkpoint, and as soon as traffic is detected, the algorithm switches to 

Networking mode. 

 



 
 

NOF Network outgoing flow 

MAX_CN Maximum checkpoints in Networking mode before NOF is measured again 

t A discrete time instant 

X A counter to verify if MAX_CN is achieved or not  

 
Table 1 - Variables used in the Algorithm 

 
 

 

Figure 6 - The Algorithm  

 

 



 
 

 The Algorithm was then implemented using Plover. The code for the adaptive Plover program 

can be found at https://github.com/angad2102/Plover/tree/Adaptive-Plover.  

 

Based on past research, epoch length of 100 ms was selected for processing mode [3]. MAX_CN 

was set to  75 so that the system waits for at least 750 milliseconds before trying to calculate the 

network output flow again. This number was derived from past experimental research [3].  
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VI. Evaluation  

 

i) Experimental Setup  

 

All the tests and experiments will be done on Dell R430 servers with Linux 3.16.0, 2.6 GHz Intel 

Xeon CPU with 24 hyper-threading cores, 64GB memory, and 1TB SSD. All NICs are Mellanox 

ConnectX-3 Pro 40Gbps connected with infiniband [10]. The ping latency between every two 

replicas is 84 microseconds (the TCP/IP over RDMA round-trip latency). They system is running 

Ubuntu 16.04.2.  

 

The algorithm was tested on five programs, Mongoose, Apache (using PHP), Tomcat, FTP and 

NAS parallel benchmarks. The results were compared with that of Plover’s running in its default 

mode.  

 

ii) Results  

 

Both Plover and and modified Plover with adaptive checkpointing gave similar results for 

Mongoose and Tomcat.  

 

Plover with adapted checkpointing finished the Apache tests which were a combination of both 

processing and networking load in 13.651 seconds. Plover in default mode managed to complete 

the tests in 15.425 seconds. Plover with adaptive checkpointing performs better as it switches to 

 



 
 

networking mode when Apache is receiving a request or sending out a web page and it switches 

to processing mode when Apache has to do some long calculations.  

 

Performance of FTP was also similar in both Plover in default mode and Plover with adapted 

checkpointing.  

 

Plover with adapted checkpointing finished the NAS parallel benchmarks set in 1384 seconds 

whereas Plover in default mode only managed to finish the set in 1424 seconds. The checkpoint 

frequency in Plover with adapted checkpointing was 100 ms whereas the checkpoint frequency 

in Plover in default mode was about 10 ms.  

 

Overall the results for Plover with adaptive checkpointing are either better or equivalent to that 

of Plover running in default mode.  

 

 

 

 

 

 

 

 

 

 



 
 

VII. Future Plans  

 

In the future more work can be done on devising techniques to compress the data being 

transferred at each checkpoint and predicting page faults. The algorithm can also be integrated 

into more checkpoint based replication solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

VIII. Conclusion  

 

Checkpoint-recovery based virtual machine replication is lucrative, providing high availability 

without modifying applications or using commodity hardware. However excessive checkpointing 

can cause significant overhead and reduce the system performance. The intention of this project 

was to improve the performance of such replication softwares using adaptive checkpointing.  

 

Several tests were conducted on plover using five different applications and varying epoch 

lengths for checkpointing. These tests indicated that a lot of times, there is excessive 

checkpointing which can be avoided easily. This was especially true for applications which do 

not send out any network packets.  

 

The algorithm described in this project achieves the goal of reducing overhead. The algorithm 

divides the workload into two group, network and processing. In network mode the algorithm 

executes checkpoints as they would have been executed in Plover whereas in processing mode 

the checkpoints are done at every 100 ms.  

 

The algorithm shows promising results and is effectively able to reduce the runtime in processing 

intensive applications. The performance is also better in applications combining both processing 

and network communication. The algorithm's performance is the same as that of Plover in 

default mode for network intensive applications.  
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