
	 1	

Final Report

Final Year Project 2017-2018, Department of

Computer Science, The University of Hong Kong

Topic: Blockchain research and implementation (fyp17043)

Name: NG King Pui

UID: 3035178820

Date of Submission: 4/2018

	 2	

Abstract

Blockchain is a hot topic in the technology world. Bitcoin is one of the typical examples of

applications of blockchain. The principle behind blockchain is to chain up blocks of data and

let everyone have a copy of the chain, a.k.a. distributed ledger system. The blocks of data are

chained up with hash, which is mathematically-proven secure. Once a single block changes a

bit, the whole chain looks different. When a new block is going to be appended, everyone has

to validate the chain by comparing with their own copy. Unauthorized data entries are then

revoked by the crowd. Also, the data are transparent to everyone as they all have a copy.

With these two features, blockchain breaks the gap of trust, which allows blockchain to play

an important role in many different areas, especially monetary transaction. Besides Bitcoin,

smart contracts are another application of blockchain. Smart contracts will execute

automatically once the condition set is met, preventing breach of contracts. However, there

are still loopholes in smart contracts. It may result in millions of monetary losses. In this

project, the security holes of smart contracts on Ethereum will be studied and a tool of

checking smart contracts and detecting such holes is expected to be a final deliverable.

	 3	

Table of Content

1.Background 5

2.Methodology 7

 2.1 Ethereum 7

 2.2 Solidity 9

 2.3 ganache-cli 9

 2.4 Web3.js 10

 2.5 solc 11

 2.5 Summary of checking tool 12

3. Works Accomplished 13

 3.1 Research on security loopholes 13

 3.1.1 Wrong typecast 13

 3.1.2 Immutable bugs 14

 3.1.3 Unpredictable states and Reentrancy 14

 3.1.4 Uint Overflow/ Underflow 15

 3.1.5 Unclear Visibilities of Functions 15

 3.1.6 Forcing Ether to a Contract 16

 3.1.7 DoS By Calling to Unknown 16

 3.1.8 Short Address Attack 17

 3.2 Development of the checking tool 18

 3.2.1 Launching a private chain 18

 3.2.2 Launching a prototype of web tool 18

 3.2.3 Checking Principles of different Vulnerabilities 20

 3.2.3.1 Checking Uint Overflow/ Underflow 20

3.2.3.2 Checking Visibilities 20

 3.2.3.3 Checking Forcing Ether 21

 3.2.3.4 Checking DoS by Calling the Unknown 21

 3.2.3.5 Checking Short Address Attack 22

 3.2.3.6 Checking Reentrancy 22

4. Problems Encountered 23

 4.1 Insufficient security loopholes 23

 4.2 Computing resources of the tool 23

 4.3 Deploying the tool to the Cloud 23

	 4	

5. Future Works 24

 5.1 Use Machine Learning to Read and Check the Contracts 24

 5.2 UI Enhancement 25

6. Limitation 26

 6.1 Uncovered security loopholes 26

 6.2 Cross platform checking 26

 6.3 User Input and Unpredicted Behaviors of Contracts

7. Conclusion 27

8. Reference 28

9. Table of Figures 29

	 5	

1. Background

Blockchain is the backbone of Bitcoin, which is now gaining more and more attention in the

world. The principle behind blockchain is to chain up blocks of data and let everyone have a

copy of the chain, a.k.a. distributed ledger system. The blocks of data are chained up with

hash, which is mathematically-proven secure and used in many other security measures.

Every block will have its own unique hash value, which is generated based on its own data

and the hash value of the last block. That is the reason why it is called blockchain, from

chaining up blocks of data with hash. Therefore, if someone try to manipulate one block of

data, e.g. change his own account balance, to fake others, his own copy of the chain will be

different with others in terms of has value. Others can then tell his cop is not valid hence

revoking that block. With the power of the crowd, it is difficult to create fake record in

blockchain. Also as everyone has a copy, every transaction record is transparent to everyone.

It then prevents under-the-table deals. With these 2 features, blockchain breaks the gap of

trust. It can then be utilized in many areas, especially monetary transaction.

Smart contract is one of the typical examples of application of blockchain. Built on top of

blockchain, smart contracts share the feature of security and transparency. Besides, smart

contracts allow users to run their own script to make the contracts self-enforcing and self-

executing. With the scripts, the application of smart contracts can be much wider across

different industries. Apart from that, smart contracts reduce the cost and increase the

efficiency significantly when compared with traditional contracts. When creating a traditional

contract, legal consultancy is usually required to fit the interests of both sides and the

regulations. This process will induce huge cost, in terms of both money and time. But with

smart contracts, the consultancy cost can be eliminated. Additionally, based on the self-

executing feature of smart contracts, the contract can become effective once the condition set

is met.

For example, there is a contract between A and B, which is about A has to pay B $1 million

to buy a house. With the traditional approach, A and B have to seek for relevant legal

services in order to make the transaction. This induces a huge cost to both A and B. However,

with smart contract, the script can check whether A has enough balance to pay B; and B

really has the ownership of the house. Once both conditions above are met, the contract will

	 6	

execute automatically. Also this contract is appended in a blockchain, which can be served as

a proof of the fact that A owns the house after this transaction.

With such features, smart contract is expected to be more commonly used in the future.

However, smart contract still has some flaws that may hinder its application. In this project,

the focus will be on its security loopholes as security is the first concern of every digital

transaction.

	 7	

2. Methodology

In this section, the platform chosen Ethereum and the language of smart contracts Solidity are

discussed. Moreover, the node.js modules ganache-cli, Web3.js and solc, which are the major

modules of developing the checking tool, are discussed and their roles in the tool are

explained.

2.1 Ethereum
Ethereum is the chosen platform of development in this project. Ethereum is open-source

blockchain platform. It is the most prominent platform for smart contracts (Buterin, 2013). It

allows users to create their own scripts written in Solidity, a contract-oriented programming

language for writing smart contracts. It is designed to create smart contracts on Ethereum.

However, Solidity is also considered as one of the reasons why the implementation of smart

contracts particularly prone to errors in Ethereum (Atezi, Bartoletti, Cimoli, 2017). In order

to investigate these errors caused by Solidity, this is chosen as the language to use.

Ethereum is a blockchain platform. To create incentive for others to compute the result

together, a token Ether is created to pay for those who have computed. For example, to

validate a block of data about A buying a house from B, the transaction need to be validated

by the crowd. To pay for the computing power, both A and B have to pay in Ether, or namely

gas, for their effort. Currently one Ether token equals around US$300.

	 8	

Figure 1: Architecture of Ethereum

Figure 1 shows the architecture of Ethereum. The header consists of many data which help

identifying blocks. The PrevHash will help when chasing back the chain of data. This part

makes Ethereum adopt the structure of blockchain, which make them share the same features

mentioned in Background section. The state is the data stored in the block. These data can be

balance or other data as shown in Fig.1.

	 9	

2.2 Solidity
Solidity is a programming language designed for writing smart contracts. Fig. 2 shows how

does a simple wallet object is created with Solidity. Owner contains the unique address of the

owner of the wallet. It initializes the owner as who creates this object. Also the Pay function

takes in the amount to send and the address of recipient. Before the owner actually pays, the

function will first check does the owner call this function and if the owner has enough

balance to pay that amount. If these conditions are all met, the function will deduct the

amount from the owner and call recipient.send(amount) to increase the balance of recipient. It

is only a simple example. More functions can be added if required.

Figure 2: Simple demo code of a wallet in Solidity (Atezi, Bartoletti, Cimoli, 2017)

2.3 ganache-cli
Besides researching on the potential attacks on Ethereum smart contracts, another

key deliverable of this project is a tool checking smart contracts whether the identified

security loopholes exist in those contracts. In order to check those contracts, a private

blockchain is needed. With a private blockchain, a isolated testing environment is created so

that no real monetary transaction is involved. Additionally, all the factors in a private testing

blockchain are under my control. In a public blockchain, due to the nature of decentralized

system, it is impossible to control the behavior of every single user. Therefore, some extreme

cases cannot be tested. On the other hand, virtual users can be created to simulate different

scenario, including extreme cases. Due to these two reasons, a private blockchain is a desired

testing environment of Ethereum smart contracts.

	 10	

In order to create a private blockchain to simulate attacks on Ethereum smart contracts, the

node.js module ganache-cli is used to create such a isolated environment. It is widely used in

testing and communicating with the Ethereum private network. Its functionalities include

managing different accounts, mining cryptocurrency Ether and executing smart contracts. In

this project, the functionalities to be used are mainly managing different dummy accounts

and executing smart contracts under testing.

In order to create a private chain without communicating with the main public Ethereum

chain, all the nodes in the private chain should not be connected to the public chain and be

discovered by other users. By default, 10 accounts are created and users can use them for

testing.

2.4 Web3.js
With ganache-cli, an isolated testing environment is created. The next step is to deploy the

smart contracts. Web3.js is the library to use. Web3.js is JavaScript API (application

programming interface) which can compile smart contracts written Solidity and execute them

in the private chain.

Figure 3: A screenshot of web-based application in Web3.js by mobilefish.com

	 11	

Additionally, as it is a module in Node.js, another framework building web application, this

tool can be launched as a web application. It makes the tool more user-friendly as no

command input is needed to use tool. The entry barrier of using this tool is lowered by a

simple web interface. The above figure is a screenshot of a web-application of Ethereum. It is

easier to use compared with traditional command line tool.

To compile a Solidity smart contract, the command to use is:

newContract = new web3.eth.Contract(abi, accounts[0]);
abi is the Application Binary Interface returned from the compiled contract object from solc,

which will be discussed in section 2.5. The second parameter is the address of the contract.

If there is no error, the contract has to be deployed to the chain by:

newContract.deploy({data: bytecodes[abi_id], arguments: params})
.send({from: accounts[0], gas: 1000000}).then(function(newc){});

Here by calling deploy(), with its bytecode and parameters of constructor, a new promised

contract instance is created and deployed on the blockchain.

In this project, Web3.js version 1.0 is used.

2.5 solc

solc is a node.js module that compiles smart contracts written in solidity in a node.js project.

In checking tool, this module will compile the smart contracts and pass the compiled instance

to Web3.js for further communication with the private chain.

To compile a smart contract, the code to use is:

contracts = solc.compile(input);

Here contracts is the compiled contract object returned and input is the contract itself in string

form.

	 12	

2.6 Summary of checking tool

Figure 4: Architecture and logic flow of the checking tool

To conclude, the architecture of the checking tool is shown as above. The smart contracts in

Solidity are the input of the system. They will be compiled with Web3.js and be executed on

an isolated private chain created with ganache-cli. The identified security loopholes are then

tested under that environment. The tool is launched as a web-based application powered by

Web3.js and Node.js to make the tool more user-friendly.

	 13	

3. Works Accomplished

3.1 Research on security loopholes
A major part of this project is to study smart contracts and its security loopholes. These

includes the principle of blockchain and smart contracts, the skills to write smart contracts on

Ethereum with Solidity and the existing and identified security loopholes of smart contracts.

The principle of blockchain is mentioned in Background section and introduction of

Ethereum is included in Methodology section. Therefore, this section will focus on the

findings on the identified security loopholes of smart contracts.

In “A Survey on Attacks on Ethereum smart contracts, it provides a list of known

vulnerability of Ethereum Smart Contracts. Additionally, different developers have posted

some newly discovered vulnerabilities online, like “How to Secure Your Smart Contracts: 6

Solidity vulnerabilities and how to avoid them” by Georgios Konstantopoulos (2018).

3.1.1 Wrong Typecast

Figure 5; A sample code of wrong typecast

First, wrong typecast to variables is one of the vulnerabilities identified. Solidity compiler

dons not check whether a function takes in a correct type of variable. A sample code is shown

in Figure 5. The function sweepCommission takes in a parameter with typr uint, which stands

for unsigned integer, like 20. If parameters with other types, like string or decimal number,

error should be prompted to notify the developer. However in Solidity, no error will be

returned and the developer cannot notice such an error as usually the other language compile

will check the type of variables. So the developer may think that the contract is correctly

executed. It could bring chaining effect if the number of parties involved is huge. The whole

system may fall.

	 14	

3.1.2 Immutable bugs
Next, the bugs are immutable once it is on the blockchain. Based on the mechanism of

blockchain, it is nearly impossible to change a single block of data once it is appended. That

means once a bug is on the blockchain, it is difficult to remove it. Once the bugs or

vulnerability stack up, the system may fall.

3.1.3 Unpredictable States and Reentrancy

Figure 6: An example of unpredictable state scenario

Finally, unpredictable state is another problem to be considered. As mentioned in

Methodology section, state is the data contained in a block, e.g. balance. However,

sometimes the smart contracts cannot be executed immediately. An example scenario is

shown in above figure. A has 20 dollars as balance. B sends 10 dollars to A and A pays C 30

dollars. These transactions will be valid if A first collects money from B followed by paying

C. However, it is not guaranteed that A collects money first. The time taken for checking

processes of two different transactions and network speed of different users are some

potential factors affecting the order of executing those contracts.

One attack exploiting this vulnerability is reentrancy. Here we refer back to the case of figure

6. B has a variable storing all debts he owns, say debt[A] = 10. After A receives 10 dollars

from B, debt[A] should be 0 instead of 10. Here the value of debt[A] is a checking

mechanism of paying A. However, if B updates that value of debt[A] after sending 10 dollars

	 15	

to A, A can then call for debt for twice and receive 20 dollars. Since .send() takes unknown

time, debt[A] may not be updated when the second call arrives. Then the second call will

send 10 dollars to A again, which is a loss to B.

To solve this problem, updating balance must be done before sending ether to others. Another

approach is to use .transfer() instead of .send().

3.1.4 Uint Overflow/ Underflow
Uint is a data type commonly used in solidity. It stands for unsigned integers, ranging from 0

to 2^(256) -1, i.e. a 256 bit number. One typical use of this data type to represent account

balance, which is crucial in monetary transactions. Although the range of values seems

enough, overflow or underflow may occur. If we increment to 2^(256) – 1 by 1, the value

will be out of bound and return to 0. Here overflow occurs. The same logic applies to

subtracting 1 from 0. The value will be to 2^(256) – 1 and underflow occurs. This is like the

Year 2000 problem where the numbers of bits is not enough.

To solve this, there is a solidity library SafeMath.sol from Zeppelin (Zeppelin, 2018) which

throws errors to user if overflow or underflow occur.

3.1.5 Unclear Visibility of Functions
Like any other languages, solidity allows users to specify the visibility of functions and

variables. There are 4 types of visibility level:

Level Scope

Public All users can access

External Only accessed by external parties, cannot be

accessed by other functions in same contract

Internal Only accessed by other functions in same

contract, or child contracts inherited from it

Private Only accessed by other functions in same

contract

Figure 7: A table of different visibility levels of Solidity

By the above levels the behavior of different contracts can be controlled. However, if no

visibility level is specified, the level will be public by default. If the developer did not notice,

hackers can call the functions that change key information of the contract, like the account

	 16	

balances. This causes delegate calls which is not desired. To solve this, the visibility should

be decided carefully and always specify one level to prevent setting the level by default.

3.1.6 Forcing Ether to a Contract

A contract can stores Ethers and it can be retrieved by this.balance in solidity. However, if it

is used as a condition of executing some other lines, it may be bypassed by receiving Ether.

pragma solidity 0.4.18;

contract ForceEther {

 bool youWin = false;

 function onlyNonZeroBalance() {
 require(this.balance > 0);
 youWin = true;
 }
 // throw if any ether is received
 function() payable {
 revert();
 }
The above is a sample code of a contract. The fallback function, which will be called

whenever others sends Ether to it, will always revert, i.e. throws. Therefore, the variable

youWin will never be true as the initial balance is 0. However, the other contracts can call

Selfdestrut, which will renders the contract useless and send all its fund to a target address.

Moreover the fallback function of target contract is not called in this case. Therefore, when

some other contracts call selfdestruct and have the target as the contract above, its balance

will be greater that 0, hence youWin is then true. To avoid this loophole, this.balance should

never be used as a checking condition as others can forcefully send Ether.

3.1.7 DoS by Calling to the Unknown
This vulnerability can be illustrated by King of the Ether case.

pragma solidity ^0.4.18;
contract CallToTheUnknown {
 // Highest bidder becomes the Leader.
 // Vulnerable to DoS attack by an attacker contract which reverts all
transactions to it.

 address currentLeader;
 uint highestBid;

 function() payable {
 require(msg.value > highestBid);

	 17	

 require(currentLeader.send(highestBid)); // Refund the old leader, if it
fails then revert
 currentLeader = msg.sender;
 highestBid = msg.value;
 }
}

contract Pwn {
 // call become leader
 function becomeLeader(address _address, uint bidAmount) {
 _address.call.value(bidAmount);
 }

 // reverts anytime it receives ether, thus cancelling out the change of the
leader
 function() payable {
 revert();
 }
}
In this case, the user sending most amount of Ether will be the King. When there is a new

king, the amount paid by the previous king will be refunded. To attack this contract, the

attack can create a new contract, i.e. contract Pwn above, having a fallback function which

always revert. Then he will be the king first by sending enough Ether. When others send

enough ether to be the new king, the refund cannot not be done as the attacker’s contract

always throw the refund. Then the attack will be the king forever as the king cannot updated,

which is done after a successful refund. With such a simple contract, an effective DoS is

launched. At this stage, there is nothing we can do to completely avoid this vulnerability. One

recommendation to solidity is that an explicit type of error can be delivered to warn the

developers.

3.1.8 Short Address Attack
This vulnerability is found ERC20 tokens, which is technical standard used for smart

contracts on the Ethereum blockchain for implementing tokens, and published by the Golem

team (2017). Besides send(), transfer(address, uint) is used to send ether to others. After

calling it, the function will be encoded into a 68-byte long data. The structure of the data is:

No. of Bytes Data Descirption

4 Method ID

32 Destination address of 20 bytes, then filled

with leading zeros

32 Value to transfer

Figure 8: A table of structure of full transaction of .transfer()

	 18	

Normally a address is 20-byte long. However, if an address ends with 0, like

0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa0000, the address will still be the same after

removing trailing zeros. So by passing in a shortened address, the data will be shorted and the

value to transfer will be larger. To avoid this vulnerability, the length of input must be check

and throw if data with invalid length is passed in.

The above are some of the vulnerabilities of smart contracts. There are more in other sources

not studied and remained not identified. The research and the tool will mainly focus on the

holes identified above.

3.2 Developing the checking tool
Besides the research on attacks on Ethereum smart contracts, the research on how to develop

a checking is necessary. The working principle of the checking tool is discussed in the

Methodology part. Therefore in this section, only the progress of the development is reported.

A private chain is set up in my own private machine by gnanche-cli. I can now perform

simulated transactions under my control. However some parts, like some scenarios of

different attacks, are not able to be implemented. The reason will be discussed in later parts.

3.2.1 Launching a private chain
As mentioned above, the testing environment will be a private chain. A private chain is set up

in my own machine using ganache-cli. After testing, simple Ethereum smart contracts can be

executed in that chain. Additionally, as a private chain in a completely closed environment is

used, all the user activities, like transactions, are all under control.

3.2.2 Launching a prototype of the web-based tool
Besides setting up the chain, a web-based tool is required to provide the best user experience.

	 19	

Figure 9: A screenshot of the web tool

The above is a screen shot of the prototype of the web tool. It allows the users to upload the

smart contract file with extension .sol. Then the user has to fill in valid parameters of

constructor to deploy it, followed by being passed to the private chain and executed.

Figure 10: A screenshot of security report generated by the web tool

After different checking, a security report with recommendations is generated to users.

	 20	

3.2.3 Checking Principles of different Vulnerabilities
Due to the nature of different vulnerabilities, only 2 of them can be simulated without user

input. This tool aims at providing a simple checking to the smart contracts, and the users

should not know much about smart contracts. If they know more, they can do other a more

detailed simulation on other platform, like Remix which is online IDE of solidity. Moreover,

due to the limitation of Web3.js and knowing the behavior of contracts with machines, it is

difficult to simulate some scenarios. The limitation will be discussed in later sections.

Therefore, some vulnerabilities will be checked by only looking for key words in the

contracts, while some will be checked with simulation. The vulnerabilities checked are those

mentioned in Section 3.1.

3.2.2.1 Checking Uint Overflow/ Underflow
This can be tested without simulation. If the contract performs unit arithmetic without

checking for overflow or underflow, we can conclude that this contract is vulnerable to unit

overflow or underflow.

It can be done for searching for declaration of uint variables and arithmetic symbols, i.e. “+,

-, *, /”. To check whether overflow or underflow is detected, the common practice is to use

require() to wrap up the arithmetic operation. Require() is used in solidity like an if-else

statement in other languages. If the return value is true, the operations after require() are then

executed. For instance, require(a – b < a) checks if a-b is smaller than a. If underflow occurs,

a-b will be greater than a. Therefore this line can check for overflow or underflow. If the

contract does not contain such lines, it may suffer from uint overflow or underflow.

3.2.2.2 Checking Visibilities
It is difficult to simulate as we do not know the expected behavior of the methods. For

example, it is acceptable to have a public getter function, while it is acceptable to have a

public setter function of internal variables. Therefore, it is hard to detect. However, like what

have been mentioned in section 3.1.5, the default visibility level is public. When solc

compiles a contract, a warning of no visibility specified will be shown to user. Therefore this

tool will propagate this warning to user and reminder them to specify the visibility, as public

methods provides more room for attacking.

	 21	

3.2.2.3 Checking Forcing Ether
This can be tested without simulation. As mentioned in section 3.1.6, the problem in this case

is to use balance of the contract as a condition for executing some lines. To detect this, we

can try to look for the key word “this.balance” in the contract. Furthermore, we look for any

comparison of value with this.balance. This can be shown by key words “this.balance >”.

Therefore, simulation is not needed in this case.

3.2.2.4 Checking DoS by Calling to the Unknown
In this case, both text analysis and simulation will be used. For text analysis, the key words

are “.send(” as it is triggered by calling .send(). So by looking for these key words, we may

say there is a risk of being vulnerable to DoS by calling to unknowns.

To simulate this scenario, another contract is needed. The contract is:

pragma solidity 0.4.18;

contract TestCallToUnknown {

 test t;
 function TestCallToUnknown {
 t.method(params);
 }
 // throw if any ether is received
 function() payable {
 revert();
 }
}

This contract creates an instance of the contract under testing and calls the method that will

send Ether. In the original contract, a new event is added after sending Ether. If the event is

not caught, it means that the sending of Ether fails, and hence all the lines after that cannot b

executed. By having this TestCallToUnknown contract, the attack can be simulated.

To get the names and parameters of the method, they can available in the ABI of the contract.

	 22	

3.2.2.5 Checking Short Address Attack
In this case, both text analysis and simulation will be used. For text analysis, the key words

are “msg.data.length” and “.transfer(”. By looking for “.transfer(”, we know whether the

method .transfer(). If ”msg.data.length” does not appear in the contract, it means that the

length of the message is not checked, hence my suffer from short address attack.

To simulate this, an account with address ends with 0 is needed. To ensure this, an error will

be prompted if there is no such account.

Figure 11: A screenshot of error of not having an account with address ends with 0

With such an account, we can then explicitly make a new address with deleted trailing 0 and

call the .transfer() function with that account as destination, and 1 as the value to transfer. If

the value send is different, we can conclude that the contract may be vulnerable to short

address attack.

3.2.2.5 Checking Reentrancy

As mentioned in section 3.1.3, the reason why reentrancy occurs is that the

variable determining the condition is not updated when waiting for successful

send. In order to detect it, the method must call .send(), and it must be followed

by updating a variable. Since most likely the variable to update is a number or a

Boolean variable, the arithmetic symbol like +, - , *, = will appear after .send().

Therefore by this text checking, we may detect such vulnerability existing in the

contract.

	 23	

4. Problems Encountered
There are several problems encountered in this project. This section will discuss those

problems in both the research and development.

4.1 Insufficient security loopholes
Smart contract is still quite new to the society. The reliable research in this field is still not

enough. The main reference I take in this project is “A Survey of Attacks on Ethereum Smart

contracts”, as well as “How to Secure Your Smart Contracts: 6 Solidity vulnerabilities and

how to avoid them”. However, there are some loopholes not covered. If some reports on the

Internet are also considered, more research will be needed to verify the identified loophole. It

is a pity that some unverified and potential security holes are not covered in this project.

4.2 Computing Resources of the tool
The checking tool requires an isolated environment for testing. However, the computing

power and storage required to run a private chain is not negligible. Moreover, if a private

chain is created for every test, the storage will be soon full. Therefore, a way to solve this

problem is needed for making the tool scalable for future use. A possible approach is to reset

the data on the chain when the test ends.

4.3 Deploying the tool to the cloud
To make the tool available to public, the ideal approach is to deploy the tool to cloud.

However, as mentioned above in 4.2, the storage and computing power are major concerns.

Since it is currently in development phase, the development and testing will be done in local

machines to reduce development costs like running a machine on cloud. However, the tool

can be migrated to cloud when conducting pressure test on the tool, which is still not

implemented due to time constraint.

	 24	

5. Future Works
At this stage, the research of the topic and a simple smart contract checking tool is done.

However due to the scope of this project and the different limitation, there are still future

works that can be done.

5.1 Use Machine Learning to Read and Check the Contracts
In the checking process, the major way to detect certain vulnerabilities is looking up key

words. However, it is not accurate and efficient enough. Indeed, there are similar tools

available in market.

Figure 12: A screenshot of security report of Securify

The above screenshot is from another smart contract security auditing service provider Securify.

The first screenshot is a security report from free tier service and the next one is the list of

auditing service. Here we can observe that the security will ask for feedback from the user,

asking if their judgement is correct. It is then guessed that the backbone of their free and

automated service is machine learning, which needs much feedback for training.

	 25	

Figure 13: A screenshot of security report of SmartCheck

The above is the security report from SmartCheck, another tool available in market. The “click

to confirm” is another sign of using machine learning to check to code. Here it is observed that

machine learning is commonly used for automated checking of code. In the future the checking

mechanism can be implemented with the help of machine learning, rather than naïve text check

in current approach. However, due to time constraint and insufficient of data, i.e. sample

contracts, this is not implemented in this project. However, this is a new topic with great

potential to work on.

5.2 UI Enhancement
In this project, the styling library used is Bootstrap. However, the design is still to plain and

may affect the user experience. Also this tool only allows user to upload the file directly, where

other tools in the market allows direct pasting the code, like in Remix and SmartCheck.

Therefore adding a text field for pasting the code may be another area to work on.

	 26	

6. Limitation
During the research of the project, there are some challenges and limitations of the project.

6.1 Uncovered security loopholes
First, there may be other security loopholes of smart contracts that are not included in this

tool. Although there are various identified attacks on smart contracts being studied in this

project, it is foreseeable that there will be new attacks in the future. As a checking tool of

smart contracts, it should identify as many security holes as possible to prevent false-positive

situation. Therefore in the future this tool needs regular update to deal with new security

loopholes. However, due to time constraint, the development work will take up most of the

time. So not much research on new attacks can be done.

6.2 Cross platform checking
Next, this tool can only detect security holes within the same blockchain. On Ethereum, all

the transaction is done with the currency Ether, a cryptocurrency produced in Ethereum

computation. However, to make smart contracts practical, the smart contracts must get data

from other sources to validate a contract. Like in the example of A buying a house from B,

the contract must see if B has the ownership of the house from other source like the

government if the data required is not on the same blockchain. So API (application

programming interface) must be used for data exchange. However, communication of

different APIs or the API itself may create security holes which cannot be checked with this

tool.

6.3 User Input and Unpredicted Behaviors of Contracts
The checking tool in this project relies much of naïve text checking, which is expected to be

not accurate enough. However, the behavior of different methods and the purpose of the

contract should be known in order to perform attack simulation. This then relies on user

input. However, the most effective and accurate way to audit a smart contract is still

reviewing by developers.

	 27	

Figure 14: A screenshot of smart contract auditing services list of Securify

The above is the auditing service tier list of Securify. It is clearly stated that the contract is

audited by experts and the time taken may be a month long in higher tier. Therefore, only

relying on machines for checking and auditing is not good enough. The input from experts and

developers is needed to make an accurate enough checking.

7. Conclusion
With the rise of blockchain and the convenience brought by smart contracts, the coverage of

smart contracts is expected to grow rapidly. That is the reason why security loopholes of

smart contracts are concerned. In this project, the loopholes are studied and a tool checking

the vulnerability of smart contracts from those security holes will be developed as the final

deliverable. Although this project is a year-long project, there are still rooms of improvement,

like introducing machine learning to validate the contract and adding more security

vulnerabilities to test.

	 28	

8. Reference
1. Ardit Dika; Ethereum Smart Contracts: Security Vulnerabilities and Security Tools,

Norwegian University of Science and Technology (2017)

2. Atzei, N, Bartoletti, M, and Cimol, T.i: A Survey of Attacks on Ethereum Smart

contracts, Universita degli Studi di Cagliari, Cagliari, Italy (2017)

3. Buterin, V.: Ethereum: a next generation smart contract and decentralized application

platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

4. ConsenSys Diligence; Ethereum Smart Contract Security Best Practices,

https://consensys.github.io/smart-contract-best-practices/ (2018)

5. Creating a Private Chain/Testnet, https://souptacular.gitbooks.io/ethereum-tutorials-

and-tips-by-hudson/content/private-chain.html (2017)

6. Ganache-cli – Truffle, https://github.com/trufflesuite/ganache-cli (2018)

7. Georgios Konstantopoulos ; How to Secure Your Smart Contracts: 6 Solidity

vulnerabilities and how to avoid them, https://medium.com/loom-network/how-to-

secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-1-

c33048d4d17d, https://medium.com/loom-network/how-to-secure-your-smart-

contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834

(2018)

8. Pawel Bylica from Golem; How to Find $10M Just by Reading the Blockchain,

https://blog.golemproject.net/how-to-find-10m-by-just-reading-blockchain-

6ae9d39fcd95 (2017)

9. Javascript API – Ethereum Wiki, https://github.com/ethereum/wiki/wiki/JavaScript-

API#web3ethcontract (2017)

10. Mobilefish.com, Demonstration Ethereum Dapp,

https://www.mobilefish.com/download/ethereum/DemoDapp.html (2017)

11. Peter Vessenes; More Ethereum Attacks: Race-To-Empty is the Real Deal,

https://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal/ (2016)

12. Securify, https://securify.ch/ (2018)

13. SmartCheck, https://tool.smartdec.net/ (2018)

14. Zeppelin, SafeMath.sol on Github, https://github.com/OpenZeppelin/zeppelin-

solidity/blob/master/contracts/math/SafeMath.sol (2018)

	 29	

9. Table of Figures
Figure 1: Architecture of Ethereum 7

Figure 2: Simple demo code of a wallet in Solidity (Atezi, Bartoletti, Cimoli, 2017) 8

Figure 3: A screenshot of web-based application in Web3.js by mobilefish.com 10

Figure 4: Architecture and logic flow of the checking tool 11

Figure 5; A sample code of wrong typecast 12

Figure 6: An example of unpredictable state scenario 13

Figure 7: A table of different visibility levels of Solidity 15

Figure 8: A table of structure of full transaction of .transfer() 17

Figure 9: A screenshot of the web tool 19

Figure 10: A screenshot of security report generated by the web tool 19

Figure 11: A screenshot of error of not having an account with address ends with 0 22

Figure 12: A screenshot of security report of Securify 24

Figure 13: A screenshot of security report of SmartCheck 25

Figure 14: A screenshot of smart contract auditing services list of Securify 27

